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Extreme vorticity events in turbulent Rayleigh-Bénard convection from stereoscopic
measurements and reservoir computing
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High-amplitude events of the out-of-plane vorticity component ωz are analyzed by stereoscopic particle image
velocimetry (PIV) in the bulk region of turbulent Rayleigh-Bénard convection in air. The Rayleigh numbers Ra
vary from 1.7 × 104 to 5.1 × 105. The experimental investigation is connected with a comprehensive statistical
analysis of long-term time series of ωz and individual velocity derivatives ∂ui/∂x j . A statistical convergence
for derivative moments up to an order of 6 is demonstrated. Our results are found to agree well with existing
high-resolution direct numerical simulation data in the same range of parameters, including the extreme vorticity
events that appear in the far exponential tails of the corresponding probability density functions. The transition
from Gaussian to non-Gaussian velocity derivative statistics in the bulk of a convection flow is confirmed
experimentally. The experimental data are used to train a reservoir computing model, one implementation of
a recurrent neural network, to reproduce highly intermittent experimental time series of the vorticity and thus
reconstruct extreme out-of-plane vorticity events. After training the model with high-resolution PIV data, the
machine learning model is run with sparsely seeded, continually available, and unseen measurement data in the
reconstruction phase. The dependence of the reconstruction quality on the sparsity of the partial observations
is also documented. Our latter result paves the way to machine-learning-assisted experimental analyses of
small-scale turbulence for which time series of missing velocity derivatives can be provided by generative
algorithms.
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I. INTRODUCTION

Thermal convection is one the fundamental mechanisms
by which turbulent flows evolve. The temperature depen-
dence of the fluid mass density and the resulting buoyancy
forces drive fluid motion that in turn advects the tempera-
ture leading to a fully turbulent motion of the fluid [1–4].
The simplest configuration in this specific class of turbulent
flows is Rayleigh-Bénard convection (RBC)—a fluid layer of
height H between two parallel rigid plates heated uniformly
from below and cooled uniformly from above, such that a
constant temperature difference �T = Tbot − Ttop > 0 is sus-
tained across the layer. Experimentally, RBC can be realized
in a horizontally extended closed cylindrical or cuboid cell
with thermally insulated sidewalls. In the past two decades, a
larger number of direct numerical simulations (DNSs) of this
configuration investigated various aspects of large-scale struc-
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ture formation, longer-term dynamics, and the dependencies
on Rayleigh and Prandtl numbers, Ra and Pr, as well as on
the aspect ratio � of the cells in detail [5–17]. The number
of studies of RBC in air at a Prandtl number of Pr = 0.7 by
means of controlled laboratory experiments is much smaller;
see, e.g., Refs. [18–22] for investigations in large-aspect-ratio
setups. The three dimensionless control parameters of RBC
experiments are defined as follows,

Ra = gα�T H3

νκ
, Pr = ν

κ
, � = L

H
. (1)

Here, g is the acceleration due to gravity, α is the thermal
expansion coefficient, ν is the kinematic viscosity, κ is the
thermal diffusivity, and L is the horizontal lengthscale.

The dynamics and structure of the boundary layers of the
velocity and temperature fields at the top and bottom of an
RBC layer are essential for the amount of heat that can be
carried from the bottom to the top in this configuration. In
Ref. [23], a dynamical connection between this dynamics and
the small-scale intermittent motion in the bulk, in particular
the formation of high-amplitude dissipation events, was estab-
lished. Thermal and kinetic energy dissipation fields probe the
magnitude of gradients of the temperature and velocity fields,
respectively. Their amplitudes are known to be largest at the
smallest scales [24–27]. In detail, it was shown in [23] how
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the formation of coherent plumes at the top and bottom and
their subsequent collision or passing create large temperature
gradients in the bulk that cause the formation of localized
shear layers; see also Ref. [28] for a closed cylindrical cell
at unit aspect ratio. These studies set one motivation for the
present work.

In the present work, we want to study the velocity deriva-
tives in the bulk of an RBC configuration experimentally by
means of stereoscopic particle image velocimetry (SPIV) in
the midplane of the horizontal cell. This allows us to obtain
all three velocity components ui(x, t ) in a horizontal measure-
ment region A = 2.9H × 2.2H and thus seven out of the nine
components of the velocity gradient tensor field Mi j (x, t ) =
∂ui/∂x j . These are the in-plane components ∂ui/∂x j with i =
1, 2, 3 and j = 1, 2 and ∂u3/∂x3 = −(∂u1/∂x1 + ∂u2/∂x2)
via the incompressibility condition of the flow. Thus the out-
of-plane component of the vorticity field ω3 = ∂u2/∂x1 −
∂u1/∂x2 can be obtained, and we have access to highly inter-
mittent derivative fields in the bulk of the turbulent convection
layer. We analyze the statistics of these seven derivatives and
probe their statistical convergence. Furthermore, the resulting
probability density functions (PDFs) are found to agree with
those of existing high-resolution DNS data from Ref. [23] in
a similar setup and the same parameter range.

The SPIV snapshot series contain a few extreme events
in the form of intense vortex cores that sweep across the
measurement plane A. In the second part of this work, we
analyze their temporal growth and explore the capability of
recurrent neural network (RNN) architectures to reconstruct
high-amplitude or extreme events of the out-of-plane vorticity
component [29]. More specifically, we therefore apply the
reservoir computing model (RCM) [30,31], which has been
shown to successfully predict the time evolution of nonlinear
dynamical and fluid mechanical systems. Examples for the
latter case are the Kuramoto-Sivashinsky equation [32–34],
low-dimensional Galerkin models of wall-bounded shear
flows [35,36], the two-dimensional Kolmogorov flow [37], or
two-dimensional RBC configurations without and with phase
changes [38,39]. It should also be mentioned that other meth-
ods for the temporal predictions of complex dynamics are
available that do not rely on neural network approaches, such
as the Koopman framework with nonlinear forcing [36].

We show that an RCM with continually available sparse
data is able to reconstruct high-amplitude or extreme out-of-
plane vorticity events, which can be quantified by a squared
vorticity integrated over A (see Ref. [40] for a recent review).
In other words, the present machine-learning algorithm thus
operates in an open-loop scenario after the training phase and
continues to use previously unseen sparse data. The prescribed
data amount to a percentage of the full PIV resolution, which
varies between 1.9% and 11%.

The outline of the manuscript is as follows. In Secs. II A–
II C, details on the experiment and machine-learning al-
gorithm are provided. Section III A discusses the results
with respect to the vorticity and velocity derivative statis-
tics. Furthermore, we investigate the dynamics of a particular
high-vorticity event tracked in the experiment in Sec. III B.
Section III C finally provides the results of the application
of the RNN to reconstruct the time evolution and the non-
Gaussian PDFs with the extended tails. We conclude the work

FIG. 1. Relative positions of cameras (shown as rectangles), RB
cell, and measurement section from the top and side view. The heated
bottom plate of the RB cell and the cooled top plate are indicated by
a red and a blue line, respectively. The measurement section A is
represented in green. W and H are the horizontal and the vertical
dimensions of the cell, respectively.

with a summary and an outlook in Sec. IV. For convenience,
we will also switch from the notation u1, u2, u3, and ω3 for
velocity and vorticity field components to ux, uy, uz, and ωz in
the following sections with coordinate z parallel to the inferred
temperature gradient between top and bottom.

II. METHODS

A. Rayleigh-Bénard convection cell for pressurized air

The experimental setup is a large-aspect-ratio Rayleigh-
Bénard convection (RBC) cell of size W × W × H , where the
horizontal dimension W is ten times larger than the vertical
distance between the two plates H , the latter being 3 cm (see
Fig. 1). The aspect ratio of the cell is therefore � = 10. The
bottom plate of the cell is made of two glass plates coated
on one side with a thin layer of indium tin oxide. It has the
important characteristic of being transparent and at the same
time uniformly heatable by the Joule effect. The latter arises
from the electrical current that goes through the oxide layer
(for further details, see [21]). Each plate has a measured light
transmission coefficient of about 68% [21]. This coating was
manufactured at the Fraunhofer Institute for Organic Elec-
tronics in Dresden (Germany). The top plate of the RBC cell
is made of aluminum with an internal cooling circuit where
water flows at a controlled temperature fed by a thermo-
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stat. The side walls are made of 4-mm-thick polycarbonate,
which allows optical access for the laser light. The surface
temperatures at both horizontal walls were measured by four
thermoresistances PT100 (class B) for each plate, which were
located 20 mm from the side walls.

The RBC cell is inserted in the high-pressure facility,
i.e., the Scaled Convective Airflow Laboratory Experiment
(SCALEX). This facility consists of a high-pressure vessel
with 35 observation windows, allowing for optical access
from the outside. The pressure within the vessel can be
regulated from 10–100 mbars to 8 bars in steps of about
100 mbars. The working pressure was measured with a Cer-
abar PMC131 sensor from Endress + Hauser AG. Further
details on the device are summarized, e.g., in Ref. [21].

B. Particle image velocimetry measurements

Stereoscopic particle image velocimetry experiments are
performed in a horizontal layer at midheight between the top
and bottom plate of the cell. The position of the measurement
plane is shown in green in Fig. 1. The measurement region
covers a horizontal area of A ≈ 2.9H × 2.2H . To conduct
SPIV measurements in a horizontal plane within the cell,
two cameras are located below the cell, which take images
through the transparent bottom plate. A mirror is placed in the
optical path as represented in Fig. 1. A stereo angle of about
50◦ is used. The cameras are sCMOS from LaVision GmbH
with a digital resolution of 2560 × 2160 pixels and a pixel
pitch of 6.5 μm. Therefore, the image magnification factor
is M ∼ 0.2. The cameras have particularly thin connector
cables made of optical fibers that allow them to be placed
inside the high-pressure vessel. These cables are inserted into
feed-through systems for high pressure from Spectite® that
are built in a flange of the vessel. The images are recorded
at a frame rate of 10 Hz with an interframe time of 7 or
10 ms depending on the strength of the convective flow (or
Rayleigh number Ra) studied. Each camera is equipped with
a Zeiss Milvus 2/100M objective lens under the Scheimpflug
condition. The focal length of the lenses is 100 mm, and the
aperture stop used is 5.6 and 8 for the camera in forward and
backward scattering, respectively. Both cameras and lenses
are placed inside the vessel at a working pressure of up to
4.5 bars. The laser light sheet was created with a double pulse
laser (Quantel Q-smart Twins 850) with a pulse energy of
about 175 mJ for a 2-mm-thick light sheet. A spherical and
a cylindrical lens were used to generate the light sheet.

The depth of field of the measurements δz is given by

δz = 4

(
1 + 1

M

)2

f 2
# λ, (2)

where λ is the wavelength of the laser. Here, λ = 532 nm for
the green laser is used. For the camera in forward scattering
with the smallest f -stop f#, the depth is δz = 2.4 mm, which
is larger than the laser sheet thickness and therefore ensures
good focusing conditions of the illuminated particles. The ge-
ometrical calibration is made on the measurement plane with
the three-dimensional target 204-15 from LaVision, where the
distance between two dots is 15 mm, and the dot diameter and
level separation are both 3 mm. Additionally, a stereoscopic
self-calibration [41] is made and iteratively repeated with

TABLE I. Summary of the experimental conditions used in the
convection measurements. The first column reports the Rayleigh
numbers, the second and third columns display the values of the top
(Ttop) and bottom (Tbot) temperature, respectively, the fourth column
shows the temperature difference between the bottom and the top
walls (�T ), and the fifth column shows the working pressure. The
sixth and seventh columns are for the characteristic free-fall velocity
and free-fall time of the flow, respectively.

Ra Ttop (◦C) Tbot (◦C) �T p (bars) Uff (mm/s) Tff (s)

1.7 × 104 22.3 28.9 6.6 1 80.7 0.4
2.1 × 104 21.2 29.2 8 1 80.7 0.4
1.1 × 105 21.2 28.5 7.3 2.47 85 0.35
2.9 × 105 22.9 28.4 5.5 4.5 74.3 0.4
5.1 × 105 20.1 29.9 9.8 4.5 98.8 0.3

final mean residual displacement below 1 pixel. This final
value cannot be further reduced using images of a thermal
convection flow because of the presence of optical distor-
tions due to variations in the mass density of the imaging
medium [42–44].

The seeding in the PIV measurements is established by
droplets of di(2ethylhexyl)sebacate (DEHS) with an average
diameter of 0.9 μm generated by a vaporizer from PIVTECH
GmbH that is placed inside the pressure vessel. The character-
istic velocity of the flow is estimated as the free-fall velocity
Uff = √

αg�T H ; see also Table I for the values of Uff and
�T . The sedimentation velocity of the particles of diameter
dp, which are used here as tracers, is given by

uS = d2
p (ρp − ρ f )

18μg
, (3)

where ρ f and μ = ρ f ν are, respectively, the density and the
dynamic viscosity of the fluid at the mean temperature and
pressure of the cell, and ρp is the mass density of the particles.
The sedimentation velocity of the particles used is negligible
as can be seen by the ratio uS/Uff , which is about 4 × 10−6

or smaller for all flow conditions studied here. The particles
faithfully follow the flow as indicated by the values of the
dimensionless Stokes number, St, defined as the ratio between
the characteristic response time of a suspended particle and
the characteristic time of the flow,

St = dpρpUff

18μg
. (4)

The values of the Stokes number in the present study
are always St < 10−2, as requested for good tracer
particles [45,46].

The PIV images are acquired and processed with the
software DaVis 10 from LaVision. The only preprocessing
that is applied to the raw images is a time-averaged image
subtraction in order to reduce the noise. A two-passes cross-
correlation algorithm with decreasing interrogation window
size is used. The size of the final pass is 128 × 128 pixels
for all measurements except for the largest Rayleigh number,
where the size is 96 × 96, which leads to a spatial resolution of
about 4 and 3.5 mm, respectively (see Table II). Here, we also
list the Kolmogorov length ηK of the DNS (at the comparable
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TABLE II. Kolmogorov lengthscale from the direct numerical
simulations (DNSs) and spatial resolution of the PIV measurements
computed without overlap for each of the five Rayleigh numbers
studied. The simulations were conducted in a domain of � = 8 with
periodic boundary conditions at the sidewalls at Pr = 1 by a spectral
element method; see Ref. [23] for details.

RaDNS ηK (mm) RaPIV �xPIV (mm)

1.5 × 104 2.4 1.7 × 104 4
2 × 104 2.2 2.1 × 104 4
1 × 105 1.3 1.1 × 105 4
2 × 105 1.0 2.9 × 105 4
5 × 105 0.7 5.1 × 105 3.5

Rayleigh numbers), which are given in dimensionless units by

ηK =
(

Pr

Ra

)3/8

〈ε〉−1/4
V,t , (5)

where 〈ε〉V,t is the combined volume-time average of the ki-
netic energy dissipation rate field [25]. This value is multiplied
with the actual cell height H to get a length in physical units
as shown in the table.

The values of Rayleigh numbers of the experiments range
from Ra = 1.7 × 104 to 5.1 × 105 and are listed in Table I.
The working fluid is air with Pr = 0.7 for all cases. Rayleigh
numbers Ra � 1.1 × 105 are obtained by putting the vessel
under pressure. In Table I, the corresponding values of the
working pressure of each experiment are shown together with
the values of the temperatures at the bottom (Tbot) and top
(Ttop) walls of the cell in addition to the resulting difference
�T . The last two columns of the table indicate the charac-
teristic free-fall velocity Uff and resulting free-fall time Tff =
H/Uff of the flow. Values of the fluid properties are taken from
the NIST RefProp database version 9.1 [47].

The major source of uncertainties in this experimental
study is due to density variations within the fluid, which are
caused by local temperature gradients. The relative density
differences between the bottom and the top of the cell were up
to 3.4% for the largest Rayleigh number studied. They caused
errors in the determination of the three-dimensional particle
position and velocity, mostly due to instantaneous and local
changes in the magnification factor, which is connected to the
motion of thermal plumes [42,43,48]. A global a posteriori
estimation of the relative velocity uncertainty of the SPIV
measurements based on the correlation statistics method [49]
gives an upper bound of 0.6% for the experiment at the small-
est Rayleigh number and of 2.5% for that at the largest.

C. Reservoir computing model

In the following, we briefly review the reservoir computing
model (RCM) [30]. Our algorithm is a supervised machine-
learning algorithm that is run as a single validation split. This
includes (i) training, (ii) validation, and (iii) test phases. The
PIV data are correspondingly split into three subsets. Other
more complex scenarios, such as k-fold cross validations, are
possible and have been discussed only recently for RCMs in
Ref. [50].

The reservoir is a random, recurrently and sparsely con-
nected network. The model consists of the input layer, the
reservoir, and the output layer, as shown in Fig. 2(a). The
input layer takes the training data in the form of discrete time
series �in(t ) = [ω1

z (t ), . . . , ωNin
z (t )] with Nin the number of

selected grid points of the PIV measurement region A; see the
red squares in Fig. 2(b). Vorticity data are converted at each
instant into a reservoir state vector r(t ) ∈ RN with a number
of reservoir nodes N 	 Nin. This is done by a random weight
matrix W in ∈ RN×Nin which is determined at the beginning of
the training and left unchanged,

r(t ) = W in�in(t ). (6)

The reservoir is described by a symmetric adjacency matrix
W r ∈ RN×N , also determined initially as a random matrix and
left unchanged. Typically, an ensemble of different random
realizations of the reservoir matrix is considered in the train-
ing process. Two important parameters of W r are the reservoir
density D of active nodes and the spectral radius ρ(W r ), which
is set by the largest absolute value of the eigenvalues. The
reservoir nodes are updated by a simple nonlinear dynamical
system. The discrete time evolution is given by

r(t + �t ) = (1 − α)r(t )

+ α tanh[W rr(t ) + W in�in(t )], (7)

where nonlinearity enters in the form of an activation function,
here by a hyperbolic tangent. The leakage rate is 0 < α < 1
and the spectral radius of the reservoir is typically taken
ρ(W r ) � 1. The final of the three building blocks of the RCM
is the output weight matrix W out ∈ RNPIV×N which maps the
updated reservoir vector back to the vorticity field and is not
random,

�̂
out

(t + �t ) = W outr(t + �t ). (8)

Here, NPIV is the number of all grid points of the PIV mea-
surement region A. The iteration of (7) is repeated for all
the snapshots of the PIV training data, and the sequence of
corresponding reservoir states is saved. In contrast to most
other neural networks, the training of the RCM is performed
with respect to the output layer only. The optimized output
weight matrix, W out ∗, is obtained by a minimization of a
regularized quadratic cost function C. The regularization term
is added to C to tackle the overfitting problem [29]. This cost
function is given by

C[W out] =
Ntrain∑
k=1

|W outr(k�t ) − �(k�t )|2

+ γ Tr(W outW out T ), (9)

where �(k�t ) is the ground truth, i.e., the PIV data. To
summarize, the hyperparameters of the RCM training pro-
cess are the number of nodes N , the reservoir density D,
the spectral radius ρ(W r ), the leakage rate α, and the ridge
regression parameter γ > 0 of the regularization term of the
cost function C. Here, we will leave D = 0.2. The remaining
hyperparameters span a four-dimensional space and have to be
tuned. In the training phase, we take 100 different quadruples
{N, ρ(W r ), α, γ } randomly from prescribed ranges and run
the RCM for each quadruple and 10 different initial random

023180-4



EXTREME VORTICITY EVENTS IN TURBULENT … PHYSICAL REVIEW RESEARCH 4, 023180 (2022)

FIG. 2. Sketch of the reservoir computing model (RCM) and arrangement of continually available data during the prediction phase of
the machine-learning algorithm, indicated as red filled squares. (a) The three building blocks of the RCM are the input layer, the reservoir
(a random network of neurons), and the output layer. (b) Sketch of a part of the data grid A of NPIV points obtained in the stereoscopic particle
image velocimetry (PIV) measurement. This figure illustrates the 5 × 5 scenario: one data point with continually available experimental
vorticity data (red filled square) is surrounded by 24 grid points (blue filled circles) for which the trained RCM predicts the time evolution of
the vorticity component autonomously. Thus 3.5% of the full PIV resolution is available in the reconstruction phase and Nin � NPIV. The whole
measurement area A is covered sparsely with continually available measurements in this way. The uniform PIV resolution is also indicated.

seeds of the reservoir to optimize W out for each of the 103

training runs. The subsequent validation phase selects the
optimal hyperparameter set as the one that gives the minimal
mean-squared error (MSE). This leads to the optimal output
matrix W out ∗ for the optimal quadruple {N∗, ρ(W r )∗, α∗, γ ∗}.

In the final reconstruction phase, the RCM reconstructs the
vertical vorticity component field in the measurement region
that can be compared with original unseen test data. The RCM
generates synthetic time series of the intermittent vorticity
component at all grid points of the measurement region A
from sparse continuously provided data at a subset of grid
points of A. The RCM is run in a mode that is sometimes
referred to as an open-loop scenario or one-step prediction
[50] since the reservoir output is not used as an input for the
subsequent step.

III. RESULTS

A. Velocity derivative statistics

The long total measurement acquisition time of 2500 Tff

allows a good convergence of the statistics as displayed in
Fig. 3. In these plots, we report results of the out-of-plane vor-
ticity and selected individual velocity derivative components,
all normalized by their corresponding root-mean-square (rms)
values. We therefore define

χ := ωz√〈ω2
z 〉A,t

or χ := ∂ui/∂x j√〈(∂ui/∂x j )2〉A,t

, (10)

with i, j = 1, 2, 3. The denominators in both equations are the
root-mean-square (rms) values of the corresponding quanti-
ties. The statistical convergence of the nth-order normalized
moment follows from plots of χn p(χ ) versus χ . The area
below these curves corresponds then to the nth-order moment
Mn, which is given by

Mn(χ ) :=
∫ ∞

−∞
χn p(χ )dχ. (11)

These moments can be evaluated in a discretized approxima-
tion of this integral. The statistical convergence of moments

M2, M4, and M6 is shown in Fig. 3 for the two largest ex-
periment Rayleigh numbers Ra = 2.9 × 105 and 5.1 × 105.
A converged velocity derivative statistics implies that the tails
for the largest χ -values tend to decay to zero, which seems to
be the case for the shown components. Note that the y-axes are
displayed in logarithmic units in the figure. We have also ver-
ified that the two velocity gradient tensor components, which
are not shown in the figure, satisfy the statistical convergence
criteria as well. It can be confirmed that the PIV measure-
ments obtain sufficiently well-resolved velocity gradients in
the range of accessible Rayleigh numbers.

Figure 4 reports a direct comparison between the PDFs
of five components of the velocity gradient tensor Ai j and
the out-of-plane vorticity component ωz from the SPIV mea-
surements and the DNS data from [23]. One can see that the
experimental results are in very good agreement with the sim-
ulation data all the way to the far tails. Again, the PDFs of the
two missing components, ∂uz/∂x and ∂uz/∂y, are qualitatively
and quantitatively similar to the shown data.

The PDFs of the out-of-plane vorticity of the SPIV of
all series as displayed in Table II are shown in Fig. 5. One
can observe that the tails of the PDFs become wider as the
Rayleigh number grows, which is an indication of a tran-
sition from Gaussian to non-Gaussian intermittent velocity
derivative statistics as discussed for RBC in Refs. [23,51,52].
We can thus conclude that this transition is also detectable
in the bulk of controlled laboratory experiments at mod-
erate Rayleigh numbers. This allows us to run long-term
measurements of velocity derivative statistics, which is chal-
lenging in simulations where the numerical effort grows
with �2.

B. Extreme event of out-of-plane vorticity

An example of an extreme event of ωz from PIV mea-
surements at Rayleigh number Ra = 5.1 × 105 is shown in
Fig. 6. We consider an event extreme whenever the vorticity
magnitude exceeds 10ωz,rms. In the time interval at the highest
Rayleigh number, we were able to record two of these events.
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FIG. 3. Statistical convergence of the higher-order velocity derivative statistics in the experiments. The vorticity component ωz (a),(g) and
the derivatives ∂ux/∂x (b),(h), ∂uy/∂x (c),(i), ∂ux/∂y (d),(j), ∂uy/∂y (e),(k), as well as ∂uz/∂z (f),(l) are shown. All derivatives are normalized
by their corresponding root-mean-square values. The moment order n is indicated in the legend above the panels. Panels (a)–(f) are for
Ra = 2.9 × 105, while panels (g)–(l) are for Ra = 5.1 × 105.

It can be expected that their frequency and excess magnitude
increase when the Rayleigh number grows. This point is left
as future work. Panel (a) of the figure shows a prominent
vortex core on the right-hand side of A. This vortex is the
result of a horizontal shear in combination with an upward
motion through the observation plane. From the correspond-
ing velocity field, whose components are represented in panels
(b)–(d) of this figure, one can suspect that a plume collision is
responsible for the generation of the extreme vorticity event,
as was observed so far only in DNS data records [23]. Lu
and Doering [53] showed that the temporal growth of the

enstrophy, which is given by

Ē (t ) =
∫

V
ω2

i dV with ωi(x, t ) = εi jk
∂uk (x, t )

∂x j
, (12)

in homogeneous isotropic turbulence in a triply periodic box
of volume V , is rigorously bounded by

dĒ (t )

dt
� 27c3

16ν3
Ē (t )3, (13)

with c = √
2/π . It was found that axially symmetric, col-

liding vortex rings maximize the enstrophy growth, and that

023180-6



EXTREME VORTICITY EVENTS IN TURBULENT … PHYSICAL REVIEW RESEARCH 4, 023180 (2022)

-10 0 10
10-5

100

(a)

PIV DNS

-10 0 10
10-5

100

(b)

-10 0 10
10-5

100

(c)

-10 0 10
10-5

100

(d)

-10 0 10
10-5

100

(e)

-10 0 10
10-5

100

(f)

FIG. 4. Comparison of the probability density function of out-of-plane vorticity ωz (a) and the five partial derivatives, which are ∂ux/∂x
in (b), ∂uy/∂x in (c), ∂ux/∂y in (d), ∂uy/∂y in (e), and ∂uz/∂z in (f). The PIV experiments are at Ra = 5.1 × 105, while the DNS is at
Ra = 5 × 105. All quantities are normalized by their corresponding root-mean-square values.

interacting Burgers vortices cause a growth dĒ/dt ∼ Ē (t )7/4.
Even though we cannot expect that the same bound holds for
a turbulent convection flow, we can probe the growth of the

-10 -5 0 5 10
10-5

10-4

10-3

10-2

10-1

100

FIG. 5. Probability density functions of the out-of-plane vorticity
field component obtained from different stereoscopic particle image
velocimetry measurements for the Rayleigh numbers which are indi-
cated in the legend. The gray dashed line displays the Gaussian case
for reference.

out-of-plane squared vorticity in the measurement region A. In
Fig. 7, we therefore plot the temporal growth of the vorticity
component, dω2

z /dt , versus the squared vorticity, ω2
z , as a

scatter plot for all grid points that are centered around x∗ ∈ A,
the point where ω2

z yields an extreme event at time t = t∗.
In both panels, the time series (which extend over 104 data
points) are plotted for 5 × 5 grid points. The data right before
t = t∗ are replotted in blue in both panels. In addition, the
growth laws with the exponents 3 and 7/4 are also indicated
by solid lines. It is seen that for the highest-amplitude extreme
event, the growth to the maximum is close to the 7/4-scaling,
which suggests that a vortex stretching process generates this
event. It is also seen that the power law with a slope of 3
envelopes the data for the highest amplitudes of ω2

z from
below. Further details cannot be provided on the basis of the
measurements due to the missing velocity derivatives. Note
also that the analysis is conducted locally in contrast to (13).

C. Reservoir computing model for dynamical
evolution of vorticity

Finally, we apply a reservoir computing model (RCM)
to reconstruct the spatial structure of ωz in the measure-
ment region A. The corresponding procedure is visualized in
Fig. 2(b) and follows that of Lu et al. [32] taken to reconstruct
the dynamics of the one-dimensional Kuramoto-Sivashinsky
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FIG. 6. Visualization of an extreme event of ωz from the SPIV measurements at Ra = 5.1 × 105. Filled contours of ωz in (a), ux in (b), uy

in (c), and uz in (d) are shown. Color bars of the vorticity and velocity components are given in units of tff and Uff , respectively. Arrows show
the same in-plane velocity vector field in all four panels.

equation. We therefore provide time series of the measure-
ments sampled on a very coarse uniform grid that covers the
measurement region A as seen in the sketch. The RCM is then
trained to generate time series of the vorticity component at
the remaining and surrounding grid points of the measurement
region A. The procedure allows us to reconstruct the space-
time dynamics of the vorticity component in A.

In Table III, we summarize the optimal hyperparameters
of the RCM that are chosen after the training procedure for
the time-series prediction. All time series consist of 104 PIV
snapshots. The first NT = 5000 snapshots were used to train
the RCM model, NV = 1000 for validation, and the remain-
ing NP = 4000 data snapshots are unseen test data in the
reconstruction phase. Furthermore, we list the mean-squared
errors (MSE) in the table, which follow for the training (T ),
validation (V ), and reconstruction (R) phases. These errors are
given by

MSEξ = 1

Nξ

Nξ∑
n=1

1

NPIV

NPIV∑
k=1

[
�k (n) − �̂out

k (n)
]2

, (14)

where �(n) is again the ground truth and �̂
out

(n) is the RCM
output. Here, ξ = {T,V, R}. In the reconstruction phase, the
seed and hyperparameter set is used that gave the lowest MSE
together with a sufficiently low Kullback-Leibler divergence
[29], which is a second measure that was taken and defined as

KL(p, q) =
∑
ωz

p(ωz ) loge
p(ωz )

q(ωz )
, (15)

where p and q are the PDFs obtained from ground truth and
RCM output in the validation phase, respectively. Note that
KL = 0 if p = q for the PDFs. We run such a hyperparameter
tuning for all six convection data records. The best RCM for
each Rayleigh number is then used for the reconstruction task.

TABLE III. Summary of the optimal hyperparameters. Here,
each run was trained individually. Furthermore, the mean-squared
error (MSE) of the training (T ), validation (V ), and reconstruc-
tion (R) phases is given. The optimal parameters were chosen for
N ∈ [1000, 3000], ρ(Wr ) ∈ [0.9, 1], γ ∈ [0.01, 1], and α ∈ [0.1, 1].
For each of 10 different random configurations of the reservoir
matrix W r , 100 different random combinations of the hyperparam-
eters within the given intervals were taken. The last row displays the
Kullback-Leibler divergence in the reconstruction phase.

Ra = 1.7 × 104 Ra = 2.9 × 105

3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

N 2523 2721 2687 2741 2299 2885
α 0.74 0.14 0.39 0.33 0.22 0.57
ρ(W r ) 0.94 0.98 0.98 0.95 0.92 0.93
γ 0.58 0.54 0.88 0.18 0.02 0.64
D 0.2 0.2 0.2 0.2 0.2 0.2
MSET 0.029 0.024 0.047 0.098 0.208 0.29
MSEV 0.039 0.18 0.27 0.27 0.49 0.79
MSER 0.041 0.181 0.281 0.24 0.44 0.72
KL 0.005 0.006 0.014 0.001 0.001 0.003
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FIG. 7. Scatter plots of the time series, taken at the 25 grid points
around extreme event position x∗ for Ra = 5.1 × 105. Panels (a) and
(b) represent the two events at t = 853.25tff and 599tff , respectively,
for which |ωz| � 10ωz,rms. The squared out-of-plane vorticity growth
is plotted vs the squared out-of-plane vorticity. The final data points
with t < t∗ are replotted in blue. Also indicated are the scaling
exponents that follow from [53].

Three different scenarios, namely learning the vorticity
time series on 3 × 3, 5 × 5, and 7 × 7 grid points around con-
tinually provided data points, have been investigated. These
three scenarios correspond to providing 11%, 3.5%, and 1.9%
of the total number of grid points, respectively. We have
conducted this analysis for the smallest and one of the largest
Rayleigh numbers of our data record, Ra = 1.7 × 104 and
2.9 × 105. The results are summarized correspondingly in
Figs. 8 and 9. Panels (a) and (b) in both figures display the re-
construction of an example of a time series taken at a specific
position in A. We see that in both cases, the time dependence
is approximated fairly well by the reservoir computing model.
Both figures are obtained for a 5 × 5 reconstruction scenario.
Panel (b) magnifies the initial time steps n of the reconstruc-
tion phase. Panels (c) and (d) of both figures display the PDFs
that result for the normalized vorticity component from the
RCM in comparison to the experimental test data. While the
velocity derivative statistics for the smallest Rayleigh number
is still very close to a Gaussian distribution, it has crossed
over to the non-Gaussian intermittent regime for the higher

Rayleigh number. This becomes visible by the extended tails
that are also reproduced well by our machine-learning algo-
rithm. The PDFs in both panels are shown for two scenarios,
3 × 3 and 7 × 7, in each case. Note that the latter scenario
implies that less information about the input is provided for
the machine-learning algorithm during the prediction phase.
Only every 49th grid point contains a partial observation.
We can see again that the statistics in both cases are in fair
agreement with the experimental results. The RCM with con-
tinually available sparse data is thus able to reconstruct the
statistical properties of a highly intermittent out-of-plane vor-
ticity component. In Fig. 10, we demonstrate the capability of
the trained recurrent neural network to reconstruct an extreme
vorticity event. A typical event, which is detected at a time
t = t∗ (that translates into snapshot number n = n∗), is shown
here. We therefore compare a sequence of PIV snapshots with
the corresponding model predictions. The RCM results have
been composed of 3 × 3 reconstructions. The panels have
been subsequently smoothed by a 6 × 6 procedure averaging.
It can be seen that the figures at the corresponding times agree
well with each other. We can thus conclude from this visual
inspection that extreme or high-amplitude vorticity events can
be reconstructed by the specific recurrent machine-learning
algorithm.

In Fig. 11, the squared out-of-plane vorticity or out-of-
plane enstrophy E (t ) is integrated over the observation plane
A. The quantity is given by

E (t ) :=
∫

A

ω2
z (t )

2
dA (16)

and displayed for two Rayleigh numbers. The snapshot num-
ber of the global vorticity component maximum is denoted as
n∗. The quantitative comparison of the three predictions with
the experimental test data demonstrates that all three scenarios
follow the ground truth data fairly well. As expected, the devi-
ations increase with increasing spatial sparsity of the available
partial observations. This is very well visible for the larger of
the two Rayleigh numbers. For the more quantitative analysis,
we refer also to MSER in Table III.

The ability of generalization of the RCM is shown in
Fig. 12. Two RCMs, one for the 3 × 3 scenario and one
for the 7 × 7 scenario, are trained and validated on the data
with the lowest available Rayleigh number Ra = 1.7 × 104

and then tested on unseen data at Ra = 1.1 × 105 and 2.9 ×
105. The figure shows a representative comparison between
the reconstructed time series on a selected PIV grid point and
its corresponding ground truth. The reconstructed time series
follow the ground truth very well for all scenarios, which
shows that the RCM can generalize over a certain range of
experimental conditions including higher levels of turbulence.

We finally note here that for a reconstruction without par-
tial observations, i.e., for a fully autonomous RCM prediction
(also known as the closed-loop scenario), the time series at the
grid points of the measurement section A start to deviate after
a few time steps n for the highest Rayleigh numbers of our
data record. This deviation is a known problem of RCMs [33].
It can be mitigated by using other recurrent neural network
architectures such as long short-term memory networks or
gated recurrent units trained with backpropagation [33,34,54].
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FIG. 8. Reconstruction of temporal evolution and statistics of the out-of-plane vorticity component ωz by reservoir computing models. The
Rayleigh number is Ra = 1.7 × 104. (a) Time-series reconstruction example at one grid point in A. Integer n corresponds to time n�t with
�t = 0.25tff . The green shaded area indicates the validation phase. (b) Zoom into the first steps of the reconstruction phase. Panel (c) shows
the probability density function obtained from a reconstruction of correspondingly eight grid points around each continually available data
point (scenario 3 × 3) and panel (d) from 48 grid points (scenario 7 × 7).

FIG. 9. Same as in Fig. 8 for Ra = 2.9 × 105 with �t = 0.25tff .
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FIG. 10. Dynamical sequence of an extreme vorticity event (a)–(d) and its reconstruction by the reservoir computing model algorithm with
the 3 × 3 scenario (e)–(h). The extreme event of ωz is at time t = t∗. The time interval between two snapshots is �t = 0.25tff . The Rayleigh
number is Ra = 2.9 × 105.

IV. SUMMARY AND OUTLOOK

Our present work was motivated by two major scientific
objectives: (i) a detailed analysis of the intermittent statistics
of velocity derivatives in the bulk of a turbulent Rayleigh-
Bénard convection flow in air by means of stereoscopic
particle image velocimetry measurement, including the mon-
itoring of high-amplitude events of the out-of-plane vorticity
component, and (ii) the machine-learning-assisted reconstruc-
tion of the dynamical evolution and statistics of small-scale
velocity derivatives, including the reconstruction of extreme
or high-amplitude events. Therefore, the moderate Rayleigh
numbers were varied over an order of magnitude, in a range
for which the statistics of the spatial velocity derivatives (and

FIG. 11. Time series of the out-of-plane enstrophy E (n) for
two Rayleigh numbers, (a) Ra = 1.7 × 104 and (b) Ra = 2.9 × 105,
which is calculated by Eq. (16). Both plots compare the measurement
data with the reservoir computing reconstructions, which have been
obtained either by the 3 × 3, the 5 × 5, or the 7 × 7 scenario as
indicated in the legend of panel (a). Note that argument n stands for
time t = n�t .

thus of the vorticity components) goes over from Gaussian
to non-Gaussian, as discussed in our recent direct numerical
simulations [23]. This transition in the derivative statistics
was detected by both the experiments and the subsequent
machine-learning algorithm, which is based on a recurrent
neural network in the form of a reservoir computing model.
The latter was trained on the experimental PIV data.

As in most laboratory experiments, and in contrast to di-
rect numerical simulations, the three velocity components of
the turbulent convection flow were detectable in a horizontal
section only and not fully resolved in the whole volume.
Exceptions are high-resolution experiments, which are prac-
tically almost as expensive in their postprocessing as fully
resolved direct numerical simulations [55,56]. SPIV allows
us to reconstruct seven out of the nine components of the
velocity gradient tensor Mi j together with the out-of-plane
vorticity component ωz. In many situations, such as field mea-
surements, the time series data are taken at sparsely distributed
locations. These practical constraints suggest the application
of (recurrent) machine-learning algorithms. They can pro-
cess sequential data, make predictions on the dynamics, and
thus add missing dynamical information on the turbulence
fields. In the second part of this work, we had exactly such a
proof-of-concept in mind when investigating the reconstruc-
tion capabilities of the applied reservoir computing model,
particularly those of extreme or high-amplitude vorticity
events.

The studies can be extended in several directions. One
direction would be a combination with temperature measure-
ments close to the boundary layer, such that strong plume
detachments can serve as precursors for extreme dissipation
or vorticity events in the bulk of the convection layer. This
idea has been developed in Ref. [23] on the basis of fully
resolved DNS. In this case, superresolution generative ad-
versarial networks can reconstruct the temperature field from
coarse measurements close to the wall. A similar path has
been taken for near-wall velocity measurements in Ref. [57].
A further direction consists of the design of generative
algorithms that produce time series of the missing two ve-
locity derivative components complemented by the existing
statistical symmetries in the flow at hand [58,59]. In this way,
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FIG. 12. Generalization capability of the reservoir computing model. We show examples of reconstructed time series at one grid point
in A. Integer n corresponds to time n�t with �t = 0.25tff . Two RCMs were trained at Ra = 1.7 × 104 and used for the reconstruction task
for unseen data at Ra = 1.1 × 105 (a),(b) and Ra = 2.9 × 105 (c),(d). The first panel for each Rayleigh number shows the 3 × 3 scenario of
reconstruction (a),(c) and the second panel shows the 7 × 7 scenario (b),(d).

machine-learning-assisted measurements of the kinetic energy
and thermal dissipation rates would be possible without the
usage of tomographic techniques. Studies in this direction are
currently underway and will be reported elsewhere.
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