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atoms in 1S0 and 3P2 states
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Ultracold gases of fermionic alkaline-earth(-like) atoms are hopeful candidates for the quantum simulation of
many-body physics induced by magnetic impurities (e.g., the Kondo physics), because there are spin-exchange
interactions (SEIs) between two atoms in the electronic ground (1S0) and metastable (3P) state, respectively.
Nevertheless, this SEI cannot be tuned via magnetic Feshbach resonance. In this paper, we propose three methods
to control the SEI between one atom in the 1S0 state and another atom in the 3P2 states or 3P2 - 3P0 dressed states,
with one or two laser beams. These methods are based on the spin-dependent ac-Stark shifts of the 3P2 states or
the 3P2 - 3P0 Raman coupling. We show that due to the structure of alkaline-earth (like) atoms, the heating effects
induced by the laser beams of our methods are very weak. For instance, for ultracold Yb atoms, ac-Stark-shift
difference of variant spin states of the 3P2(F = 3/2) level, or the strength of the 3P2 - 3P0 Raman coupling, could
be of the order of (2π ) MHz, while the heating rate (photon scattering rate) is only of the order of Hz. As a
result, the Feshbach resonances, with which one can efficiently control the SEI by changing the laser intensity,
may be induced by the laser beams with a low-enough heating rate, even if the scattering lengths of the bare
interatomic interaction are so small that they are comparable with the length scale associated with the van der
Waals interaction.
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I. INTRODUCTION

In recent years, the ultracold gases of fermionic alkaline-
earth(-like) atoms have attracted much attention [1,2]. One
important motivation for studying this system is that there
are spin-exchange interactions (SEIs) between two fermionic
alkaline-earth(-like) atoms (e.g., two 173Yb atoms or two
171Yb atoms) in the electronic 1S0 and 3P states, respectively,
which plays a central role on the quantum simulation of many-
body models with magnetic impurities (e.g., the Kondo or
Kondo-lattice models) [3–25]. Explicitly, the atoms in the 3P
state can be individually confined in the sites of a deep optical
lattice and play the role of the local magnetic impurities, so the
two-body loss induced by the collision of two 3P atoms can be
avoided. In addition, the moving 1S0 atoms can play the role
of itinerant electrons in Kondo-type models. To realize this
quantum simulation, it is important to develop the techniques
to manipulate the SEI [20–24,26–29].

To avoid the heating loss induced by the spin-exchange
process, the difference between the Zeeman energies of the
atoms before and after this process should be lower than the
temperature of the ultracold gases. Thus, the control of the
SEI should be done under zero or low-enough magnetic field,
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and thus is difficult to be realized via magnetic Feshbach res-
onance [30]. Due to this fact, people studied the manipulation
of SE interaction via a confinement-induced resonance (CIR)
[31] under zero magnetic field [24,26–28]. This technique has
been experimentally realized for the control of the nuclear SE
interaction between ultracold 173Yb atoms [21].

Nevertheless, mostly the CIR occurs only when the inter-
atomic scattering length in the three-dimensional (3D) free
space is comparable with the characteristic length of the con-
finement, which is usually of the order of 1000a0. For current
experiments of ultracold alkaline-earth(-like) atoms, this con-
dition is only partly satisfied by 173Yb atoms, for which one of
the two scattering lengths related to the SEI is about 2000a0

[4–6]. For other systems, e.g., 171Yb atoms, the relevant 3D
scattering lengths are of the order of 100a0 [6–8,32], i.e.,
much less than the confinement characteristic length, and thus
the control effect of the CIR approach is weak. On the other
hand, the interaction between atoms in 1S0 and 3P0 states
includes not only the SEI but also a spin-independent term. In
current experiments of 173Yb or 171Yb atoms, this term is very
strong, so the spin-exchange effects may be suppressed [11].
Therefore, it would be helpful if more control techniques for
the SEI between alkaline-earth(-like) atoms can be developed.

In this paper, we propose three methods for controlling the
SEI between two fermionic alkaline-earth(-like) atoms with
pseudospin 1/2 via one or two laser beams. Explicitly, one
atom is in the 1S0 state and another one in the 3P2 state
(methods I and II) or a 3P2 - 3P0 dressed state (method III)
[33,34]. So far, the SEI of alkaline-earth-like atoms has only
been observed with atoms being in 1S0 and 3P0 states. Nev-
ertheless, for our systems with pseudospin 1/2 atoms in the
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1S0 and 3P2 states, there also exits SEI (i.e., the exchange of
the pseudospin states) processes. These processes are induced
by a similar mechanism as the one for the 1S0 and 3P0 atoms
and are permitted by the selection rule of the corresponding
interatomic interaction potential, as shown below. In this pa-
per, we consider the 3P2 states because for these states the
laser-induced effects which can be used for the manipulation
of SEI (e.g., the spin-dependent ac-Stark effects) are much
more significant than the ones of 3P0 states.

Our approaches are based on the spin-dependent ac-Stark
shifts of 3P2 states (methods I and II) or the laser-induced
Raman coupling between 3P2 and 3P0 states (method III).
Explicitly, for the systems of these methods, there are both
open and closed channels of the spin-exchange scattering
processes and the energy gap between the open and closed
channels just equals to (or has the same order of magnitude
with) the ac-Stark shift difference �ac between 3P2 states with
different magnetic quantum numbers or the effective Rabi
frequency �eff of the 3P2 - 3P0 Raman coupling. Therefore,
one can control the amplitude of the spin-exchange scattering
of the atoms incident from the open channel or the effective
interatomic SEI, by tuning �ac or �eff via changing the laser
intensity.

More importantly, we show that the heating effects induced
by the laser beams are quite weak. This is due to the structure
of alkaline-earth(-like) atoms, and is very different from the
situations of the ultracold alkaline atoms under similar laser
manipulations (e.g., the Raman coupling between different
hyperfine states of electronic ground state), where the lasers
mostly induce strong heating. For instance, for a Yb atom the
heating rate (photon scattering rate) could be just of the order
of Hz when �ac or �eff , and thus the energy gap between the
open and closed channels is of the order of (2π ) MHz and is
comparable to the van der Waals energy scale EvdW. On the
other hand, the potentials of the closed channels are very pos-
sible to support s-wave bound states with the binding energies
|Eb| being comparable with or less than the van der Waals
energy EvdW, even in the absence of an s-wave resonance.
For instance, for the cases of a single-channel van der Waals
interaction, we have |Eb| < 0.99EvdW for as > β6 [35], with
β6 being the length scale associated with this van der Waals
interaction [36]. Moreover, for the systems of our methods
II and III, the s-wave states of the open and closed channels
are coupled to each other. Thus, for these systems, no matter
if the closed channels are on resonance, it is always very
possible that one can make the threshold of the open channel
be resonant to a closed-channel bound state by tuning the
laser intensity, and thus induce Feshbach resonances for these
two atoms, while keeping the heating rate low enough. Using
these resonances, one can efficiently manipulate the effective
SEI.

For the systems of our method I where the s-wave states
of the open channels are only coupled to the d-wave closed-
channel bound states, the above type of low-heating Feshbach
resonance occurs when the closed channels are close to a
d-wave resonance. Nevertheless, for our system there are four
degenerate closed channels which are coupled with each other.
Therefore, the probability for the appearance of these reso-
nances is much larger than the one of a single-channel van der
Waals potential.

For the systems of all methods I–III, we can always treat
the atoms in the 1S0 states and the relevant 3P states as
two distinguishable atoms with pseudospin 1/2. The effective
Hamiltonian of these two atoms can be expressed as

H (eff)
2body = p2

S

2m
+ p2

P

2m
+ V̂eff ,

where m is the single-atom mass and pS(P) is the momentum
operator of the atom in the 1S0 (3P) state. Here the effective
interatomic interaction V̂eff is given by (h̄ = 1),

V̂eff = 2π

μ

[
Ax

2
σ̂ (S)

x σ̂ (P)
x + Ay

2
σ̂ (S)

y σ̂ (P)
y

+ Az

2
σ̂ (S)

z σ̂ (P)
z + A0

]
δ(r)

∂

∂r
(r·), (1)

with μ ≡ m/2 and r being reduced mass and the interatomic
position, respectively, and σ̂ (S(P))

x,y,z being the Pauli operators
for the pseudospin of the atom in the 1S0 (3P) state, namely,
the pseudospin states of the two atoms are degenerate eigen-
states of the effective two-atom free Hamiltonian p2

S/(2m) +
p2

P/(2m). In addition, the effective interaction V̂eff is described
by the parameters Ax,y,z,0. For instance, the strength of the
effective SEI is (Ax + Ay)/2, and the strength of the spin-
independent interaction is A0. In addition, for the systems of
methods I and III, we always have Ax = Ay, while for the
system of method II Ax and Ay may be unequal. Using our
methods, one can resonantly control the parameters Ax,y,z,0 via
changing the laser intensity.

Since we lack detailed parameters for the bare interaction
potential between atoms in 1S0 and 3P2 states, so far we cannot
perform quantitatively accurate calculations for experimental
systems. Therefore, in this paper we qualitatively illustrate the
three methods with two-body calculations for a multichan-
nel square-well interaction model. Our results show that the
effective interaction can be tuned to be either antiferromagnet-
iclike or ferromagneticlike for many cases, where the lowest
eigenstate of the pseudospin operator in the square bracket of
Eq. (1) is the singlet state or the pseudo-spin-polarized states,
respectively. In addition, the absolute values |Ax,y,z,0| can be
controlled in a broad region (e.g., from zero to 1000a0). One
can also completely turn off the spin-independent interaction
(i.e., tune A0 to be zero) while keeping the SEI strength
(Ax + Ay)/2 to be finite.

The remainder of this paper is organized as follows. In
Secs. II–IV, we show the principles of methods I–III, respec-
tively, and illustrate the control effects via the square-well
model. In Sec. V, we provide some discussions, including
a comparison of the advantages and disadvantages of these
three methods. Some details of our calculations are given in
the Appendixes.

II. METHOD I

In this and the following two sections, we introduce our
methods for the manipulation of SEI in detail. For clearance,
we take the system of two 171Yb(I = 1/2) atoms as an ex-
ample. The generalization of our methods for atoms of other
species is straightforward.
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FIG. 1. Schematic illustration of method I. (a) Single-atom en-
ergy levels and the π -polarized laser beam (blue lines with arrows).
We also show the 3P2 levels shifted by the beam. (b) A Two-atom
spin-exchange process. The black (red) filled and dashed circles
represent the g(c) − atom before and after a collision, respectively.
Both this process and the inverse one are studied in this paper. (c) The
interatomic scattering channels. Here the solid curves represent the
potentials of each channel. The coupling potentials between different
channels are not shown in the figure.

Our method I is based on the strong spin-dependent ac-
Stark effect of 3P2 states. In the following, we first introduce
this effect and then show how to use this effect to control the
SEI.

A. ac-Stark shifts and heating effects of 3P2 states

As shown in Fig. 1(a), in our scheme a π -polarized laser
beam is applied at zero magnetic field, so the 3P2(F = 3/2)
states are far-off resonantly coupled to the excited states (e.g.,
the 3S1 and 3D1,2,3 states). Explicitly, all of the detunings of
this beam with respect to the transition to the excited states
[37] are much larger than the fine splitting of these states. As
a result, the energies of the 3P2(F = 3/2) states are shifted
via the ac-Stark effect. We denote the 3P2(F = 3/2) states
with mF = −1/2(+1/2) and mF = ±3/2 as |c,↑ (↓)〉 and
|c,±3/2〉, respectively. It is clear that ac-Stark shifts E (ac)

ξ of
state |c, ξ 〉 (ξ =↑,↓,±3/2) satisfies

E (ac)
↑ = E (ac)

↓ , E (ac)
−3/2 = E (ac)

+3/2. (2)

We further define the difference between the ac-Stark shifts of
states |c,↑ (↓)〉 and |c,±3/2〉 as [Fig. 1(a)]:

�ac ≡ E (ac)
−3/2 − E (ac)

↑ . (3)

Here we emphasize that the spin dependence of the ac-
Stark effect for the 3P2 levels of an alkaline-earth (like) atom
is much more significant than the one of the electronic ground
states of an ultracold alkali atom. As a result, to induce a given
�ac, the heating effect of the laser beams for our system is
much lower than the ones for the alkali atoms.

This can be explained as follows. As mentioned before,
here we consider the large-detuning cases where the detun-
ing of the laser is much larger than the fine splitting of the
electronic excited states. For the electronic ground manifold
of an alkali atom, all the spin levels are in the same electronic
orbit state, i.e., the S state, and thus have the same dynamical
polarizability. Therefore, the spin dependence of the ac-Stark
effect is essentially induced by the electronic spin-orbit cou-
pling of the excited states [38,39]. Thus, to realize significant
spin-dependence ac-Stark shifts in the large-detuning cases,
one has to apply an extremely strong beam, and thus the
heating effect would be quite large. However, for an alkaline-
earth(-like) atom, the electronic orbit states corresponding to
the 3P2 levels |c, ξ 〉 (ξ =↑,↓,±3/2) are different from each
other. Precisely speaking, there are three electronic orbit P
states that are orthogonal with each other, and the level |c, ξ 〉
corresponds to a ξ -dependent probability mixture of these
three orbital states. As a result, these levels have different
dynamical polarizability. Therefore, even in the large detuning
cases, one can still realize very different ac-Stark shifts for
these levels with weak laser beams, and thus the correspond-
ing heating effects can be much weaker.

The above discussions yield that for our system one can
realize a very large ac-Stark shift difference �ac together with
a long lifetime. To illustrate this, we calculate �ac and the
photon scattering rate 
sc, which describes the heating effect,
for various cases. The details of this calculation are given
in Appendix A 1 and the results are shown in Fig. 2. In the
calculation, we take into account the contributions from the
excited states 3S1 and 3D1,2,3, which are mostly close to the
3P2 levels. In Fig. 2(a), we illustrate 
sc as a function of �ac

for the cases where the detuning � of the laser beams with re-
spect to the 3P2 - 3S1 transition [Fig. 1(a)] takes various values.
It is shown that for � = (2π )3.3×1014 Hz (corresponding to
laser wavelength 5.08 μm), we have 
sc ∼ Hz when �ac ∼
(2π ) MHz. If we estimate the lifetime of the ultracold gas as
1/
sc, then this result yields that the lifetime of our system
can be hundreds of milliseconds. In Fig. 2(b), we further show
the ratio 
sc/�ac as a function of � or the laser wavelength
λL. Since 
sc is always positive, the sign of this ratio is the
same as the one of �ac. In our scheme, �ac is required to be
tuned to be positive. In addition, the divergence of 
sc/�ac

for � ≈ (2π )1.85×1014 Hz is because we have �ac = 0 for
this particular case. The divergences of 
sc/�ac for the other
four special values of � (including � = 0) shown in Fig. 2(b)
are due to the resonance between the laser and the transitions
from 3P2 levels to the 3S1 and 3D1,2,3 states for these cases.

B. Effective interatomic interaction

Our scheme is to control the effective SEI of two atoms
in states |g,↑ (↓)〉 and |c,↑ (↓)〉, respectively [Fig. 1(b)],
with |g ↑ (↓) being defined as the 1S0 states with mF =
−1/2(+1/2). In this subsection, we derive the form of the

023173-3



SHU YANG, YUE CHEN, AND PENG ZHANG PHYSICAL REVIEW RESEARCH 4, 023173 (2022)

FIG. 2. (a) The photon scattering rate 
sc of the system of
method I as a function of the ac-Stark shift difference �ac for
the cases with detuning � of the laser beam with respect to the
3P2 - 3S1 transition [Fig. 1(a)] being � = (2π )1.3×1014 Hz (green
dotted line), � = (2π )2.3×1014 Hz (blue dashed line), and � =
(2π )3.3×1014 Hz (red solid line). The laser wavelengths correspond-
ing to these cases are 1.15 μm, 1.89 μm, and 5.08 μm, respectively.
(b) The ratio 
sc/�ac as a function of � or the laser wavelength λL.

effective interaction between these two atoms. To this end, we
consider the s-wave scattering of these two atoms in the zero-
energy limit and perform discussions in the first-quantization
formalism with the two atoms being labeled 1 and 2. In the
scattering process, these two atoms are incident from the
subspace spanned by the following four states:

|g, σ ; c, σ ′〉 ≡ 1√
2

[|g, σ 〉1|c, σ ′〉2 − |c, σ ′〉1|g, σ 〉2],

(σ, σ ′ =↑,↓). (4)

Notice that since the atoms are identical fermions, the s-wave
scattering occurs only when they are in antisymmetric internal
states. Furthermore, during the scattering process the inter-
atomic interaction can couple the states in Eqs. (4) to the

states [40]

|g, σ̃ ; c, ξ 〉 ≡ 1√
2

[|g, σ̃ 〉1|c, ξ 〉2 − |c, ξ 〉1|g, σ̃ 〉2],

(σ̃ =↑,↓; ξ = ±3/2). (5)

Taking into account these states, we can express Hamiltonian
for the two-atom relative motion and internal states as

Ĥ = −∇2
r

2μ
+ Ĥf + V̂ (2)(r), (6)

where μ and r are the reduced mass and relative position of
the two atoms, respectively, and V̂ (2)(r) is the projection of
the interaction potential between one atom in the 1S0 state and
another atom in the 3P2(F = 3/2) states, respectively, on the
subspace spanned by the states in Eqs. (4) and (5). The explicit
form of V̂ (2)(r) is given in Appendix B. Moreover, in Eq. (6)
the operator Ĥf is the free Hamiltonian of the internal state of
the two atoms, which is given by

Ĥf = �ac

∑
σ =↑, ↓

ξ = ±3/2

|g, σ ; c, ξ 〉〈g, σ ; c, ξ | (7)

where the free energy of the states |g, σ ; c, σ ′〉 (σ, σ ′ =↑,↓)
is chosen to be zero. Here we ignore the electronic 3P0,1 and
3P2 (F = 5/2) states, because the energy differences between
these states and the ones relevant to our proposal are very
large.

In summary, there are four open channels (i.e., the chan-
nels corresponding to |g, σ ; c, σ ′〉 with σ, σ ′ =↑,↓) and four
closed channels (i.e., the channels corresponding to |g, σ ; c, ξ 〉
with σ =↑,↓ and ξ = ±3/2) with the potential of each chan-
nel and the coupling between different channels all being
determined by the interaction V̂ (2)(r).

Furthermore, as shown in Appendix B, the interaction
potential V̂ (2)(r) is anisotropic and can couple the wave func-
tions with the angular momentum of two-atom relative motion
being l and l + 2. Nevertheless, the projection

M ≡ mF1 + mF2 + ml (8)

of the total angular momentum along the z axis is conserved in
the scattering process, where mF1,2 is the magnetic quantum
number of the atoms 1, 2, and ml is the z component of the
angular momentum of two-atom relative motion. Using this
fact and other properties of V̂ (2)(r), we find that in the zero-
energy limit if the two atoms were incident from one of the
following four states, i.e., the polarized states |g,↑; c,↑〉 and
|g,↓; c,↓〉, and the antipolarized states |±〉 defined by

|±〉 ≡ 1√
2

[|g,↑; c,↓〉 ∓ |g,↓; c,↑〉], (9)

then there is only elastic scattering, i.e., the two-atom internal
state cannot be changed by the scattering process. We denote
|�σ,σ (r)〉 (σ =↑,↓) as the zero-energy scattering wave func-
tions corresponding to the polarized incident state |g, σ ; c, σ 〉,
and |�±(r)〉 as the ones for the incident state |±〉 defined in
Eq. (9). The above analysis yields

lim
r→∞ |�+(r)〉 =

(
1 − a+

r

)
|+〉, (10)

lim
r→∞ |�−(r)〉 =

(
1 − a−

r

)
|−〉, (11)
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lim
r→∞ |�↑,↑(r)〉 =

(
1 − af

r

)
|g,↑; c,↑〉, (12)

lim
r→∞ |�↓,↓(r)〉 =

(
1 − af

r

)
|g,↓; c,↓〉, (13)

with a± and af being the corresponding elastic scattering
lengths. Notice that the scattering lengths for the polarized
incident states |g,↑; c,↑〉 and |g,↓; c,↓〉 are the same because
our system is invariant under the reflection with respect to the
x − y plane.

When the atoms are incident from a superposition of the
four special states |g,↑; c,↑〉, |g,↓; c,↓〉, and |±〉, the scat-
tering state would be the corresponding superposition of the
ones in Eqs. (10)–(13), and thus the scattering amplitudes
can be expressed in terms of a± and af . In particular, when
the atoms are incident from the antipolarized state |g,↓; c,↑〉
or |g,↑; c,↓〉, the corresponding scattering wave functions
|�↓,↑(r)〉 or |�↑,↓(r)〉 satisfy

lim
r→∞ |�↓,↑(r)〉 =

[
1 − (a− + a+)/2

r

]
|g,↓; c,↑〉

− (a− − a+)/2

r
|g,↑; c,↓〉 (14)

and

lim
r→∞ |�↑,↓(r)〉 =

[
1 − (a− + a+)/2

r

]
|g,↑; c,↓〉

− (a− − a+)/2

r
|g,↓; c,↑〉. (15)

Equations (14) and (15) yield that the spin-exchange scatter-
ing process

|g,↑; c,↓〉 ⇔ |g,↓; c,↑〉 (16)

can occur, and the amplitude of spin-exchange is just (a− −
a+)/2.

According to the above discussion, the low-energy scat-
tering between these two atoms can be described by the
pseudopotential

V̂eff = 2π

μ
[a+|+〉〈+| + a−|−〉〈−| + af P̂f ]δ(r)

∂

∂r
(r·), (17)

where

P̂f =
∑

σ=↑,↓
|g, σ ; c, σ 〉〈g, σ ; c, σ | (18)

is the projection operator of the polarized states.
In addition, we can treat the electronic states 1S0(g) and

3P2(F = 3/2)(c) as the labels of the two atoms, and treat the
g and c atoms as two distinguishable particles. Furthermore,
both atoms are particles with pseudospin 1/2 because in the
open channel each atom has two possible magnetic quantum
numbers ↑ and ↓. In this treatment, one can express the effec-
tive two-atom Hamiltonian in the form mentioned in Sec. I,
i.e.:

H (eff)
2body = p2

S

2m
+ p2

P

2m
+ V̂eff .

Here pS(P) is the momentum operator of the g (c) atom,
p2

S/(2m) + p2
P/(2m) is the pseudospin independent free

Hamiltonian, and

V̂eff = 2π

μ

[
Ax

2
σ̂ (S)

x σ̂ (P)
x + Ay

2
σ̂ (S)

y σ̂ (P)
y

+ Az

2
σ̂ (S)

z σ̂ (P)
z + A0

]
δ(r)

∂

∂r
(r·) (19)

is the effective interatomic interaction which is equivalent to
the one of Eq. (17). Here σ̂ (S(P))

x,y,z are the Pauli operators of the
pseudospin of the g atom (c atom) and the coefficients Ax,y,z,0

are given by

Ax = Ay = a− − a+
2

, (20)

Az = 2af − (a− + a+)

2
, (21)

A0 = 2af + (a− + a+)

4
. (22)

C. Resonant control of a± and af

Now we show that the scattering lengths a± and af can be
resonantly controlled by the ac-Stark shift difference �ac.

As mentioned above, the open channels corresponding to
|g, σ ; c, σ ′〉 (σ, σ ′ =↑,↓) are coupled to the closed channels
corresponding to |g, σ ; c, ξ 〉 (σ =↑,↓ and ξ = ±3/2) by the
anisotropic interaction V̂ (2)(r). Explicitly, due to the conser-
vation of the angular momentum M defined in Eq. (8), the
s-wave states of the open channels of our system are coupled
to the d-wave states of the closed channels. Therefore, the
scattering lengths a±,f depend on the energy gaps between the
thresholds of the open and closed channels, which is just the
ac-Stark shift �ac [Fig. 1(c)], and thus one can control these
scattering lengths through �ac by changing the intensities of
the laser beam.

Furthermore, as shown before, the order of magnitude of
�ac can be as large as (2π ) MHz, with the photon scattering
rate 
sc being only of the order of Hz. On the other hand, the
characteristic energy corresponding to the length scale of the
interatomic van der Waals interaction potential, i.e., the van
der Waals energy EvdW, is also of this order for Yb atoms [41].
Therefore, if the closed channels have d-wave bound states
with binding energy |E↑| comparable or less than EvdW, by
tuning �ac via the laser intensity one can make the open chan-
nels to be near-resonant to the closed-channel bound states,
i.e., realize Feshbach resonances, while keeping the heating
effect low enough. At each resonance point, one of the three
scattering lengths a±,f diverges. Around the resonances, one
can efficiently manipulate a±,f (or the interaction parameters
Ax,y,z,0). That is the basic principle of this method.

D. Illustration with multichannel square-well model

We illustrate our approach with a calculation for the scat-
tering lengths a±,f and the interaction parameters Ax,y,z,0

defined above. As shown in Appendix B, the potential V̂ (2)(r)
can be expressed as

V̂ (2)(r) =
6∑

η=1

V (2)
η (r)D̂η(r̂), (23)
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FIG. 3. The scattering lengths a±,f [(a), (c)] and interaction parameters Ax,y,z,0 [(b), (d)] of the system of method I. Here we show the results
for two cases, which are given by the multichannel square-well model in Sec. II D, with width b = 85a0 and other parameters being given in
Table I of Appendix C.

where r = |r| and r̂ = r/r. Here V (2)
1,...,6(r) are the potential

curves corresponding to six different electronic states. These
electronic states are defined in Appendix B, together with the
operators D̂1,...,6(r̂). As mentioned before, we do not know the
parameters of the potential curves V (2)

1,...,6(r). Therefore, we can
only qualitatively illustrate our proposal with a multichannel
square-well model with

V (2)
η (r) = −U (2)

η θ (b − r), (r � 0; η = 1, . . . , 6), (24)

where θ (x) is the step function satisfying θ (x) = 1 for x � 0
and θ (x) = 0 for x < 0. In our calculation, we choose b =
85a0, with a0 being the Bohr radius and 2b taking a typical
value of the length scale β6 associated with the van der Waals
interaction between atoms as heavy as Ytterbium [42]. We
consider all the involved s-wave and d-wave channels, and
ignore the channels with higher relative angular momentum,
for simplicity. We also ignore the centrifugal potential of the
d-wave channels in the region r < d because the square-well
potentials in this region are very deep.

We display the results for two cases in Fig. 3. In Table I
of Appendix C, we show the value of the potential depth
U (2)

η (η = 1, . . . , 6) as well as the s-wave scattering length
a(2)

η corresponding to a single-channel square-well potential
V (2)

η (r) given in Eqs. (24). In Fig. 3, we illustrate the behav-

iors of both the scattering lengths a±,f and the interaction
parameters Ax,y,z,0 defined in Eqs. (20)–(22) as functions of
�ac. It is shown that, using the resonances, one can tune the
intensity Ax = Ay of the effective SEI as well as the intensities
Az,0 of the spin-non-exchanging and spin-independent inter-
action in a broad region e.g., between −1000a0 and 1000a0

through the laser intensity, and may prepare the effective
interatomic interaction V̂eff to be either antiferromagneticlike
(Ax = Ay > Max[0,−Az]), with the lowest eigenstate being
the singlet state |+〉 defined in Eq. (9), or ferromagneticlike
(Az < 0 and |Ax| = |Ay| < |Az|) with the lowest eigenstates
being the polarized ones |g,↑; c,↑〉 and |g,↓; c,↓〉. It is also
possible to turn off the spin-independent interaction by tuning
A0 = 0 or prepare the system to other required interaction
parameter regions. In Appendix D, we show the values of �ac

under which we have A0 = 0 for the two cases in Fig. 3, as
well as the corresponding values of Ax,y,z and the scattering
lengths a±, f .

III. METHOD II

Now we introduce our second approach for the manipula-
tion of SEI. As above, we also take the system of two 171Yb
atoms as an example. In addition, to avoid using too many
different symbols, in this and the next section, we will use
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FIG. 4. Schematic illustration for method II. (a) Two laser beams
polarized along the z direction and x direction, respectively, are
applied to the atoms. (b) One-atom bare levels as well as the in-
fluences of the laser beams. Here the beam polarized along the x
direction is decomposed into two beams with σ+ and σ− polariza-
tions, respectively. (c) One-atom dressed levels in the rotating frame.
(d) A two-atom spin-exchange process. The black (red) filled and
dashed circles represent the g(q) atom before and after a collision,
respectively. Both this process and the inverse one are studied in this
paper. (e) The interatomic scattering channels. Here the solid curves
represent the potentials of each channel. The coupling potentials
between different channels are not shown in the figure.

some notations which have already been used in Sec. II for the
clear-enough cases (e.g., we still use 
sc to denote the photon
scattering rate of laser beams for the current scheme). The
exact definitions of these notations for this section will all be
given in the following discussions.

Method II is a generalization of method I. In this approach,
two laser beams are applied, which are polarized along the
z direction and x direction, respectively [Fig. 4(a)]. Both of
these two beams are far-off resonant for the transition from
the 3P2(F = 3/2) level to the excited states (i.e., the detunings
are much larger than the Rabi frequencies of the transitions

and the natural linewidth of the excited states), similar to
Sec. II. The frequency difference of these two beams is not
required to take any certain value. The only requirement for
this frequency difference is that it should be much larger than
the ac-Stark shifts induced by each beam so the two beams
induce the second-order effects for the 3P2(F = 3/2) level
independently. In this case, the total effect of these two beams
is not equivalent to the one of a single beam polarized along
some direction between the x and z axis.

As in Sec. II A, the beam polarized along the z direction
can induce spin-dependent ac-Stark shifts for the states in the
3P2(F = 3/2) level. Meanwhile, the beam polarized along the
x direction can be decomposed into two beams with σ+ and σ−
polarizations, respectively, and thus induces Raman coupling
between the 3P2(F = 3/2) state with mF = −3/2(+3/2) and
the one with mF = 1/2(−1/2) [Fig. 4(b)]. As a result, four
dressed states |q(h),↑ (↓)〉 can be formed [Fig. 4(c)], which
can be expressed as

|h,↑〉 = C′|c,↑〉 + C|c, 3/2〉, (25)

|q,↑〉 = −C|c,↑〉 + C′|c, 3/2〉 (26)

and
|h,↓〉 = C′|c,↓〉 + C|c,−3/2〉, (27)

|q,↓〉 = −C|c,↓〉 + C′|c,−3/2〉, (28)

where |c, σ 〉 (σ =↑,↓,±3/2) are just the 3P2(F = 3/2)
states, as defined in Sec. II and shown in Fig. 4(b). The
coefficients C and C′ in Eqs. (25)–(28) are determined by the
intensities and frequencies of the two laser beams, with the
expressions being derived in Appendix A 2. In Fig. 5(a), we
show the values of C and C′ as functions of the ratio between
the intensities of the two laser beams for typical cases. Fur-
thermore, due to the reflection symmetry with respect to the
x − y plane, the two lower (higher) dressed states |q(h),↑〉
and |q(h),↓〉 are degenerate [Fig. 4(c)]. The energy gap �hq

between these higher and lower dressed states [Fig. 4(c)] is
also derived in Appendix A 2, where we find that �hq can be
expressed as

�hq =
√[

�
(z)
ac − �

(x)
ac /2

]2 + 3

4
�

(x)2
ac , (29)

where �(z(x))
ac is the ac-Stark shift difference only induced by

the laser beams polarized along the z (x) direction, as defined
in Sec. II. Therefore, �hq has the same order of magnitude
with the ac-Stark shift difference �(z(x))

ac , as mentioned in
Sec. I.

Furthermore, the total photon scattering rate 
sc of these
two beams, which describes the heating effects, can also be
calculated directly (Appendix A 2). In Fig. 5(b), we show 
sc

as a function of �hq for a typical case. It is shown that we
have 
sc ∼ Hz when �hq ∼ (2π ) MHz. Therefore, the laser-
induced heating effect is weak, which is similar to the one in
Sec. II.

Furthermore, similar to Sec. II, our method is to control
the SEI between two atoms in the 1S0 state (g state) and
the lower dressed state (q-state) [Fig. 4(d)]. To this end, we
consider the scattering processes in the zero-energy limit,
with incident states being in the Hilbert space spanned by the
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FIG. 5. (a) The parameters C and C′ in Eqs. (25)–(28) as a func-
tion of Ix/Iz, with Iz(x) being the intensity of the laser beam polarized
along the z(x) direction. Here we show the results for the cases with
�z = (2π )3.3×1014 Hz and �x = (2π )3.4×1014 Hz, where �z(x) is
the detuning of the z(x)-polarized laser beam with respect to the
3P2 - 3S1 transition [Fig. 4(a)]. In this case, the wave length of the
z(x)-polarized laser beam is 5.08 μm (6.12 μm). (b) The total pho-
ton scattering rate 
sc as a function of the energy gap �hq between the
higher dressed states |h, ↑ (↓)〉 and the lower dressed states |q, ↑(↓)〉.
Here we show the results for the cases with C′ = C = 1/

√
2, and the

frequencies of the laser beams polarized along the z (x) direction
being the same as (a).

states:

|g, σ ; q, σ ′〉 ≡ 1√
2

[|g, σ 〉1|q, σ ′〉2 − |q, σ ′〉1|g, σ 〉2],

(σ, σ ′ =↑,↓). (30)

In addition, the interatomic interaction V (2)(r) couples these
open channels corresponding to the above four states to the
closed channels corresponding to

|g, σ ; h, σ ′〉 ≡ 1√
2

[|g, σ 〉1|h, σ ′〉2 − |h, σ ′〉1|g, σ 〉2],

(σ, σ ′ =↑,↓; ). (31)

The energy gap between the above open and closed channels
is just �hp, as shown in Fig. 4(e).

In addition, using an analysis based on the properties of the
interaction potential V̂ (2)(r), which is similar to the discussion
in Sec. II B, we find that in the zero-energy limit, if the two
atoms were incident from one of the following four states:

|±〉 ≡ 1√
2

[|g,↑; q,↓〉 ∓ |g,↓; q,↑〉], (32)

|p±〉 ≡ 1√
2

[|g,↑; q,↑〉 ∓ |g,↓; q,↓〉], (33)

then in the zero-energy limit there are only elastic scattering
processes in which the two-atom internal state is not changed.
We denote the elastic scattering lengths with respect to the
incident states |±〉 and |p±〉 as a± and ap±, respectively. No-
tice that for the current system it is possible that ap+ �= ap−,
i.e., the spin-change processes |g,↑, q; ↑〉 ⇔ |g,↓; q,↓〉 are
also permitted. Therefore, the low-energy interaction between
these two atoms can be described by the pseudopotential:

V̂eff = 2π

μ
[a+|+〉〈+| + a−|−〉〈−| + ap+|p+〉〈p+|

+ ap−|p−〉〈p−|]δ(r)
∂

∂r
(r·). (34)

Moreover, by treating the atoms in |g,↑ (↓)〉 and |q,↑ (↓)〉
as two distinguished particles with pseudospin 1/2, one can
express the effective two-atom Hamiltonian in the form of
Sec. I, i.e.,

H (eff)
2body = p2

S

2m
+ p2

P

2m
+ V̂eff .

Here pS(P) is the momentum operator of the g (q) atom
and p2

S/(2m) + p2
P/(2m) is the pseudospin independent free

Hamiltonian, and the effective interatomic interaction

V̂eff = 2π

μ

[
Ax

2
σ̂ (S)

x σ̂ (P)
x + Ay

2
σ̂ (S)

y σ̂ (P)
y

+ Az

2
σ̂ (S)

z σ̂ (P)
z + A0

]
δ(r)

∂

∂r
(r·) (35)

is equivalent to the one of Eq. (34), with σ̂ (S(P))
x,y,z being the Pauli

operators of the pseudospin of the g (q) atom. In Eq. (35), the
coefficients Ax,y,z,0 are related to the scattering lengths a± and
ap± via

Ax = (a− − a+) + (ap− − ap+)

2
, (36)

Ay = (a− − a+) − (ap− − ap+)

2
, (37)

Az = (ap− + ap+) − (a− + a+)

2
, (38)

A0 = (ap− + ap+) + (a− + a+)

4
. (39)

Notice that in the current system, the interaction parameters
Ax and Ay may be unequal.

Similar to before, by changing the intensities of the two
laser beams, one can tune the energy gap �hp and induce
Feshbach resonances. The scattering lengths a± and ap± or the
interaction parameters Ax,y,z,0 can be efficiently manipulated
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FIG. 6. The scattering lengths a± and p± [(a), ] and interaction parameters Ax,y,z,0 [(b), (d)] of the system of method II. Here we show the
results for two cases, which are given by the multichannel square-well model in Sec. II D, with width b = 85a0 and other parameters being
given in Table II of Appendix C. The values of �hq under which we have A0 = 0, as well as the corresponding values of Ax,y,z and a±,p±, are
shown in Appendix D.

via these Feshbach resonances. We illustrate these resonances
via the multichannel square-well model used in Sec. II D, with
width b = 85a0 and other parameters being given in Table II
of Appendix C. The results are shown in Fig. 6.

We emphasis that there is an important difference between
the current approach and method I. For the system of method
I, the s-wave states of the open channels are coupled only to
the d-wave states of the closed channels, as mentioned in the
above sections. However, for our current system, the s-wave
open-channel states are coupled to both the d-wave and the
s-wave states of the closed channels. As discussed in Sec. I,
this fact implies that the Feshbach resonances for a± with a
low-enough heating rate are much more possible to appear for
realistic systems. That is an important advantage of the current
method.

IV. METHOD III

Now we introduce our third approach for the manipulation
of SEI, which is based on the 3P2 - 3P0 Raman coupling by
taking 171Yb atoms as an example. As before, we will use
some notations which have been used in Sec. II, to reduce the
number of different symbols. The exact definitions of these
notations for this section will be given below.

A. Low-heating Raman coupling between 3P0 and 3P2 levels

As shown in Fig. 7(a), in the current method two π -
polarized laser beams α and β are applied at a zero magnetic
field so the 3P0,2 levels are far-off resonantly coupled to the
excited states. These two beams can induce a Raman cou-
pling between states | 3P0, 1/2, σ 〉 and | 3P2, 3/2, σ 〉, with
σ = −1/2(↑) or 1/2(↓). Furthermore, the frequency differ-
ence of these two beams is tuned to compensate for the
difference of the ac-Stark shifts of these states, so this Ra-
man coupling is resonant. Explicitly, the fluctuation of this
frequency difference should be much less than the effective
Rabi frequency �eff of the Raman coupling, which is of the
order of (2π ) MHz as shown below.

As a result of this resonant Raman coupling, the eigenstates
of the single-atom Hamiltonian H1b in the rotating frame are
given by (Appendix A 3):

|d, σ 〉 ≡ 1√
2

[|3P0, 1/2, σ 〉 − |3P2, 3/2, σ 〉], (40)

|u, σ 〉 ≡ 1√
2

[|3P0, 1/2, σ 〉 + |3P2, 3/2, σ 〉], (41)

|g, σ 〉 ≡ |1S0, 1/2, σ 〉, (42)

|c, ξ 〉 ≡ |3P2, 3/2, ξ 〉, (σ =↑,↓, ξ = ±3/2). (43)
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FIG. 7. Schematic illustration of method III. (a) One-atom bare
levels and π -polarized Raman beams (blue and red lines). Here �

is the single-photon detuning. (b) One-atom dressed levels in the
rotating frame. (c) A two-atom spin-exchange process. The black
(red) filled and dashed circles represent the g(d ) atom before and
after a collision, respectively. Both this process and the inverse one
are studied in this paper. (d) The interatomic scattering channels.
Here the solid curves represent the potentials of each channel. The
coupling potentials between different channels are not shown in the
figure.

where the states |g, σ 〉 and |c, ξ 〉 (σ =↑,↓, ξ = ±3/2) have
the same definitions as in the above two sections. In ad-
dition, the eigenenergies of H1b corresponding to the states
in Eqs. (40)–(43) can be denoted as Ed , Eu, Eg, and Ec, re-
spectively, and are all independent of the values of σ or ξ ,
namely, these eigenstates are twofold degenerate. Moreover,
the energy gaps between the states |d, σ 〉, |u, σ 〉, and |c, ξ 〉
(σ = ↑,↓, ξ = ±3/2) are [Appendix A 3, Fig. 7(b)]

Eu − Ed = �eff , (44)

Ec − Ed = E (ac)
−3/2 − E (ac)

↑ + �eff/2 ≡ δcd , (45)

where �eff > 0 is the Rabi frequency of the Raman cou-
pling and E (ac)

ζ (ζ =↓, 3/2) is the ac-Stark shift of state
| 3P2, 3/2, ζ 〉, which can be controlled by the intensities of the
Raman beams. Our current scheme works in the region with
δcd > 0.

Furthermore, this 3P2 - 3P0 Raman coupling is much
stronger than the Raman coupling between different hyperfine
states of an ultracold alkali atom or, equivalently, the heating
effect for our system is much lower than the one for the alkali

atoms. This can be understood with the following analysis.
As in Secs. II A and III, our current method works in the
large-detuning cases where the detuning of the one-photon
transition induced by each Raman laser is much larger than
the fine splitting of the corresponding excited state. For an
alkali atom in the electronic ground state, the two hyperfine
levels coupled by the Raman beams are in orthogonal atomic
spin states. As a result, this Raman coupling cannot be created
only by the laser-induced electric dipole transition (EDT). It
is essentially led by both the EDT and the spin-orbit coupling
of the atomic excited states. Thus, the Raman coupling is very
weak for the large-detuning cases. However, for our system,
the 3P0 and 3P2 states coupled by the Raman beams have a
nonzero probability to be in the same state of electronic and
nuclear spin. Therefore, the Raman effect can be induced only
by EDT. Thus, one can obtain strong Raman coupling in the
large-detuning cases.

Explicitly, for our system the ratio 
sc/�eff between the
photon scattering rate 
sc and the effective Rabi frequency
�eff of the Raman coupling is a function of � and Iα/Iβ , where
� is the one-photon detuning the Raman beams with respect
to the 3S1 state [Fig. 7(a)], and Iα,β are the intensities of the
two Raman beams α and β [we denote α as the beam with
higher frequency, as shown in Fig. 7(a)]. In Fig. 8(a), we illus-
trate the variation of 
sc/�eff with Iα/Iβ for various �, which
are calculated in Appendix A 3. It is shown that for a fixed �

the ratio 
sc/�eff can be minimized when Iα/Iβ is tuned to a
particular value. In Fig. 8(b), we further show 
sc as a function
of �eff , with Iα/Iβ taking the value to minimize 
sc/�eff . It is
shown that when � is as large as (2π )3.3×1014 Hz, one can
realize a Raman coupling with �eff being several (2π ) MHz,
while the photon scattering rate 
sc is still of the order of Hz.

B. Effective interatomic interaction

Our current scheme is to control the SEI of two atoms
being in the 1S0 state and the lower 3P dressed state (d state),
respectively, as shown in Fig. 7(c). Now we derive the effec-
tive interaction between these two atoms. Since the analysis
is very similar to the one of Sec. II B, here we only show the
main results.

We consider the s-wave scattering of these two atoms in the
zero-energy limit, which is at a zero magnetic field. For this
scattering process, there are the following open channels:

|g, σ ; d, σ ′〉 ≡ 1√
2

[|g, σ 〉1|d, σ ′〉2 − |d, σ ′〉1|g, σ 〉2],

(σ, σ ′ =↑,↓) (46)

as well as the closed channels:

|g, σ ; u, σ ′〉 ≡ 1√
2

[|g, σ 〉1|u, σ ′〉2 − |u, σ ′〉1|g, σ 〉2], (47)

|g, σ ; c, ξ 〉 ≡ 1√
2

[|g, σ 〉1|c, ξ 〉2 − |c, ξ 〉1|g, σ 〉2],

(σ, σ ′ =↑,↓; ξ = ±3/2). (48)

The energy gap between the open channel and the closed
channels in Eqs. (47) and (48) are �eff and δcd , respectively, as
shown in Fig. 7(d). In addition, for our system, the interatomic
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FIG. 8. (a) The ratio between the photon scattering rate 
sc and
the effective Rabi frequency �eff of the system of method III as
a function of the laser intensity ratio Iα/Iβ for the cases where
the one-photon detuning � the Raman beams with respect to the
3S1 state [Fig. 7(a)] takes the values � = (2π )3.3×1014 Hz (red
solid line), � = (2π )2.6×1014 Hz (blue dashed line), and � =
(2π )1.4×1014 Hz (green dotted line). (b) 
sc as a function of �eff

for the cases of (a). For each �, the laser intensity ratio Iα/Iβ takes
the value to minimize 
sc/�eff .

interaction V̂ (r) can be expressed as

V̂ (r) = V̂ (0)(r) + V̂ (2)(r), (49)

where V̂ (0(2))(r) is the interaction between two atoms in the
1S0 and 3P0 (3P2(F = 3/2)) states, respectively, with the ex-
plicit forms being given in Appendix B.

As in Sec. II B, a straightforward analysis based on the
form of V̂ (r) (Appendix B) shows that in the zero-energy
limit, if the two atoms were incident from one of the following
four states, i.e., the polarized states |g,↑; d,↑〉 and |g,↓; d,↓〉
as well as the states |±〉 defined by

|±〉 ≡ 1√
2

[|g,↑; d,↓〉 ∓ |g,↓; d,↑〉], (50)

then the output state of the scattering process would be ex-
actly the same as the incident state, i.e., there is only elastic
scattering. We denote the scattering lengths corresponding to

the incident states |±〉 as a±. In addition, due to the reflec-
tion symmetry with respect to the x − y plane, the scattering
lengths corresponding to the incident states |g,↑; d,↑〉 and
|g,↓; d,↓〉 are the same, and can be denoted as af . Thus, the
amplitude for the spin-exchange process |g,↑; d,↓〉 ⇔ |g,↓;
d,↑〉 is just (a− − a+)/2.

Therefore, the low-energy interaction between these two
atoms can be described by the pseudopotential

V̂eff = 2π

μ
[a+|+〉〈+| + a−|−〉〈−| + af P̂f ]δ(r)

∂

∂r
(r·), (51)

where

P̂f =
∑

σ=↑,↓
|g, σ ; d, σ 〉〈g, σ ; d, σ | (52)

is the projection operator of the polarized states. As in the
above sections, we can treat the atoms in |g,↑ (↓)〉 and |d,↑
(↓)〉 as two distinguished particles with pseudospin 1/2 and
express the effective two-atom Hamiltonian as

H (eff)
2body = p2

S

2m
+ p2

P

2m
+ V̂eff ,

with pS(P) being the momentum operator of the g (d) atom and
p2

S/(2m) + p2
P/(2m) being the pseudospin independent free

Hamiltonian, and

V̂eff = 2π

μ

[
Ax

2
σ̂ (S)

x σ̂ (P)
x + Ay

2
σ̂ (S)

y σ̂ (P)
y

+ Az

2
σ̂ (S)

z σ̂ (P)
z + A0

]
δ(r)

∂

∂r
(r·) (53)

is the effective interatomic interaction, which is equivalent to
the one of Eq. (51). For the current system, σ̂

( j)
± = (σ̂ ( j)

x ±
iσ̂ ( j)

y )/2 ( j = S, P) and σ̂ (S(P))
x,y,z are the Pauli operators of the

pseudospin of the g atom (d atom). In addition, the relation
between coefficients Ax,y,z,0 and the scattering lengths a±,f are
same as Eqs. (20)–(22), i.e.,

Ax = Ay = a− − a+
2

, (54)

Az = 2af − (a− + a+)

2
, (55)

A0 = 2af + (a− + a+)

4
. (56)

C. Resonant control of V̂eff

Due to the conservation of the angular momentum com-
ponent M defined in Eq. (8), the s-wave states of open
channels of our system are coupled to both the s-wave and
the d-wave states of the closed channels by the interaction
V̂ (r). Furthermore, the energy gap δcd (�eff ) between the
closed channels |g, σ, c, ξ 〉 (|g, σ, u, σ ′〉) and open channels
|g, σ, d, σ ′〉 (σ, σ ′ =↑,↓, ξ = ±3/2) [Fig. 7(d)] can be of
the same order of magnitude with the van der Waals energy
scale EvdW of a Yb atom [(2π ) MHz] with a low heating rate.
Therefore, as discussed in Sec. I, it is very possible that by
tuning �eff and δcd , one can make the threshold of the open
channels be near resonant to a closed-channel bound state, and
thus realize a Feshbach resonance while keeping the heating
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FIG. 9. The scattering lengths a±,f [(a), (c)] and interaction parameters Ax,y,z,0 [(b), (d)] of the system of method III. Here we show the
results for two cases, which are given by the multichannel square-well model in Sec. II D, with width b = 81a0 and other parameters being
given in Table III of Appendix C. The values of �eff under which we have A0 = 0, as well as the corresponding values of Ax,y,z and a±, f , are
shown in Appendix D.

rate low enough. The interaction parameters a±,f or Ax,y,z,0 can
be efficiently manipulated via these resonances.

In addition, as mentioned before, so far we assume the fre-
quency difference of these two Raman beams takes a certain
value to compensate for the ac-Stark shift difference of the 3P0

and 3P2 states. It is clear that this frequency difference can
be tuned to other values. Thus, if it is required, one can use
both laser intensity and this frequency difference as control
parameters for interatomic interaction.

D. Illustration with multichannel square-well model

As in Sec. II D, we illustrate our current scheme with
the multichannel square-well model. Explicitly, the model
for the potential V̂ (2)(r) is the same as in Sec. II D. In ad-
dition, as shown in Appendix B, the 1S0 - 3P0 interaction
potential V̂ (0)(r) can be formally expressed as V̂ (0)(r) =∑

j=+,− V (0)
j (r)P̂(0)

j , where P̂(0)
± is the projection operator for

the electronic state |ψ±〉 defined in Appendix B and V (0)
± (r)

are the corresponding interaction potentials. In our calcula-
tion, we model V (0)

± (r) also as square-wells, i.e.,

V (0)
± (r) = −U (0)

± θ (b − r); (r � 0), (57)

where θ (x) is the step function as before. In our calculation,
we choose range b of all the square-well potentials V (0)

± (r)
and V (2)

1,...,6(r) as 81a0. We display the results for two typical
cases in Fig. 9. The parameters for these cases are given in
Table III of Appendix C. Figure 9 shows that the scattering
lengths a± and af or the interaction parameters Ax = Ay and
Az,0 can be efficiently manipulated via the resonances induced
by the variation of �eff .

V. DISCUSSIONS

In this paper, we propose three methods for the laser
manipulation of the SEI between two ultracold fermionic
alkaline-earth(-like) atoms in electronic 1S0 state and 3P2

state (or 3P2 - 3P0 dressed state), respectively. Our methods
are based on the spin-dependent ac-Stark effect of the 3P2

states, or the 3P2 - 3P0 Raman coupling. We show that the
laser-induced heating corresponding to both of these two ef-
fects is very weak. By tuning the ac-Stark shift difference �ac

or the effective Rabi frequency �eff , one can induce Feshbach
resonances with which the SEI can be efficiently controlled. In
particular, for the systems of methods II and III the appearance
of the low-heating Feshbach resonances is quite possible for
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realistic systems and does not require the scattering lengths of
the bare interatomic interaction potentials V̂ (0)(r) and V̂ (2)(r)
to be very large. For instance, as shown in Tables II and
III of Appendix C, in our calculations with multichannel
square-well models for these two methods for 171Yb atoms,
we set the scattering lengths a(0)

± for the potential V̂ (0)(r) to be
232a0 and 372a0, which are reported by Refs. [6–8,32], and
set all the other scattering lengths in our interaction model to
be less than 200a0. As illustrated in Figs. 6 and 9, Feshbach
resonances with low heating rates can appear for these cases.

In the above sections, we take ultracold 171Yb atoms as
an example. Our methods are also possible to be applicable
for other types of fermionic alkaline-earth(-like) atoms, e.g.,
173Yb [43] or 87Sr atoms [44].

At the end of this paper, we give the following comments
for these methods:

(1) Our above analysis as well as the illustrations with the
multichannel square-well models just show it is quite possible
to realize Feshbach resonances with the laser-induced heating
rate being of the order of Hz or even lower. Nevertheless,
for realistic systems there does exist the possibility that the
resonances only occur in the regions with the heating rate
being larger than 10 Hz, since sometimes the binding energy
of the shallowest bound state of a van der Waals interaction
potential can be larger than EvdW by one order of magnitude.
As mentioned above, unfortunately, we cannot make quan-
titative predictions for realistic systems with specific atoms,
due to the lack of detailed parameters of the interaction po-
tential. The positions and widths of the Feshbach resonances
for specific atoms, as well as the significance of the laser-
induced heating in the resonance region, should be examined
via experiments or multichannel numerical calculations with
accurate interatomic interaction potentials. (Notice that our
system is complicated because there are many degenerate
closed channels that are coupled with each other. Thus, for
a specific type of atom one cannot predict if resonances can
appear for a certain parameter region (e.g., the regions with
�ac < (2π )10 MHz or �eff < (2π )10 MHz) even with the
analysis based on the theory of single-channel van der Waals
potential.)

(2) Here we can make a brief comparison for these three
methods. Method I is the most simple because only one laser
beam is required. Method II is a little bit complicated because
it requires two laser beams. Nevertheless, as shown in Sec. III,
the frequency difference of these two beams is not required to
be locked to a certain value. Thus, this method is still easier to
be realized than the usual Raman schemes. Method III is the
most complicated one because the atoms are in a superposition
state of 3P2 and 3P0 levels and the frequency difference of
the two Raman beams should be fixed. Fortunately, since
the effective Rabi frequency �eff of our system is as large
as (2π ) MHz, the fluctuation of this frequency difference is
required only to be much less than this order. This requirement
can be realized in current experiments.

Moreover, in methods II and III, the 3P atoms should
be prepared in the lower dressed states |q, σ 〉 or |d, σ 〉
(σ = ↑,↓). The preparation and detection of the dressed
states may induce imperfections and complications for the
experiments. More discussions for the detection of the dressed
states are given in the following point (III).

On the other hand, by comparing Figs. 2, 5, 8, we find that,
for the realization of a fixed energy gap between the open and
closed channels via lasers with given one-photon detuning, the
photon scattering rate 
sc of the laser beams of method III is
usually lower than the ones of methods I and II. This result
implies that method III has the weakest heating effect. This is
an important advantage of this method.

Finally, as discussed before, the possibility for the appear-
ance of Feshbach resonances with a low-enough heating rate
is higher for the systems with methods II and III due to
the coupling between s-wave states of the open and closed
channels. In addition, since the potential curves involved in
the closed channels of these three methods are quite different,
for a specific system it is possible that these kind of resonances
cannot be realized via one method but can be realized via
another method.

(3) Here we discuss the measurement of the dressed states
of methods II and III. Due to the energy conservation, after the
scattering processes the atoms would return to the open chan-
nels with lower dressed states |q,↑ (↓)〉 (method II) or |d,↑
(↓)〉 (method III). Therefore, in most cases, only these lower
dressed states should be detected. According to Eqs. (26) and
(28), |q,↑〉 is the superposition of the 3P2(F = 3/2) states
with mF = −1/2 and +3/2, while |q,↓〉 is the superposition
of states with mF = 1/2 and −3/2. Therefore, one can use a
Stern-Gerlach experiment to detect the number of atoms for
each mF and then derive the populations of |q,↑〉 and |q,↓〉
from these atom numbers. Similarly, since states |d,↑ (↓)〉 are
the 3P2 - 3P0 dressed states with mF = −1/2(+1/2), one can
use a Stern-Gerlach experiment to detect the atom numbers for
the 3P2(mF = −1/2) and 3P2(mF = +1/2) states, and then
derive the populations of |d,↑〉 and |d,↓〉 from these atom
numbers.

(4) In this paper, we perform the calculations in the
zero-energy limit. For realistic systems, one may require con-
sidering the effect induced by the finite incident momentum k.
When k is finite, there may be new spin-change scattering pro-
cesses, e.g., the process |g,↑; ξ,↑〉 ⇔ (|g,↑; ξ,↓〉 + |g,↓;
ξ,↑〉)/

√
2, with ξ = c for method I and ξ = d for method

III. These processes are induced by the fact that the interac-
tion potential V (2)(r) is anisotropic. However, the scattering
amplitudes of these processes are proportional to k2 and thus
can be ignored when k is low enough because the d-wave
motional states are involved. More importantly, direct analysis
based on the symmetry of the interaction potential shows that
the interaction potential can never couple the singlet state
to the triplet states of the two-atom pseudospin we defined
before, even in the finite-k cases. Therefore, total pseudospin
of the two atoms is always conserved and the singlet state is
always a nondegenerate eigenstate of the effective interatomic
interaction.
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APPENDIX A: SINGLE-ATOM EFFECTIVE
HAMILTONIAN AND HEATING EFFECTS

In this Appendix, we derive the single-atom effective
Hamiltonian and its eigenenergies and eigenstates, as well as
the laser-induced heating rates or the photon scattering rates
for the systems of methods I–III.

1. The system of method I

In this section, we derive the ac-Stark shifts E (ac)
η (η =

↑,↓,±3/2), the ac-Stark shift difference �ac, and the pho-
ton scattering rate 
sc for the system of Sec. II. Here we
take the 3P2(F = 3/2) states with magnetic quantum numbers
−1/2 (↑) and −3/2 as an example. The states with magnetic
quantum numbers 1/2 (↓) and +3/2 have the same effective
Hamiltonian and heating rate. Accordingly, in the following
calculation, we consider the 3P2 states:

|c,↑〉 ≡ |3P2, 3/2,−1/2〉 =
√

2

5
|3P2, mJ = 0〉ele| − 1/2〉nuc −

√
3

5
|3P2, mJ = −1〉ele| + 1/2〉nuc; (A1)

|c,−3/2〉 ≡ |3P2, 3/2,−3/2〉 = |3P2, mJ = −1〉ele| − 1/2〉nuc, (A2)

as well as the 3S1 and 3D1,2,3 states which can be coupled to |c,↑〉 and |c,−3/2〉 via the π -polarized beam, i.e.,

| f1〉 ≡ |3S1, mJ = 0〉ele| − 1/2〉nuc; | f2〉 ≡ |3D1, mJ = 0〉ele| − 1/2〉nuc; (A3)

| f3〉 ≡ |3D2, mJ = 0〉ele| − 1/2〉nuc; | f4〉 ≡ |3D3, mJ = 0〉ele| − 1/2〉nuc; (A4)

| f5〉 ≡ |3S1, mJ = −1〉ele| + 1/2〉nuc; | f6〉 ≡ |3D1, mJ = −1〉ele| + 1/2〉nuc; (A5)

| f7〉 ≡ |3D2, mJ = −1〉ele| + 1/2〉nuc; | f8〉 ≡ |3D3, mJ = −1〉ele| + 1/2〉nuc; (A6)

| f9〉 ≡ |3S3, mJ = −1〉ele| − 1/2〉nuc; | f10〉 ≡ |3D1, mJ = −1〉ele| − 1/2〉nuc; (A7)

| f11〉 ≡ |3D2, mJ = −1〉ele| − 1/2〉nuc; | f12〉 ≡ |3D3, mJ = −1〉ele| − 1/2〉nuc. (A8)

Here |〉ele is the electronic state, with mJ being the magnetic
quantum number of electronic total angular momentum (e.g.,
|3S1, mJ = 0〉ele is the 3S1 state with mJ = 0), and |σ 〉nuc

(σ = ±1/2) is the nuclear spin state with magnetic quantum
number σ . Here the excited states | f j〉 ( j = 1, . . . , 12) are ex-
pressed as direct products of electronic and nuclear spin states.
That is because the hyperfine splitting of 3S1 and 3D1,2,3 levels
can be ignored for our system, as mentioned in Sec. II A. In
addition, according to the selection rule, the states | f1,...,8〉 are
coupled only to |c,↑〉 by the laser beam, while | f9,...,12〉 are
coupled only to |c,−3/2〉.

The single-atom Hamiltonian for our system can be ex-
pressed as (h̄ = 1),

HS =
∑

η=↑,−3/2

Eη|c, η〉〈c, η| +
12∑
j=1

(Ej − iγ j/2)| f j〉〈 f j |

+
∑

η=↑,−3/2

12∑
j=1

[� jη cos(ωt )|c j〉〈c, q| + H.c.], (A9)

where ω is the angular frequency of the laser beam and
we do not make the rotating-wave approximation. Here Eη

(η =↑,−3/2) is the energy of state |c, η〉, while Ej and γ j

( j = 1, . . . , 12) are the energy and spontaneous emission rate
of excited state | f j〉. According to the above definitions, we
have Ej = Ej+4 and γ j = γ j+4 ( j � 8). In Eq. (A9), � jη

(η =↑,−3/2; j = 1, . . . , 12) is the Rabi frequency of the
laser-induced coupling between states |c, η〉 and | f j〉, which

can be further expressed as

� jη =
√

2

ε0c
〈 f j |Dz|c, η〉

√
I; (η =↑,−3/2; j = 1, . . . , 12),

(A10)

where ε0 and c are the vacuum dielectric constant and speed
of light, respectively, I is the intensity of the laser beam,
and 〈 f j |Dz|c, η〉 is the matrix element of the atomic electric-
dipole along the z direction, with respect to the states | f j〉 and
|c, η〉. Without loss of generality, we assume 〈 f j |Dz|c, η〉 is
real. As mentioned above, the selection rules yield 〈 f j |Dz|c,
↑〉 = 0; for j = 9, . . . , 12 and 〈 f j |Dz|c,−3/2〉 = 0 for j =
1, . . . , 8. In this paper, we derive the values of 〈 f j |Dz|c, η〉
(η = ↑,−3/2; j = 1, . . . , 12) via the Wigner–Eckart theo-
rem, with the corresponding reduced matrix element given
by Ref. [45] for 171Yb. In addition, in Eq. (A35) we phe-
nomenologically describe the spontaneous emission of the
excited states via the non-Hermitian term proportional to iγ j

( j = 1, . . . , 12).
Since the laser beam is far-off resonant for the direct

transitions from the 3P states to the excited states, we can
adiabatically eliminate the excited states | f j〉 ( j = 1, . . . , 12)
and derive the effective Hamiltonian for the 3P states |c,↑〉
and |c,−3/2〉,

Heff =
∑

η=↑,−3/2

[
E (ac)

η − i
η/2
]|c, η〉〈c, η|, (A11)
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where the ac-Stark shift E (ac)
η and the photon scattering rate


η for the state |c, η〉 (η =↑,−3/2) are given by

E (ac)
η = −1

4

12∑
j=1

[
�2

jη

Ej − Eη − ω
+ �2

jη

Ej − Eη + ω

]
(A12)

and


η = 1

4

12∑
j=1

γ j

[
�2

jη

(Ej − Eη − ω)2
+ �2

jη

(Ej − Eη + ω)2

]
,

(A13)

respectively. In the derivation of the results Eqs. (A11)–(A13),
we have also used the fact 1/(g + iξ/2) ≈ 1/g − iξ/(2g2),
with g and ξ being real numbers and |g| � |ξ |. Thus, the
difference �ac between the ac-Stark shifts of states |c,−3/2〉
and |c,↑〉 can be expressed as

�ac = E (ac)
−3/2 − E (ac)

↑ , (A14)

as shown in Eq. (3). In addition, since the 3P2 atoms are
prepared in state |c,↑ (↓)〉, the photon scattering rate 
sc of
our system is just the one for these states, i.e.,


sc = 
↑. (A15)

The calculations for Fig. 2 and related parts in Sec. II A are
based on Eqs. (A14) and (A15).

2. The system of method II

In this section, we first derive the effective single-atom
Hamiltonian for the system of Sec. III and then calculate the
eigenstates |h(q),↑〉 and |h(q),↓〉 defined in Eqs. (26) and
(27), the eigenenergy difference �hq, as well as the photon
scattering rate 
sc for this system. Since this system is a direct
generalization of the system of Sec. II and Appendix A 1, our
calculation is based on Appendix A 1. For convenience, we
first introduce functions ε j (I, ω) and λ j (I, ω) ( j = 1, 3) of
laser frequency ω and intensity I as

ε1(I, ω) = E (ac)
↑ , ε3(I, ω) = E (ac)

−3/2, (A16)

λ1(I, ω) = 
↑, λ3(I, ω) = 
−3/2, (A17)

where E (ac)
η and 
η (η =↑,−3/2) are the ac-Stark shift and

photon scattering rate defined in Eqs. (A12), respectively,
corresponding to a π -polarized laser beam with frequency ω

and intensity I .
In the system of Sec. III, the two laser beams are polar-

ized along the x and z directions. As shown in Sec. II and
Appendix A 1, the beam polarized along the z-directions can
induce ac-Stark shifts for the states |c, η〉 (η =↑,↓,±3/2
defined in Sec. II [Fig. 1(a)], i.e., the states | 3P2, 3/2, mF 〉
(mF = ±3/2,±1/2). Similarly, the beam polarized along the
x direction can induce ac-Stark shifts for the eigenstates of the
atomic total angular momentum along the x direction, i.e., the
states

|x,−3/2〉 ≡ 1

2
√

2
[|c,−3/2〉 −

√
3|c,↑〉

+
√

3|c,↓〉 − |c, 3/2〉], (A18)

|x,↑〉 ≡ 1

2
√

2
[
√

3|c,−3/2〉 − |c,↑〉

− |c,↓〉 +
√

3|c, 3/2〉], (A19)

|x,↓〉 ≡ 1

2
√

2
[
√

3|c,−3/2〉 + |c,↑〉 − |c,↓〉 −
√

3|c, 3/2〉],

(A20)

|x, 3/2〉 ≡ 1

2
√

2
[|c,−3/2〉 +

√
3|c,↑〉

+
√

3|c,↓〉 + |c, 3/2〉]. (A21)

Furthermore, as mentioned in Sec. III, the total effect of the
two laser beams is the summation of the effect of each beam,
and thus the effective Hamiltonian for the subspace of 3P2

states (F = 3/2), can be expressed as

Heff = H1b − i
1

2
H ′, (A22)

where the Hermitian term H1b is given by

H1b = ε1(Iz, ωz )
∑

η=↑,↓
|c, η〉〈c, η| + ε3(Iz, ωz )

×
∑

η=±3/2

|c, η〉〈c, η| + ε1(Ix, ωx )

×
∑

η=↑,↓
|x, η〉〈x, η| + ε3(Ix, ωx )

×
∑

η=±3/2

|x, η〉〈x, η|, (A23)

with ωx(z) and Ix(z) being the angular frequency and intensity
of the beam polarized along the x (z) direction, respectively,
and the operator H ′ which describes the laser-induced atom
loss is

H ′ = λ1(Iz, ωz )
∑

η=↑,↓
|c, η〉〈c, η| + λ3(Iz, ωz )

×
∑

η=±3/2

|c, η〉〈c, η| + λ1(Ix, ωx )

×
∑

η=↑,↓
|x, η〉〈x, η| + λ3(Ix, ωx )

×
∑

η=±3/2

|x, η〉〈x, η|. (A24)

After rechoosing the zero-energy point, we can further express
H1b as

H1b = [
�(z)

ac − �(x)
ac /2

]|c, 3/2〉〈c, 3/2|

+
√

3

4
�(x)

ac [|c,↑〉〈c, 3/2| + |c, 3/2〉〈c,↑ |]
+ [

�(z)
ac − �(x)

ac /2
]|c,−3/2〉〈c,−3/2|

+
√

3

4
�(x)

ac [|c,↓〉〈c,−3/2| + |c,−3/2〉〈c,↓ |],
(A25)
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TABLE I. U (2π MHz) and a (a0) of method I.

U (2)
1 a(2)

1 U (2)
2 a(2)

2 U (2)
3 a(2)

3 U (2)
4 a(2)

4 U (2)
5 a(2)

5 U (2)
6 a(2)

6

Case (1) 2862.99 85.35 2796.73 86.47 2228.74 87.43 2693.10 90.11 2194.22 88.77 2629.19 105.27
Case (2) 2809.38 86.23 2457.57 82.46 2757.31 87.38 2692.93 90.12 2714.58 88.89 2729.90 88.25

with

�(z)
ac = ε3(Iz, ωz ) − ε1(Iz, ωz ), (A26)

�(x)
ac = ε3(Ix, ωx ) − ε1(Ix, ωx ). (A27)

It is clear that the eigenstates of H1b are the dressed states
|h(q),↑〉 and |h(q),↓〉 defined in Eqs. (26) and (27), with the
coefficients C and C′ being given by

C = 1√
1 +

[
1−2�

(z)
ac /�

(x)
ac +2

√
1−�

(z)
ac /�

(x)
ac +(�(z)

ac /�
(x)
ac )2

]2

3

, (A28)

C′ =
{
1−2�(z)

ac /�(x)
ac +2

√
1−�

(z)
ac /�

(x)
ac +(

�
(z)
ac /�

(x)
ac

)2}
/
√

3√
1 +

[
1−2�

(z)
ac /�

(x)
ac +2

√
1−�

(z)
ac /�

(x)
ac +(�(z)

ac /�
(x)
ac )2

]2

3

.

(A29)

Moreover, the eigenenergies corresponding to |h,↑〉 and
|q,↑〉 are same as the ones corresponding to |h,↓〉 and |q,↓〉,
respectively. The energy gap �hq between the higher eigen-
states |h,↑ (↓)〉 and the lower ones |q,↑ (↓)〉 can be expressed
as Eq. (29) of Sec. III, i.e.,

�hq =
√[

�
(z)
ac − �

(x)
ac /2

]2 + 3

4
�

(x)2
ac . (A30)

Finally, the total photon scattering rate 
sc of the laser beams
can be estimated as


sc = 〈q,↓ |H ′|q,↓〉 = 〈q,↑ |H ′|q,↑〉. (A31)

3. The system of method III

In this section, we calculate the effective Hamiltonian and
the heating rate for the systems of method III and derive
the effective Rabi frequency �eff of the Raman coupling as
the photon scattering rate 
sc. We show the final results in
Eqs. (A42) and (A50).

As in Appendix A 1, we take the states with magnetic quan-
tum numbers −1/2 (↑) and −3/2 as an example. Accordingly,
we consider the following 3P states:

|c, 0〉 ≡ |3P0, 1/2,−1/2〉 = |3P0, mJ = 0〉ele| − 1/2〉nuc,

(A32)

|c,↑〉 ≡ |3P2, 3/2,−1/2〉

=
√

2

5
|3P2, mJ = 0〉ele| − 1/2〉nuc

−
√

3

5
|3P2, mJ = −1〉ele| + 1/2〉nuc, (A33)

|c,−3/2〉 ≡ |3P2, 3/2,−3/2〉=|3P2, mJ = −1〉ele|−1/2〉nuc,

(A34)

as well as the 3S1 and 3D1,2,3 states | f1,...,12〉 defined in
Eqs. (A3)–(A8). Notice that here definitions |c,↑〉 and
|c,−3/2〉 are the same as in Appendix A 1 and the main text.
In this section, we use the current notations just for simplicity.
As in Appendix A 1, according to the selection rule, | f1,2〉
can be coupled to the states |c, 0〉 and |c,↑〉 by the Raman
beams, while | f3,...,8〉 and | f9,...,12〉 are coupled only to |c,↑〉
and |c,−3/2〉, respectively.

As shown in Fig. 7(a) of the main text, we denote the
two π -polarized Raman beams as α and β, with angular
frequencies ωα and ωβ , respectively (ωα > ωβ). Thus, in the
Schrödinger picture the Hamiltonian for our system can be
expressed as (h̄ = 1)

HS =
∑

q=0,↑,− 3
2

Eq|c, q〉〈c, q| +
12∑
j=1

(Ej − iγ j/2)| f j〉〈 f j |

+
∑

q=0,↑,− 3
2

12∑
j=1

{[
�

(α)
jq cos ωαt + �

(β )
jq cos ωβt

]

× | f j〉〈c, q| + H.c.
}
, (A35)

where Eq is the energy of state |c, q〉 (q = 0,↑,− 3
2 ), while

Ej and γ j ( j = 1, . . . , 8) are the energy and spontaneous
emission rate of excited state | f j〉. According to the above
definitions, we have Ej = Ej+4; γ j = γ j+4, ( j � 8). In
Eq. (A35), �

(α(β ))
jq (q = 0,↑,− 3

2 ; j = 1, . . . , 12) is the Rabi
frequency of the coupling between states | f j〉 and |c, q〉, which
is induced by the beam α(β ), and can be further expressed as

�
(ζ )
jq =

√
2

ε0c
〈 f j |Dz|c, q〉√Iζ ,

(
q = 0,↑,−3

2
, j = 1, . . . , 12, ζ = α, β

)
, (A36)

TABLE II. U (2π MHz) and a (a0) of method II.

U (2)
1 a(2)

1 U (2)
2 a(2)

2 U (2)
3 a(2)

3 U (2)
4 a(2)

4 U (2)
5 a(2)

5 U (2)
6 a(2)

6

Case (1) 2267.92 86.39 2336.87 85.02 2719.33 88.68 2891.00 84.93 2726.08 88.40 2268.16 86.38
Case (2) 2581.53 63.79 2311.49 85.49 2112.22 103.26 2196.97 88.64 2905.45 84.72 2729.59 88.26
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TABLE III. U (2π MHz) and a (a0) of method III.

U (0)
+ a(0)

+ U (0)
− a(0)

− U (2)
1 a(2)

1 U (2)
2 a(2)

2 U (2)
3 a(2)

3 U (2)
4 a(2)

4 U (2)
5 a(2)

5 U (2)
6 a(2)

6

Case (1) 647.08 232.00 391.14 372.00 2216.60 74.89 2300.85 198.01 2273.99 57.79 2718.70 78.24 2289.44 5.97 2682.05 79.14
Case (2) 392.08 232.00 206.11 372.00 2416.42 84.59 2203.85 75.88 2554.87 81.31 2136.36 78.74 2166.35 77.76 2191.94 76.60

where ε0 and c are the vacuum dielectric constant and speed of
light, respectively, Iζ (ζ = α, β) is the intensity of the beam ζ ,
and 〈 f j |Dz|c, q〉 is the matrix element of the atomic electric-
dipole along the z direction with respect to the states | f j〉 and
|c, q〉, which is assumed to be real as before. As mentioned
above, the selection rules yield 〈 f j |Dz|c, 0〉 = �

(α,β )
ja = 0 for

j = 3, . . . , 12, 〈 f j |Dz|c,↑〉 = �
(α,β )
jb = 0 for j = 9, . . . , 12,

and 〈 f j |Dz|c,−3/2〉 = �
(α,β )
jc = 0 for j = 1, . . . , 8. We de-

rive the values of matrix elements 〈 f j |Dz|c, q〉 (q = 0,↑,− 3
2 ,

j = 1, . . . , 12) via the Wigner–Eckart theorem, with the cor-
responding reduced matrix element given by Ref. [45] for
171Yb.

In Eq. (A35), we phenomenologically describe the spon-
taneous emission of the excited states via the non-Hermitian
term proportional to iγ j ( j = 1, . . . , 12). In addition, for the
seek of generality, we have considered the fact that each Ra-
man beam can couple every 3P states |c, q〉 (q = 0,↑,−3/2)
to the excited states, and did not make the rotating-wave
approximation.

As shown in Sec. IV, we assume that both of the two beams
are far-off resonant for the direct transitions from the 3P states
to the excited states, while the angular frequency difference
ωα − ωβ is close to E0 − E↑. As a result, the two-photon
processes

|c, 0〉 absorbing−−−−−−−−−→
a photon with ωα

| f1,2〉 emitting−−−−−−−−→
a photon wiht ωβ

|c,↑〉, (A37)

|c, 0〉 emitting−−−−−−−−→
a photon with ωβ

| f1,2〉 absorbing−−−−−−−−−→
a photon wiht ωα

|c,↑〉 (A38)

are near-resonant Raman processes. Here the process in
Eq. (A38) is caused by the antirotating-wave terms. In this
case, we can adiabatically eliminate the excited states | f j〉
( j = 1, . . . , 12) and derive the effective Hamiltonian for the
3P states |c, q〉 (q = 0,↑,−3/2). In the rotating frame, this
effective Hamiltonian can be expressed as

Heff = δ̃|c, 0〉〈c, 0| +
∑

q=0,↑,− 3
2

[
E (ac)

q − i
q/2
]|c, q〉〈c, q|

+ �eff

2
(|c, 0〉〈c,↑| + |c,↑〉〈c, 0|)

− i
1

2

0↑(|c, 0〉〈c,↑| + |c,↑〉〈c, 0|), (A39)

where

δ̃ = (ωα − ωβ ) − (E↑ − E0), (A40)

E (ac)
q = −1

4

12∑
j=1

[
�

(α)2
jq

E j − Eq − ωα

+ �
(α)2
jq

E j − Eq + ωα

+ �
(β )2
jq

E j − Eq − ωβ

+ �
(β )2
jq

E j − Eq + ωβ

]
,

(
q = 0,↑,−3

2

)
, (A41)

�eff = −1

2

∑
k=1,2

[
�

(β )
k↑ �

(α)
k0

Ek − E0 − ωα

+ �
(α)
k↑ �

(β )
k0

Ek − E0 + ωβ

]
, (A42)

and


q = 1

4

12∑
j=1

γ j

[
�

(α)2
jq

(Ej − Eq − ωα )2
+ �

(α)2
jq

(Ej − Eq + ωα )2

+ �
(β )2
jq

(Ej − Eq − ωβ )2
+ �

(β )2
jq

(Ej − Eq + ωβ )2

]
,

(
q = 0,↑,−3

2

)
, (A43)


0↑ = 1

4

∑
k=1,2

γk

[
�

(α)
k↑ �

(β )
k0

(Ek − E0 − ωα )2
+ �

(β )
k↑ �

(α)
k0

(Ek − E0 + ωβ )2

]
.

(A44)

Here δ̃ is the two-photon detuning of the two Raman beams,
E (ac)

q (q = 0,↑,−3/2) are the ac-Stark shifts of states |c, q〉,
respectively, which are induced by the Raman beams, and
�eff is the effective Rabi frequency of the Raman transition
between states |c, 0〉 and |c,↑〉, as defined in our main text.
In addition, the heating effect given by the Raman beams is
described by the terms with parameters 
q (q = 0,↑,−3/2)
and 
0↑. In the derivation of the results Eqs. (A39)–(A44), we
have also used the fact 1/(g + iξ/2) ≈ 1/g − iξ/(2g2) with g
and ξ being real numbers and |g| � |ξ |.

Furthermore, as mentioned in Sec. IV A, in our scheme the
frequencies of the Raman beams should be tuned to compen-
sate the ac-Stark shift difference, i.e., the condition

δ̃ + E (ac)
0 = E (ac)

↑ (A45)

is satisfied. Under this condition and after rechoosing the zero-
energy point, we can further rewrite the effective Hamiltonian
Heff as

Heff = H1b − i
1

2
H ′, (A46)

with the Hermitian part

H1b = (
E (ac)

c − E (ac)
↑

)|c,−3/2〉〈c,−3/2|

+ �eff

2
(|c, 0〉〈c,↑| + |c,↑〉〈c, 0|), (A47)
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describes the unitary evolution of the atom, and

H ′ =
∑

q=0,↑,− 3
2


q|c, q〉〈c, q| + 
0↑(|c, 0〉〈c,↑| + |c,↑〉〈c, 0|)

(A48)

describes the heating effect. The eigenenergies of H1b, which
are mentioned in Sec. IV A, are just given by

Ed = −�eff

2
, Eu = �eff

2
, Ec = E (ac)

−3/2 − E (ac)
↑ . (A49)

These expressions yield the results in Eqs. (44) and (45).
We further estimate the photon scattering rate 
sc of the

Raman beams as


sc = 〈d,↑|H ′|d,↑〉, (A50)

with the lower dressed state |d,↑〉 being defined in
Eq. (40) and being able to be expressed as |d,↑〉 = (|c, 0〉 +
|c,−3/2〉)/

√
2, with the notations of the current Appendix.

The calculations for Fig. 8 and related parts in Sec. IV A are
based on Eqs. (A42) and (A50).

APPENDIX B: INTERATOMIC INTERACTION

In this Appendix, we show the models of interatomic in-
teraction used in this paper. As mentioned in the main text,
we label the two atoms as 1 and 2 and use r to denote the
relative position of these two atoms. Then the interatomic
interaction potential is an r-dependent operator for the Hilbert
space Hinternal of the two-atom internal state. In addition, the
space Hinternal can be further factorized to

Hinternal = He1 ⊗ He2 ⊗ Hn1 ⊗ Hn2, (B1)

with Hei and Hni (i = 1, 2) being the Hilbert space for the
outer-shell electrons and the nuclear spin of atom i, respec-
tively. In this Appendix, we use the notation |〉 to denote the
states in Hinternal, |〉e for the states in He1 ⊗ He2, |〉ei and |〉ni

(i = 1, 2) for the states in Hei and Hni, respectively, and |〉i

(i = 1, 2) for the states in Hei ⊗ Hni.

1. Interatomic interaction of methods I and II

The interatomic interaction V̂ (2)(r) for the systems of
methods I and II, which are studied in Secs. II B and III,
respectively, can be expressed as

V̂ (2)(r) = P̂V̂ bare
2 (r)P̂, (B2)

where V̂ bare
2 (r) is the interaction potential between a 1S0-atom

and a 3P2-atom with arbitrary atomic spin F , and P̂ is the
projection operator for the states where the 3P2 atom is in the
subspace with F = 3/2, i.e.,

P̂ =
+3/2∑

mF =−3/2

|3P2, 3/2, mF 〉1

×〈3P2, 3/2, mF | ⊗ |1S0〉e2〈1S0| ⊗ În2

+
+3/2∑

mF =−3/2

|1S0〉e1〈1S0| ⊗ În1

⊗|3P2, 3/2, mF 〉2〈3P2, 3/2, mF |, (B3)

with În j ( j = 1, 2) being the identity operator in the space
of Hni. Moreover, according to the Born-Oppenheimer ap-
proximation, the interatomic interaction is determined by the
energy of electronic states for fixed positions of the two
atomic cores (i.e., fixed r). Based on this principle, we express
the bare 1S0 - 3P2 interaction V̂ bare

2 (r) as

V̂ bare
2 (r) =

∑
j=0,±1,±2

[Vj,+(r)|ψ j,+(r̂)〉e〈ψ j,+(r̂)|

+Vj,−(r)|ψ j,−(r̂)〉e〈ψ j,−(r̂)|] ⊗ În1 ⊗ În2, (B4)

where r̂ = r/r is the unit vector along the direction of r, and
the r̂-dependent electronic state |ψ j±(r̂)〉e ( j = 0,±1,±2) is
the state in which the 3P2-atom is in the electronic state with
Jr̂ = j. Here Jr̂ is the electronic total angular momentum on
the interatomic axis (i.e., Jr̂ = (L + S) · r̂, with L and S being
the orbital angular momentum and spin of the outer-shell
electrons of the 3P2 atom). Explicitly, we have

|ψ j±(r̂)〉e = 1√
2

[|1S0〉e1|3P2, Jr̂ = j〉e2 ± |3P2,

Jr̂ = j〉e1|1S0〉e2], ( j = 0,±1,±2). (B5)

In addition, in Eq. (B4), Vj,±(r) ( j = 0,±1,±2) is the
interaction potential corresponding to the electronic state
|ψ j±(r̂)〉e. Due to the symmetry of the electrons under the
transformation Jr̂ → −Jr̂, we have V−1,±(r) = V1,±(r) and
V−2,±(r) = V2,±(r). Therefore, in this model the 1S0 - 3P2 in-
teraction V̂ (2)(r) is determined by the six potential curves:

{V0,±(r),V1,±(r),V2,±(r)}. (B6)

In Sec. II D, they are denoted as V (2)
1,...,6(r), explicitly, we have

V (2)
1 (r) ≡ V0,+(r), V (2)

2 (r) ≡ V0,−(r), (B7)

V (2)
3 (r) ≡ V1,+(r), V (2)

4 (r) ≡ V1,−(r), (B8)

V (2)
5 (r) ≡ V2,+(r), V (2)

6 (r) ≡ V2,−(r). (B9)

In addition, the operators D̂1,...,6(r̂) in Sec. II D are just
the ones proportional to V (2)

1,...,6(r) in the expression of

P̂V̂ bare
2 (r)P̂ , i.e.,

D̂1(r̂) = P̂|ψ0,+(r̂)〉e〈ψ0,+(r̂)|P̂, (B10)

D̂2(r̂) = P̂|ψ0,−(r̂)〉e〈ψ0,−(r̂)|P̂, (B11)

D̂3(r̂) = P̂[|ψ1,+(r̂)〉e〈ψ1,+(r̂)|
+ |ψ−1,+(r̂)〉e〈ψ−1,+(r̂)|]P̂, (B12)

D̂4(r̂) = P̂[|ψ1,−(r̂)〉e〈ψ1,−(r̂)|
+ |ψ−1,−(r̂)〉e〈ψ−1,−(r̂)|]P̂, (B13)

D̂5(r̂) = P̂[|ψ2,+(r̂)〉e〈ψ2,+(r̂)|
+ |ψ−2,+(r̂)〉e〈ψ−2,+(r̂)|]P̂, (B14)

D̂6(r̂) = P̂[|ψ2,−(r̂)〉e〈ψ2,−(r̂)|
+ |ψ−2,−(r̂)〉e〈ψ−2,−(r̂)|]P̂. (B15)
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Finally, in two-body calculation, we require to express the
eigenstate | 3P2, Jr̂ = j〉eξ (ξ = 1, 2) of Jr̂ in terms of the
eigenstates of Jz ≡ (L + S) · êz, where êz is the unit vector
along the z-axis of the laboratory frame. This can be done via
the relation

|3P2, Jr̂ = j〉eξ =
∑

η=0,±1,±2

|3P2, Jz = η〉eξ D(2)
η, j

× (λ1, λ2, 0), (ξ = 1, 2). (B16)

Here D(2)
η, j (λ1, λ2, 0) is the Winger D-function [46], with

λ1 and λ2 being the azimuthal angle and polar angle of r̂
in the laboratory frame, i.e., r̂ = cos λ2êz + sin λ2 cos λ1êx +
sin λ2 sin λ1êy, where êx(y) is the unit vectors along the x(y)-
axis of the laboratory frame.

2. Interatomic interaction of method III

As shown in Sec. IV B, for the systems of method III, the
interatomic interaction is

V̂ (r) ≡ V̂ (0)(r) + V̂ (2)(r), (B17)

where V̂ (2)(r) is the one derived in the above subsection
and V̂ (0)(r) is the interaction between an atom in 1S0 state
and another atom in 3P0 state. As shown in previous works
Ref [3,14], the potential V̂ (0)(r) can be expressed as

V̂ (0)(r) = [V+(r)|ψ+〉e〈ψ+| + V−(r)|ψ−〉e〈ψ−|] ⊗ În1 ⊗ În2.

(B18)

Here Îni (i = 1, 2) is the identical operator of Hni, V±(r) is
the interaction potential curve corresponding to the electronic

states |ψ±〉e ≡ 1√
2
[|1S0〉e1| 3P0〉e2 ± | 3P0〉e1|1S0〉e2].

APPENDIX C: PARAMETERS FOR THE CALCULATIONS
WITH MULTICHANNEL SQUARE-WELL MODELS

In the following tables, we show the depth U (2)
1,...,6 and U (0)

±
used in our calculations with multichannel square-well mod-
els in Secs. II D, III, and IV D for methods I–III, respectively.
Here we also show the s-wave scattering length a(2)

1,...,6 and a(0)
±

corresponding to the single-channel square-well potentials
−U (2)

1,...,6θ (b − r) and −U (0)
± θ (b − r), respectively, with θ (x)

being the step function and b the same as the width of our
multichannel models, i.e., b = 85a0 for methods I and II and

TABLE IV. Conditions and interaction parameters for A0 = 0 in
the cases of Fig. 3.

�ac/((2π )
MHz) a+/b a−/b af /b Ax/b = Ay/b Az/b

Case (1) 12.44 1.06 2.69 −1.84 0.82 −3.72
15.40 1.06 −2.01 0.48 −1.53 0.96

Case (2) 3.29 3.68 1.08 −2.22 −1.30 −4.60
4.57 −2.69 1.08 0.81 1.88 1.62

TABLE V. Conditions and interaction parameters of for A0 = 0
in the cases of Fig. 6.

�hq/((2π )
MHz) a+/b a−/b ap+/b ap−/b Ax/b Ay/b Az/b

Case (1) 8.20 −3.39 1.21 1.20 1.69 2.54 2.05 2.53
11.06 1.15 1.25 1.22 −3.59 −2.36 2.46 −2.38

Case (2) 2.73 2.10 1.03 −6.26 2.03 3.61 −4.67 −3.68
4.71 −4.72 1.03 0.94 2.78 3.80 1.96 3.71

TABLE VI. Conditions and interaction parameters of for A0 = 0
in the cases of Fig. 9.

�eff/((2π )
MHz) a+/b a−/b af /b Ax/b = Ay/b Az/b

Case (1) 1.39 6.04 −2.01 −2.05 −4.03 −4.06
Case (2) 1.66 10.87 −4.28 −3.32 −7.58 −6.61

b = 81a0 for method III. In the tables, the unit of U (2)
1,...,6 and

U (0)
± is (2π ) MHz (h̄ = 1) and the unit of a(2)

1,...,6 and a(0)
± is the

Bohr radius a0.

APPENDIX D: CONDITIONS AND INTERACTION
PARAMETERS FOR A0 = 0

In Tables IV, V and VI, we show the values of the control
parameters �ac, �hq, and �eff under which we have A0 = 0
for the cases in Figs. 3, 6, 9, respectively. We also show the
interaction parameters Ax,y,z and the scattering lengths a±, f

(or a±,p±) at A0 = 0 for these cases, in the unit of the width b
of the corresponding square-well models.
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