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We use a superconducting microresonator as a cavity to sense absorption of microwaves by a superconducting
quantum point contact defined by surface gates over a proximitized two-dimensional electron gas. Renormal-
ization of the cavity frequency with phase difference across the point contact is consistent with coupling to
Andreev bound states. Near π phase difference, we observe random fluctuations in absorption with gate voltage,
related to quantum interference-induced modulations in the electron transmission. Close to pinch-off, we identify
features consistent with the presence of a single Andreev bound state and describe the Andreev-cavity interaction
using a Jaynes-Cummings model. By fitting the weak Andreev-cavity coupling, we extract ∼GHz decoherence
consistent with charge noise and the transmission dispersion associated with a localized state.
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The flow of supercurrent across a Josephson junction (JJ)
is described by Andreev bound states (ABSs), coherent su-
perpositions of electrons and holes that transport Cooper
pairs by Andreev reflection at the junction interfaces [1]. By
setting the Josephson inductance LJ , ABSs play a central
role in superconducting transmon qubits [2] and also form
a two-level basis for spin-based quasiparticle qubits [3]. In
the short-junction limit, ABSs are spatially confined to the
JJ with energy EA = ±�

√
1 − τnsin2(δ/2), where � is the

superconducting gap, δ is the phase across the JJ, and τn the
transmission probability of the nth electron channel in the JJ
material [4]. Conventional qubits based on aluminum either
host a fixed high number of low-τ ABSs in oxide JJs, yielding
the familiar Josephson energy EJ = E0cos(δ), or a few me-
chanically tunable high-τ ABSs used for quasiparticle qubits
in atomic point contacts [5]. Rapid improvement in the growth
of hybrid superconductor-semiconductor interfaces over the
last decade has unlocked semiconductor JJs that can span
these operating regimes, using local capacitively coupled gate
electrodes to tune the number [6,7] and τn distribution [8] of
ABSs.

*Corresponding author: m.connolly@imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Gatemons, the voltage-controlled variant of a transmon
[9], have so far been realized with semiconductor nanowires
[10,11], carbon [12–15], and topological insulator [16]
JJs. Single channels in InAs nanowire gatemons were re-
cently associated with suppressed relaxation [17] and charge
dispersion [18,19]. Splitting of microwave transitions in
quasiparticle qubits [20] due to strong spin-orbit interaction
[21] has enabled spin-to-supercurrent conversion [22] and
paves the way towards time-domain analysis of Majorana
bound states [23]. Qubit states can be probed by coupling
the dipole transition to a transmission line via a microwave
cavity resonator. Capacitive coupling is used for transmons
and inductive coupling for quasiparticle qubits, generating
a state-dependent shift of the cavity frequency described
by circuit quantum electrodynamics [24]. Proximitized two-
dimensional electron gases (2DEGs) are an attractive scalable
and versatile platform for realizing voltage-controlled JJs,
with ABS confinement potentials tailored by the outline
of lithographically patterned surface gates. Gatemons with
2DEG JJs have microsecond lifetimes, limited by microwave
losses in the InP substrate [25]. Here we establish the
2DEG variant for quasiparticle qubits by studying ABSs in a
gate-defined superconducting quantum point contact (SQPC),
shown schematically in Fig. 1(a). Our 2DEG comprises a
trilayer InGaAs/InAs/InGaAs stack grown on a buffered InP
substrate. A 50-nm-thick epitaxial Al capping layer prox-
imitizes the 2DEG via Andreev reflection while preserving
high (∼1 m2 V−1 s−1) charge carrier mobilities [26]. ABSs
are lithographically confined by laterally etching a mesa with
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FIG. 1. (a) Stack structure of an InAs 2DEG with split gates (red)
used to define a SQPC. ABSs comprise right–left- (red) and left–
right- (blue) propagating electron–hole pairs Andreev reflected at the
interface. (b) Differential resistance R = dV/dISD of a SQPC as a
function of VQPC and ISD. Regions: open (I), definition (II), depletion
(III), and tunneling (IV). Lower panel shows R over a narrower range
of ISD in region IV, with Ic resonances approaching ∼45 nA indicated
by arrows. (c) Schematic ABS energy spectrum of the junction recon-
structed as a function of phase difference δ = θ2 − θ1 (lower panels)
and VQPC at δ = π (upper). In each region, the energy detuning
between bare cavity photons ( fR) and ABS transitions ( fA = 2EA/h)
determines the effective shift in the observed cavity frequency.

width W1 ∼ 4 μm down to the InP buffer layer and removing
an L ∼ 100 nm strip of Al. To form a SQPC the ABSs are
further electrostatically confined to a narrow constriction, by
depleting carriers from regions under the split-gate electrodes,
which are spaced by width W2 ∼ 100 nm.

Figure 1(b) shows a plot of the differential resistance
R ∼ dV/dISD as a function of gate voltage VQPC and bias cur-
rent ISD of a typical SQPC. R was determined by conventional
AC lock-in measurements in a four-terminal configuration,
using an external 1 M� resistor to implement current-biased
measurements. A dissipationless state (R = 0) is maintained
up to a maximum critical current Ic. In principle Ic = ∑

N I (n)
c ,

where I (n)
c = e�/h̄(1−√

1 − τn) is carried by each of the N
ABS channels, each with transmission probability τn. In a
ballistic SQPC with transparent interfaces (τn = 1), steps in
Ic(VQPC ) with size I0 = e�/h̄ ∼ 50 nA are the anticipated
counterpart of conductance quantization G0 = 2e2/h in a nor-
mal QPC [4]. Our devices typically do not exhibit steps, but
have four regions with distinctive behavior, delineated by the
dashed lines in Fig. 1(b), and referred to as open (region I),
definition (region II), depletion (region III), and tunneling
(region IV). In region I, Ic drops only slightly from ∼0.8 to
∼0.7 μA with increasing negative VQPC as the number of
channels reduces beneath the split gates. Using a carrier den-

sity n2D ∼ 3 × 1016 m−2 and mobility μ ∼ 0.5 m2 V−1 s−1,
determined separately from Hall measurements on the same
wafer, yields a Fermi energy EF = n2Dπ h̄2/m∗ ∼ 0.3 eV,
assuming an effective mass of m∗ = 0.023me. The resulting
Fermi wavelength λF ∼ 14 nm and channel number N =
2W1/π

√
2m∗EF /h̄ ∼ 1000. The observed Ic ∼ 1 μA, how-

ever, corresponds to an order of magnitude lower number
of channels (N ∼ 20), a feature also reported in an earlier
study on wide JJs [27]. We speculate that channels with
higher momentum parallel to the interface have path lengths
	 > L that exceed the superconducting coherence length ξ ,
and thus do not contribute to the transfer of Cooper pairs.
Using the conductivity σ = νe2D and ν = m∗/π h̄2 for the
constant 2D density of states, we obtain D ∼ 0.07 m2 s−1

for the diffusion coefficient, τsc = m∗μ/e ∼ 2.5 ps for the
scattering time, and mean-free path lm f p = √

Dτsc ∼ 70 nm,
placing our JJs between the diffusive and ballistic regimes.
ξ ∗ is between the clean (∼h̄νF /π�∗ ∼ 1.4 μm) and dirty
∼√

ξ0lm f p ∼ 300 nm) limits, where νF ∼ 1.2 × 106 is the
Fermi velocity, and �∗ ∼ 180 μeV is the induced gap mea-
sured by bias spectroscopy. In either case our devices satisfy
L < ξ ∗ and steps in the critical current contribution of I0 per
channel are not expected in region I since W2 ∼ W1 [28].
During definition (region II), Ic drops over a �VQPC ∼ 0.5 V
interval as channels contributing to Ic either side of the
SQPC are closed. Once the SQPC is defined, Ic ∼ I0 and
reduces gradually over a �VQPC ∼ 1.5 V as W1 decreases
(region III). The reduced dIc/dVQPC in this region results from
the reduced capacitive coupling from the split gates to the
constriction.

In region IV [Fig. 1(b)], RN fluctuates around h/2e2 and
Ic displays �VQPC ∼ 50 mV-wide resonances. We attribute
this to the opening and closing of a single highly transmit-
ting channel, highlighted by arrows in the lower panel of
Fig. 1(b). Similar behavior observed in nanowire gatemons
was correlated with suppressed charge dispersion [18,19] due
to resonant tunneling (RT). To link this behavior to the mi-
crowave properties, Fig. 1(c) shows a sketch of the microwave
energy gap 2EA(VQPC ) for these four regions, reconstructed
by assuming τ is tuned by VQPC and using Ic ∝ dEA/dδ.
The degeneracy between counterpropagating electron-hole
pairs at δ = π is lifted due to backscattering, opening a gap
2�(

√
1 − τn). Microwaves with energy h fA = 2EA, typically

∼5−10 GHz for high-τn channels [5], should be absorbed
by the JJ, effectively exciting a quasiparticle and reversing
the direction of supercurrent. In this picture Ic resonances in
region IV correspond to peaks (dips) in transmission (Andreev
transition frequency), suitable for gate-defined quasiparticle
qubits.

To probe this microwave spectrum experimentally, we re-
port data from a different device comprising a SQPC in a
superconducting loop inductively coupled to a NbTiN mi-
crowave cavity [Fig. 2(a)]. As described in previous studies
[29,30], the cavity frequency depends on the current-phase
relation and the occupancy of the ABS ground- (−EA) and
excited (+EA) states. Below we focus on two features of
the observed cavity behavior, namely the overall modulation
� fR of the resonance frequency with the applied magnetic
flux through the loop, and finer shifts with VQPC . Figure 2(b)
shows the dependence of the amplitude of the microwave
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FIG. 2. (a) Optical and scanning electron micrographs of the device. A serpentine microwave cavity (blue) is inductively coupled to a loop
of Al/InAs (orange) interrupted by a SQPC (red). (b) Feedline transmission coefficient S21 as a function of feedline frequency f and flux 
.
f0 ∼ 6.163 GHz is the observed resonance frequency at zero flux at zero gate voltage. (c) Resonant frequency shift extracted from (b). (d) S21
as a function of frequency and VQPC at 
/
0 = 0.5. (e) Number of cavity fluctuations per volt (black points) and resonant frequency (red line)
extracted from (d).

transmission (S21) on the reduced flux 
′ = 
/
0 (applied
via a single coil mounted to the sample enclosure) and readout
difference frequency f − f0, where 
0 is the flux quantum
and f0 = 6.163 GHz is the resonant frequency of the bare
cavity identified as the sharp reduction in S21 at 
′ = 0. In the
open regime, fR decreases rapidly and loses visibility towards

′ = 0.5. In Fig. 2(d) we fix the flux at 
′ = 0.5 and plot S21
as a function of VQPC . In the range −4 < VQPC < 0 we observe
rapid ∼1 MHz shifts in cavity frequency, fluctuating ∼30 V–1

around the original fR(0.5) [see Fig. 2(e)]. At intermediate
voltages (−6 < VQPC < −4) the fluctuations persist with sim-
ilar density while the average cavity frequency shifts upwards
closer to fR(0) and the quality factor increases from ∼2000
to ∼7000. For VQPC < −6 V, fR is roughly constant and the
number of fluctuations drops to ∼5 V−1. The overall trend in
fR(VQPC ) qualitatively follows the same evolution shown in
regions I–III in Fig. 1(b), implying the cavity push relates to
the total Ic. This is consistent with recent work [31] demon-
strating that in the adiabatic regime ( fR � fA) the cavity
frequency is renormalized by the Josephson inductance LJ =
(
0/2π )2(∂2E (n)

A / ∂δ2)−1 of each channel shown schemati-
cally in Fig. 1(c), where δ = 2π
′. Over the full frequency
range, the total cavity shift is given by � fR = ∑

N � f (n)
R ,

where � f (n)
R has both first- (adiabatic) and second- (disper-

sive) order contributions. In order to capture the main features
of � fR(VQPC, 
′) we first use tight-binding simulations of the
SQPC to calculate the electronic wave functions and energy
eigenstates as a function of the transverse confining potential
U (y), and then apply the scattering-matrix formalism to find
the transmission τn and energy-phase relation of each channel
EA(δ). We then use the theory for adiabatic and dispersive
shifts described in Ref. [31] to calculate the total cavity shift
(see the Appendix for further details of the model and an ex-

plicit comparison with the experimental data.) The geometric
mutual inductance M sets the coupling strength between the
cavity and loop and is the main fitting parameter. In Fig. 2(c)
we plot the flux modulation of the cavity resonance frequency
� fR = fR(
′) − f0 and find best agreement with this model
using N = 6 channels and M = 20 pH. This is lower than
the N ∼ 20 from the transport measurements shown in Fig. 1
but consistent with the as-fabricated Ic seen in similar devices,
and in reasonable agreement with the analytic estimate for
M = (μ0/2π )Ll ln(s + wl/s) ∼ 30 pH, where Ll = 100 μm,
wl = 40 μm, and s = 5 μm are the loop length, width, and
wire-loop separation, respectively.

Having observed the correlation between � fR and Ic,
it is perhaps suprising that the fluctuations observed in
� fR(VQPC, 0.5) are typically absent from Ic(VQPC, 0) in re-
gion I. To elucidate this we measure S21(
′, f ) for VQPC

values shown by dashed lines in Fig. 2(d). The series
of plots in Fig. 3(a) shows the decrease in overall push
� fR(VQPC, 0.5) with increasing negative VQPC , and also re-
veals a variety of avoided crossings symmetric about 
′ =
0.5. Avoided crossings are a sign of virtual cavity-ABS
photon exchange, inducing a push on the cavity frequency
described by a Jaynes-Cummings (JC) interaction. In the
JC picture, avoided crossings result from a divergence in
the cavity push χ

(JC)
i j = gi j

2/2π ( fR − fi j ), where gi j is the
coupling rate, when the detuning from the i → j ABS tran-
sition approaches fi j ∼ fR [28]. Generally fi j comprises
spin-orbit and subband kinetic-energy contributions from
different parity manifolds [21]. For transitions within the
same manifold, fi j = f (n)

A (VQPC, π ± �δn ), channels with
sufficient τn meet this condition at different phase offset
�δn, giving rise to the different patterns of crossings in
Fig. 3(a).
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FIG. 3. (a) S21 as a function of f and 
′ for VQPC values indicated by the dashed lines in Fig. 2(d). Measured and simulated S21 as
a function of (b), (c) 
′ and (d), (e) VQPC and readout difference frequency. Lower panels show the transition frequency for three Andreev
channels used in the simulations. ṼQPC is the simulation sweep parameter scaled to the same range as VQPC .

In order to capture these features quantitatively we simu-
late the coupled ABS-cavity system using a master equation
for the JC model (see the Appendix) [32]. Note the disper-
sive JC shift

∑
χ

(JC)
i j is valid in the range of flux shown

in Fig. 3(a). Figure 3(b) shows the raw S21(
′, f ) data at
VQPC = −3 V and corresponding simulation in Fig. 3(c). The
discrete crossings and overall cavity shift ∼−2 MHz are
well reproduced assuming N = 3 spin-degenerate channels,
consistent with modeling of Fig. 2(b). We also confirmed
that the model reproduces the dependence on VQPC at 
′ =
0.5 [Figs. 3(d) and 3(e)] using the same model parame-
ters. Note that the ṼQPC of the simulation is a randomly
generated value of τn, related to the underlying statistics
of universal conductance fluctuations (UCFs) [30]. Using
�EF = α1�VQPCπ h̄2/m∗e2, where α1 = εHfO/d is the capac-
itance to the 2DEG, d = 20 nm, and εHfO = 11, and equating
the number of avoided crossings 1/�VQPC ∼ 30 V −1, where
�VQPC is the correlation voltage, yields �EF ∼ 10 meV.
This is in agreement with the intermediate limit (L > lm f p)
[33], where fluctuations of ∼I0 are expected when �EF ∼
�(

√
ξ ∗lm f p/L) ∼ 15 meV (for ξ ∗ ∼ 1 μm). In this picture the

factor of ∼3 increase in the correlation voltage [Fig. 2(e)] in
region IV is due to the weaker capacitive coupling between
the split gate and the constriction. UCFs therefore appear in
the cavity push as it only couples to the lowest modes, while in
transport they are averaged out from region I in Ic [Fig. 1(b)].

A notable feature below VQPC ∼ −6 V is the presence of
paired crossings [see arrows in Fig. 3(d)]. We focus on the
pair highlighted by the dashed box in Fig. 3(d) and shown
in detail in Fig. 4(a). Paired crossings are naturally explained
by peaks in τ (VQPC ), as illustrated in region IV of Fig. 1(c).
Resonant passage at the conduction-band edge is possible

along periodically spaced impurity configurations [34], or a
quantum dot [35] formed by a potential valley exceeding the

FIG. 4. (a) S21 measured as a function of frequency and VQPC at
the paired crossings highlighted by the dashed box in Fig. 3(d). (b)
Schematic of a quantum dot formed in the junction, coupled to the
leads with tunneling rates �1 and �2. The energy-level sketch (mid-
dle panel) shows a quantum-dot state with energy detuning ε from
the chemical potential μ modulated by VQPC . (Lower panel) Plot of
Breit-Wigner transmission (�1 = �2 = �) and ABS frequency. (c)
Simulated S21 as a function of ṼQPC using the fA(ε) shown in lower
inset.
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FIG. 5. (a) S21 measured as a function of � f and δ in the
single-channel regime (VQPC ∼ −6 V). (b) Shift in cavity frequency
extracted from the S21 data in (a) and plotted as a function of
δ (green points). Fit to the experimental data using the JC model
(orange dashed) and dispersive shift (blue dashed). (c) S21 measured
as a function of frequency and VQPC at δ = π . (d) Shift in cavity
frequency shift with VQPC (green points), JC model (orange dashed),
and dispersive shift (blue dashed). Insets in (b) and (d) illustrate the
ABS-cavity hybridization.

lowest subband spacing, E2 − E1 ∼ 5 meV, where En ∼
n2π2h̄2/2m∗W1. Following recent work [18,19], we imple-
ment the RT model shown in Fig. 4(b), where a discrete level
in a quantum dot is tunnel coupled to left and right leads with
rate �1 and �2, respectively. The resulting transmission as a
function of detuning τ (ε) is shown in Fig. 4(b) for different
�/� together with the dip in fA. For symmetric barriers, RT
enables perfect transmission regardless of the details of the
backscattering potential. The simulation shows good agree-
ment with the experimental data [Fig. 4(c)], with �/� ∼ 1,
consistent with results from simulations of nanowire devices
(� = 60–72 GHz) [18], and maximum τ ∼ 0.995. Note the
fact that transmission is not unity is due to some residual
asymmetry in tunnel rates �1 and �2. The Ic resonances in
region IV of Fig. 1(b) also have a �VQPC ∼ 50 mV width, and
are thus naturally accommodated within the RT picture.

Finally, since the ABS-cavity interaction is sensitive to
quasiparticle dynamics, we can estimate the lifetime Tϕ via
the decoherence rate γ = 1/Tϕ in the JC model. We fix VQPC

and measure S21(
′, f ) where a single ABS transition hy-
bridizes with the cavity [Fig. 5(a)] and extract the cavity
frequency to compare with the JC result and the simple dis-
persive shift g2/2π� f [Fig. 5(b)]. Figures 5(c) and 5(d) also
show the equivalent plots for the avoided crossing when the
ABS transition is tuned with VQPC . The JC model, unlike
the dispersive shift, shows good agreement with both datasets
using κ ≈ 1 MHz (estimates from a 6.163 GHz resonator with
internal Q ∼ 7000) and g/2π ∼ 16 MHz, corresponding to
an M ∼ 10 pH, yielding γ /2π ∼ 1 GHz. The fact g � γ

accounts for the weak coupling and absence of clear Rabi
splitting, with similar behavior observed in multiple devices.

Note that M is ∼3 times lower than extracted from the ex-
perimental data in Fig. 2 taken in the many-channel regime.
This could be due to an underestimate of the channel number
in the many-channel regime, which would imply lower M,
or to using the JC approximation in the single-mode regime.
The Tϕ ∼ 1 ns is shorter by several orders of magnitude than
atomic point contacts [5] and recent work with InAs nanowire
JJs [19]. We speculate that the main mechanisms for inelastic
quasiparticle relaxation are emission or absorption of phonons
[36] and electromagnetic coupling to the environment [37].
Charge noise in 2DEGs is expected to generate root-mean-
squared (rms) fluctuations of 〈VQPC〉rms ∼ 0.5 mV [25]. The
slope d fA/dVQPC ∼ 120 GHz/V [Fig. 4(c)] yields T ∗

2 ∼ 4 ns
[38], comparable to our measured Tϕ . Nanowire gatemons
with RT showed off-resonant d fQ/dVG ∼ 500 GHz/V [19],
but the lower noise 〈VG〉rms ∼ 10 μV [35] and suppressed
charge dispersion improves T ∗

2 ∼ 50 ns [19]. Note that odd-
parity states in which a single quasiparticle occupies the ABS
would limit coherence on the ∼μs timescale and thus strongly
limit coherent manipulation. We anticipate further improve-
ments by using thicker buffer layers to increase the carrier
mobility, decreasing the gate capacitance, and reducing the
maximum frequency in longer channels.

In summary we have used a superconducting microres-
onator to probe the microwave response of a 2DEG SQPC
as a function of phase difference and carrier density. A shift
in cavity frequency as a function of phase is consistent with
coupling to ABSs channels. In the dispersive regime close
to π phase across the JJ, we observed random shifts in
the cavity frequency as a function of gate voltage related
to quantum interference-induced fluctuations in transmission.
We reproduced the phase and gate-voltage dependence us-
ing a JC model. In the single-channel regime we observe
paired crossings as a function of gate voltage, suggesting
the presence of resonant tunneling in a quantum dot. The
absence of Rabi splitting is due to the ∼GHz decoherence
induced by gate noise and level dispersion. With optimization
of materials our study paves the way for quantum control
of gate-defined quasiparticle qubits and provides insight into
how the gate geometry and material of a JJ relates to qubit
performance.
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APPENDIX A: THEORETICAL MODEL DESCRIBING
THE MANY-CHANNEL ANDREEV-CAVITY COUPLING

We describe the superconducting quantum point contact
(SQPC) using the low-energy effective Hamiltonian of the
2DEG:

H2DEG = − h̄2

2m∗
(
∂2

x + ∂2
y

) − iα(∂xσy − ∂yσx ) + U (y),

(A1)

where α is the Rashba spin-orbit strength, σx,y are the Pauli
spin matrices, and U (y) is the transverse electrostatic poten-
tial profile induced by the split gate. We use KWANT [39] to
solve (A1) on a two-dimensional tight-binding lattice for the
electron modes ψe(x, y) as a function of the QPC potential
μQPC , which is controlled by the applied split-gate voltage
VQPC . We consider both parabolic (PB) and hardwall (HW)
confining potentials UPB/HW (y) given by [40]

UHW (y) =
{
μQPC, |y| <

Wy

2

∞, |y| >
Wy

2

,

UPB(y) = μQPC + �y(μQPC )y2.

In this model, increasing μQPC shifts the potential min-
imum and increases the lateral confinement (given by the
width Wy for the HW and the curvature �y for PB) to capture
the effect of increasing VQPC in the device. To determine
the energy-phase relationship EA(δ) we use the short-junction
scattering matrix formalism [33], and solve for ABS solutions
through the condition SASNψ = ψ , where ψ is the wave func-
tion describing a quasiparticle with particle-like and hole-like
components, and SN (SA) the scattering matrix of normal (An-
dreev) scattering [41]. Then, using EA(δ = π )/� = √

1−τ ,
we extract the transmission τi of each mode. Based on the
maximum junction critical current ∼1 μA we set the chem-
ical potential μSC in the superconducting leads such that a
maximum of N = 20 channels are incident on the SQPC.
The calculated transmissions {τi} are shown as a function of
μQPC in Figs. 6(a) and 6(b) for both HW and PB potentials.
Note that the channels are spin degenerate, so each line rep-
resents two channels. As μQPC increases, the transmission of
each channel drops to near zero. One or two pairs of chan-
nels remain highly transmitting and undergo fluctuations in
transmission before finally being backscattered as the QPC
is pinched off. To visualize the overall number of highly
transmitting channels the number of channels with τi > 0.5 is
plotted in Fig. 6(c), showing a monotonic decrease with μQPC

which is qualitatively similar for both HW and PB potentials.
The Andreev transition frequency fA(δ) = 2EA(δ)/h for

the PB and HW potentials with μQPC = 4 μeV is shown in
Fig. 7(a). We employ the theory for adiabatic and dispersive
shifts described in Ref. [31] to calculate the corresponding
cavity shift � fR(δ) over the full range of large ( fA 
 fR)
and small ( fA ∼ fR) Andreev-cavity detuning. The mutual
inductance M between the cavity and loop determines the
coupling strength. The simulated � fR(δ) is shown in Fig. 7(b)
along with the measured frequency shift data of Fig. 2(c).
A good fit is obtained for μQPC = 4 μeV, with three pairs
of highly transmitting channels with τHW

i = 0.97, 0.92, 0.71

FIG. 6. Mode transmissions {τi} for the (a) hardwall (HW) and
(b) parabolic (PB) potential as a function of QPC potential μQPC . (c)
The number of highly transmitting channels, defined with τi > 0.5,
showing a progressive decrease with increasing μQPC as each channel
is backscattered.

and τPB
i = 0.95, 0.90, 0.81) and M = 30 pH. This is larger

than the M ∼ 10 pH deduced from comparison of the master
equation simulation to data in the single-channel regime
(Fig. 5). This discrepancy could be due to the precise QPC
potential deviating from the PB or HW induced by the split

FIG. 7. (a) Plot showing the Andreev transition frequency as a
function of phase difference for HW (blue solid) and PB (red dashed)
confinement at μQPC = 4 μeV. (b) Shift in cavity frequency as a
function of phase difference for HW (blue solid) and PB (orange
dashed), and the experimental data (black crosses).
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FIG. 8. (a) Plot showing the number of transmitting channels as a
function of QPC potential for HW and PB confinement. Also shown
is the transmission τmax of the lowest-energy mode. (b) Calculated
frequency shift of the cavity as a function of QPC potential parameter
μQPC . (c) Experimental frequency shift with gate voltage VQPC along
with a running average to show the overall frequency shift excluding
fluctuations. Regions II–IV are indicative only and correspond to
those indicated in Fig. 1(b).

gate, as this would modify the number of modes and precise
τ distribution in the QPC at a given VQPC .

To understand the measured � fR(VQPC ) shown in Fig. 2(e),
we plot the evolution of the channel number and the transmis-
sion of the lowest-energy mode (τmax) as a function of μQPC

for the PB and HW QPC in Fig. 8(a). As expected, at low
μQPC the number of channels drops rapidly while the lowest-
energy mode remains highly transmitting. The corresponding
� fR(μQPC, π ) in Fig. 8(b) shows ∼−5 MHz average shift
and fluctuates rapidly as each mode experiences a peak in τ

that leads to fA ≈ fR. There are a larger number of weaker

fluctuations in the experimental data [Fig. 8(c)] due to poten-
tial disorder fluctuations and the noise-induced weak coupling
analyzed in Fig. 5. The overall shift reduces between 8 and 12
μeV as the lowest mode is pinched off, consistent with the
behavior for VQPC < −4 V in the experimental data.

APPENDIX B: DESCRIPTION OF THE FEW-MODE
ANDREEV-CAVITY SYSTEM

In Figs. 3–5, numerical simulations are compared to res-
onator S21 data to understand the dynamics of single- or
few-channel ABSs coupled to the resonator. The ABS-cavity
Hamiltonian consists of three terms , H = HR + HA + HI ,
corresponding to the cavity, Andreev two-level system (TLS),
and interaction energies, respectively. The interaction is an
inductive coupling term HI = MIRIA, where M is the mutual
inductance and IR and IA are the current operators for the
cavity and ABSs, respectively. These terms are given by

HR = h̄ωR

(
a†a + 1

2

)
,

HA = h̄ωA

2
σz.

HI = g(a† + a)

(
σx + 1√

1 − τ tan
(

δ
2

)σz

)
.

g(δ, τ ) = √
z

EA(π, τ )

2

(
�

EA(δ, τ )
− EA(δ, τ )

�

)
, z = M2ω2

R

ZRRQ
,

where a† and a are creation and annihilation operators acting
on the resonator state and σi are the Pauli operators acting on
the even-parity ABS subspace. It can be shown that the inter-
action term reduces to the standard JC form HI ≈ g(a†σ− +
aσ+) by going into the interaction picture and making the
rotating wave approximation: |ωA − ωR| � ωR. (Note we do
not make this approximation but highlight the connection
to the JC Hamiltonian.) We introduce the collapse operators
cops = [

√
κ (1 + nth) · a,

√
κntha†,

√
γ σ−] corresponding to

cavity relaxation, cavity excitation, and Andreev TLS relax-
ation where κ is the cavity linewidth, γ is the Andreev TLS
relaxation rate, and nth is the average thermal photon number.
We implement the above Hamiltonian and collapse operators
in QuTiP [32] and use the qutip.correlation.spectrum function
to calculate the resonator response as a function of phase δ

or transmission τ and fitted to the experimental frequency
response. To perform the three-channel simulation shown in
Fig. 3(c) we extended to a multichannel version by introduc-
ing new Pauli operators for each additional mode and adding
Andreev energy terms HA, coupling terms HI , and collapse
operators.
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