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Curvature strains as a global orchestrator of morphogenesis
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Successful morphogenesis on the scale of organs or organisms requires strict coordination between the
constituent cells whose action on the local scale must be orchestrated accurately to achieve a functional shape on
the global scale. We present a theoretical model in which morphogenetic information is encoded only through a
locally preferred curvature, but with cell dynamics which simultaneously ensures that these interactions globally
achieve morphogenesis and correct cell-neighbor exchanges to avoid cell stretches. This is achieved by a cell-cell
interaction potential that drives correct cell intercalation to reorganize the cell sheet dynamically during the
deformation processes. We demonstrate morphogenesis of simple three-dimensional shapes and study the effects
of fixed cell neighbor connectivity and noisy cell division.
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I. INTRODUCTION

The development of an embryo represents perhaps the
greatest spectacle in the biological realm of Nature. The result
of millions of years of evolution plays out on the time scale
of days, displaying a complexity that easily overshadows any
manmade creation. As an embryo grows, each constituent
cell must “decide” its migratory path in such a way that the
organism as a whole reaches its desired functional shape. This
decision process is complicated by the fact that cells con-
stantly divide, interchange neighbors, differentiate, deform,
and undergo apoptosis.

The study of cell migration in morphogenesis can be di-
vided into two main aspects: what cell-cell interactions allow
for the correct morphology and cell neighbor topology to be
achieved locally? And how are these processes coordinated
on a global scale? For instance, in embryos of Drosophila
melanogaster [1,2], early global information is provided lo-
cally in terms of the pair-rule genes that segment the body plan
of the fruit fly [3]. The expression of these genes is determined
by a gene regulatory network influenced by the gap genes,
which in turn are regulated by maternal genes controlled
by the mother fly [4–9]. These hierarchical layers of gene
regulatory networks provide global information at the local
scale, which is subsequently used to guide cell differentiation,
migration, and deformation. The signals, in fact, need not be
chemical as physical forces have also been shown to influence
morphogenesis [10].

Studies of morphogenesis typically focus on understanding
important morphogenetic processes or stages in isolation with
examples including buckling [11–14], neurulation [15–18],
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gastrulation [19–21], tip growth [22–24], and inversion
[25–27]. To understand the underlying mechanisms driving
these processes, several distinct theoretical tools have been
developed [28], but it remains a challenge to find a single,
general model that unveils intrinsic properties of vastly dif-
ferent processes and stages. Cellular Potts models have been
adapted to model morphogenesis by having collections of
lattice points represent cells [29–31]. In contrast, discrete
cellular models represent cells directly: By modeling the dy-
namics of border points between cells, vertex models can
describe the dynamics of a finite collection of cells [32]. These
models are typically used to study two-dimensional phenom-
ena [33–35], but have seen applications in three dimensions
as well [36–39]. Centroid models prescribe instead the dy-
namics of cell centers and model interactions between cells
with effective potentials [40–43], and can typically model
larger systems compared to vertex models. Finally, collections
of cells may be approximated as a continuum of active ma-
terial to study large-scale morphogenesis such as in active
gel physics [44] or to directly relate biological cell sheets
with their inanimate counterparts known from condensed and
soft matter physics [45,46]. These approaches range from
full-scale finite element simulations [17,18,47] to models of
thin elastic sheets [25–27,48–56], which have the distinct
advantage that much of their dynamics can be understood
analytically.

As these theoretical models each come with distinct ad-
vantages, they are typically used to study specific processes
in isolation. For instance, proteins are known to induce intrin-
sic curvature strains [49], which in continuum elastic sheet
models can explain the dynamics of complex deformation
processes [25,26,55,57]. Yet, the drawback of this approach
is that individual cells are not modeled, and thus effects of,
e.g., cell neighbor rearrangement can only be approximated in
certain systems [58,59]. But cell rearrangement (intercalation)
is a critical component in many morphogenetic systems with
large-scale deformations as it allows for natural relaxation of
the cell sheet and the elongation of shapes by reorganizing of
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FIG. 1. Pulling on a sphere. (a) Stretches emerge when there is
no cell rearrangement and thus individual cells must grow or be
stretched to ensure a confluent sheet. (b) With cell neighbor rear-
rangement the distance between cells (or, equivalently, the size of
cells) can be kept constant under shape deformations. The cell sheets
in (a) and (b) have the same number of cells.

cells as opposed to stretching (Fig. 1) as exemplified by the
process of convergent extension [31,42,60–64].

In this paper, we present a discrete cell model that is di-
rectly linked to the theory of elastic sheets driven by curvature
strains. The model allows us to study large deformations of
cell sheets while naturally maintaining intercellular distances
and cell sizes through cell rearrangements. We thus show that
intrinsic curvature strains cannot only drive shape deforma-
tions, but also directly drive cell rearrangements to avoid cell
sheet stretches.

While a bottom-up approach is often taken in the study of
morphogenesis, where careful tuning of model parameters are
done to examine a specific shape deformation [16,25,36], we
instead demonstrate the generality of our model with a top-
down approach [66–68]. Thus we derive parameters directly
from desired final shapes and simulate the emergence of such
predefined shapes from a single cell-cell interaction potential.
We demonstrate that our model can be used to deform a cell
sheet into desired complex shapes while maintaining constant
cell sizes. While we do not model the signaling directly,
we show that signals exist that transform continuously two
shapes into one another via local interactions only. Thus this
work ties into recent work on cellular automata demonstrating
that simple neural interaction rules can lead to desired two-
dimensional morphogenetic profiles [68].

II. MODEL

We consider a collection of cells that form a thin sheet
and take a top-down approach with the goal to define an
interaction potential V between cells, the dynamics of which
leads to desired shapes. Mathematically, we can express our
desire in the definition of V as

{xi}final shape = arg minV ({xi}), (1)

where xi is the location of cell i. Dynamically, such a mini-
mum is reached from overdamped dynamics of the form

∂t xi = −νi
∂V

∂xi
. (2)

If the minimum is unique, the values of the mobilities νi do
not matter for the final shape found; and in fact, we can choose
these to optimize the speed of our simulation [69]. We define

our potential as a sum of potentials from each cell,

V =
∑

i

Vi, (3)

where Vi, defined below, is the result of interactions between
cell i and the rest of the cells.

We will refrain from introducing a discontinuous con-
cept of neighboring cells as this approach typically results in
discontinuous jumps in the potential on cell rearrangements
[38,42]. Instead, we define interaction potentials that decay
quickly with distance between cells. Concretely we distribute
the interaction of cell i to the other cells according to the
matrix

wi j = e−||xi−x j ||2/l

∑
j e−||xi−x j ||2/l

, (4)

where the index j refers to another cell in the simulation and
l is a characteristic distance. The more cells that surround cell
i, the smaller each interaction becomes, emulating the fact
that cells with many neighbors will share less surface area
with each individual cell. This rescaling is physical when we
assume that the cells form a closed surface, but the model,
nonetheless, also works without the normalization. Note that
the cell-cell interaction could be chemical rather than physi-
cal, but even in the case of diffusing molecules that drive the
interactions may these be described by a neighbor interaction
function.

Our potential is then divided into three terms

Vi = αc V i
curvature + αd V i

distance + αs V i
sheet, (5)

where the α’s are constants. The first term, Vcurvature, is inspired
by the theory of continuum cell sheets in which curvature
strains drive shape changes. All shape information will be
encoded as intrinsic curvature in this term. Importantly, we
are modeling individual cells and thus we need to ensure that
their sizes remain constant to ensure that the sheet is neither
stretched nor compressed locally. This is achieved indirectly
by ensuring that cells stay at a preferred distance from one
another. We impose this as a soft constraint with the second
term Vdistance. It is the interplay between these two terms that
is crucial to the dynamics of the model: the former controls
shape and the latter ensures correct cell rearrangement. The
last term, Vsheet, emulates the interactions with cells inside
the sheet and is needed to ensure the stability of a sheet of
individual cells.

The distance potential keeps cell sizes relatively constant
by imposing short-ranged repulsion due to steric interactions
and attraction at longer ranges. At long distances, we impose
Hookean elasticity with a preferred intercell distance of �:

V i
distance =

∑
j

wi j
(||xi − x j || − �)2

||xi − x j ||1/3
. (6)

The denominator ensures hard-core repulsion at small dis-
tances. The sum runs over all other cells j, weighted by their
interaction strength wi j .

In the following, we derive a discrete version of the sec-
ond fundamental form ci known from continuum theories.
The curvature potential is then simply defined as a curvature
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FIG. 2. Cell polarity. On a cell sheet (a), the apical-basal polarity
(b) distinguishes one side of the sheet from the other. In contrast,
a planar polarity (c) sets a local direction within the sheet. The
direction of polarity is indicated by a color gradient, which in turn
could be interpreted as the asymmetrical distribution of molecules
inside each cell [65].

strain between the local fundamental form and its intrinsically
desired value c0

i ,

V i
curvature = ∣∣∣∣ci − c0

i

∣∣∣∣2
. (7)

This is similar to a Helfrich curvature term [48] except that we
allow coordinate-dependent terms for reasons to be explained
in a moment. The intrinsic value c0

i may be derived from
a desired shape. The time scales of adjusting to a preferred
curvature are much slower [minutes – hours] than that of
maintaining a preferred distance to adjacent cells [seconds].
This is reflected in the fact we will require αc � αd .

To define ci we endow each cell with polarities
[42,61,70,71], which amounts to assigning unit vectors to
all cells. Biologically, apical-basal (AB) polarity is respon-
sible for distinguishing the inside from the outside of a cell
membrane [Fig. 2(b)]. This polarity evolves dynamically by
interacting with the relative position of the cells [42,43]. In the
present formulation, we consider the polarity fully annealed
and choose AB polarity pi to always be orthogonal to the local
tangent plane of the cell sheet, which may mathematically be
calculated using singular value decomposition.

In a similar fashion, one may define a polarity qi that
lies within the planar cell sheet, i.e., orthogonal AB polarity
[Fig. 2(c)]. For instance, in epithelial skin cells, such a planar
cell polarity is responsible for orienting the direction in which
hair combs [72], but we do not enforce any specific biological
meaning to the polarity introduced here. A planar polarity
is not uniquely defined from the cell positions. However, if
each cell stores a scalar value qi, we may uniquely define it
as proportional to the discrete gradient of this scalar field,
qi ∝ ∑

j wi j (qi − q j )(xi − x j ). This vector field will have sin-
gularities at the stationary points of the q field. Lastly, a third
polarity could be formed by q̃i = pi × qi.

Having defined polarities, we can use them in various
combinations to define curvature. In fact, the polarities form a
local coordinate system of the tangent plane. We will exploit
this fact to formulate a discrete version of the second funda-
mental form, which locally describes curvature. The position
of cells close to cell i can be described in a local coordinate

FIG. 3. Evaluating the discrete approximation to the second fun-
damental form on example shape given by z = (1 + sin(xy)) cos(x),
which has c = (−1/2, 0, 1) at the origin. Solid lines show error on the
perfect shape, which for small l behaves linearly in l . Dashed lines
show error when the shape is perturbed by 1% (Gaussian) noise on
all particles. �x is interparticle distances in the xy plane. Calculated
error is the absolute difference between estimated and true value of
the curvature.

system as

x j = xi + ai jqi + ãi j q̃i + bi j pi. (8)

In other words, one can get from x j to xi by moving along the
unit vectors qi, q̃i and pi an amount ai j , ãi j , bi j , respectively.

We then define the local fundamental form ci as the least-
squares solution to second-order polynomial expansion bi j ≈
ci1a2

i j + ci2ã2
i j + ci3ai j ãi j describing the displacement of the

cells along the AB polarity in terms of the displacement along
the planar polarity directions. We define the best expansion as
the one that minimizes the squared error weighted by w. Min-
imizing

∑
j[wi j (a2

i jci1 + ã2
i jci2 + ai j ãi jci3 − bi j )]2 we obtain

ci =

⎛
⎜⎜⎝

wi1 a2
i1 wi1 ã2

i1 wi1 ai1ãi1

wi2 a2
i2 wi2 ã2

i2 wi2 ai2ãi2
...

...
...

wiN a2
iN wiN ã2

iN wiN aiN ãiN

⎞
⎟⎟⎠

†⎛
⎜⎜⎝

wi1 bi1

wi2 bi2
...

wiN biN

⎞
⎟⎟⎠, (9)

where † denotes the Moore-Penrose pseudoinverse. Our
method stands in contrast to how the second fundamental
form is typically calculated in a discrete settings. The need
for a custom approach arises because we do not enforce a
neighborhood mapping on the cells as is the case for triangu-
lated surfaces [73] or when using Voronoi-induced neighbors
[42]. Figure 3 demonstrates the correctness of our approach
on a sample surface. For surfaces that are not quadratic (as
in the example of Fig. 3) our approach is naturally only an
approximation, and one that depends on the characteristic
distance l in Eq. (4). The error of the approximation is O(l ).
Nonetheless, we take l to be on the order of the finite cell-
separation distance, which regularizes the calculation to be
robust against noise as demonstrated by the dashed lines in
Fig. 3.
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FIG. 4. Assembly of a spherical shell. Stability of the model is demonstrated by adding positional noise to a spherical shell. The disrupted
shell (a) then reassembles (b),(c) to a cell sheet (d). The graph shows the decrease in potential energy during the process. Parameters: αc = 0.1,
αd = 50, αs = 0.5.

Finally, we need to define the interactions that ensure the
cells remain in a sheet. This is not needed if c = c0. However,
when the current and intrinsic curvatures are far apart, we
need an extra interaction to ensure a stable sheet. Had we
modeled solid objects, this would not be needed; but this
would, in contrast, be computationally a much more expensive
system to study. We assume that cell displacements out of
the plane are kept in place by Hookean elasticity for small
displacements, but regularized at larger displacements. As the
AB-polarity vector pi determines the tangent plane, this can
be achieved using

V i
sheet =

∑
j

wi j
|(xi − x j ) · pi|2

|xi − x j |2 , (10)

where j is a sum over all other cells. We note that this term
added to the potential will perturb the shape encoded by c0.
To counter this, the magnitude of this term (αs) could be tuned
towards zero as c → c0, but we ignore this complication here.

Finally, to simulate Eq. (2) we program the potential dif-
ferentiably and use automatic gradient calculations to evaluate
the forces from Eq. (5) directly [74–76].

III. RESULTS

A. Simple intrinsic curvature

We begin by exemplifying our model with simple intrinsic
curvatures. With c0

i = (σ, σ, 0) for all cells, the dynamics of
our model is independent of the planar polarity (qi). The en-
ergy minimum of this model is a spherical shell so long as the
value of σ matches approximately with the curvature of the
natural spherical shell permitted by the preferred cell-cell dis-
tances. Figure 4 demonstrates that even shapes without initial
sheetlike structure will self-assemble to form a spherical shell.
This demonstrates the stability of our model: when cell sheets
are far from their equilibrium shape, they can self-organize
towards it.

To define the in-plane polarity q, we start by initializing
a scalar field qi = arccos zi on a unit sphere as illustrated in
Fig. 5(a). This induces the polarity field shown in Fig. 5(b).
We note that at the poles of the sphere, this vector field will be
singular and so the polarity qi here will be undefined. In prac-
tice, our scheme results in a random polarity at these points
as shown in Fig. 5(b*). With planar polarity well-defined,
we consider c0

i (t ) = (σ1, σ2, 0). For σ1 < σ2 the intrinsic

curvature prefers high curvature along q̃ which stretches the
sphere to a thin cylinder as shown in Fig. 5(c), thus demon-
strating the process of convergent extension [42,61]. If, in
contrast, we consider σ1 > σ2, high curvature will be pre-
ferred along q which results in the sphere becoming oblate,
thus resembling a red blood cell [48] as shown in Fig. 5(d).
The full parameter space of σ1 and σ2 is explored in Fig. 6.
These simple cases illustrate the key features of our model:
First, the potential term Vdistance exactly ensures correct cell
rearrangement during deformation as defined by Vcurvature. This
interplay assures that there are no cell sheet stretches or
compressions for all shape deformations. Secondly, the input
parameters are easily interpretable. The intrinsic curvatures
simply encode the locally preferred shape and the discrete
second fundamental form is approximately independent of the
distances between cells as long as the curvature remains fixed.

The direction in which the sphere stretches is determined
by the direction of the planar polarity q. Nonetheless, if we
allow c0

i to be different for each cell i, the sphere can also be
made prolate/oblate in any direction by suitably modulating
the intrinsic curvature.

B. Morphogenesis

Due to constant cell rearrangement needed to form com-
plex shapes, the value qi cannot remain constant for each
cell in general. Instead qi should be considered a morphogen
[77] that is internally regulated or externally controlled. In the
development of D. melanogaster this is exemplified by, e.g.,
knirps and bicoid, [7,9,78], where, in particular, bicoid RNA
is localized in the anterior end of the embryo by the mater-
nal fly. Gene translation in combination with diffusion and
degradation thus induces a bicoid protein gradient field across
the developing embryo [4]. Inspired by this, we consider qi ∝
D

∑
j wi jq j + z, where D is a diffusion coefficient and instead

of injecting morphogen exactly at one end, we inject it propor-
tional to the distance from the end. This approach also directly
breaks the symmetry of the spherical initial conditions, which
in fully internally regulated systems would have to be broken
spontaneously. Many other choices could be made, but this is
perhaps the simplest that still provides stable planar polarity
fields.

Having defined qi, we demonstrate the morphogenesis of
simple, predefined geometries. Given a desired embryo shape,
the goal is to choose a c0

i (t ) that transforms a sphere (or any
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FIG. 5. Planar polarity and curvature strains. The scalar field q (a) can induce a polarity field (b) by using the local gradient. This field,
however, will have at least one singularity(b*). With a well-defined planar polarity field, asymmetrical curvature strains deform the sphere in
different ways. (c) σ1 < σ2 stretches the sphere to a thin cylinder. (d) σ1 > σ2 squeezes the sphere flat. These deformations further demonstrate
correct cell intercalation which ensures that intercellular distances remain constant.

other initial shape) into this desired shape while constantly
rearranging cells to relax the cell sheet. This “mapping” is
highly noninjective, and yet very hard to design in general.

Given a shape its discrete second fundamental form may
be calculated as detailed in the model section; this is the case
even if the given shape does not have fixed intercell distances.
In the absence of cell rearrangements, we could map the loca-
tion of each cell onto the sphere and thus easily assign ci to all
cells. However, with cell rearrangements, neighbor connectiv-
ity is not preserved and we instead need to define a dynamic
c0

i (t ). Biologically, such dynamics would be defined by gene
regulatory networks. These interactions can be approximated
by, e.g., neural networks that transmit information between
neighboring cells [68]. Here, we take a simpler approach:
similarly to how qi was defined above, we may define a qB

i
and qC

i along the x and y direction, respectively. This allows
us to define a function that maps from these state variables
to the intrinsic curvature c0

i = f (qi, qB
i , qC

i ). We choose f
such that it coincides with the real curvature when evaluated
on the desired shape. This could be done by, e.g., fitting a
neural network or any other general function, and here we
simply employ a radial basis function expansion in the space
of (qi, qB

i , qC
i ). As elaborated in the discussion, this approach

works well except at defects. A simple fix to this is to consider
f the average over more than one coordinate system (using
qi, qB

i and qC
i ).

We are now in a position where we can calculate f for
any given shape. Figure 7 demonstrates the dynamics that this
method leads to on two desired shapes: a “squid”-like shape
with arms located at specific locations [Fig. 7(a) → 7(b)] and

a shape exhibiting the emergence of a saddle-point [Fig. 7(a)
→ 7(c)]. While f is only correctly defined if the cells take on
the correct shape, we see that even a simple definition such as
this one allows a shape which closely resembles the desired
one to emerge. Most crucially, we see that cell rearrange-
ments naturally occur and permit shape deformations similar
to that seen in the process convergent extensions: with no cell
stretching.

C. Fixing Neighbours & Cell Division

As we have just seen, the requirement of fixed neighbor
distances during the process of morphogenesis makes it cru-
cial that cell neighbor rearrangements are permitted. In our
model, the final shape and cell neighbor arrangement is kept
in place by the curvature strains defined in Eq. (7). However, if
we fix wi j to its value in the final shape, removing the possibil-
ity of neighbor rearrangements, we can in fact set Vcurvature = 0
and still maintain a stable shape without any curvature strains
or maintenance of intrinsic curvatures. This means that after
the final shape has been reached, the morphology of the shape
can be encoded solely by the cell neighbor connectivity. Thus
the mechanism for reaching a shape and the mechanism for
keeping the shape stable can be very different, and the latter
can be much simpler.

The fact that a shape is stable simply due to its neighbor
connectivity becomes increasingly true for bigger and big-
ger shapes. The more cells, the more interlocked the shape
becomes if the neighbor connectivity is fixed. Local perturba-
tions, such as cell apoptosis or division, will thus not affect
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FIG. 6. Variations of σ1 and σ2 in c0
i (t ) = (σ1, σ2, 0). With σ1 = σ2, spherical shapes are obtained with varying radii depending on the

preferred curvature. Off the diagonal, the shape is either squeezed flat (σ1 > σ2) or long (σ2 > σ1), with the overall size still being regulated
by their absolute magnitude. For extreme values of σ , the cell sheet can break down as seen here for σ1 = 2.5.

FIG. 7. Morphogenesis. (a) A sphere can be deformed to a desired shape while adhering to fixed neighbor distances by choosing c0

correctly. (b) Example showing the deformation of a sphere to a three-armed squid. (c) Example showing deformation to a shape with a saddle
point. The shapes from which c0 have been derived need not conform to a fixed cell neighbor distance.

023171-6



CURVATURE STRAINS AS A GLOBAL ORCHESTRATOR OF … PHYSICAL REVIEW RESEARCH 4, 023171 (2022)

FIG. 8. Cell division from the 1500 to 3000 cells. (a) If c0 is set
to a desired shape, random cell division does not disrupt the shape
[Fig. 7(b)]. (b) However, with αc = 0 and αs = 1.5, cell division
changes the shape.

much global shape if this is constructed by enough cells. This
is not the case for small structures, which can be perturbed by
noisy events such as cell division. We implement cell division
in the simplest way possible: at each time step there is a
probability that a cell is divided into two with one of the
daughter cells being slightly perturbed in position (in the q-q̃
plane). The distance potential will ensure that the surrounding
cells will be pushed away to make room for the new cell.

Figure 8 shows the final shape of Fig. 7(b) being subjected
to cell division. We have fixed wi j except during time steps of
cell division, where, naturally, daughter cells must be assigned
a neighbor connectivity, and the surrounding cells’ neighbor
weights likewise must be updated. If we keep the curvature
strain potential on [Fig. 8(a)] the shape is preserved during
the noisy process of cell division. However, without curvature
strains [Fig. 8(b)] where the shape is maintained solely by
neighbor connectivity, cell division will disrupt the overall
shape as time passes. Thus neighbor connectivity cannot be
responsible for keeping a shape intact during periods of large,
noisy activity such as random cell division during growth.
Likewise, for organisms that may regenerate limbs, such as
the Axolotl, active shape regulation is needed during the re-
generative process.

IV. DISCUSSION

Our main result is the demonstration that complex three-
dimensional morphogenesis in a discrete cell model can be
achieved by modulating only preferred curvature strains. In
our formulation cell rearrangements adapts locally and are a
natural consequence of the shape changes.

To achieve morphogenesis of a specific shape in our model
a suitable dynamic intrinsic curvature profile c0(t ) must be
specified. Biologically, we can think of this as being the result
of gene regulatory networks (although other drivers are also
possible such as mechanical feedback). These networks could
be simulated directly as well, and differentiable programming
used to choose suitable network interactions similar to what
has been achieved in two-dimensional cellular automata [68].
However, in the present three-dimensional case, it is more
involved to define a suitable loss function. We have taken a
different approach which works for the simple shapes studied
in this paper. Our method emulates the result of a gene regula-
tory network by a simple radial basis function regressor in the
space of three morphogens that diffuse across the cells. Our

approach can be interpreted as a dictionary lookup based on
spatial decoding [8].

The downside of our simple approach is that we only define
the preferred curvature when the cells are in the preferred
shape. The complex trajectory to reach the final shape is
therefore not controlled. We have demonstrated that our ap-
proach works for simple shapes, but even in these cases, there
are no guarantees that the regressor does not induce shape
trajectories that lead to perturbed final shapes. To generalize
to more complex shapes, our method could be checkpointed,
where separate regressors are used at various stages of the
morphogenesis process.

Our regressor approach uses three input variables
(qi, qB

i , qC
i ), or “coordinates”, despite the fact that we are

modeling a two-dimensional surface. While two coordinates
locally could be sufficient, a closed surface cannot be glob-
ally described by just one coordinate system, where instead
multiple charts are needed. Biologically it is indeed also the
case that typically more than two morphogens are used to
decode positional information [8]. Nonetheless, our current
approach has the drawback that the planar polarity has at least
one singularity and thus using different coordinate systems
for different parts of the structure could make sense. In fact, a
simple approximate solution to this is to simply have Eq. (7)
be an average loss over more than one local coordinate system.
Using q, qA, qB removes issues at the singularities.

The usual approach to define energy functionals of
elastic sheets involves coordinate invariants of the sec-
ond fundamental form (c). In this work, we have allowed
coordinate-dependent terms in the potential due to the fact
that apical-basal and planar polarity define a local coordinate
system. Although the morphogen (q) used to make the planar
polarity well-defined is dynamic in our model, it does not
have any dynamics that relate specifically to the shape being
modeled. This is why all three curvature terms (c1, c2, and c3)
are needed to describe arbitrary shapes. A separate approach
is to have a dynamic planar polarity that orients itself along
the principal curvatures. In this case, only c1 and c2 would be
needed. While this approach is biologically more relevant, we
have chosen to keep our approach as simple as possible and
only use information pertaining to preferred shapes in a single
term of our potential.

While cell rearrangements do have an activation cost
[38,79], many discrete cell models take this to the extreme and
have thermodynamically irreversible transitions. We define
our model through a potential with no discontinuous jumps
even during cell rearrangements. This is important to make
the potential physical. Here we have defined an interaction
matrix wi j which, in principle, allows all cells to interact
with all cells, but decreasing quickly with distance. This ap-
proach is well known from condensed matter physics, and
is perhaps the simplest way to make neighbor interactions
reversible. More well-known in cell models (such as vertex
models) is a neighborhood defined by Voronoi cells (through
their Delaunay triangulation) [20,42,80,81]. Such approaches
have continuous and physically accurate transitions only if
the interactions explicitly depend on the cells’ shared surface
area. Typically Voronoi neighboring (or similar schemes) will
result in more stable cell sheets compared to nearest-neighbor
schemes (such as the present) since sheet confluence is easier
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to maintain when neighbor interaction weights do not decay
with distance. Our model could be adapted to use Voronoi
or similar neighbor schemes. However, our differentiable pro-
gramming approach will be more involved in such cases if we
require that our potential remains continuous. Nonetheless,
such extensions could make our system more robust against
large preferred curvature strains. The fact that the present
model’s sheets are stable with just using a nearest-neighbor
scheme is due to the carefully chosen Vsheet term in our poten-
tial.

The present model has the potential to model a wide range
of shape transformations seen in biology, such as morpho-
genesis of Hydra [82] or the gastrulation of Drosophila [83].
For simple morphological transformation, the input of an
initial shape and a final shape is enough to define the full
morphological process by using simple signaling functions
such as the one exemplified here. For more intricate trans-
formations, more complex signaling is needed. In principle,
deriving such signaling could also be automated using a neural
network or differentiable programming approaches to emulate
gene regulatory networks [68]. We have not discussed the
analysis of the forces, stretches, and stresses that arise in

the morphological transformations the model predicts. This
is an interesting perspective, but one that is slightly compli-
cated by the nature of cell rearrangements: while the final
shape obtained is robust to perturbations, which cells end up
where is not robust to noise. Such analysis thus needs to be
global and not depend on specific migratory paths of single
cells.

Studies of morphological processes typically impose a set
of parameters and then analyze the shapes that emerge. This
is the case for both vertex models [35,39] and centroid models
[42]. Here we have demonstrated that the opposite approach is
also viable and have shown that both shape deformations and
neighbor rearrangements can be simultaneously driven by the
same potential function.
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