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Cell motility in confluent tissues induced by substrate disorder
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In vivo and in vitro cells rely on the support of an underlying biocompatible substrate, such as the extracellular
matrix or a culture substrate, to spread and proliferate. The mechanical and chemical properties of such structures
play a central role in the dynamical and statistical properties of the tissue. At the cell scale, these substrates are
highly disordered. Here, we investigate how spatial heterogeneities of the cell-substrate interaction influence
the motility of the cells in a model confluent tissue. We use the self-propelled Voronoi model and describe the
disorder as a spatially dependent preferred geometry of the individual cells. We found that when the characteristic
length scale of the preferred geometry is smaller than the cell size, the tissue is less rigid than its homogeneous
counterpart, with a consequent increase in cell motility. This result is in sharp contrast to what has been reported
for tissues with heterogeneity in the mechanical properties of the individual cells, where the disorder favors
rigidity. Using the fraction of rigid cells, we observe a collapse of the motility data for different model parameters
and provide evidence that the rigidity transition in the model tissue is accompanied by the emergence of a
spanning cluster of rigid cells.
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I. INTRODUCTION

The idea of growing artificial cell tissues and organs has
been around for several decades [1,2]. This has spurred a truly
multidisciplinary effort to understand the mechanisms respon-
sible for the development of cell tissues and to search for novel
strategies to tune the shape and mechanical properties of the
tissue. Among those strategies is the use of biocompatible
substrates [1,3,4]. An extensive body of research shows that
the cell morphology and dynamics are sensitive to the physical
and chemical properties of their underlying structure, be it
the extracellular matrix or a culture substrate [5–13]. For
example, it has been shown that the substrate stiffness can
significantly affect the geometry of cultured cells, including
their spreading area [13,14], volume [15], and shape elonga-
tion [16]. The mechanical properties of cells have been shown
to change when they adhere to substrates due to the influence
of cell-matrix adhesion complexes; for example, cells adhered
to rigid substrates develop stresses at the level of the actin
network which lead to polarization [17]. Recent studies have
also shown that the nanotopography of the substrate can sig-
nificantly change the cell shape and motility [18–21]. Thus,
irrespective of the biological effects, the physical interaction
between the cells and their supporting structure plays a critical
role in the mechanical properties of the tissue. This poses a
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great challenge due to the typical level of disorder involved
[22–24].

Both in vivo and in vitro, the epithelial layer of cells is
supported by a complex polymeric structure, the extracellular
matrix (ECM), which constrains the collective behavior of
the tissue [5,25–28]. For example, it has been observed that
cancerous cells alter the ECM in order to promote invasion
through healthy tissue [29,30]. The tumor microenvironment
supports diverse mechanical and biochemical interactions dur-
ing cancer progression, which plays a significant role in the
degree of tumor malignancy and metastatic potential [31,32].
Tumors act as local sources of ECM remodeling, resulting
in heterogeneous spatial profiles of the ECM network [33].
These profiles can then influence the migration of surrounding
cells [34]. By generating cell-scaled tracks along migratory
paths, cells will not need to squeeze through or clear con-
strictive mechanical barriers [34]. Thus, although the ECM
is often quantified by bulk metrics, it has a high degree of
heterogeneity, which in turn influences the tissue itself, in a
way that is largely unclear.

Despite the broad range of physicochemical processes,
which in many cases are system dependent [2], there are
convincing arguments that simple, mechanistic models can
provide valuable insight into the dynamics of living systems
[35–38]. Several models have been proposed to understand
their collective behavior, from single-particle descriptions
to density field models [35,36,38–43]. The self-propelled
Voronoi model (SPV) has been one of the models of choice
to study confluent tissues [44,45]. The degrees of freedom are
the positions of the center of each cell and the cell shape is
obtained by Voronoi tessellation [46]. The dynamics is gov-
erned by an energy functional that is quadratic in the area and
perimeter of each (Voronoi) cell, thus making the interactions
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FIG. 1. (a) Illustration of the model. We consider the two-
dimensional (2D) projection of the tissue (top, in green), described
using the self-propelled Voronoi model, on a 2D heterogeneous
substrate (bottom) where the value of the target shape index of the
cells depends on the position. The color of the substrate is related
to the value of the shape index in the square tiles, p0, j , with red
corresponding to higher values and yellow to lower ones. The height
profile in the substrate is only meant to illustrate this heterogeneity.
(b) Schematic representation of the substrate implementation. We
start by dividing the simulation box into squares of length δ and
attribute to each square a random shape index drawn from a Gaussian
distribution with mean p̄0 and standard deviation σ . Depending on
the position of the center of the cell its shape index will change. For
example, as is seen in the schematic, when it is in a purple square the
cell has a purple shape index but when it changes to a yellow square
the shape index changes accordingly. (c) Schematic representation of
the averaging process used on the random substrate. The averaging
is performed to account for the fact that a cell can sense a given
space around its center. Accordingly, we consider for each cell a
circular region around its center, with radius ξ/2 (averaging radius
in white) and calculate the average shape index of all the tiles within
that region. The blue shape corresponds to the square tiles used for
the averaging. Here we have used approximately 80 blue square tiles,
where each tile has a length two orders of magnitudes smaller than
the typical length of a cell. The color of the substrate on the last panel
represents the averaged substrate.

truly many body. The mechanical properties of the tissue are
either solid or fluid like, depending on the strength of activity
and shape parameter, p0, of the individual cells [44]. The
solid-like regime is characterized by a finite shear modulus,
while in the fluid-like regime the shear modulus drops sig-
nificantly [44,47]. These results agree both quantitatively and
qualitatively with experiments on monolayer tissues [48,49].

Here, we investigate how heterogeneities on the substrate
affect the mechanical properties of confluent tissues [see
Fig. 1(a)]. We describe the confluent tissue using the self-
propelled Voronoi model with a position-dependent shape
parameter to account for spatial heterogeneities in the cell-
substrate interaction. Previous works have established that
cell shapes and the cell-cell interaction change as a func-
tion of substrate properties [7,14,16,17] and in turn the cell
shape governs the rate of cell diffusion in the tissue [48].
Thus, we consider that for a given cell-substrate interaction,

the subcellular changes observed translate into different cell-
cell interactions or cell shapes, which can be simplified into
a position-dependent shape parameter. Heterogeneity in the
mechanical properties of the individual cells is known to sub-
stantially affect cell motility [50,51]. For example, numerical
simulations of the vertex model suggest that a heterogeneous
distribution of the mechanical properties of individual cells
favors rigidity and thus hinders cell motility [52]. This par-
ticular type of cell disorder leads to larger tensions between
adhered cells, which in turn gives rise to a percolating cluster
of rigid cells responsible for the increase in the tissue rigidity.
This result sheds light on the dynamics of cancer propagation,
for cancer cells are usually softer than healthy ones [53–55].
Here, we show that the opposite behavior is observed when the
disorder is on the substrate (position dependent). For values
of the characteristic length scale of the disorder lower than
the typical cell size, the tissue is less rigid and cell motility is
enhanced.

The paper is organized as follows. In Sec. II, we introduce
the model. In Sec. III, we give an overview of the results.
We consider the average diffusion coefficient of the cells
to quantify the motility. In Sec. IV, we discuss the results
obtained with a random substrate and discuss the collapse of
the numerical data for different model parameters. In Sec. V,
we focus on an averaged substrate and compare the results for
three different disordered systems: cell, random, and averaged
substrates. In Sec. VI, we draw some conclusions and discuss
practical implications.

II. MODEL

We model the confluent tissue as a monolayer of N cells
using the self-propelled Voronoi model [44]. Each cell i is
represented by its center ri and its shape is given by an in-
stantaneous Voronoi tessellation of the space. The stochastic
trajectory of each cell is obtained by solving a set of equa-
tions of motion in the overdamped regime,

dri

dt
= μFi + v0n̂i, (1)

where Fi is the net force acting on cell i, μ is the mo-
bility of the cell, v0 is the self-propulsion speed, and n̂i =
(cos θi, sin θi ) is a polarity vector which sets the direction of
self-propulsion. For simplicity, we consider that θi is modeled
by a stochastic process given by

θ̇i = ηi(t ), 〈ηi(t )η j (t
′)〉 = 2Drδ(t − t ′)δi j, (2)

where ηi(t ) is an uncorrelated random process of zero mean
and variance set by a rotational diffusion coefficient Dr .

The force Fi describes the many-body cell-cell interaction
and is given by Fi = −∇Ei, where Ei is the energy functional
for cell i [35,36],

Ei = KA[Ai − A0]2 + KP[Pi − P0,i]
2, (3)

where Ai and Pi are the area and perimeter of cell i, re-
spectively, and A0 and P0,i are their target values. In this 2D
representation of a confluent tissue, changes in the thickness
of the cell are considered through the first term in the energy
functional, Eq. (3). This term describes the resistance of the
cell monolayer to height fluctuations due to cell adhesion [56].
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The second term, quadratic in the perimeter, represents the
active contractility of the actin-myosin cortex [36] and the
interfacial tension due to the competition between cortical
tension and cell-cell adhesion [57]. KA and KP are the area and
perimeter moduli. By rescaling the energy in units of KAA2

0,
we obtain four nondimensional quantities: two for the area and
perimeter of the cell (ai = Ai/A0 and pi = Pi/

√
A0), a shape

parameter p0,i = P0,i/
√

A0, and the energy ratio r = KAA0/Kp

(see the Supplemental Material for details of the units system
[58]). Without loss of generality, in what follows, lengths are
in units of

√
A0 and time is in units of 1/(μKAA0).

Cells diffuse with a diffusion coefficient D that depends on
four model parameters: the speed of self-propulsion v0, the
rotational diffusion Dr , the shape index p0,i of each cell i, and
the energy ratio r. In the homogeneous case (p0,i ≡ p0 for
all cells), for fixed values of v0 and Dr , the model exhibits
a rigidity transition at a value of the shape index p0 = pc:
from a fluid-like state, for p0 > pc, where the cells diffuse
on the substrate (D �= 0), to a solid-like state with finite shear
modulus and negligible cell motility (D → 0), for p0 < pc

[44,59].
We consider a square substrate of length L = √

N , where
the value of the target shape index (p0,i) is spatially dependent.
The substrate is divided into square tiles with length δ, in units
of the cell diameter. We consider that each tile has a length
two orders of magnitude smaller than the typical length of a
cell. Each square tile has a value of the target parameter ran-
domly drawn from a Gaussian distribution with mean p̄0 and
standard deviation σ . We considered the Gaussian distribu-
tion as the simplest hypothesis to describe this heterogeneity.
Throughout the dynamics, the value of the shape index, p0,i,
for each cell corresponds to the one in the underlying square
tile. When a cell moves from one square tile to another, its
target shape index [in Eq. (3)] changes accordingly. We expect
that cells take a characteristic time to adapt to changes in the
underlying substrate [60,61]. We first consider this adaptation
time to be negligible small and then discuss its effect when it
is comparable to the other relevant timescales.

Since cells typically spread over an area larger than that
of a square tile, we consider that the cell’s ability to probe its
surroundings can be described, in a simplified way, as an aver-
age of the shape index over a distance on the random substrate
[see Fig. 1(b)]. In order to do that, we introduce an averaged
substrate, which is also square and of the same size of the
original one, and thus has the same square tile length δ. The
shape index on each square tile j, of the averaged substrate,
is calculated by taking the average of the shape indices of the
square tiles in the original substrate which have their centers
at a distance less than ξ/2 from the center of j. Thus, for
a given ξ the averaged substrate has mean p̄0 and standard
deviation σ/

√
n, where n is the number of square tiles within

the corresponding averaging circle. Some properties of the
averaged substrate are further discussed in the Supplemental
Material [58].

To simulate the confluent tissue, we used a hybrid
CPU/GPU software package, CELLGPU [62], for the self-
propelled Voronoi model. The equations of motion, Eq. (1),
are integrated using the Euler method, with a time step of
�t = 10−2. We impose periodic boundary conditions, Dr =
1, v0 = 0.1, and r = 1. For the initial configuration, we gen-

erate N positions at random and let the system relax over
104 time steps. The random substrate consists of square tiles
with length δ = 0.03125, in units of the cell diameter. This
rather small value is selected to ensure that there are no spatial
correlations on the scale of the cell size and that cells are
able to explore more than one substrate square tile even when
they have very low motility. After the initial relaxation, the
simulation is performed for another 106 additional time steps.

III. OVERVIEW

To characterize the fluidity of the tissue, we measure the
mean squared displacement from the initial position, averag-
ing over all the cells (〈�r2(t )〉) and we estimate the diffusion
coefficient using

D = 〈�r2(t )〉
4t

, t 
 1. (4)

This quantity is obtained numerically by running the sim-
ulations for 106 time steps and calculating the slope of a
linear fit, using the least squares method, of the mean squared
displacement averaged over all the cells for all time steps
above 105. In the solid-like phase, the cells are constrained
by their neighbors, they only move within an area of the order
of their size, and so few cell rearrangements occur [44]. Thus,
the mean squared displacement is characterized by an initial
ballistic behavior (〈�r2〉 ∼ t2) but rapidly saturates. On the
other hand, in the fluid-like phase, the cells are able to break
free from their cages and the tissue flows [44]. Thus, the mean
squared displacement is diffusive (〈�r2〉 ∼ t) asymptotically.
We have found that we can measure the diffusion coefficient
reliably for time steps above 105, in the fluid-like phase. As
the solid-like phase is approached the fitting worsens, as the
diffusion coefficient decreases to zero. Nonetheless, we still
use the same technique.

A recent work studied the effect of heterogeneities in the
mechanical properties of individual cells using the vertex
model [52]. In this study, heterogeneity is introduced at the
cell level by endowing each cell with a random shape index,
p0,i, chosen from a Gaussian distribution with mean p̄0 and
standard deviation σ . The shape index of each cell is then
constant over time. It was observed that the shear modulus
increases with the disorder, σ , corresponding to a more rigid
tissue. In what follows, we compare the effect of the two types
of disorder: substrate disorder, where the shape parameter is
spatially dependent, and cell disorder, where the shape param-
eter is a time-independent property of the cell as discussed in
Ref. [52]. For cell disorder, we have chosen the probability
distribution of the shape index (p0,i) to be Gaussian, parame-
terized by the same mean ( p̄0) and standard deviation (σ ). We
note that both types of disorder are quenched as they do not
evolve with the dynamics. Nevertheless, the substrate disorder
is fixed in space, while that of the cells is carried by their
motion in the fluid phase. In the rigid phase, both types of
disorder are fixed in space, as cell motion practically ceases.

Figure 2 shows a diagram of the two-parameter space ex-
plored for a random substrate, where the color represents the
average diffusion coefficient of the cells in the tissue using
the random substrate disorder. We explored different values
of the mean ( p̄0) and standard deviation (σ ) of the Gaussian
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FIG. 2. Phase diagram of the tissue for substrate or cell disor-
der. On the vertical axis is the standard deviation of the Gaussian
distribution, σ , and on the horizontal axis the mean, p̄0. The color
gradient represents the diffusion coefficient of the tissue when us-
ing the random substrate disorder [given by Eq. (4)], in units of
D∗ ≈ 9.04 × 10−5, which corresponds to the value of the diffusion
coefficient at the onset of rigidity in the homogeneous system, i.e.,
p0 = 3.8. The white (dashed) line defines the threshold where the
fraction of rigid cells (cells with pi < 3.8), forms a percolating
cluster, σ ( p̄0) = −11.2 p̄0 + 42.7. Thus, it sets the onset of rigidity,
in the presence of a disordered substrate. Results were obtained for
N = 1024 and averaged over 10 samples. The gray (dot-dashed) line
is obtained from Ref. [52] for a tissue with heterogeneity in the me-
chanical properties of individual cells described by a cell-dependent
shape index p0,i, which is also drawn from a normal distribution with
the same mean and standard deviation. In this case, the onset of
rigidity is given by σ ( p̄0) = 1.2 p̄0 − 4.7. The brown (dashed) line
gives the onset of rigidity when an averaged substrate is used with
correlation length of the order of the cell diameter. Here, the line is
given by σ ( p̄0) = 3.3 p̄0 − 12.5. This figure highlights the different
effects of disorder. When the disorder is at the cell level the tissue
becomes more rigid, while when it is spatially dependent (i.e., on the
substrate) the tissue becomes less rigid when the substrate correlation
length is less than the diameter of the cells, but more rigid when it is
larger. The different phases are shown in the figure, where the tissue
is marked solid or fluid. The lines do not meet at σ = 0 since in
Ref. [52] the vertex model was used rather than the Voronoi model
used in this work.

distribution and observed that the diffusion coefficient in-
creases for larger values of the disorder (σ ), suggesting that
the motility of the cells increases for substrates with larger
gradients of the target shape index. We also show in the inset
of Fig. 3 the increase of the diffusion coefficient with p̄0 and
σ . This is in contrast with the cell disorder case where the
rigidity of the tissue increases with increasing disorder [52].

We plot three lines that give the onset of rigidity for the
different types of disorder: cell disorder and substrate disor-
der with and without averaging (as described in the previous
section). In-depth details on how these lines are calculated are
given in the following sections. We observe that the onset of
rigidity in the tissue is accompanied by a percolation of rigid
cells, defined as the cells with a perimeter smaller than a given
shape index threshold, pi < p̄∗

0. When the substrate disorder is
not averaged, the line is given by σ ( p̄0) = −11.2 p̄0 + 42.7,

IIII II

II
I

III

FIG. 3. Average cell diffusion coefficient as a function of the
fraction of rigid cells, fr . The diffusion coefficient is rescaled by
the standard deviation σ to collapse the curves. These results were
obtained for N = 1024, σ = 0.068–0.3 in steps of 0.058, p̄0 =
3.75–3.95 in steps of 0.01, and averaged over 100 samples. The
scaling suggests that the fraction of rigid cells drives the rigidity tran-
sition. In the inset are the individual curves to highlight the increase
of the diffusion coefficient with the disorder (σ ). Below the main plot
are snapshots for different fractions of rigid cells ( fr), where rigid
cells in black have a shape index below a given threshold (p0,i < p̄∗

0)
and fluid cells in gray have p0,i > p̄∗

0. We recall that p̄∗
0 = 3.8 is the

threshold for rigid cells.

highlighting the increase in motility when the disorder (σ )
increases. The cell disorder line is taken from Ref. [52],
σ ( p̄0) = 1.2 p̄0 − 4.7, and highlights the opposite behavior.
Lastly, when the substrate with averaged disorder has a cor-
relation length of the order of the cell diameter, ξ = 2, the
rigidity threshold is given by σ ( p̄0) = 3.3p̄0 − 12.5, which
also exhibits an increase of tissue rigidity with disorder (σ ).
Thus, while for small correlation lengths the substrate dis-
order promotes cell motility, for correlation lengths of the
order of the cell diameter, it gives rise to tissues with in-
creased rigidity. Furthermore, the results for the averaged
substrate approach those of cell disorder as the correlation
length increases, as seen in the slopes of the two lines. We
hypothesize that there is a close relationship between these
types of disorder. We also note that the lines do not meet
at σ = 0, we hypothesize that this is because in Ref. [52]
a different model, i.e., the vertex model was used. In the
Supplemental Material [58] we investigate the effect of cell
disorder using the Voronoi model and show that it is the same
as that reported for the vertex model. Nonetheless, since the
detailed mechanics of the models differ [63], the quantitative
results are also different.

IV. RANDOM SUBSTRATE

First we focus on a random substrate with a square tile
length smaller than the cell size (as introduced in Sec. II,
δ = 0.03125). To calculate the lines separating the different
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regimes, we use a scaling ansatz to collapse the numerical data
and estimate the transition between the solid- and fluid-like
regions. In Ref. [52], a scaling ansatz is proposed for the shear
modulus, which depends on the ratio between σ and the dis-
tance to a threshold | p̄0 − p̄∗

0|, where p̄∗
0 is the threshold value.

The data were indeed observed to collapse. At p̄0 = p̄∗
0, 50%

of the cells are rigid with p0,i < p̄∗
0. This fraction decreases or

increases above or below p̄∗
0. This suggests that the fraction

of rigid cells (cells with p0,i < p̄∗
0) plays an important role in

driving the rigidity of the tissue. The fraction of rigid cells is
defined as

fr =
∫ p̄∗

0

−∞
Fp̄0,σ (p0)d p0 = 1

2
erfc[( p̄0 − p̄∗

0)/
√

2σ ], (5)

where σ and p̄0 are the standard deviation and mean of the
Gaussian distribution, respectively. For substrate disorder, the
cells shape index changes frequently. Thus, the probability
density function should also depend on the spatial distribu-
tion of the cells and we have no control over F in Eq. (5).
Nonetheless, for the parameters explored, we found that the
cells have a distribution of the shape index, p0,i, similar to
the Gaussian used to generate the substrate disorder, with the
same mean ( p̄0) and standard deviation (σ ). Thus, we use
Eq. (5) to estimate the threshold of the transition, with p̄0 and
σ the same as those used for the substrate.

Figure 3 illustrates the data collapse for the diffusion
coefficient rescaled by the standard deviation as a function
of the fraction of rigid cells, fr . To collapse the different
curves, we used p̄∗

0 = 3.80 ± 0.01 in Eq. (5). We estimate this
value numerically by using different threshold values (p̄∗

0) and
choosing the one for which we obtained the best data collapse.
Figure 3 (bottom panels) illustrates the evolution of the rigid
cluster, which corresponds to the largest cluster of rigid cells
(p0,i < p̄∗

0) in black. We found that this cluster decreases as
the standard deviation (σ ) or the mean ( p̄0) increase. The
scaling ansatz suggests that the rigidity is driven by cells with
a shape index, p0,i, smaller than a threshold p̄∗

0. As a result, we
can estimate the onset of rigidity by measuring the threshold
where the rigid cells form a system spanning cluster.

To analyze the percolation of rigid cells we measure the
fraction φ of all rigid cells (p0,i < p̄∗

0) in the largest cluster.
To estimate the percolation threshold, f ∗

r , we consider the
value at which the variance χ = 〈φ2〉 − 〈φ〉2 is maximum.
In the Supplemental Material [58], it is shown that χ has a
peak around f ∗

r ≈ 0.484, signaling the onset of percolation.
When comparing to the data collapse in Fig. 3, this threshold
is not consistent with the point at which the diffusion coeffi-
cient starts increasing from small values (D > 10−4). From
the numerical results, the distribution of perimeters of the
cells, pi, also follows a Gaussian distribution with mean p̄0

and standard deviation σ . Thus, we now consider a different
criteria for rigid cells. We redefine a rigid cell as one with
a perimeter (pi) below the shape index threshold, pi < p̄∗

0.
We considered the same threshold, p̄∗

0, since the distribution
of perimeters (pi) and shape index (p0,i) are similar. Thus, in
our case, Eq. (5) is equivalent when using the distribution for
either pi or p0,i. We hypothesize that since pi is related to the
tension in the cells (τ ∼ pi − p0,i) it can also be responsible
for the decreased rigidity of the tissue, as detailed in previous

FIG. 4. Percolation at the rigidity transition. In the main plot is
the fraction of rigid cells in the largest cluster, φ, as a function of
( fr − f ∗

r ), where f ∗
r ≈ 0.5353 was calculated from the peak in the

variance (top left inset). In the bottom right inset is φ as a function
of the fraction of rigid cells, fr . From the slope of the curve in
the main plot, we estimate the exponent β ≈ 0.194 ± 0.007, which
is consistent with that for 2D random percolation, β = 5/36. The
results were obtained for N = 16384 and averaged over 10 samples.

works [44,52]. We observe from the inset of Fig. 4 that the
corresponding χ has a peak around f ∗

r ≈ 0.534, signaling the
onset of percolation, in line with the results from the data
collapse in Fig. 3. From a finite-size scaling analysis, using
the shift of the peak in the variance (χ ) with N , we estimate
the threshold f ∗

r ≈ 0.5353 ± 0.0003. Using this value, we
calculate the scaling exponent (shown in the main plot), β ≈
0.194 ± 0.007. Larger simulations are needed to estimate the
exponents with higher precision, which is beyond the scope of
this work. Nonetheless, the obtained value of β is consistent
with that for random percolation, β = 5/36 [64,65].

In Fig. 2, we plot in white the line corresponding to f ∗
r ≈

0.5353, which sets the percolation threshold for the disordered
substrate. The gray line corresponds to f ∗

r ≈ 0.21 taken from
Ref. [52] as the onset of rigidity in the cell disordered system.
This highlights the differences between the two types of dis-
order and how they change the mechanical properties of the
tissue. In the cell disordered case, the heterogeneity increases
the tensions, τ ∼ pi − p0,i, leading to a more rigid tissue.
For the substrate disorder, larger tensions can be observed at
higher values of the disorder (σ ) but the average tension in
the tissue decreases. Furthermore, the distribution of tensions
becomes more symmetrical, which promotes the fluid-like
state (see the Supplemental Material [58]).

V. AVERAGED SUBSTRATE

In a cell tissue, one expects that one cell senses a region of
the substrate rather than a single point. In order to account for
this effect, we consider next the averaged substrate described
in the methods section. The averaging is aimed to mimic the
process through which a cell senses a given area under it and
thus responds. To each square tile j in the averaged substrate
corresponds a value of the shape index, p0, j , which is the
average of the shape index in the square tiles within a distance
ξ/2 from j. The length scale ξ sets the diameter of the circle
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(a) (b)

(c) (d)

FIG. 5. Effect of substrate heterogeneities on cell motility. In panel (a) the diffusion coefficients are plotted for different types of
heterogeneity: “S” is for substrate disorder, not averaged for a correlation length ξ = 0.03125 and averaged for ξ = 2. “C” is for cell disorder,
as in Ref. [52], where each cell has a random shape index p0,i from a normal distribution, which remains constant. “H” is for the homogeneous
tissue. Panel (b) illustrates how the diffusion coefficient varies with the substrate correlation length ξ , for a mean p̄0 = 3.85. In panel (c), the
diffusion coefficient rescaled by the standard deviation (σ ) is plotted as a function of the fraction of rigid cells, fr , for four different correlation
lengths, ξ . In panel (d) are schematic representations of the tissue (top) and the substrate (bottom) for correlation lengths ξ = 0.125, 0.5, 2
respectively. These results were obtained using N = 1024 and averaged over 10 different samples. We found that although the mechanical
properties of the tissue change with the correlation length, ξ , the curves collapse with the fraction of rigid cells, fr , suggesting that the
percolation of rigid cells still drives the tissue rigidity. A correlation length of ξ = 1 is found above which the response of the tissue to the
substrate disorder changes, with higher disorder, σ , leading to a more rigid tissue.

used to calculate the averaged substrate disorder and thus
sets the correlation length (as discussed in the Supplemental
Material [58]). Figure 5(d) shows some examples of averaged
substrates (bottom row) with the corresponding tissues (top
row).

Figure 5(a) depicts the diffusion coefficients measured for
four different systems as a function of the mean, p̄0. We con-
sider a random substrate (S, ξ = 0.03125), a homogeneous
tissue (H), a tissue with cell disorder (C), and an averaged sub-
strate (S, ξ = 2). Both substrate and cell disordered systems
have a disorder dispersion σ = 0.184. We confirm that the cell
disorder decreases the motility of the cells while the random
substrate increases it. However, if the correlation length of
the substrate is of the order of the typical cell diameter (or
larger), then the cells become less mobile than in the homo-
geneous case. Thus, substrate disorder with large correlation
lengths can also lead to more rigid tissues. In Fig. 5(b), this
is shown for three different values of the standard deviation
(σ ). We find that while for correlation lengths lower than the
typical cell diameter, ξ < 1, more disordered substrates lead
to larger diffusion coefficients than in the homogeneous case,

for correlation lengths above the typical cell diameter, ξ > 1,
substrate disorder decreases cell diffusion. This happens since
for large correlation lengths the cells adapt to the substrate
smoothly as the gradient of the shape index, p0,i, is small. By
contrast, for smaller correlation lengths, ξ , the cells change
their shape index p0,i quite rapidly (the dependence of the
diffusion coefficient with ξ is further explored in the Supple-
mental Material [58]). This leads to different behaviors of the
tension distribution in the tissue. For ξ < 1, as the dispersion,
σ , increases, the variance of the tensions also increases while
its average value decreases promoting fluid-like tissues. For
ξ > 1 the variance of the tensions is almost constant while
their average value increases leading to more rigid tissues (see
the Supplemental Material [58]).

Both types of behavior, however, are related to the per-
colation argument developed above. In Fig. 5(c), we report
data for different values of the correlation length (ξ ) which
is collapsed using the same scaling as in Fig. 3. Thus,
the behavior is driven by the percolation of rigid cells. As
the correlation length (ξ ) changes, the threshold values for the
percolation transition also change [p̄∗

0(ξ ) and f ∗
r (ξ )]. We note
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that for ξ = 2, where the tissue is the most rigid, the percola-
tion threshold for the fraction of rigid cells, f ∗

r ≈ 0.38, tends
to the value reported in Ref. [52], which is consistent with a
more rigid tissue than for the homogeneous substrate.

VI. CONCLUSION

We studied the effects of spatial disorder of the cell-
substrate interaction on the motility of the cells in a confluent
tissue. We considered the self-propelled Voronoi model to
describe the dynamics of cells in a confluent tissue. We hy-
pothesize that the impact of a heterogeneous substrate can
be described by a space-dependent shape index, where the
preferred geometry of each cell, p0,i, depends on its position.
To model the spatial heterogeneities, we divided the surface
of the substrate into square tiles, where each tile has a value
of the shape index, p0, j , drawn from a Gaussian distribution
with mean p̄0 and standard deviation σ . We also considered
a more realistic description of an averaged substrate, where
cells respond to a local averaged disorder. We show that the
larger the area probed by the cell, the smaller the effect of het-
erogeneity. This is in contrast to what is known for tissues with
disorder in the mechanical properties of the cells. For those
tissues, the rigidity increases with the level of disorder [52].
Our results suggest that, for smaller correlation lengths, the
random change in the shape index leads to a more symmetrical
tension distribution with lower average values, characteristic
of more motile cells. For larger correlation lengths, the cells
will have more time to adapt and the distribution of tensions
shifts toward larger values characteristic of a more rigid tissue.
We also note that for the largest values of the correlation
length where the tissue is most solid-like, our results approach
those of the cell disorder reported in Ref. [52]. This suggests
that these two types of disorder are closely related.

We also show that our results for a given correlation length
may be collapsed onto a single curve if we use the fraction of
rigid cells [Eq. (5)] as the control parameter. This suggests that
the changes to the mechanics of the tissue are a consequence
of the percolation of rigid cells, characterized by a perimeter
smaller than a given threshold pi < p̄∗

0. Using the fraction of
rigid cells in the largest cluster, we obtained the threshold
for the reported increase in motility, f ∗

r ≈ 0.5353 ± 0.0003,
for a completely random substrate without averaging, and a
scaling exponent β ≈ 0.194 ± 0.007. For larger values of the
correlation length, our results suggest that the value of the
threshold changes. Due to the symmetries of the model and the
short-range nature of the correlations in the spatial distribution
of the disorder, we hypothesize that the percolation transition
belongs to the 2D random percolation universality class as
corroborated by the value of the obtained exponents.

Although we focused on changes to the shape index of
the cells, p0, it is expected that the substrate can affect other
variables of the model (for example, v0, μ, Dr , or A0). We
restrict our study to this parameter since there is clear experi-
mental evidence suggesting that changes to cell shape impact
on the cell motion and collective dynamics [16]. Furthermore,
exploring all the possible parameters would render the model
intractable. Previous works have also shown that the dynam-

ics of mixtures is much less sensitive to differences in cell
area than perimeter [66]. Thus, we expect that changes to
certain parameters will lead to more subtle and potentially less
marked effects.

These results can play an important role not only in tissue
engineering, where the mechanical properties of the tissue
are important [2], but also in the study of cancer where
cells change the surrounding ECM in order to enhance their
motility. Our results suggest that the underlying structure
supporting the tissue, either the ECM or a culture substrate,
should not be described using generalized bulk metrics since
heterogenieties can play a relevant role in the tissue mechan-
ics. Although we used a simplistic approach, these results
should be robust to different substrate geometries. This also
extends to curved substrates as long as the curvature does not
play a major role in the tissue rigidity, as reported in previous
studies [67].

Recently, it was shown that the cell adaptation time sets
a minimum scale for the differences on the substrate that a
cell can probe [60]. Experimental values for the characteristic
length of the changes in the substrate were used. Our results
allow us to refine those calculations. The cell size sets the
relevant length scale for adaptation, thus the typical size of
epithelial cells in confluent tissues (L ≈ 20 μm) sets the min-
imum length scale of the pattern for cells to be able to adapt.
We can then calculate the expected adaptation time using
the theory developed in Ref. [60]. Using a typical diffusion
coefficient for tissue cells of the order of D ≈ 0.1 μm2 min−1,
we estimate that the typical time for a cell to adapt in a tissue
interacting with a heterogeneous substrate is of the order of
τ ≈ 16 h. We have no knowledge of such measurements for
cells in confluent tissues, but they fall within the relevant
ranges for single cells adapting to heterogeneous substrates
[61].

Here, we focused on a 2D description, but a 3D general-
ization is possible. In a simple generalization of the model
to 3D [68], we expect similar results since a fluid to solid
transition is present and the cells are able to diffuse throughout
the tissue. If we consider a more realistic description of a
3D epithelial monolayer, then we would need a vertex model
along the lines of Ref. [69] and characterize the apical and
basal sides of the cells differently. Then, it is expected that
the competition between the basal and apical perimeter differ-
ence plays a role in the diffusion of the cells. This would be
interesting to explore in future studies.

We have also neglected both cell death and division. Due
to modeling constraints, it is required that the number of
cells remains constant throughout the simulation. Other works
explored the effect of cellular division [70], and in the context
of disordered media, it would be interesting to focus on how
cell division or death play a role in tissue cell motility.
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