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Probability distribution functions of sub- and superdiffusive systems

Fabio Cecconi
Istituto dei Sistemi Complessi-CNR, Via dei Taurini 19, I-00185 Rome, Italy

Giulio Costantini
Istituto dei Sistemi Complessi-CNR, Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy

Alessandro Taloni
Istituto dei Sistemi Complessi-CNR, Via dei Taurini 19, I-00185 Rome, Italy

Angelo Vulpiani
Dipartimento di Fisica, Università Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy

(Received 26 November 2021; accepted 10 May 2022; published 6 June 2022)

We study the anomalous transport in systems of random walks on comblike lattices with fractal sidebranches,
showing subdiffusion, and in a system of Brownian particles driven by a random shear along the x direction,
showing a superdiffusive behavior. In particular, we discuss whether scaling and universality are present or not
in the shapes of the particle distribution along the preferential transport direction (x axis).

DOI: 10.1103/PhysRevResearch.4.023192

I. INTRODUCTION

Standard diffusion is a Gaussian behavior characterized by
a linear time growth of the mean-square displacement (MSD)
from the initial condition

〈[x(t ) − x(0)]2〉 ∼ t .

However, certain processes in nature, as well as in finance and
even in sociology, are not Gaussian, showing a nonlinear time
growth of the MSD:

〈[x(t ) − x(0)]2〉 ∼ t2ν . (1)

If ν < 1/2, the process x(t ), by definition, undergoes a
subdiffusive behavior, while if ν > 1/2, x(t ) is said to be
superdiffusive.

There is not a unique origin of the anomalous diffusion; it
can be due to many different causes which are specific to the
process under investigation.

From the mathematical side, anomalous diffusion is a strict
consequence of the breakdown of the central-limit-theorem
hypothesis, which can be ascribed either to the broad distri-
butions of independent elementary steps, e.g., Lévy flights
[1], or to the emergence of long-range, spatial or temporal,
correlations among such steps.

In transport processes, the main subject of this paper,
spatial correlations may arise from strong geometrical con-
finement and inhomogeneity due to the presence of disorder,
obstacles, compartments, and trapping sites that can be found
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in amorphous [2,3] and porous [4,5] materials. Similarly, the
crowding of cellular cytoplasm [6,7] and organic tissues [8,9]
can make the motion of molecules and water in biological
environments strongly correlated. Correlations among con-
secutive displacements can also emerge dynamically [10], as
in the case of chaotic dynamics [11–13], or because the parti-
cles are driven by the motions of the underlying medium, e.g.,
diffusion in turbulent fluid. Richardson, for instance, proved
that in a turbulent fluid, spatial dispersion of particles follows
a superdiffusive behavior [14,15].

Similar situations occur when the random walks (RWs) are
restricted on peculiar topological structures, such as fractals
and networks [16–18], where the geometrical constraints do
not allow a fast memory loss among a series of consecutive
displacements.

Finally, it is important to remark that often, in real physical
and biological cases [19], the anomalous diffusion can mani-
fest itself as a transient phenomenon that, although long-lived,
soon or later either turns into a standard one or even stops due
to the finiteness of the environments.

The goal of this paper is to discuss the general scaling
properties of the probability distribution function (PDF) of
anomalous diffusion at large times. In analogy with standard
diffusion, which undergoes the natural scaling

P(x, t ) ∝ t−1/2 exp[−c(x/
√

t )2],

we wonder to what extent the conjecture

P(x, t ) ∼ t−νFν (|x|/tν ) (2)

can hold for sub- and superdiffusive processes. Obviously,
the consequent issue is to determine the shape of Fν (z) and
understanding its degree of universality.

At first, we have to bear in mind that the universality of
this scaling is certainly broken by the existence of diffusion
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phenomena classified as “strongly anomalous” [13,20,21]. In-
deed, they exhibit a multiscaling in the spectrum of moments,

〈[x(t ) − x(0)]m〉 ∼ tmν(m), (3)

with not constant ν(m), which is in contrast with Eq. (2)
because a single exponent is not sufficient to characterize the
statistical properties of such processes. The conflict is evident
by considering that Eq. (2) prescribes the following scaling
for the moments:

Mm(t ) = 〈|x(t ) − x(0)|m〉 ∼ tm ν . (4)

In the following we will not address strongly anomalous phe-
nomena.

Roughly speaking, there are two different scenarios that
can be traced back to the property (2): one associated with
time-homogeneous diffusion processes, for which the incre-
ment x(t + h) − x(t ) is independent of x(t ), and the other
associated with processes not fulfilling the above property.
The latter are called nonhomogeneous processes and are es-
pecially observed in turbulent diffusion.

In the literature, some guesses can be found as to the func-
tional form of Fν (z) depending on the anomalous exponent ν.
It is worth mentioning two classes of Fν (z), the one suggested
for the time-homogeneous processes (Fisher) and the one
valid for turbulent diffusion (Richardson), both characterized
by a stretched exponential

Fν (z) ∼ exp(−aν |z|α ), (5)

with exponents

α =
{ 1

1−ν
Fisher branch

1
ν

Richardson branch.
(6)

Figure 1 sketches the expected validity range of the Fisher and
Richardson Fν (z) as a function of the anomalous exponents, in
both sub- and superdiffusive regimes.

It is interesting to note that for ν = 1/2, the two stretched
exponentials become of Gaussian type, as α = 2. We refer to
the Fν (z) with α = 1/(1 − ν) as the Fisher-like distribution,
since Fisher derived it in the context of self-avoiding polymers
(SAPs) [23]. The case of Fν (z) with α = 1/ν, which can be
referred to as Richardson’s function because it was derived by
Richardson in his studies on turbulent diffusion [14,15], will
not be addressed in this paper.

Before discussing the numerical analysis we carried out
for proving the Fisher’s scenario, we present two arguments
supporting the validity of

α = 1

1 − ν
. (7)

One is based on simple probability considerations [24], and
the other is based on the large-deviation theory (LDT), which
has been already and successfully applied to describe the
continuous-time RW (CTRW) [25,26].

The first heuristic argument starts from the observation that
the main contribution to the tails of Fν (z) arises from RWs
that are very persistent along the x direction, i.e., xmax ∼ t .
Therefore the probability of such persistent walks can be
approximated as Fν (zmax) ∼ exp(−aν |zmax|α ), where zmax =
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FIG. 1. Dependence of the parameter α of the stretched exponen-
tial as a function of the anomalous exponent ν [Eq. (6)], defining the
Fisher’s and Richardson’s branches. The horizontal line indicates the
value α = 2 characterizing the fractional Brownian motion (FBM),
and the intersection of all the lines (ν = 1/2, α = 2) identifies the
Gaussian point. The point (ν = 1/4, α = 4/3) corresponds to the
simple comb model, and the point (ν = 3/4, α = 4) corresponds to
the Matheron–de Marsily (MdM) shear model [22].

xmax/tν ∼ t1−ν . On the other side, the probability of such
paths is also P{zmax} ∼ exp(−pt ), as they undertake n = t/�t
independent steps in the same direction, p being a constant
and �t being the time step. Equating Fν (zmax) = P{zmax} gives
the Fisher’s branch scaling prediction.

The second heuristic argument is based on LDT, which
is a natural probability framework to determine how large
fluctuations from the mean of a random process characterize
the decay of the far tails of its PDF [27]. LDT is the proper
mathematical tool if we are interested in verifying whether
the far tails of the PDF (2) are consistent with Fisher’s tails.
LDT assumes that, at large time, the probability decays as

P(x, t ) ∝ exp[−tC(x/t )], (8)

where C(· · · ) is the Cramer’s (or rate) function. We recall
that if a process μn is the average over n independent ran-
dom variables, μn = (ξ1 + · · · + ξn)/n, its Cramer’s function
is, by definition, the limit C(μn) = − limn→∞ 1/n ln P(μn, n),
implying that asymptotically for large n

P(μn, n) ∝ exp[−nC(μn)].

This expression can be equivalently rewritten in terms of the
sum S = ξ1 + · · · + ξn = n μn and the total time t = n�t ,

P(S, t ) ∝ exp[−nC(S/n)] = exp[−tC(S/t )],

which is exactly Eq. (8). A comparison between Eq. (8) and
Eq. (5) implies that tC(x/t ) = aν |x/tν |α; this equality can be
rearranged to C(x/t ) = aν |x/t (ν+1/α)|α . Now the only consis-
tent possibility is that C(x/t ) = aν |x/t |α , which can only hold
true if Eq. (7) is verified.

Of course, although the above reasoning does not consti-
tute a proof, yet we can conclude that Fisher’s PDF is the
unique PDF which is consistent with the scaling (2) and the
LDT as well.
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FIG. 2. (a) Cartoons of fractal structures studied in this paper:
simple comb lattice and comb of Sierpinski gaskets. (b) Sketch of the
two-dimensional (2D) random velocity field, U = [U (y), 0], parallel
to the x axis and depending only on the vertical coordinate y.

In this paper we will focus only on the validity of
the Fisher’s scenario in the subdiffusive and superdiffusive
regimes, by using two models.

(1) The first model consists of the random walks (RWs) on
a class of comblike structures made of a main backbone dec-
orated by an array of fractal sidebranches [28], as in Fig. 2(a).
In this case, the subdiffusion is observed along the backbone.

(2) The second model consists of the Lagrangian dynamics
of particles in a channel geometry under the combined effects
of a random velocity shear and molecular diffusivity, as in
Fig. 2(b) [22,29]. In this case, the superdiffusion occurs along
the longitudinal transport direction (x axis).

We will show that the scaling behavior (2) is well satis-
fied by both the sub- and superdiffusive processes that we
studied. This is testified by the perfect collapse, upon rescal-
ing x → |x|/tν , of the simulated particle distribution (PDF)
onto a master curve whose tails can be described by Eq. (5)
with exponent (7). As a matter of fact, we will demonstrate,
numerically and analytically, that the Fisher relation is rig-
orously satisfied in the case of comblike structures, even
when the sidebranches are fractal structures of growing com-

plexity (Sierpinski gaskets with increasing spectral dimension
[Fig. 2(a)]).

On the other side, the superdiffusive case of the random-
shear model [Fig. 2(b)] presents an unexpected scenario where
the Fisher scaling appears to be satisfied only for a restricted
range of the anomalous exponent.

Moreover, the behavior of the PDF moments in agreement
with Eq. (4) provides further numerical support to the validity
of the rescaling, Eq. (2).

As we will see in the following, the very numerical diffi-
culty in observing the true nature of the tails stems from the
necessity of two simultaneous asymptotic conditions, t 	 1
and also |x|/tν 	 1.

This paper is organized as follows. In Sec. II we study
the anomalous behavior of RWs on a comblike structure with
fractal sidebranches. In Sec. III, we analyze the numerical
results on the superdiffusion of Brownian particles under a
random shear in a channel of width L.

Finally, Sec. IV contains a discussion and conclusions.

II. COMBLIKE SYSTEMS

To study the scaling of the PDF of anomalous subdiffu-
sion, we considered RWs on comblike structures, namely, a
central backbone decorated by either linear or more complex
sidebranches (SBs) [17]. In particular, we are interested in
fractal structures, so we consider SBs constituted of Sierpinski
gaskets with increasing spectral dimension [see Fig. 2(b)].
Such branched topology is typical of percolation clusters at
criticality, which can be viewed as finitely ramified fractals
[30,31]. Comblike structures, moreover, are frequently used
in condensed matter and biological frameworks to describe
the geometry of branched polymers [32,33], amphiphilic
molecules and engineered structures at the nano- and mi-
croscales, and anomalous propagation of chemical reaction
fronts [34]. Moreover, in recent years a series of papers fo-
cused on the generalizations of the original comb model, as
systems encompassing superdiffusion, due to the presence of
inhomogeneous convection [35] or Lévy flights [36], hetero-
geneous and fractional diffusion on a fractal mesh [37–39],
and slow or ultraslow diffusion [40]. In general, comb models
can be seen as concrete representations of CTRW. A general
account of these systems can be found in Ref. [41].

The analysis of the diffusion along the backbone has been
obtained by performing numerical simulations of N=3×106

random walkers over a Sierpinski comb structure, with one
gasket for every backbone site. We consider RWs on several
comb structures differing in the fractal dimension of the SBs.
Each SB is characterized by a primary element by means
of which one can iteratively generate the fractal structure.
Such a geometrical element is called a δ simplex, which is
a set of δ sites joined by edges. The Euclidean dimension d
of the space in which the gasket is embedded is related to
the simplex by d = δ − 1 [42]. The spectral dimension ds of
such structures is related to the Euclidean dimension by the
relationship [42,43]

ds = 2
ln(d + 1)

ln(d + 3)
, (9)
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while the fractal dimension d f depends on d via the
relationship

d f = ln(d + 1)

ln(2)
. (10)

The behavior of the mean-square displacement (MSD) of the
RW over comblike structures is anomalous [Eq. (1)], with an
exponent ν depending on the spectral dimension of the SB:

ν = 2 − ds

4
. (11)

Of course, the unavoidable finiteness of the linear size L of
the SBs makes the anomalous diffusion a transient behavior
occurring before the onset of a standard regime. However,
upon taking L to be sufficiently long, with respect to the
mean free path, the transient anomalous behavior can be made
arbitrarily long lived.

Equation (11) can be explained by a simple phenomenolog-
ical argument [44] which is based on the homogenization time
t∗(L), meant as the typical timescale after which the diffusion
along the backbone becomes standard:

〈x2
‖ (t )〉 ∼

{
t2ν if t � t∗(L)
D(L) t if t 	 t∗(L),

(12)

where D(L) is the effective diffusion coefficient depending
on the scale L. For finite-size SBs indeed, the anomalous
regime in the longitudinal diffusion is only transient, and soon
or later it will be replaced by the standard diffusion. The
homogenization time t∗(L) can be identified with the typical
time taken by the walker to “span” a single SB of linear
size L. The scaling of t∗(L) with L can be easily extracted
from the diffusion on fractal structures, 〈x2

⊥(t )〉 ∼ t2/dw , where
dw indicates the random walk dimension [41]. Therefore we
expect that L2 ∼ [t∗(L)]2/dw , implying the scaling

t∗(L) ∼ Ldw .

Once such a scaling is known, we can apply a “matching
argument” to derive the exponent ν in Eq. (1), by requiring
that the power-law and the linear behavior of Eq. (12) have to
match at time t � t∗(L),

t∗(L)2ν ∼ D(L) t∗(L). (13)

We need to determine the scale dependence of the effective
diffusion coefficient D(L) for the RW along the backbone.
This scale dependence is

D(L) ∼ L−d f , (14)

d f being the fractal dimension of each SB. Indeed, when the
diffusion along the backbone has reached the standard regime,
it satisfies 〈x2

‖ (t )〉 = D(L)t , where D(L) = D0 f (L) is the bare
(microscopic) diffusion constant D0 reduced by a factor f (L),
which is the probability for a walker to occupy a backbone
site, since only the fraction f (L) of RWs on the backbone
actually contribute to the diffusion. We can safely assume that
the dynamics in the homogenization regime equally visits all
the sites on each SB, which become equiprobable. Accord-
ingly, f (L) follows from a simple geometrical counting that
is evident when referring to the simple one-dimensional comb
with finite SB of length L [top panel of Fig. 2(a)]. Clearly,
each linear SB contains a number of sites NSB(L) = L/�0,
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FIG. 3. The MSDs (symbols) vs time for comb structures at dif-
ferent values of the spectral dimension: simple comb, ds = 1 (black
symbols); ds = 1.365 (red symbols); ds = 1.547 (green symbols);
and ds = 1.654 (blue symbols). The dashed curves correspond to
the MSD [Eq. (1)], with ν given by Eq. (11). Inset: Plot of ν values
(with errors), estimated from the slope of the MSD in the main panel,
against the four considered values of ds. The dashed curve represents
Eq. (11).

where �0 is the lattice spacing that, without loss of generality,
can be set to �0 = 1. Therefore f (L) amounts to the follow-
ing simple counting: only one backbone site over NSB(L) =
L total SB sites, implying that f (L) = 1/NSB(L) ∼ L−1, in
d = 1. The reasoning straightforwardly generalizes to fractal
SB [Fig. 2(a), bottom panel] by observing that, on a fractal, the
number of sites scales as NSB(L) ∼ Ld f [16], and thus we have
again one backbone site over Ld f SB sites. The scaling (14)
indicates that D(L) decays by enhancing the trapping power of
the SBs; this occurs by two mechanisms: by increasing their
linear size L or by increasing their geometrical complexity,
characterized by d f .

Now, using t∗(L) ∼ Ldw , the matching Eq. (13) yields
2νdw = −d f + dw, from which we obtain Eq. (11), providing
that dw = 2d f /ds (see Ref. [16]). A similar reasoning has
been generalized to compute anomalous exponents for RWs
on fractal brushes, in Ref. [45].

Comb and comb-Sierpinski structures

Because of the coupling between the SBs and the backbone
dynamics, the transport along the backbone of a comb [see the
top panel of Fig. 2(a)] becomes anomalous, with an exponent
given by Eq. (11). Figure 3 reports the power-law behavior
of the MSD along with its prediction (dashed curves) for the
structures corresponding to different ds.

The long-time PDFs of the RW dynamics on the back-
bone present the collapse onto a Fν (z) predicted by Eq. (2),
upon rescaling, z = |x|/σ (t ), with σ (t ) =

√
〈[x(t ) − x(0)]2;

see Fig. 4. To test whether the PDFs exhibit Fisher’s tails, we
performed a global fitting of all the curves using Eq. (5) with
aν and α as free parameters. This unconstrained or “blind”
fitting procedure shows that the stretched-exponential form
fits only the distribution bulk, i.e., small values of z. Moreover,
the α values from the fitting deviate from the expected values
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FIG. 4. Rescaled PDFs F (|x|/σ ) of the comblike structures for
different values of time and different spectral dimensions: ds = 1
(a) and ds = 1.365 (b). The red dashed curve corresponds to the
stretched-exponential fit via Eq. (5).

[Eq. (7)]; see Table I. This analysis suggests that without a
proper guess, there is no chance to prove that the backbone
diffusion in comblike structures follows a Fisher-like distribu-
tion, at least on the tails.

An analytical prediction of the PDF can be performed
using the fractional Fokker-Planck equation (FFPE), which
governs the diffusion on the comb backbone; see Ref. [46].

To start with, let us briefly recall the theory developed
for the comb system in Refs. [47–49]. According to the au-
thors, the Smoluchowski equation for the particle distribution

TABLE I. Values of the parameters of the best fitting of the
simulated PDFs with Eq. (5).

d Fitted α αF

1 1.1166 ± 0.0023 1.3333
2 1.0341 ± 0.0010 1.1886
3 1.0034 ± 0.0049 1.1276
4 0.9776 ± 0.0145 1.0946

P(x, y; t ) on the comb (backbone plus SBs) is

∂P(x, y; t )

∂t
= Dxδ(y)

∂2P

∂x2
+ Dy

∂2P

∂y2
. (15)

The presence of the δ(y) function ensures that the diffusion
along the backbone takes place only at y = 0. Two different
diffusion coefficients are introduced, one along the comb teeth
(Dy) and one along the backbone (Dx), with different physical
dimensions. The equation for the particles diffusing along the
backbone,

PB(x, t ) =
∫ ∞

−∞
dy P(x, y; t ),

can be derived by manipulating Eq. (15) [48] defined as

∂PB(x; t )

∂t
= K1/2

∂2

∂x2 0D
1
2
t PB(x; t ), (16)

where K1/2 = Dx/(2
√

Dy) and 0Dα
t is the Riemann-Liouville

fractional operator of order α [46,50]:

0Dα
t φ(t ) = 1

�(1 − α)

d

dt

∫ t

0
dt ′ 1

(t − t ′)α
φ(t ′), 0 < α < 1.

(17)
As anticipated, Eq. (16) is a type of FFPE [46], and its

solution can be compactly expressed by a particular case of
the Fox function [46], also called an M function [51,52]:

PB(x; t ) = 1

π1/4σ (t )
H1 0

1 1

[
2|x|

π1/4σ (t )

∣∣∣∣(3/4, 1/4)
(0, 1)

]
. (18)

Here, the MSD takes the form

σ 2(t ) = 2Dx√
πDy

√
t, (19)

but most importantly, in the limit |x|/σ 	 1, the Fox function
in Eq. (18) admits the asymptotic expansion [53,54]

H1 0
1 1 ∼

(
2|x|

π1/4σ (t )

)− 1
3

e− 3
44/3π1/3 ( 2|x|

σ (t ) )
4
3
. (20)

The expected Fisher’s stretched-exponential behavior is in-
deed recovered, and remarkably, it reproduces the tails (z � 4)
of the numerical PDFs, reported in Fig. 5(a), without any
fitting procedure.

Extending this approach to the fractal combs of Fig. 2 is
out of the question, because the analog of Eq. (15) cannot be
drawn. However, we can pass through the CTRW represen-
tation. Let us first examine the comb model. If we consider
only the dynamics along the backbone, the time spent at a
site x is the return time to x, after the walker has visited the
matching SB. In other words, we can imagine the particle still
being at site x, while performing its Brownian motion along
the finger (y). Within a certain degree of accuracy, we can
assume that this residence (or waiting) time at x corresponds
to the walker’s first return time to the backbone (y = 0).
Hence the residence time PDF ω(t ) scales as ω(t ) ∼ (τ/t )3/2,
where τ is an arbitrary timescale. On the other hand, the
hopping dynamics along the backbone would ensure that the
jump distribution is well approximated by a Gaussian, i.e.,
λ(x) = (4πσ 2)−1/2 exp[−x2/(4σ 2)]. Following the derivation
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FIG. 5. Rescaled PDF F [|x|/σ (t )] of the comblike structures for
different values of time and different spectral dimensions: ds = 1 (a),
ds = 1.365 (b), and ds = 1.654 (c). The red dashed curves are the
plots of Eq. (20) for (a) and Eq. (26) for (b) and (c). Notice that no
fitting procedure is applied.

furnished in Ref. [46], the Laplace-Fourier transform of the
waiting time and jump length PDFs reads

ω(s) ∼ 1 − (sτ )1/2,

λ(k) ∼ 1 − (σk)2, (21)

respectively. Therefore the Fourier-Laplace transform of the
CTRW PDF is

PB(k, s) = PB(k, 0)/s

1 + K1/2s−1/2k2
,

so that the CTRW approach yields the correct MSD (19) and,
most importantly, it confirms that the corresponding Fokker-
Planck equation is the FFPE (15) [46].

Now let us turn to the fractal comb. The CTRW picture
fully applies also to this case, with the only difference that a
particle is imagined to reside at site x while wandering through
the fractal hinged on the backbone’s site x by its origin [see
Fig. 2(a)]. Hence the residence (or waiting) time corresponds
to the walker’s first return time to the origin of a Sierpinski
gasket of spectral dimension ds, whose PDF behaves as [42]

ω(t ) ∼ (τ/t )2−ds/2 = (τ/t )1+2ν .

On the other side, the jump length distribution is still a Gaus-
sian. Thus, in this case, we have

ω(s) ∼ 1 − (sτ )2ν,

λ(k) ∼ 1 − (σk)2, (22)

and the Fourier-Laplace transform of the walker’s PDF is

PB(k, s) = PB(k, 0)/s

1 + K2νs−2νk2
.

Inverting, one has that the proper Fokker-Planck equation for
such a process reads [46]

∂PB(x; t )

∂t
= K2ν

∂2

∂x2 0D1−2ν
t PB(x; t ), (23)

with the MSD

σ 2(t ) = 2K2ν

�(1 + 2ν)
t2ν . (24)

As for Eq. (16), the solution of Eq. (23) is again an M function
[51,52]

PB(x; t ) = 1√
2�(1 + 2ν)

σ (t )

× H1 0
1 1

[√
2

�(1 + 2ν)

|x|
σ (t )

∣∣∣∣(1 − ν, ν)
(0, 1)

]
, (25)

satisfying the asymptotic behavior

H1 0
1 1 ∼

(√
2

�(1 + 2ν)

|x|
σ (t )

) 2ν−1
2(1−ν)

× e
−(1−ν)ν

ν
1−ν

(√
2

�(1+2ν)
|x|

σ (t )

) 1
1−ν

, (26)

which reproduces the Fisher’s stretched exponential. In gen-
eral, it can be shown that the M function appearing in Eq. (25)
is related to the Lévy stable distribution with parameter ν by
the following equality [55]:

H1 0
1 1

[
y

∣∣∣∣(1 − ν, ν)
(0, 1)

]
= 1

ν
L−ν

ν (y−1/ν )y−(1+1/ν).

Figure 5 shows that the asymptotic formula (26) is an excel-
lent approximation of the distribution tails. Once again, we
stress that no fit to numerical data has been implemented.

To sum up, expressions (20) and (26) clearly demonstrate
that Fisher’s scenario is fulfilled if we take into consideration
only the tails of the PDFs (z � 4), and that it is a consequence
of the type of fractional equation governing the diffusion on
the comb backbone.

III. RANDOM-SHEAR MODEL

Random-shear models have been proposed to study the
hydrodynamic transport of solute particles in stratified porous
media, under the assumption that advection is parallel to the
stratification planes [22]. Letting P(x, y, t ) be the concentra-
tion of the solute particles and U = (U (y), 0) be the shear
parallel to x depending only on the stratification height y, we
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can write the conventional advection-diffusion equation

∂P

∂t
+ U (y)

∂P

∂x
= Dx

∂2P

∂x2
+ Dy

∂2P

∂y2
, (27)

where the incompressibility div(U) = 0 has been taken into
account and Dx and Dy denote the microscopic (molecular)
diffusivity along the x and y directions, respectively. In the fol-
lowing, we set Dy = D0, because we will assume that Dx � 0,
so that the particle dispersion along x is mainly ruled by the
statistical properties of U (y). In a famous paper, Matheron
and de Marsily [22] studied the anomalous transport of par-
ticles driven by an array of horizontal random-width layers
with a constant velocity. The particles also undergo a Brow-
nian diffusion along the transverse direction; therefore they
cross different layers, visiting them several times. Specifically,
Matheron and de Marsily identified two properties of the
velocity autocorrelation 〈U (y)U (0)〉 leading to a longitudinal
anomalous superdiffusion, where the average is computed
over the random field realizations.

The problem (27) can be reformulated in terms of Langevin
equations for an ensemble of independent particles

ẋi = U (yi ), (28)

ẏi =
√

2D0 ξi(t ). (29)

{ξi(t )} are independent, delta-correlated, and zero-mean Gaus-
sian noises. Periodic boundary conditions are enforced on the
y direction at y = ±L/2, to implement a channel-like geome-
try along the x axis.

Our shear longitudinal field is generated by a superposition
of M sinusoidal waves, i.e.,

U (y) = 1

M

�∑
k=λ

Uk sin(ky + φk ), (30)

where the sum on k runs over the set k = 2π/L(1, 2, . . . , M ),
with λ = 2π/L and � = Mλ. This definition is not too restric-
tive for large M, since any smooth-enough field can always be
expanded in Fourier modes. The amplitudes are assumed to
depend on the wave vectors as

Uk = U0|k|γ /2, k = λ, . . . , �. (31)

U0 is a dimensional factor that can be set to unity by a simple
time redefinition, while the presence of the phases {φk} is
strongly necessary to confer a certain degree of heterogeneity
(randomization) to the field. The parameter γ , defining the
spectral properties of the modal decomposition of U (y), is
the only quantity that will be varied in our analysis. In what
follows, it will be convenient to express U (y) in the complex
form

U (y) =
�∑

k=−�

Vkeiky, (32)

with Vk = Ukeiφk /(2iM ), such that V−k = V ∗
k , V0 = 0, and

φ−k = −φk . For a reason of convenience that will be soon
clear, we take the shear field to be antisymmetric about the
middle of the channel, y = 0, i.e., U (−y) = −U (y). This
condition also sets up the phase choice to φk = 0 or π with
probability (1/2, 1/2), respectively.

The model composed of (28) and (29) can be exactly
solved as the equation for y is independent of x: The solution is
y(t ) = y0 + √

2D0wt , where wt indicates a Wiener’s process,
i.e., 〈wt 〉 = 0 and 〈wswt 〉 = |t − s|. A substitution into the
first equation yields

x(t ) = x(0) +
∫ t

0
dsU (y0 +

√
2D0 ws). (33)

Thanks to Eq. (30), Eq. (33) expands to

x(t ) − x(0) =
�∑

k=−�

Vkeiky0

∫ t

0
ds exp[ik

√
2D0 ws]. (34)

Now, from expression (34), all the moments

Mm(t ) = 〈[x(t ) − x(0)]m〉
can be computed. The crucial point is to establish the mean-
ing of the average 〈· · · 〉. As a matter of fact, three types of
average can be carried out on this system: (1) over the noise
realizations, i.e., on the Wiener’s process wt , namely, 〈· · · 〉w;
(2) over the initial conditions y0 along the stripe, namely,
〈· · · 〉0 = ∫ L/2

−L/2 dy0 ρ(y0); and (3) over the possible config-
urations of the disordered field U (y), i.e., over the phases,
namely, 〈· · · 〉φ = ∏λ

k=λ

∫ π

−π
dφk/(2π ).

Unlike previous works on the random-shear model
[22,29,41,56–66], in our analysis we will not consider the
average over random field realizations (phases in our case),
taking only the average on the Wiener process and on the ini-
tial conditions, as done in Ref. [67], in symbols 〈〈· · · 〉w〉0. We
will be assuming an initial uniform distribution of particles
along the channel: ρ(y0) = 1/L.

First we can compute that the mean displacement (drift),

〈〈[x(t ) − x(0)]〉w〉0 =
�∑

k=−�

Vk

D0k2
〈eiky0〉0(1 − e−D0k2t ), (35)

is rigorously zero because 〈exp(iky0)〉0 = δk,0 and we
have used the property of wt such that 〈exp(ikwt )〉w =
exp(−D0k2t ).

The mean-square displacement reads

〈〈[x(t ) − x(0)]2〉w〉0 =
( �∑

k=λ

|Vk|2
D0k2

)
t

−
�∑

k=λ

|Vk|2
D2

0k4
(1 − e−D0k2t );

(36)

recalling that Vk = Ukeφk /(2iM ), we have |Vk|2 = U 2
k /(4M2),

so that the MSD turns out to be independent of the phase
disorder. The first contribution is the well-known Taylor term

Deff = 1

2

�∑
k=λ

|Vk|2
D0k2

(37)

of the effective standard diffusion, whereas the second term is
the contribution leading to the anomalous transient behavior
whose duration increases with the width (transversal size) L
of the channel.

Before showing analytically how the anomalous behavior
emerges from (36), we repeat the matching argument of Sec. II
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in the context of the random-shear model to obtain its anoma-
lous exponent in an intuitive way. Let us consider the case of
large but finite L; of course, when t � t∗ = L2/D0, the trans-
verse free diffusion of particles feels the boundary effects, and
the longitudinal diffusion changes from anomalous to stan-
dard. Therefore, even for the random shear, we can assume
that Eq. (12) holds true, with the exponents determined by the
random-shear problem. In this case, D(L) scales as

Deff (L) ∼ L1−γ

D0
,

according to the Taylor formula (37), where the definition,
Eq. (31), has been used along with an implicit passage from
the summation on k to the integral over dk.

The anomalous and the standard regimes need to match
each other at time t∗(L), which is the typical time, t∗(L) ∼
L2/D0, taken by transverse free diffusion [Eq. (29)] to become
almost uniform over the channel width L. Thus, from the
matching condition, t∗(L)2ν ∼ Deff (L)t∗(L), one obtains the
relation (L2)2ν ∼ L1−γ L2, which, by equating the exponents,
leads to

ν = 3 − γ

4
. (38)

Therefore, as in the case of comb structures, a simple scaling
argument links the anomalous exponent ν to the parameter
γ defining the velocity field spectrum through Eq. (31); in
addition, Eq. (7) provides the value

α = 4

1 + γ
(39)

for the Fisher’s parameter.
The above derivation can be made rigorous, again assum-

ing large channel widths L 	 1, so the summation over k can
be replaced by an integral over the interval [λ,�], casting
Eq. (36) in the following form:

〈〈[x(t ) − x(0)]2〉w〉0

= 2Defft − L

2π

U 2
0

D2
0

∫ �

λ

dk kγ−4(1 − e−D0k2t ), (40)

where Eq. (31) has been used. Appendix shows that, in the
time interval L2/(M2D0) � t � L2/D0, the mean-square dis-
placement is

〈〈[x(t ) − x(0)]2〉w〉0 = 2Defft + B (D0t )
3−γ

2 − A, (41)

where the constants are A = �γ−3/[λ(γ − 3)] (U0/D0)2

and B = 2�[(γ + 1)/2]/[λ(γ − 3)(γ − 1)] (U0/D0)2. Equa-
tion (41) prescribes that a particle driven by the random shear
undergoes a transient superdiffusion with the exponent (38).
Of course, for t 	 L2/D0 the mean-square displacement turns
into the Gaussian regime characterized by a coefficient (37).

Numerical results

We numerically simulated the motion of N = 2 × 106

particles evolving according to Eqs. (28) and (29) with
D0 = 0.1. The system is prepared into an initial distribution
of {xi(0), yi(0)}, i = 1, . . . , N that is equally spaced along the
channel width, yi(0) = −L/2 + L(i − 1)/(N − 1), and uni-
formly distributed in x on the interval [−0.5, 0.5]. The equal

1

10
4

10
8

10
12

10
16

10
20

〈[
x(

t)
 -

 x
0]m

〉

10
2

10
3

10
4

t
10

0

10
2

10
4

m = 2
m = 4
m = 6

1

10
4

10
8

10
12

10
16

〈[
x(

t)
 -

 x
0]m

〉

10
2

10
3

10
4

t
10

0

10
2

10
4

m = 2
m = 4
m = 6

10
2

10
3

10
4

10
5

t

1

10
4

10
8

10
12

10
16

10
20

〈[
x(

t)
 -

 x
0]m

〉

10
2

10
3

10
4

t
10

0

10
2

10
4

m = 2
m = 4
m = 6

t
2ν

t
4ν

t
6ν

(γ = 0.4)

t
6ν

t
4ν

t
2ν

(γ = 0.0)

(γ = −0.4)

t
6ν

t
4ν

t
2ν

m = 6

m = 4

m = 2

m = 6

m =  6

m = 4

m = 2

m =  4

m =  2

FIG. 6. Time behavior of the moments M2m(t ) = 〈〈[x(t ) −
x(0)]2m〉w〉0 (m = 1, 2, 3) of N = 2 × 106 particles in the shear
model with parameters L = 100, M = 100, D0 = 0.1, U0 = 1, and
γ = (−0.4, 0.0, 0.4). The red solid curves indicate Eq. (36), and the
dashed straight lines are the expected anomalous scaling, 2νm, with
ν = (3 − γ )/4. The insets show the alignment of the moments upon
raising [M2m(t )]1/m, which is a strong numerical indication of the
collapse of the particle distributions, Eq. (2).

spacing along y guarantees that the constraint 〈eiky0〉0 = δk,0 in
Eq. (35) is numerically well satisfied by the initial condition.

The shear parameters are kept fixed to U0 = 1, L = 100,
and M = 100, while γ in Eq. (31) is varied in the range −1 �
γ � 1. Moreover, our specific choice of the disorder (φk = 0
or π ) corresponds to assigning random signs to the amplitudes
Uk = ±U0|k|γ /2. The numerical integration of Eqs. (28) and
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FIG. 7. Plot of the anomalous spectrum of moments, α(m), vs
the order of the moments m. The simple linear behavior indicates
that diffusion is not strongly anomalous.

(29) has been performed with a simple Euler scheme with a
time step h = 0.01.

The first test of the correctness of the Euler integration
is the agreement of the MSD obtained by the simulations
with the analytical result, Eq. (36), as verified in Fig. 6 by
the coincidence of the red curves representing Eq. (36) with
the numerical MSD (open circles). We computed also the
time behavior of the moments Mm(t ) with m = 4, 6 to verify
their expected intermediate anomalous behavior (4) occurring
in the interval L2/(M2D0) � t � L2/D0, which is repre-
sented by the dashed lines in Fig. 6. For times large enough,
t � 2 × 104, the Gaussian scaling of moments is recovered,
with the normal exponent ν = 1/2, indicating that the system
has attained the standard regime.

The insets in Fig. 6 show also that the moments align
upon raising them to the right power, [M2m(t )]1/m ∼ M2(t )
(Fig. 6). This alignment is a consequence of the scaling (2),
and the data in the insets represent a first robust numerical
test that this scaling is verified by the simulations. The same
conclusion was reached in Refs. [41,56] using the average
over the disordered convection fields 〈· · · 〉φ .

The collapse of moments in Fig. 6 exhibits the not strongly
anomalous character of the superdiffusive regime [20]. In
view of Eq. (3) indeed, we have ν(m) ≡ ν = (3 − γ )/4, as is
shown in Fig. 7 for the same values of γ displayed in Fig. 6.
Now, as the scaling of the moments corroborates the validity
of Eq. (2), we need to establish whether the tails of the PDFs
satisfy Eq. (5) with the expected exponent α = 4/(1 + γ ).

Figure 8 shows the collapse of the PDF at different times
according to Eq. (2). Moreover, the red dashed curves repre-
sent the fitting with Eq. (5), with the constraint α = 4/(1 + γ )
being priorly imposed. In practice, only the amplitude A and
the parameter a are adjusted by the fitting procedure. Al-
though, the fitting curve fails to reproduce the bulk of the
simulated PDF, it is very reasonable for the far tails. Besides
the values γ = 0, 0.4, the consistency of the Fisher’s scenario
has been also verified for γ = 0.2, 0.6, 0.8 (not shown).

Notice that the case γ = 0, implying ν = 3/4, corresponds
to the Matheron–de Marsily model [22].
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FIG. 8. Collapse of the PDF, Eq. (2), upon the rescaling x →
x/t ν , for γ = −0.4, 0.0, 0.4. The dashed red curves represent the fit
of the tails with the Fisher’s scaling function, with α = 4/(1 + γ ).
Notice that the case γ = 0, for which ν = 3/4, corresponds to the
Matheron–de Marsily model [22]. The last panel, γ = −0.4, sug-
gests that the Fisher’s fitting is not satisfactory for negative γ .

However, the Fisher’s prediction seems to fail for the PDF
with negative γ ; see the red dashed curve in the bottom panel
of Fig. 8. Although the tails of the rescaled distributions
are still stretched exponential, the exponent is different from
α = 4/(1 + γ ).

As a final remark, we can say that the behavior of
the longitudinal PDF is strongly dependent on the prop-
erties of the shear field, so the Fisher scenario is not so
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FIG. 9. Collapse of the PDF along x of the particles subjected
to a shear field with a phase disorder φ = ±π/2 and γ = 0.4. The
collapse of the PDF at different times indicates that the scaling,
Eq. (2), is verified; however, the PDF, both for symmetry and tails, is
not in the Fisher’s class.

robust. For instance, if the phases are such that φ = ±π/2,
with probability 1/2, we obtain a distribution that still fol-
lows the scaling equation (2). However, the tails are not
Fisher-like (see Fig. 9) also because a generic disorder
does not preserve the symmetry, x → −x, of the Fisher’s
distributions.

IV. CONCLUSIONS

In this paper we have studied the subdiffusion along the
backbone of random walks on comblike fractal structures and
the superdiffusion of the Lagrangian dynamics of Brownian
particles in a random-shear velocity field. In this case the
anomalous transport occurs along the shear direction.

In the comb systems, the anomalous exponent can be ana-
lytically obtained as a function of the fractal dimension of the
Sierpinski sidebranches decorating the backbone. In the shear
model the anomalous exponent is a function of the parameter
γ defining the spectral properties of the Fourier-mode combi-
nation of the velocity field.

We focused our analysis mainly on the scaling properties of
the spatial PDF of the process along the preferential transport
direction—the backbone (for combs) and x axis (for random
shear)—because we were interested in testing the assumption
that such PDFs develop Fisher’s stretched-exponential tails
exp(−a|z|α ), with α related to the anomalous exponent by the
relation α = 1/(1 − ν).

Our simulations show that for comb systems, the PDF of
the anomalous subdiffusion along the backbone follows the

Fisher’s tails, regardless of the complexity of the fractal side-
branches. This numerical finding has been also supported by
analytical predictions based on the extension of the fractional
Fokker-Planck equation to comb fractal structures.

For the random shear, we found that the transport is anoma-
lous with an exponent ν = (3 − γ )/4. The particle PDFs
along the x axis exhibit stretched-exponential tails with an
exponent consistent with the Fisher’s prediction, Eq. (39),
only for γ > 0. Surprisingly, for γ < 0, numerical simula-
tions seem to indicate that the Fisher’s scenario breaks down.
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APPENDIX: ANALYTICAL DERIVATION OF THE MSD

In this Appendix, we derive Eq. (41) by solving the integral

I = L

2π

U 2
0

D2
0

∫ �

λ

dk kγ−4(1 − e−D0k2t ) (A1)

appearing in Eq. (40). A first integration by parts yields

I = L

2π (γ − 3)

U 2
0

D2
0

{
[kγ−3(1 − e−D0k2t )]�λ

− 2D0t
∫ �

λ

dk kγ−3e−D0k2t

}
. (A2)

Then we apply the change of variable y = D0k2t in the
remaining integral, achieving the final expression

I = L

2π (γ − 3)

U 2
0

D2
0

×
{

�γ−3(1 − e−�2D0t ) − λγ−3(1 − e−λ2D0t )

−(D0t )
3−γ

2

[
�

(
γ − 1

2
, λ2D0t

)
−�

(
γ − 1

2
,�2D0t

)]}
,

(A3)

where � is the incomplete gamma function [68]. For in-
termediate times such that 1

�2D0
� t � 1

λ2D0
, we recall that

�(a, x) ∼ xa−1e−x as x → ∞ and �(a, x) ∼ �(a) − xae−x

a for
x → 0 [68]; hence the expression reported in Eq. (41) is
recovered after straightforward algebraic manipulations.
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[9] J. Hrabe, S. Hrabětová, and K. Segeth, A model of effective
diffusion and tortuosity in the extracellular space of the brain,
Biophys. J. 87, 1606 (2004).

[10] A. Gabrielli and F. Cecconi, Diffusion, super-diffusion and coa-
lescence from a single step, J. Stat. Mech.: Theory Exp. (2007)
P10007.

[11] T. Geisel and S. Thomae, Anomalous Diffusion in Intermittent
Chaotic Systems, Phys. Rev. Lett. 52, 1936 (1984).

[12] R. Klages, G. Radons, and I. M. Sokolov, Anomalous Trans-
port: Foundations and Applications (Wiley, New York, 2008).

[13] J. Vollmer, L. Rondoni, M. Tayyab, C. Giberti, and C. Mejía-
Monasterio, Displacement autocorrelation functions for strong
anomalous diffusion: A scaling form, universal behavior, and
corrections to scaling, Phys. Rev. Research 3, 013067 (2021).

[14] L. F. Richardson, Atmospheric diffusion shown on a distance-
neighbour graph, Proc. R. Soc. London, Ser. A 110, 709 (1926).

[15] G. Boffetta and I. M. Sokolov, Relative Dispersion in Fully De-
veloped Turbulence: The Richardson’s Law and Intermittency
Corrections, Phys. Rev. Lett. 88, 094501 (2002).

[16] S. Havlin and D. Ben-Avraham, Diffusion in disordered media,
Adv. Phys. 36, 695 (1987).

[17] G. H. Weiss and S. Havlin, Some properties of a random walk
on a comb structure, Phys. A (Amsterdam) 134, 474 (1986).

[18] G. H. Weiss and S. Havlin, Use of comb-like models to mimic
anomalous diffusion on fractal structures, Philos. Mag. B 56,
941 (1987).

[19] T. K. Fujiwara, K. Iwasawa, Z. Kalay, T. A. Tsunoyama, Y.
Watanabe, Y. M. Umemura, H. Murakoshi, K. G. N. Suzuki,
Y. L. Nemoto, N. Morone, and A. Kusumi, Confined diffusion
of transmembrane proteins and lipids induced by the same actin
meshwork lining the plasma membrane, Mol. Biol. Cell 27,
1101 (2016).

[20] P. Castiglione, A. Mazzino, P. Muratore-Ginanneschi, and A.
Vulpiani, On strong anomalous diffusion, Phys. D (Amsterdam)
134, 75 (1999).

[21] K. H. Andersen, P. Castiglione, A. Mazzino, and A Vulpiani,
Simple stochastic models showing strong anomalous diffusion,
Eur. Phys. J. B 18, 447 (2000).

[22] G. Matheron and G. De Marsily, Is transport in porous media
always diffusive? A counterexample, Water Resour. Res. 16,
901 (1980).

[23] M. E. Fisher, Shape of a self-avoiding walk or polymer chain,
J. Chem. Phys. 44, 616 (1966).

[24] E. Ben-Naim, S. Redner, and D. Ben-Avraham, Bimodal diffu-
sion in power-law shear flows, Phys. Rev. A 45, 7207 (1992).

[25] A. Pacheco-Pozo and I. M. Sokolov, Large deviations in
continuous-time random walks, Phys. Rev. E 103, 042116
(2021).

[26] W. Wang, E. Barkai, and S. Burov, Large deviations for contin-
uous time random walks, Entropy 22, 697 (2020).

[27] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[28] R. Burioni and D. Cassi, Random walks on graphs: ideas,
techniques and results, J. Phys. A: Math. Gen. 38, R45
(2005).

[29] Yu. A. Dreizin and A. M. Dykhne, Anomalous conductivity of
inhomogeneous media in a strong magnetic field, Sov. Phys.
JETP 36, 127 (1973).

[30] A. Coniglio, Cluster structure near the percolation threshold,
J. Phys. A: Math. Gen. 15, 3829 (1982).

[31] H. E. Stanley and A. Coniglio, Flow in porous media: The
“backbone” fractal at the percolation threshold, Phys. Rev. B
29, 522(R) (1984).

[32] E. F. Casassa and G. C. Berry, Angular distribution of inten-
sity of Rayleigh scattering from comblike branched molecules,
J. Polym. Sci., Part A-2: Polym. Phys. 4, 881 (1966).

[33] J. F. Douglas, J. Roovers, and K. F. Freed, Characteri-
zation of branching architecture through “universal” ratios
of polymer solution properties, Macromolecules 23, 4168
(1990).

[34] R. Mancinelli, D. Vergni, and A. Vulpiani, Front propaga-
tion in reactive systems with anomalous diffusion, Phys. D
(Amsterdam) 185, 175 (2003).

[35] A. Iomin and E. Baskin, Negative superdiffusion due to inho-
mogeneous convection, Phys. Rev. E 71, 061101 (2005).

[36] T. Sandev, A. Iomin, and V. Méndez, Lévy processes on a
generalized fractal comb, J. Phys. A: Math. Theor. 49, 355001
(2016).

[37] T. Sandev, A. Iomin, and H. Kantz, Fractional diffu-
sion on a fractal grid comb, Phys. Rev. E 91, 032108
(2015).

[38] T. Sandev, A. Schulz, H. Kantz, and A. Iomin, Heterogeneous
diffusion in comb and fractal grid structures, Chaos, Solitons
Fractals 114, 551 (2018).

[39] T. Sandev, A. Iomin, and H. Kantz, Anomalous diffusion on a
fractal mesh, Phys. Rev. E 95, 052107 (2017).

[40] T. Sandev, A. Iomin, H. Kantz, R. Metzler, and A. Chechkin,
Comb model with slow and ultraslow diffusion, Math. Model.
Nat. Phenom. 11, 18 (2016).

[41] D. Ben-Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems (Cambridge University Press,
Cambridge, 2000).

[42] S. Weber, J. Klafter, and A. Blumen, Random walks on Sier-
pinski gaskets of different dimensions, Phys. Rev. E 82, 051129
(2010).

[43] S. Alexander and R. Orbach, Density of states on fractals:
fractons, J. Phys. Lett. 43, 625 (1982).

[44] G. Forte, R. Burioni, F. Cecconi, and A. Vulpiani, Anomalous
diffusion and response in branched systems: a simple analysis,
J. Phys.: Condens. Matter 25, 465106 (2013).

[45] A. V. Plyukhin and D. Plyukhin, Random walks on uniform and
non-uniform combs and brushes, J. Stat. Mech. (2017) 073204.

[46] R. Metzler and J. Klafter, The random walk’s guide to anoma-
lous diffusion: a fractional dynamics approach, Phys. Rep. 339,
1 (2000).

[47] V. E. Arkhincheev, Random walks on the comb model and its
generalizations, Chaos 17, 043102 (2007).

[48] V. E. Arkhincheev and E. M. Baskin, Anomalous diffusion and
drift in a comb model of percolation clusters, Sov. Phys. JETP
73, 161 (1991).

023192-11

https://doi.org/10.1063/1.866716
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1103/PhysRevE.66.011916
https://doi.org/10.1016/S0006-3495(96)79865-X
https://doi.org/10.1529/biophysj.103.039495
https://doi.org/10.1088/1742-5468/2007/10/P10007
https://doi.org/10.1103/PhysRevLett.52.1936
https://doi.org/10.1103/PhysRevResearch.3.013067
https://doi.org/10.1098/rspa.1926.0043
https://doi.org/10.1103/PhysRevLett.88.094501
https://doi.org/10.1080/00018738700101072
https://doi.org/10.1016/0378-4371(86)90060-9
https://doi.org/10.1080/13642818708215329
https://doi.org/10.1091/mbc.E15-04-0186
https://doi.org/10.1016/S0167-2789(99)00031-7
https://doi.org/10.1007/s100510070032
https://doi.org/10.1029/WR016i005p00901
https://doi.org/10.1063/1.1726734
https://doi.org/10.1103/PhysRevA.45.7207
https://doi.org/10.1103/PhysRevE.103.042116
https://doi.org/10.3390/e22060697
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1088/0305-4470/38/8/R01
https://doi.org/10.1088/0305-4470/15/12/032
https://doi.org/10.1103/PhysRevB.29.522
https://doi.org/10.1002/pol.1966.160040605
https://doi.org/10.1021/ma00220a022
https://doi.org/10.1016/S0167-2789(03)00235-5
https://doi.org/10.1103/PhysRevE.71.061101
https://doi.org/10.1088/1751-8113/49/35/355001
https://doi.org/10.1103/PhysRevE.91.032108
https://doi.org/10.1016/j.chaos.2017.04.041
https://doi.org/10.1103/PhysRevE.95.052107
https://doi.org/10.1051/mmnp/201611302
https://doi.org/10.1103/PhysRevE.82.051129
https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1088/0953-8984/25/46/465106
https://doi.org/10.1088/1742-5468/aa79b4
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1063/1.2772179


CECCONI, COSTANTINI, TALONI, AND VULPIANI PHYSICAL REVIEW RESEARCH 4, 023192 (2022)

[49] V. E. Arkhincheev, Diffusion on random comb structure: ef-
fective medium approximation, Phys. A (Amsterdam) 307, 131
(2002).

[50] I. Podlubny, Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations,
to Methods of Their Solution and Some of Their Applications
(Elsevier, New York, 1998).

[51] F. Mainardi, A. Mura, and G. Pagnini, The M-Wright function
in time-fractional diffusion processes: a tutorial survey, Int. J.
Differ. Equations 2010, 104505 (2010).

[52] G. Pagnini, The M-Wright function as a generalization of the
Gaussian density for fractional diffusion processes, Fractional
Calc. Appl. Anal. 16, 436 (2013).

[53] A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-
Function: Theory and Applications (Springer, New York, 2009).

[54] W. R. Schneider, Stable distributions: Fox function representa-
tion and generalization, in Stochastic Processes in Classical and
Quantum Systems (Springer, New York, 1986), pp. 497–511.

[55] G. Pagnini and P. Paradisi, A stochastic solution with Gaussian
stationary increments of the symmetric space-time fractional
diffusion equation, Fractional Calc. Appl. Anal. 19, 408 (2016).

[56] J.-P. Bouchaud and A. Georges, Anomalous diffusion in dis-
ordered media: statistical mechanisms, models and physical
applications, Phys. Rep. 195, 127 (1990).

[57] S. N. Majumdar, Persistence of a particle in the Matheron–de
Marsily velocity field, Phys. Rev. E 68, 050101(R) (2003).

[58] O. G. Bakunin, Turbulence and Diffusion: Scaling versus Equa-
tions (Springer, New York, 2008).

[59] O. G. Bakunin, Chaotic Flows: Correlation Effects, Transport,
and Structures, Springer Series in Synergetics Vol. 10 (Springer,
New York, 2011).

[60] A. Compte and M. O. Cáceres, Fractional Dynamics in Random
Velocity Fields, Phys. Rev. Lett. 81, 3140 (1998).

[61] J.-P. Bouchaud, A. Georges, J. Koplik, A. Provata, and S.
Redner, Superdiffusion in Random Velocity Fields, Phys. Rev.
Lett. 64, 2503 (1990).

[62] B. Gaveau and L. S. Schulman, Anomalous diffusion in a ran-
dom velocity field, J. Stat. Phys. 66, 375 (1992).

[63] B. Gaveau and A. Méritet, An anomalous diffusion in a long-
range disordered lattice, Lett. Math. Phys. 15, 351 (1988).

[64] R. M. Mazo, Taylor dispersion on a fractal, Acta Phys. Pol. B
29, 1539 (1998).

[65] S. Roy and D. Das, Motion of a random walker in a quenched
power law correlated velocity field, Phys. Rev. E 73, 026106
(2006).

[66] G. Zumofen, J. Klafter, and A. Blumen, Enhanced diffusion in
random velocity fields, Phys. Rev. A 42, 4601 (1990).

[67] M. Dentz, T. Le Borgne, and J. Carrera, Effective transport in
random shear flows, Phys. Rev. E 77, 020101(R) (2008).

[68] M. Abramowitz, I. A. Stegun, and R. H. Romer, Handbook of
Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables (Dover, New York, 1988).

023192-12

https://doi.org/10.1016/S0378-4371(01)00603-3
https://doi.org/10.2478/s13540-013-0027-6
https://doi.org/10.1515/fca-2016-0022
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1103/PhysRevE.68.050101
https://doi.org/10.1103/PhysRevLett.81.3140
https://doi.org/10.1103/PhysRevLett.64.2503
https://doi.org/10.1007/BF01060072
https://doi.org/10.1007/BF00419594
https://doi.org/10.1103/PhysRevE.73.026106
https://doi.org/10.1103/PhysRevA.42.4601
https://doi.org/10.1103/PhysRevE.77.020101

