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Quantum limits to classically spoofing an electromagnetic signal
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Spoofing an electromagnetic signal involves measuring its properties and preparing a spoof signal that is a
close enough copy to fool a receiver. A classic application of spoofing is in radar where an airborne target
attempts to avoid being tracked by a ground-based radar by emitting pulses indicating a false range or velocity.
In certain scenarios it has been shown that a sensor can exploit quantum mechanics to detect spoofing at the
single-photon level. Here we analyze an idealized spoofing scenario where a transmitter-receiver pair, seeking
to detect spoofing, utilizes a signal chosen randomly from a set of nonorthogonal, coherent states. We show
that a spoofer optimally employing classical information on the state of the transmitted signal (i.e., the best
measure-and-prepare strategy allowed by quantum mechanics) inevitably emits imperfect spoofs that can be
exploited by the receiver to reveal the presence of the spoofer, or to discriminate between true reflections and
spoofs. Importantly, we show that the quantum limitations on classical spoofing remain significant even in the
large mean-photon-number regime.
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I. INTRODUCTION

Many remote sensing technologies operate by observing
the reflection of a transmitted electromagnetic pulse off of an
object of interest. Information about the object (e.g., range,
velocity, orientation, or identity) is derived from properties
of the returned pulse (e.g., time of flight, phase, Doppler
shift, or polarization). Other properties (e.g., pulse shape or
spectral content) may be used by the receiver to distinguish the
reflected signal from interference and background noise. This
process is sometimes required to operate under conditions
where an adversary attempts to fool the receiver by emitting a
spoof of the sensing signal prepared with properties indicating
a false range, velocity, orientation, etc. [1,2]. At the same time,
the properties used by the receiver to pick the pulse out of
the background noise must be faithfully reproduced in the
pulse prepared by the spoofer. Assuming the spoofer does
not have complete knowledge of these properties in advance,
they must be determined through measurement of the trans-
mitted signal. A classic application of spoofing is where an
airborne target emits spoof pulses to avoid being tracked by
a ground-based radar [1,2]. Spoofing also has nonadversar-
ial applications in hardware-in-the-loop testing [3–5]. It is
therefore interesting to investigate the physical limits on the
effectiveness of spoof signals and a receiver’s ability to detect
them.

Practically speaking, the performance of existing spoofing
technologies following a “measure and prepare” strategy is
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limited by thermal phenomena giving rise to various forms
of noise [1,2]. However, technological evolution tends to pro-
vide better and better noise mitigation methods over time.
In contrast, quantum mechanics imposes a hard limit on the
information that can be gained by the spoofer through a mea-
surement on the transmitted pulse. A spoof pulse that fails to
resemble the transmitted signal closely enough can make the
spoofer vulnerable to detection. This situation is similar to that
of quantum cryptography where an eavesdropper interferes
with communication between Alice and Bob, but here the
transmitter-receiver pair needs only to detect the eavesdropper
(i.e., the spoofer) and does not attempt to generate and share a
secret key [6]. Some proposals for exploiting quantum effects
to detect spoofing have already appeared in the literature.
Detection of spoofing based on nonorthogonal, single-photon
polarization states of optical fields was previously considered
in the context of perimeter security [7], secure imaging [8],
and tamper detection [9]. A different approach to spoof detec-
tion utilized entangled pairs of photons in secure lidar [10].

The goal of this paper is to consider more broadly the
limits to spoofing imposed by quantum mechanics, going
beyond single photon states. To that end, we analyze an
idealized spoofing scenario framed as a quantum hypothesis
test performed by a receiver to detect a possible spoofer. We
assume the transmitter chooses a signal at random from a
predefined signal set containing pulses with nonorthogonal
quantum states. The randomly chosen signal is known at the
receiver. The spoofer has complete knowledge of the signal
set, but not of which specific signal is transmitted. We also
assume the spoofer has prior knowledge of, or the means to
determine, a complete classical description of the transmit-
ted signal including, for example, its spatiotemporal shape,
frequency content, and polarization. What the spoofer does
not have is full knowledge of the quantum state of the pulse,
which must be determined from a measurement.
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The spoofer prepares the quantum state of the spoof pulse
according to the measurement outcome; thus, we assume a
“classical” spoofer in the sense of one who employs only
classical information (i.e., a single measurement outcome) to
prepare the quantum state of the spoof signal. This usage is
adapted from the literature on benchmarking quantum key dis-
tribution schemes [11,12]. A “quantum” spoofer, by contrast,
would exploit more of the information in the quantum state
than is obtained from a direct measurement.

We do not specify a particular architecture for the receiver
and the spoofer. Rather, the performance of both the spoofer’s
measurement and the receiver are assumed to be as good as
possible without violating the laws of quantum mechanics.
Finally, we neglect all influence of loss and noise. The end
result is not a design for a sensing or spoofing technology,
but rather a quantification of the fundamental limits of perfor-
mance allowed by quantum mechanics.

Under these assumptions, we show that the inability of
a classical spoofer to perfectly discriminate non-orthogonal
states means the spoof pulses inevitably contain errors that
give the receiver a basis for detecting the influence of the
spoofer. We demonstrate this quantum effect is not limited
to low mean-photon-number states, nor is it dependent on
one specific framing of the spoofing problem. These results
motivate further research into realizable demonstrations of
quantum-limited, classical spoofing, as well as consideration
of the possibilities open to a fully “quantum” spoofer.

II. SPOOFING A BINARY PHASE-SHIFT KEYING SIGNAL

Our idealized spoofing scenario is intended to retain only
the essential elements of a realistic spoofing application
needed to display quantum effects. We begin by assuming the
transmitter emits a signal represented by a coherent state of
a single, pulse-shaped, generalized temporal mode [13]. The
complex amplitude of the coherent state is randomly chosen
with equal probability to be either +α or −α, i.e., a binary
phase-shift keying signal [14]. Importantly, these two states
are not orthogonal as 〈α|−α〉 = e−2N , where N = |α|2 is the
mean photon number for either state.

The spoofer intercepts this signal. Presumably some prop-
erty of the spoof signal such as the timing or Doppler shift is
chosen deliberately to mislead the receiver. But the quantum
state of the spoof pulse must be as faithful a copy of the
original as possible in order to be accepted by the receiver
as a true reflected pulse. Thus, the spoofer needs to make the
measurement that best discriminates between two coherent
states with opposite phase and equal prior probability. The
optimal measurement has been shown to successfully discrim-
inate with probability γ where [15]

γ = 1
2 (1 +

√
1 − e−4N ). (1)

The spoofer prepares a new coherent state depending on the
discrimination outcome, which is then directed back at the
receiver.

When a pulse arrives at the receiver, a decision must be
made between two hypotheses. Without loss of generality,
suppose the transmitted signal has amplitude +α. The first hy-
pothesis, H0, holds that the received signal is a true reflection
from the target, so the quantum state of the received signal is

represented by the density operator

ρ̂0 = |α〉〈α|. (2)

The second hypothesis, H1, states that the signal is generated
by a spoofer. The receiver assumes the spoofer optimally dis-
criminates the transmitted state, but does not have knowledge
of the spoofer’s measurement outcome. As a result, the state
of the spoofed signal is a statistical mixture represented by the
density operator

ρ̂1 = γ |α〉〈α| + (1 − γ )| − α〉〈−α|, (3)

where γ is given by Eq. (1).
If the prior probability of H1 is p and H0 is 1 − p,

then the maximum probability of success allowed by quan-
tum mechanics in discriminating a true reflection from a
spoof is [16]

Psuccess = 1
2 (1 + ||pρ̂1 − (1 − p)ρ̂0||1), (4)

where || · ||1 denotes the trace norm. The trace norm of a
Hermitian operator equals the sum of the absolute values of
its eigenvalues. In Sec. A 1 of the Appendix it is shown that
the nonzero eigenvalues of pρ̂1 − (1 − p)ρ̂0 are η+ and η−,
where

η± = 1
2 − p

±
√(

1
2 − p

)2 − (pγ − 1 + p)p(1 − γ )(1 − e−4N ).
(5)

Then the probability of success in detecting the spoof is

Psuccess = 1
2 (1 + |η+| + |η−|). (6)

To appreciate the significance of Eq. (6), consider the
unphysical scenario where the spoofer is able to perfectly
discriminate the transmitted quantum state, i.e., γ = 1. The
spoof pulses would always be prepared with exactly the right
quantum state. Then the receiver would gain no indication of
the spoofer’s presence by making measurements on received
pulses. The only basis for choosing one hypothesis over the
other would be the prior probabilities; thus, the receiver’s
optimal strategy would be to choose the hypothesis with the
largest prior probability. Figure 1 compares the probability
of success under that strategy (dashed red line) with that of
Eq. (6) (solid blue line) as functions of p, the prior probability
of a spoof, in the case of mean photon number N = 0.1. The
separation between these lines manifests the greater suscepti-
bility to detection of a classical spoofer subject to the laws of
quantum mechanics compared to one who is not. Interestingly,
when p > 1/(γ + 1), the optimal strategy is to forego the
measurement and assume the pulse is a spoof. Apparently, the
quantum limitation vanishes in that regime.

It is also interesting to fix the prior probability of spoofing,
p, and vary the mean photon number of the signal, N . Figure 2
shows the probability of successful discrimination as a func-
tion of the mean photon number with p = 1/2. The advantage
gained over the prior probability peaks at 0.1 photons, and
all but vanishes below 10−5 photons and above two photons.
The advantage declines at low photon number since the eigen-
values given in Eq. (5) with p = 1/2 tend toward zero as N
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FIG. 1. Probability of success at discriminating spoofs using bi-
nary phase-shift keying with a prior probability of spoofing, p, and
mean photon number N = 0.1. The dashed red line corresponds to
a perfect spoofer, i.e. γ = 1. The solid blue line corresponds to a
spoofer making the optimal quantum measurement.

approaches zero. The decline at large photon number is due to
the decreasing overlap 〈α|−α〉 = e−2N as N increases.

If the transmitter can send a series of pulses rather than
just one, the receiver can incorporate the information gained
from successive received signals into updated values of the
prior probabilities to better inform the final decision between
hypotheses. A common approach is Bayesian inference where
an initial value of p = 1/2 is assumed, and p is updated
after each pulse is received [17]. The updates are derived
from expectation values of the density operators ρ̂0 and ρ̂1

FIG. 2. Probability of success at discriminating spoofs using bi-
nary phase-shift keying as a function of the mean photon number, N .
The prior probability of a spoof is fixed at p = 1/2.

FIG. 3. Examples of Bayesian inference applied to detecting a
spoofer using binary phase-shift keying where (a) no spoofer is
present (H0), and (b) a spoofer is present (H1). The solid blue line
shows the prior probability of hypothesis H0. The dashed red line
shows the prior probability of hypothesis H1. The mean photon
number N = 0.1.

in the eigenstate corresponding to the positive eigenvalue η+.
Details of the calculation are given in Sec. A 2 of the
Appendix. Two typical instances of this procedure are shown
in Fig. 3 where, first, hypothesis H0 is true [Fig. 3(a)], and
then H1 is true [Fig. 3(b)]. The mean photon number is N =
0.1. In both case, the information gained from measurements
drives the process to converge on the true hypothesis. The
spoofer’s inability to perfectly reproduce the quantum state
of the pulse is a vulnerability that enables the receiver to
detect it.

In this section, an idealized scenario was devised to contain
only the minimum elements of reality needed to expose the
difficulty that quantum mechanics poses to a classical spoofer.
Next we broaden this result by considering some variations
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on this scenario that incorporate some small steps toward a
realistic application.

III. SPOOFING A GAUSSIAN-NOISE
MODULATED SIGNAL

A sensing technology that is essentially restricted to the
single photon regime has limited applicability. Figure 2 shows
that for mean photon numbers greater than 2, the binary phase-
shift keyed pulse of the previous section offers a vanishingly
small advantage over the prior probability of 1/2. Here we
consider an alternative signal set that enables spoof detection
at higher mean photon number. The set contains coherent
states whose complex amplitude, α, is a random value drawn
from a Gaussian probability density

P(α) = λ

π
e−λ|α|2 , (7)

where the width of the density is determined by the constant
λ � 0. The case of a flat distribution corresponds to the limit
where λ → 0. The choice of this class of signals is based
primarily on analytical convenience. But a Gaussian-noise
modulated wave form for remote sensing is not wholly im-
plausible [18–20].

The spoofer intercepts this signal and makes a measure-
ment to gain information about the quantum state in order to
reconstruct it as closely as possible. The “closeness” of two
quantum states with density operators ρ̂ and σ̂ can be quanti-
fied in terms of the fidelity F (ρ̂, σ̂ ), where 0 � F (ρ̂, σ̂ ) � 1,
and F (ρ̂, σ̂ ) = 1 if and only if ρ̂ = σ̂ [21]. Hammerer et al.
[11] analyzed the process of measuring a coherent state ran-
domly selected from the density in Eq. 7, and then using the
measurement outcome to reconstruct that state and found the
average fidelity F̄ of the reconstructed state to the original is
bounded by

F̄ � 1 + λ

2 + λ
. (8)

If λ � 1, then, on average, a spoof prepared by this procedure
is a low fidelity reconstruction of the transmitted signal. Im-
portantly, the bound is saturated by heterodyne detection [22];
thus, to make the spoof as convincing as possible, we assume
here that the adversary makes a heterodyne measurement of
the transmitted coherent state.

The outcome α′ of an ideal heterodyne measurement on a
coherent state of complex amplitude α is a random variable
with probability density

P(α′) = 1

π
e−|α′−α|2 . (9)

Having made the optimal measurement for characterizing the
state of the transmitted pulse, the spoofer prepares a coherent
state |α′〉 as a spoof.

At the receiver, a binary hypothesis test discriminates a
true reflection from a spoof. As in Sec. II, the first hypothesis,
H0, holds that the received signal is a true reflection from the
target. In this case, the quantum state of the received signal is
represented by the density operator

ρ̂0 = |α〉〈α|. (10)

The second hypothesis, H1, states that the signal is generated
by a spoofer. The receiver does not know the outcome of the
spoofer’s measurement. Consequently, the state of the spoofed
signal is a statistical mixture represented by the density
operator

ρ̂1 = 1

π

∫
e−|β−α|2 |β〉〈β|d2β. (11)

The maximum probability of success allowed by quantum
mechanics in discriminating a true reflection from a spoof is
again given by Eq. (4).

The trace norm appearing in Eq. (4) is not easy to evaluate
given the density operators in Eqs. (10) and (11). However, a
lower bound can easily be derived when the prior probability
of a spoof p = 1/2. In that case, the trace norm is subject to
the bound [21]

|| 1
2 ρ̂1 − 1

2 ρ̂0||1 � 1 − F (ρ̂0, ρ̂1)2, (12)

where the fidelity F (ρ̂0, ρ̂1) = √〈α|ρ̂1|α〉 = 2−1/2. Then
Psuccess � 3/4. This probability exceeds the prior probability
independent of the value of α or N . As a result, the spoofer
is vulnerable to detection at any value of the mean photon
number.

Further confirmation of this conclusion can be found by
numerically approximating the trace norm in the case where
p = 1/2. To that end, we rewrite the density operators in the
number state representation. The number state representation
of the coherent state of Eq. (10) is well known [23] to have
matrix elements

〈m|ρ̂0|n〉 = e−|α|2 αm

√
m!

(α∗)n

√
n!

. (13)

The mixed state of hypothesis H1 takes the form of a noisy
coherent state or a displaced thermal state with mean noise
photon number of 1. The density operator for such a state has
matrix elements [24]

〈m|ρ1|n〉 = exp

(
−2|α|2

3

)(
m!

n!

)1/2

αm−n

×
(

1
2

)m

(
3
2

)m+1 L(m−n)
m

[
−4|α|2

3

]
, (14)

where L(m−n)
m is a Laguerre polynomial. Using these ma-

trix elements, the trace norm in Eq. (4) can be numerically
approximated by finding the eigenvalues of the operator
pρ̂1 − (1 − p)ρ̂0 truncated at a maximum photon number far
above the mean photon numbers of the states in Eqs. (10) and
(11), i.e., |α|2 and |α′|2.

Figure 4 shows the probability of successful discrimination
of spoofs approximated in this manner as a function of the
mean photon number, N , in the case where p = 1/2. The
density matrices were truncated at up to 145 photons. Two
features of this plot are notable. First, the probability peaks
around a mean photon number of 2, an order of magnitude
higher than the peak at 0.1 photons in Fig. 2. Second, consis-
tent with Eq. (12), the probability is greater than 0.75 for all
values of N , and never falls to the prior probability, p = 1/2,
at any mean photon number.
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FIG. 4. Probability of success at discriminating spoofs using
Gaussian-noise modulated pulses as a function of the mean photon
number, N . The prior probability of a spoof is fixed at p = 1/2.

The Gaussian-noise modulated signal set enables detection
of the spoofer at any signal power level, and is not limited
to the single photon regime because the extent of overlap
〈α|α′〉 = e− 1

2 |α−α′ |2 depends only on the difference |α − α′|
and not on the magnitude of α and α′ separately. More
broadly, this result suggests any signal set that contains close
coherent states, regardless of mean photon number, could be
used to detect a spoofer.

IV. DISCRIMINATING TWO RECEIVED PULSES

One way in which the spoofing scenarios examined in the
preceding sections differ from realistic radar spoofing is that
they allow for only a single pulse arriving at the receiver. In
practice, the transmitted pulse always reflects off the spoofer
to some extent. This pulse is referred to as the “skin return”
[1,2]. The spoofer emits a separate spoof pulse. So two pulses
actually arrive at the receiver. The receiver must decide which
is which. This scenario requires a different hypothesis test at
the receiver, and we will show that quantum mechanics again
exposes the spoofer to detection.

We return to the binary phase-shift keying signal set of
Sec. II. Assuming two pulses are received, under either hy-
pothesis the density operator contains two modes, one for
each pulse. Hypothesis H0 supposes the first mode is the skin
return, with single-mode density operator

ρ̂ret = |α〉〈α|, (15)

and the second is the spoof, with single-mode density operator

ρ̂sp = γ |α〉〈α| + (1 − γ )| − α〉〈−α|. (16)

Then the density operator for the two modes received under
H0 is

ρ̂0 = ρ̂ret ⊗ ρ̂sp. (17)

FIG. 5. Probability of success at discriminating spoofs when two
pulses are received as a function of the prior probability of the first
pulse being a spoof, p. The dashed red line corresponds to the case
of a perfect spoofer, i.e., γ = 1. The solid blue line corresponds to
a spoofer making the optimal quantum measurement. In both cases,
the mean photon number in the signal pulse is N = 0.1

Hypothesis H1 supposes the converse. So the density operator
for the two modes received under H1 is

ρ̂1 = ρ̂sp ⊗ ρ̂ret. (18)

Again, the eigenvalues of pρ̂1 − (1 − p)ρ̂0 can be solved for,
and the probability of successful discrimination determined
through Eq. (4) (see Sec. A 3 of the Appendix for details). This
probability is plotted in Fig. 5 (blue line) along with maximum
prior probability (dashed red line) as functions of p, as was
done in Fig. 1. Interestingly, the success probability in Fig. 5
is symmetric about p = 1/2, in contrast to the probability in
Fig. 1. This symmetry can be seen explicitly in the density
operators of Eqs. (17) and (18), but not in Eqs. (10) and
(11). More importantly, the separation between the curves
indicates the information gained from the measurement that
would enable detection of the spoofer, for example, using
Bayesian inference as in Sec. II. Thus, the vulnerability to
detection of classical spoofing identified in Secs. II and III
is not limited to one specific framing of the problem.

V. DISCUSSION

By analyzing idealized spoofing scenarios, we have shown
that a transmitter-receiver pair choosing randomly from a
set of coherent states can detect the presence of a spoofer
because quantum mechanics precludes the optimum spoofer
from identifying the transmitted signal with certainty. Im-
portantly, when transmitted signals are drawn from a set of
coherent states with Gaussian distributed amplitudes, success-
ful detection of spoofing is not limited to a low power regime.

Several extensions to this work are possible. Effects of
noise and loss can be introduced to obtain a more practical
assessment of the quantum limits on classical spoofing. These
effects are especially prominent in the microwave regime
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where reflections are weak and thermal noise is strong. The
optimal receivers considered here can be replaced by spe-
cific receiver architectures. Alternative signal sets can be
analyzed to facilitate generation, detection, or other aspects
of system performance. Our results should motivate exper-
iments designed to probe the limits of classical spoofing in
various regimes of the electromagnetic spectrum. An optical
implementation would probably be the most straightforward
for first proof-of-principle, perhaps along the lines of re-
cent free-space, continuous-variable quantum key distribution
demonstrations [25,26].

It is likely that the limits on classical spoofing examined
here can be overcome by considering “quantum” spoofing.
For example, perhaps a pulse can be coupled into a cavity,
modified coherently, and re-emitted with the quantum state
intact but with a shifted frequency or polarization. A more
exotic approach would be to teleport the quantum state of the
incoming pulse onto a spoof pulse [27]. Future generations of
remote sensing technology design may require consideration
of such possibilities.
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APPENDIX: ADDITIONAL DETAILS

1. Eigenvalues in Sec. II

The probability of successful discrimination in Eq. (4)
can be expressed in terms of the nonzero eigenvalues of the
operator

pρ̂1 − (1 − p)ρ̂0 = p[γ |α〉〈α| + (1 − γ )| − α〉〈−α|]
− (1 − p)|α〉〈α|. (A1)

An eigenvector |η〉 corresponding to the nonzero eigenvalue
η must lie in the subspace spanned by |α〉 and | − α〉 and
therefore may be written as

|η〉 = c+|α〉 + c−| − α〉, (A2)

where c+ and c− are complex coefficients. The corresponding
eigenvalue η satisfies∣∣∣∣pγ − (1 − p) − η (pγ − (1 − p))e−2N

p(1 − γ )e−2N p(1 − γ ) − η

∣∣∣∣ = 0. (A3)

The two solutions are given in Eq. (5).

2. Bayesian Inference in Sec. II

Optimal quantum discrimination between two hypothe-
ses involves a measurement operator that projects onto the
positive subspace of the operator pρ̂1 − (1 − p)ρ̂0 and has
eigenvalues 0 and 1 corresponding to a measurement outcome
indicating a decision in favor of the corresponding hypothesis.
In the current instance, η+ as defined by Eq. (5) is the unique
positive eigenvalue. So the optimal measurement is a pro-
jection onto the corresponding eigenvector |η+〉. Then, given
this eigenvector, the probability P(i|Hj ) of getting a measure-
ment outcome i given that hypothesis Hj is correct, where

i, j ∈ {0, 1}, can be determined. These probabilities enable the
process of Bayesian inference whereby the prior probabilities
are updated with each new measurement to reflect new infor-
mation gained about the truth or falsehood of the respective
hypotheses. We first explain the rules for updating the prior
probabilities given P(i|Hj ), and then explain how to determine
P(i|Hj ) itself.

Bayesian inference involves updating the prior probabil-
ity after each new measurement outcome as follows [17].
Let P(Hi ) be the prior probability of hypothesis Hi where
i ∈ {0, 1}. For example, in the previous sections, P(H1) =
p. After a measurement is made, the posterior probability
P(Hi| j) for Hi given the measurement outcome of j incor-
porates the new information gained about the truth of the
hypotheses. If a measurement results in outcome 1,

P(H0|1) = P(1|H0)P(H0)

P(1|H1)P(H1) + P(1|H0)P(H0)
, (A4)

P(H1|1) = 1 − P(H0|1). (A5)

If a measurement results in an outcome of 0,

P(H0|0) = P(0|H0)P(H0)

P(0|H1)P(H1) + P(0|H0)P(H0)
, (A6)

P(H1|0) = 1 − P(H0|0). (A7)

The posterior probabilities are then adopted as the new prior
probabilities until another measurement is made.

The measurement probabilities P(i|Hj ) are determined by
the eigenvector corresponding to η+, the unique positive
eigenvalue specified by Eq. (5). Assuming |η+〉 takes the form
of Eq. (A2), the coefficients c+ and c− satisfy(

pγ − (1 − p) − η+ (pγ − (1 − p))e−2N

p(1 − γ )e−2N p(1 − γ ) − η+

)(
c+
c−

)
= 0.

(A8)

Then, after normalization,

|η+〉 =
(

c+
c−

)
=

⎛
⎜⎜⎝

1√
1+

∣∣ η+−pγ+(1−p)

(pγ−(1−p))e−2N

∣∣2

1√
1+

∣∣ (pγ−(1−p))e−2N

η−pγ+(1−p)

∣∣2

⎞
⎟⎟⎠. (A9)

The measurement outcome probabilities are

P(1|H0) = 〈η+|ρ̂0|η+〉 (A10)

= |c+|2 + c∗
−c+e−2N + c∗

+c−e−2N + |c−|2e−4N , (A11)

P(1|H1) = 〈η+|ρ̂1|η+〉 (A12)

= γ P(1|H0) + (1 − γ )(c∗
+e−2N + c∗

−)(c+e−2N + c−),
(A13)

P(0|H0) = 1 − P(1|H0), (A14)

P(0|H1) = 1 − P(1|H1). (A15)

3. Eigenvalues in Sec. IV

The probability of successful discrimination in Eq. (4)
can be expressed in terms of the nonzero eigenvalues of the
operator pρ̂1 − (1 − p)ρ̂0, where ρ̂0 is given in Eq. (17) and
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ρ̂1 is given in Eq. (18). Since these operators contain only two
states, |α〉 and | − α〉, and we are only interested in the non-
zero eigenvalues, we can assume the corresponding eigenvec-
tors lie in the subspace spanned by tensor products of the
states |α〉 and | − α〉. Any eigenvectors outside this subspace
could only correspond to zero eigenvalues since they would be

orthogonal to |α〉 and | − α〉. In fact, we do not need | − α〉| −
α〉 because it does not appear in the density operator any-
where; thus, we will assume the eigenvectors are of the form

|η〉 = c++|α〉|α〉 + c+−|α〉| − α〉 + c−+| − α〉|α〉. (A16)

Nonzero eigenvalues satisfy the equation

∣∣∣∣∣∣∣
(2p − 1)γ − η (2p − 1)γ e−2N (2p − 1)γ e−2N

(p − 1)(1 − γ )e−2N (p − 1)(1 − γ ) − η (p − 1)(1 − γ )e−4N

p(1 − γ )e−2N p(1 − γ )e−4N p(1 − γ ) − η

∣∣∣∣∣∣∣
= 0. (A17)

This determinant can be expressed as the cubic equation

a3η
3 + a2η

2 + a1η + a0 = 0, (A18)

where

a3 = −1, (A19)

a2 = 2p − 1, (A20)

a1 = (2p − 1)2γ (1 − γ )(e−4N − 1) − p(1 − p)(1 − γ )2(e−8N − 1), (A21)

a0 = −(2p − 1)γ p(1 − p)(1 − γ )2(e−4N − 1)2. (A22)

Equation (A18) can be solved analytically or numerically to obtain nonzero values of η.
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