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Hierarchical structure of the energy landscape in the Voronoi model of dense tissue

Diogo E. P. Pinto ,1,2 Daniel M. Sussman ,3,* Margarida M. Telo da Gama ,1,2 and Nuno A. M. Araújo 1,2,†

1Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
2Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

3Department of Physics, Emory University, Atlanta, 30322 Georgia, USA

(Received 29 September 2021; accepted 10 May 2022; published 6 June 2022)

The Voronoi model is a popular tool for studying confluent living tissues. It exhibits an anomalous glassy
behavior even at very low temperatures or weak active self-propulsion, and at zero temperature, the model
exhibits a disordered solid structure with no evidence of a rigidity transition. Here, we investigate the properties
of the energy landscape in this limit. We find that the structure of the energy landscape changes as a function of
the preferred shape parameter of the cells p0. We find two disordered solid phases that have similar structural
features but differ in the ultrametricity of their energy landscapes; the crossover between these two states shares
phenomenological properties with a Gardner transition. We further highlight how the metric used to calculate
distances between configurations influences the ability to detect hierarchical arrangements of basins in the energy
landscape.
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I. INTRODUCTION

Understanding the collective behavior of cells in biolog-
ical tissues has become one of the major interdisciplinary
challenges of recent years, with applications ranging from
wound healing to cancer treatment [1–7]. Both experimental
and theoretical efforts have been crucial in understanding the
properties of these tissues and the mechanisms by which they
are regulated, for example, in the way that tissues can transi-
tion from rigid to flexible as the properties of individual cells
are regulated [3,8–13]. Rigidity transitions are also seen in
particulate systems, such as granular materials and colloidal
suspensions, in which changes in particle density and temper-
ature can lead to disordered materials in a kinetically arrested
jammed or glassy state [14–16]. In living tissues, the nature
and properties of the rigid states are still under debate, owing
both to the explicitly nonequilibrium nature of cellular mo-
tion and the many-body interactions found in confluent tissue
[3–5,8–10,17,18]. These differences raise several challenges
to the generalization of ideas and methods developed in the
context of well-studied particulate matter [4,5,8,17,18].

Several models have been proposed to understand the
collective behavior of cellular systems, from single-particle
descriptions to density field models [19–24]. The Voronoi
model represents an epithelial confluent tissue as a space-
filling polygonal tiling, where each positional degree of
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freedom corresponds to a cell whose shape is obtained by
an instantaneous Voronoi tessellation [19–22,25–27]. The dy-
namics is controlled by an energy functional that is quadratic
in the area and perimeter of each cell, and the mechanical
properties of the tissue can be either solidlike or fluidlike de-
pending on the temperature and a shape parameter p0, which
quantifies the target shape of the individual cells [25].

A distinguishing aspect of this transition is that it depends
significantly on p0 [3,20,25]. Recent experimental results
show that the fluidity of the tissue correlates directly with cell
shape [13]. This suggests that, even if noise (e.g., activity)
is present, both the dynamics of cells and mechanics of the
tissue are strongly dependent on the properties of the energy
landscape. At zero temperature (i.e., in the absence of cellular
activity), it has been argued that the Voronoi model always
possesses a finite shear modulus [28]. This is in sharp contrast
with particulate systems, in which a zero-temperature rigidity
transition can be observed by changing the density [14–16,29–
32]. The particulate jamming transition is typically interpreted
in the context of constraint counting, in which the transition
occurs when the number of independent particle-particle con-
tacts equals the number of degrees of freedom [33,34]. As
described below, the two-dimensional (2D) Voronoi model is
always at this point of marginal stability [28], and thus, such
an analysis is insufficient. It has been proposed instead that en-
ergetic rigidity, in which not only simple constraints but also
residual stresses play a controlling role [17,18,35,36], is a bet-
ter framework for understanding Voronoi model rigidity [36].

Here, we explore this unusual athermal regime of the
Voronoi model and show that, even in the absence of a zero-
temperature rigidity transition, there is a profound change in
the statistics of the energy landscape. By considering this
limit, we remove the contribution of activity (or temperature)
and focus on the properties of the landscape. In glasses, the
energy landscape is characterized by multiple deep wells or
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basins, which give rise to their metastability [29,31]. Near
the Gardner transition, each basin is divided into smaller
subbasins in a hierarchical structure with an ultrametric prop-
erty. The ultrametric state is characterized by energy minima
forming a treelike structure in phase space where minima
within a given subbasin are much closer to one another than
they are to minima in any other subbasin [29,31]. We find
evidence for a transition to such a hierarchical arrangement
of basins in the energy landscape, suggesting two different
phases of a disordered solid [37–40]. This is consistent with
a Gardner phenomenology [29,31]; this has implications for
the mechanical and dynamical properties of the system, as
has been studied in multiple experimental and computational
systems [37–42].

II. MODEL

We model the confluent tissue as a monolayer of N cells
[19,20,25] in a square domain of side length L with periodic
boundary conditions. Each cell i is represented by its center
ri with a shape given by an instantaneous Voronoi tessellation
of the space. We choose the unit of length to be given by the
square root of the average area of all the cells. We can then
write a dimensionless version of the contribution of each cell
to the energy functional as [17,21,22,43]

ei = kA(ai − 1)2 + (pi − p0)2. (1)

Here, ai and pi are the dimensionless area and perimeter of
cell i, p0 is the shape parameter, and kA represents the ratio
between the relative stiffness of the area and perimeter elas-
ticity of the cell. Biologically, the first term models cellular
incompressibility and the resistance of the cellular monolayer
to height fluctuations; the second term models the competi-
tion between active contractility of the actomyosin subcellular
cortex and the effective cell membrane tension due to cell-cell
adhesion and cortical tension.

For each set of parameters, we start with N cells distributed
at random positions. The configuration is then minimized
using the FIRE algorithm [44,45], which we halt when the
maximum net force on each cell is <10−12. Due to numerical
constraints, we consider p0 � 3.85 [28]. Further details of the
simulations can be found below in the Methods section.

To probe the structure of the energy landscape, we start
from an initial configuration that corresponds to a local mini-
mum and perturb it to find new stable configurations. Our goal
is not to completely explore the energy landscape but rather
to characterize the arrangement of locally stable minima. In
our primary perturbation protocol, we displace the position of
each cell according to the vector

−→
P ε = [X0, X1, . . . , X2N−1],

where N is the number of cells, X2i = ε cos(θi ) is the perturba-
tion to cell i along the x axis, X2i+1 = ε sin(θi ) is that along the
y axis, and θi is a random angle uniformly distributed between
0 and 2π . We considered a random length ε drawn from a
uniform distribution between 0 and εmax; thus, each cell will
move a random displacement to guarantee the possibility of
visiting minima in the same and different top-level basins.
The norm of the perturbation vector is |−→P ε| = Pε = ε

√
N .

After the perturbation, we subtract the global translation of
the tissue and then let the tissue relax to a new minimum

FIG. 1. Representation of the perturbation protocol. (Left) Orig-
inal minimized configuration (red) with the perturbation vectors.
(Middle) Minimized (red) and perturbed (green) configurations.
(Right) Minimized configurations before (red) and after (blue)
perturbation.

(Fig. 1). Details of alternate perturb-and-minimize schemes
can be found in the Supplemental Material [46], where we
show that our results are not qualitatively sensitive to these
details.

III. RESULTS

There has been a sustained effort to characterize the struc-
ture of the energy landscape and relate it to material properties
[38,47]. One approach is through quantifying how much a
given minimized configuration changes after perturbations
[40]. A metric can be used to measure the distance, in con-
figurational space, between two different configurations and
reconstruct the energy landscape to measure its properties,
given that sufficient minima have been probed. Recent studies
have explored how the Voronoi model exhibits unique proper-
ties when compared with other glassy systems [27,48,49], and
thus, we apply a similar approach here. We will be exploring
different metrics to characterize distances between minima.
First, we consider the contact metric (denoted by the super-
script X ) discussed in Refs. [38–40]:

dX (a, b) =
√∑

i j

( �Ca
i j − �Cb

i j

)2
, (2)

where dX (a, b) is the distance between configuration a and b,
and �Ca

i j is the 2D contact vector between two cells, where each
component Ca

i j,x = xa
i − xa

j is the distance along the respective
axis between cells i and j if those cells share an edge, and
�Ca

i j = �0 otherwise.
Figure 2 shows how the normalized distance to the original

minimum, using the contact metric, scales with the norm of
the perturbation vector applied, computed after subtracting the

global translation, where |a| =
√∑

i j (C
i j
a )2 corresponds to

dX (a, b) for which Ci j
b = 0. Here, a was fixed and corresponds

to the initial configuration, while b is the minimum after
the perturbation. We observe that the distance to the original
minimum scales approximately linearly with the norm of the
perturbation. Furthermore, as in Ref. [40], by rescaling the
perturbation by

√
N , we observe a collapse of the curves for

different system sizes. Thus, dX (a, b) ∼ √
N , and we choose

εmax = 0.5
√

N for all p0, which is large enough so that the
perturbed configuration does not always relax to the initial
minimum but small enough that nearby minima are accessible.
This protocol, although simple, is quite effective at biasing the
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FIG. 2. Scatter plot of the distribution of normalized metric dis-
tance to the original minimum for different norms of the perturbation
vector, using the contact metric. The metric distance defined in
Eq. (2) is normalized by

√|a||b|, where |a| = d (a, 0). For p0 = 3.81,
all sizes collapse onto the same curve when using this scaling; thus,
we choose εmax = 0.5

√
N .

configurations to visit only nearby minima. To explore a wider
range, different probing techniques should be used [47].

A Gardner phase is characterized by an ultrametric
phase space consisting of a treelike structure, where min-
ima within a given subbasin are all much closer to one
another than to minima in any other subbasin. This prop-
erty is codified by an ultrametric inequality, dX (a, c) �
max[dX (a, b), dX (b, c)], where a, b, and c are three different
configurations in phase space, and dX (a, b) is the distance
between configurations. To verify if the properties of the tissue
are consistent with a Gardner phase, we compute how close
the metric is to being ultrametric. To do so, we first find the
subdominant ultrametric d<(a, b), i.e., the ultrametric that is
closest to dX (a, b) itself. The subdominant ultrametric can

be found by first computing the distances in the minimum
spanning tree of the space of minima [50]. Then for each pair
of minima a and b, we compute the path between them in
the minimum spanning tree and define d<(a, b) as the largest
distance between two neighboring minima along the path [51].

Figure 3 depicts matrices where the color corresponds to
the distance between minima, for all pairs of minima found
for p0 = 3.75 and 3.83. These matrices were constructed for
103 minima obtained for a tissue of 4096 cells. Each element
of the matrix corresponds to the distance between two min-
ima, a and b, given by Eq. (2). The distances are all sorted
using the single-linkage clustering algorithm on the metric of
the fully minimized systems, which groups them sequentially
based on their relative distance [52]. The colors represent
different distances. In white are the minima that are closest
to each other. We find groups of minima that are all at this
minimum distance, forming a white region that corresponds
to subbasins. The matrices do not show any substantial visual
change with p0.

Having found d<(a, b), we finally calculate the generalized
distance between the metric and the subdominant ultrametric
using

DX =
√

〈[dX (a, b) − d<(a, b)]2〉, (3)

where 〈·〉 denotes the average over all configuration pairs a
and b. If DX = 0, then the energy landscape is ultrametric,
while DX > 0 quantifies how far it is from ultrametricity. In
the inset of Fig. 3, we show that DX depends strongly on N .
In the main plot, we rescale DX /

√
N and obtain a reasonable

collapse of the data. Since the typical distance between min-
ima and the distance to ultrametricity both scale with

√
N ,

the landscape with this contact metric is not ultrametric in the
thermodynamic limit [40].

Using distances based on the contact vectors suggests that
the landscape of the Voronoi model is not ultrametric, but does
the choice of metric itself influence this result? In systems

FIG. 3. (Left) Normalized generalized distance to ultrametricity as measured using the contact vector metric DX /
√

N as a function of p0, for
N = 1024, 2048, 4096, 8192, and 16 384. The inset shows the same results without the scaling. These are averages of 10 initial configurations
subject to 100 perturbations and minimizations each. (Right) A schematic representation of the distances between minima according to the
contact metric dX (a, b) and the subdominant ultrametric constructed from it using a minimum spanning tree. Matrices corresponding to
N = 4096 and p0 = 3.75 and 3.83 are shown, where the different distances are grouped using a single-linkage clustering algorithm which
clusters the minima sequentially by distance.
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FIG. 4. Scatter plot of the distribution of normalized metric dis-
tance to the original minimum for different norms of the perturbation
vector, using the energy metric. The metric distance defined in Eq. (2)
is normalized by

√|a||b|, where |a| = d (a, 0). For p0 = 3.81, all
sizes collapse onto the same curve when using this scaling; thus, we
choose εmax = 0.1

√
N .

composed of soft or hard spheres, the interactions are usually
pairwise and depend explicitly on the position of the particles.
Thus, metrics based on the number of contacts are expected
to adequately characterize the structure of the energy land-
scape [40]. In the Voronoi model, the number of contacts per
cell does not change significantly even as the tissue rigidity
changes substantially [18,36]. We further note that the en-
ergy functional in Eq. (1) is a simple collection of harmonic
springs, in a coordinate basis of shape space rather than in
the basis of the positional degrees of freedom generating the
shapes. We propose a metric based on the contribution of each
cell i to the total energy of the tissue ei. We take the same form
for the metric as Eq. (2) but where �Ca

i j → Ca
i j = ea

i − ea
j if i

and j are neighbors and zero otherwise. We call this metric

the energy metricdE (a, b). We adopt the same perturb-and-
minimize protocol as before, using εmax = 0.1

√
N for all p0

(Fig. 4). In the Supplemental Material [46], we show that the
results using the contact metric remain qualitatively the same
using the new εmax. The energy metric also scales with system
size dE (a, b) ∼ √

N since it depends on the total number of
cell-cell contacts. We observe in the inset of Fig. 5 that, for
the energy metric, the distance to ultrametricity (DE ) does
not scale with N and decreases with p0 (inset of Fig. 5).
Since the distance between minima scales as dE (a, b) ∼ √

N ,
while the generalized distance does not depend on the system
size, this suggests that the system does become ultrametric in
the thermodynamic limit: DE/dE (a, b) ∼ 1/

√
N .

In the case of the contact metric, the calculated values are
already normalized since we increase the box size with N ,
while the typical cell size is fixed. For the energy metric, this
is no longer the case. Thus, to properly compare the system
properties at different p0 (since 〈Ei〉 varies with p0), we con-
sider a normalized version of the energy metric: dE

N (a, b) =
dE (a, b)/

√|a||b|, for which the typical distance between con-
figurations does not depend on either p0 or N . Figure 5
depicts matrices where the color corresponds to the distance
between minima, for all pairs of minima found for p0 = 3.75
and 3.83. These matrices were constructed for 103 minima
obtained for a tissue of 4096 cells. Each element of the ma-
trix corresponds to the distance between two minima, a and
b, using dE

N (a, b). From this representation, we can already
observe changes in the structure of the energy landscape. As
p0 increases, the color gradient is less smooth, and the boxes
corresponding to the different subbasins become sharper. It is
also observed that more minima fall into the same subbasin.
These properties suggest that, when the value of p0 decreases,
the structure of the energy landscape becomes more hierarchi-
cal [40]. This is in contrast with the matrices obtained using
dX (a, b), which do not show any substantial visual change
with p0.

FIG. 5. (Left) Normalized generalized distance to ultrametricity as measured using the normalized energy metric DE
N as a function of

(p∗
0 − p0)Nν , for N = 1024, 2048, 4096, 8192, and 16 384, p∗

0 = 3.89 ± 0.01, and ν = 0.40 ± 0.01. The inset shows the generalized distance
to ultrametricity DE as a function of p0. These are averages of 10 initial configurations subject to 100 perturbations and minimizations
each. (Right) Schematic matrix representation of the distances between minima according to the normalized energy metric dE

N (a, b) and its
subdominant ultrametric. Matrices corresponding to N = 4096 and p0 = 3.75 and 3.83 are shown, where the different distances are grouped
using a single-linkage clustering algorithm which clusters the minima sequentially by distance.
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FIG. 6. A plot as in Fig. 5 but for kA = 0, highlighting the similar
scaling in the two cases. Here, we use p∗

0 = 3.798 ± 0.001 and ν =
0.40 ± 0.01. These are averages of 10 initial configurations subject
to 100 perturbations and minimizations each

We also compute the generalized distance to ultrametricity
with dE

N . Again, we see that ultrametricity is approached with
increasing system size. Furthermore, with the scaling shown
in the main panel of Fig. 5, we can collapse the different
curves. The values of p∗

0 and ν were chosen such that we
obtain the best collapse. Recent work in particulate systems
has interpreted a similar scaling as a distance to jamming
[30,40]. This suggests not only that the Voronoi model has
an ultrametric structure in the thermodynamic limit but that
there may be a transition between two different solid phases.
Previously, it was shown that the athermal Voronoi model did
not have a rigidity transition [28]. Nevertheless, we show that
there is a clear difference between the energy landscape for
low and high p0: At low p0, the glass state is characterized by
large residual stresses and an ultrametric energy landscape,
and at high p0, the energy landscape is not ultrametric. We
find that this change occurs for preferred shape parameters
in the range p0 = 3.75 − 3.85, which is close to where the
zero-temperature shear modulus changes markedly [28] and
where the dynamics at finite temperature changes in character
[25,27,48].

As p0 increases, fewer subbasins are found inside each
basin (as represented by the different unconnected clusters
in Fig. 5), suggesting that the energy landscape flattens. We
explore this flattening by studying the behavior of the model
as kA is varied. In the limit kA = 0, the Voronoi model is
no longer marginally constrained, and it acquires a residual-
stress-based rigidity transition as a function of p0 at T = 0
[28]. As shown in Fig. 6, for p0 < 3.79, we find that the tissue
is rigid, and the energy landscape is ultrametric. For slightly
larger p0, the energy landscape deviates from ultrametricity.
In this regime, the energy landscape consists of a mixture
of hierarchical basins and several nearly flat basins, and so,
in many cases, small perturbations will not drive the system
to a different minimum. In the Supplemental Material [46],
we use a simple technique to estimate the transition from the
solid to the fluid phase. Using the fraction of configurations
with zero energy, we estimate a transition point around p∗

0 =
3.8022 ± 0.0001, while in Fig. 6, p∗

0 = 3.798 ± 0.001 seems

to be a more appropriate value to collapse the data. We used
ν = 0.40 ± 0.01, which was the best value for the collapse.
More simulations would be needed to conclude whether a
new solid phase at kA = 0 exists before the fluid phase or if
the observations are finite-sized effects and both transitions
actually coincide. We stress that this approach signals a pos-
sible transition through the observed changes of the energy
landscape. Nonetheless, previous studies of the mechanical re-
sponse of the model support the existence of such a transition
[28]. For p0 > 3.8, the energy landscape is flat, characteristic
of a fluidlike tissue. For any kA > 0, different energy minima
are found for all p0, consistent with previous work showing a
finite shear modulus for the whole range of model parameters
investigated [28]. Recent studies with the thermal 2D Voronoi
model also suggest a change in the energy landscape close to
p0 ≈ 3.81 [48].

IV. CONCLUSIONS

In summary, we have found indications of a hierarchical
structure of the energy landscape in a model of dense biolog-
ical tissue whose zero-temperature rigidity is quite different
from that of constraint-based particulate systems. Strikingly,
we find that the choice of metric to characterize distances be-
tween minima is crucial: Defining distance based on changes
in neighboring contact vectors vs contributions to the energy
give qualitatively different interpretations of the structure of
the energy landscape. In particulate systems, the contact vec-
tors enter explicitly in the relevant energy functional, i.e.,
the energy of a soft harmonic repulsion or a Lennard-Jones
interaction is a simple function of the contact vector between
interacting particles. In Voronoi models, the energy cannot be
decomposed into independent pairwise contributions, which
we speculate is the reason that choosing a distance metric
based on the total energy associated with each degree of
freedom is required to uncover the hierarchical structure of
the landscape. We further speculate that this may point more
generally to the importance of the choice of metric for sys-
tems in which many-body interactions dominate over pairwise
ones; for example, previous studies have shown that this is the
case in compressed high-density systems of soft particles, like
microgels or foams [53]. In this paper, we suggest that, under
the proper choice of metric, ultrametricity should emerge in
those systems, as observed for other glassy/jammed materials
[40]. Authors of recent studies found that the Voronoi model
has a unique glassy behavior inside the rigid phase [27,49].
The structure of the energy landscape can provide a deeper
link between this model and other glassy systems; thus, future
researchers could aim to relate these tissuelike systems to
particulate ones [38,40]. This could be done by establishing
a relation between the effects of p0 in the Voronoi model and
pressure in particulate systems. Since both exhibit an ultra-
metric landscape, this could allow a generalization of glassy
physics [15,16,29].

V. METHODS

To simulate the tissue we use cellGPU [45] and initialize
N cells distributed randomly in a square periodic box of linear
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size
√

N in units of
√

Ā. We consider a monodisperse system
with Ā = 1.

After initialization, the tissue is relaxed using a FIRE mini-
mization algorithm [44]. This relaxation algorithm moves the
cell centers at each step to minimize the energy, described by
the functional form given in Eq. (1). The algorithm uses the
standard molecular dynamics equations (with velocity Verlet
integration) and two adaptive quantities, the time-step �t and
α, the latter to adjust the integration step and the former to
control the velocities. During the relaxation, when an uphill
in the energy landscape is found, both decrease to minimize
the amount of time spent there and then increase again when a
downhill is encountered. For our simulations, we have chosen
�tmin = 0.001, �tmax = 0.1, and αstart = 0.99. We have tested
other values and have found that they do not affect substan-

tially the minimization procedure. Thus, they were kept the
same in all the simulations. The minimization is halted once
the maximum force on all cells is <10−12 in natural units (see
previous section). Due to numerical constraints, we consider
p0 � 3.85 since it has been shown for athermal systems that,
above this value, configurations with multifold vertices are
obtained which lead to numerical instabilities in the minimiza-
tion protocol [28].
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