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Continuous-variable quantum sensing of a dissipative reservoir
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We propose a continuous-variable quantum sensing scheme, in which a harmonic oscillator is employed as
the probe to estimate the parameters in the spectral density of a quantum reservoir, within a non-Markovian
dynamical framework. It is revealed that the sensing sensitivity can be effectively boosted by (i) optimizing
the weight of the momentum-position-type coupling in the whole probe-reservoir interaction Hamiltonian, (ii)
the initial quantum squeezing resource provided by the probe, (iii) the noncanonical equilibration induced by
the non-Markovian effect, and (iv) applying an external driving field. Our results may have some potential
applications in understanding and controlling the decoherence of dissipative continuous-variable systems.
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I. INTRODUCTION

Quantum sensing aims at characterizing, measuring and
estimating an unknown parameter of interest with ultrahigh
sensitivity, which can surpass the standard bound set by
classical statistics, with the help of the so-called quantum
superiority [1–3]. Such a quantum superiority is commonly
established by employing certain quantum resources, such as
quantum entanglement [4–10], quantum squeezing [11–16],
as well as quantum criticality [17–22], which have no coun-
terparts in classical physics. Quantum sensing has been widely
applied to the studies of various quantum thermometers
[23–28] and quantum magnetometries [29–32].

Recently, much attention has been focused on the sensing
of a quantum reservoir, in which a probe is used to indirectly
measure the details about the spectral density of the quantum
reservoir [33–41]. It is generally believed that the spectral
density fully characterizes the frequency dependence of the
interaction strengths as well as the dispersion relation of a
quantum reservoir. In the theory of open quantum systems, the
spectral density plays a crucial role in determining the decay
rates of dissipation and decoherence [42–46]. Moreover, in
many dynamical control schemes of decoherence reduction,
say, the strategy of decoupling pulses in Refs. [47–49], prior
knowledge about the spectral density is indispensable. Unfor-
tunately, the spectral density itself is not a physical observable
and is usually described by a set of phenomenological pa-
rameters, which cannot be derived from first principles. Thus,
quantum sensing of the spectral density is of great scientific
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significance from the perspectives of understanding and con-
trolling the decoherence.

Several sensing schemes of the spectral density have been
proposed in previous works [33–41,50]. However, almost all
these existing studies have restricted their attentions to (i)
the discrete-variable probe case [33,34,36–38,41], i.e., the
probe is made of a qubit or a few-level system, or (ii) the
continuous-variable probe case within a Markovian approxi-
mate dynamical framework [35,39,40,51]. Compared with the
qubit-based implementations, the continuous-variable settings
have some special features: the so-called unconditionalness,
which improves their efficiencies in certain quantum tasks
[52]. On the other hand, it has been demonstrated that
non-Markovianity can effectively boost the precision of a
qubit-based parameter estimation protocol [33,53–56]. Very
few studies focus on the non-Markovian effect on the per-
formance of a continuous-variable-based sensing scenario. In
this sense, going beyond the usual limitation of a Markovian
approximation is highly desirable for the continuous-variable
sensing of a quantum reservoir.

To address the above concerns, in this paper, we propose
a continuous-variable quantum sensing scheme, employing a
harmonic oscillator as the probe, to estimate the parameters
of the spectral density of a quantum reservoir. The influences
of the initial quantum squeezing, the probe-reservoir coupling
type, and the noncanonical equilibrium state induced by the
non-Markovianity on the sensing performance are investi-
gated. Moreover, we reveal that an external driving field,
which is solely applied to the probe, can be used as a dynam-
ical tool to improve the sensing performance.

This paper is organized as follows. In Sec. II, we briefly
outline a basic formalism about the quantum sensing and
propose our scheme in details. In Sec. III, we report our
main results. The conclusion of this paper is drawn in
Sec. IV. In the three appendices, we provide some addi-
tional materials about the main text. Throughout the paper,
for the sake of simplicity, we set h̄ = kB = m = 1, where
m denotes the mass of the harmonic oscillator probe in our
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scheme, and the inverse temperature is accordingly rescaled as
β = 1/T .

II. NON-MARKOVIAN SENSING

A. Quantum Fisher information (QFI)

In a conventional quantum sensing protocol, one needs a
quantum probe, which is initially prepared in a certain state
ρin, and one couples it to the target system, which contains
the parameter of interest λ. Due to the interaction between
the probe and the target system, the information about λ

is then encoded into the state of the probe via a mapping
ρλ = Mλ(ρin ). Here, the λ-dependent superoperator Mλ can
be physically realized by either a unitary [57–59] or a nonuni-
tary encoding process [33–41]. Next, by measuring a certain
physical observable with respect to ρλ, an estimator λ̂ can be
constructed. The uncertainty of λ̂ is constrained by the famous
quantum Cramér-Rao bound [60]

δ2λ̂ � 1

υFλ

, (1)

where δλ̂ is the standard error of the estimator, υ denotes
the repeated measurement times, and Fλ ≡ Tr(ρλς

2) with
ς defined by ∂λρλ = 1

2 (ςρλ + ρλς ) is the quantum Fisher
information (QFI). The QFI characterizes the statistical in-
formation about λ included in ρλ and is independent of
the selected measurement scenario. From Eq. (1), one can
conclude that a larger QFI corresponds to a higher sensing
precision.

In the study of quantum parameter estimation, researchers
are interested in the scaling relation, which describes the
connection between the QFI Fλ and the number of quantum
resources n̄ contained in ρin. The scaling relation is one of
the most important indexes to evaluate the performance of
a quantum sensing scheme. If Fλ is proportional to n̄, the
scaling relation is called the standard quantum limit (SQL).
It has been revealed that the SQL can be surpassed by us-
ing certain quantum resources. For example, by employing
quantum squeezing, the scaling relation in a Mach-Zehnder
interferometer can be boosted to the Zeno limit in the absence
of noise [11,61]. In this paper, going beyond the above noise-
less situation, we shall investigate the influences of quantum
squeezing on the sensing performance in the presence of deco-
herence, which is inevitably generated by the probe-reservoir
interaction.

B. The QFI of a Gaussian state

If the probe is a Gaussian continuous-variable system, its
quantum state ρλ can be fully characterized by the first two
moments d (the displacement vector) and σ (the covariant
matrix) [52]. Defining the quadrature operator as Q = (x, p)T,
the elements of d and σ are, respectively, defined by di =
Tr(ρλQi ) and σi j = Tr[ρλ{
Qi,
Qj}] with 
Qi = Qi − di.
With expressions of d and σ at hand, the QFI with respect to
the Gaussian state ρλ can be calculated as [62–64]

Fλ = 1
2 [vec(∂λσ )]†M−1vec(∂λσ ) + 2(∂λd )†σ−1∂λd, (2)

where vec(·) denotes the vectorization of a given matrix, and
M = σ ⊗ σ − � ⊗ � with [Qi, Qj] = i�i j .

FIG. 1. Schematic diagram of our quantum sensing scheme. A
continuous-variable probe, which is initially prepared in a squeezed
state, is employed to reveal the details of the spectral density J (ω)
of a thermal reservoir, which consists of an infinite collection of
noninteracting harmonic oscillators.

C. Our sensing scheme

As displayed in Fig. 1, in our quantum sensing scheme,
a harmonic oscillator is employed as the probe to detect the
spectral density of a dissipative thermal reservoir. The whole
Hamiltonian of the probe plus the reservoir can be described
by H = Hp + Hr + Hint + Hc. Here

Hp = p2

2m
+ 1

2
mω2

0x2 (3)

is the Hamiltonian of the probe,

Hr =
∑

k

(
p2

k

2mk
+ 1

2
mkω

2
k x2

k

)
(4)

denotes the Hamiltonian of the thermal reservoir,

Hint =
∑

k

ckxkS (5)

describes the probe-reservoir interaction, which is responsible
for the encoding process in our sensing scheme, and

Hc =
∑

k

c2
k

2mkω
2
k

S2 (6)

is the so-called counterterm [42], which compensates for
the frequency shift induced by the interaction between the
probe and the thermal reservoir [42,65–67]. The quantities
{x, p, m, ω0} and {xk, pk, mk, ωk} are the position, the momen-
tum, the mass, and the frequency of the probe and the kth
harmonic oscillator of the reservoir, respectively. Parameters
ck quantify the probe-reservoir coupling strengths, and S de-
notes the coupling operator.

In this paper, we consider the following general coupling
operator

S = x cos θ + p sin θ. (7)

By varying the coupling angle θ , both position-position-type
(xxk-type) coupling and momentum-position-type (pxk-type)
coupling can be taken into account. Notably, when θ =
0, the standard Caldeira-Leggett model [42,65–67] can be
recovered. In Refs. [67,68], the authors reported that the
momentum-position-type coupling can remarkably modify
the dissipation experienced by the probe. Their results inspire
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us to explore the effect of the momentum-position-type cou-
pling on the sensitivity of the quantum sensing.

The spectral density in our model, which is defined by

J (ω) ≡
∑

k

c2
k

2mkωk
δ(ω − ωk ), (8)

fully determines the properties of the thermal reservoir. In the
following, we assume J (ω) is an Ohmic spectral density with
a Lorentz-Drude cutoff

J (ω) = 2γω

π

�2

ω2 + �2
, (9)

where γ (the coupling strength) and � (the cutoff frequency)
are the two parameters to be estimated in this paper, namely
λ = γ or � henceforth. The Ohmic-type spectral density con-
stitutes a very general form to describe many different types
of reservoirs. By varying the scopes of the coupling strength
γ and the cutoff frequency �, the Ohmic-type spectral den-
sity can be employed to simulate the dynamics of charged
interstitials in metals [44,45]. Moreover, an Ohmic model
with a Lorenz-Drude regularization can be used to describe
the electronic energy transfer dynamics in photosynthetic
a pigment-protein complex and the Fenna-Matthews-Olson
complex [69]. On the other hand, the choice of the Lorentz-
Drude-type Ohmic spectral density can greatly reduce the
difficulties in deriving the expression of the output state. Thus,
due to the above two reasons, we choose the Ohmic spectral
density as the example to demonstrate the feasibility of our
proposed sensing scheme.

The probe is initially prepared in a squeezed state

ρp(0) = S(r)D(α)|0〉〈0|D†(α)S†(r), (10)

where D(α) ≡ exp(αa† − α∗a) and S(r) ≡ exp[r(a2 −
a†2)/2] are the displacement and the squeeze operators,
respectively. Here, a|0〉 = 0 denotes the Fock vacuum state
and a ≡ (x + ip)/

√
2 is introduced as the annihilation

operator of the probe. It is easy to prove that ρp(0) is a
Gaussian state. Assuming the whole initial state of the probe
plus the reservoir is ρp(0) ⊗ ρG

r with ρG
r = e−βHr/Tr(e−βHr )

being the canonical Gibbs state of the thermal reservoir,
the dissipative dynamics generated by H can be exactly
derived by using the quantum master equation approach.
As demonstrated in Refs. [42,67,68,70], the Gaussianity of
the probe can be fully preserved during the time evolution
as a consequence of the bilinear structure of the global
Hamiltonian H . On the other hand, using the Heisenberg
equation of motion, the expressions of d and σ can be
obtained (see Appendices A and B for details). As long as the
first two momenta are obtained, the QFI can be accordingly
computed by making use of Eq. (2).

When performing the numerical calculations to Fλ using
Eq. (2), one needs to handle first-order derivatives, ∂λd and
∂λσ in Eq. (2). In this paper, the first-order derivative for
an arbitrary λ-dependent function fλ is numerically done
by adopting the following finite difference method (see Ap-
pendix C and Ref. [71] for more details):

∂λ fλ � − fλ+2δ + 8 fλ+δ − 8 fλ−δ + fλ−2δ

12δ
. (11)

We set δ/λ = 10−6, which provides a very good accuracy.

0 2 4 6 8
0

1

2

3

0 1 2 3
0

0.01

0.02

0.03

0.04

1000 2000
0

0.05

1000 2000
0

1.5
10-3

FIG. 2. The non-Markovian dynamics of (a) Fγ (t ) and (b) F�(t )
with different temperatures: T = ω0 (blue dashed lines), T = 3ω0

(red dot-dashed lines), and T = 5ω0 (magenta solid lines). The insets
depict the steady-state QFI Fλ(∞) in the long-time regime. One can
see that the value of Fλ(∞) is small, but still positive. Other param-
eters are chosen as ω0 = 0.5 THz, � = 10ω0, γ = 3ω0, r = 5ω0,
α = 0, and θ = 0.

III. RESULTS

A. Non-Markovian dynamics of the QFI

The non-Markovian dynamical behavior of the QFI is dis-
played in Fig. 2. At the beginning, no message about the
spectral density is included in the initial state ρp(0), leading to
Fλ(0) = 0. As the encoding time becomes longer, the probe-
reservoir interaction generates the information of the spectral
density, which results in the increase of the QFI. After arriving
at a maximum value, Fλ(t ) begins to decrease as a result of
decoherence. Finally, as the probe evolves to its steady state
ρp(0) in the long-encoding-time limit, the value of Fλ(t ) re-
mains unchanged. In the insets of Fig. 2, we plot the QFI in the
long-encoding-time regime. One can clearly see Fλ(∞) > 0,
which is induced by the purely non-Markovian effect and is
evidently different from that of the previous Markovian case
[35,39,40,51]. More detailed discussions on the behavior of
Fλ(∞) are presented in Sec. III C.

The above result means there exists an optimal encoding
time which can maximize the QFI. The occurrence of such
a maximal QFI with respect to the optimal encoding time
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FIG. 3. The maximal QFI of (a) maxt Fγ and (b) maxt F� are
plotted as a function of the coupling angle θ with different tempera-
tures: T = ω0 (green dashed lines), T = 3ω0 (cyan dot-dashed lines),
and T = 5ω0 (orange solid lines). Due to the rotational symmetry of
S, we here restrict our study to θ ∈ [0, π ]. Other parameters are the
same as those of Fig. 2.

originates from the competition between the indispensable
encoding and the unavoidable decoherence [24,33], which
are induced by the probe-reservoir interaction. In Fig. 3, we
plot the maximal QFI, maxt Fλ, as a function of the cou-
pling angle θ . One can find that the maximal QFI can be
further improved by adjusting the coupling angle. This re-
sult means the pure position-position-type coupling in the
standard Caldeira-Leggett model is not the prime choice for
obtaining the maximum sensing precision. Via adding the
momentum-position-type coupling in Hsb, one can design the
most efficient probe-reservoir interaction Hamiltonian for the
encoding process.

Moreover, we observe that the dynamics of QFI can ex-
hibit an oscillating behavior, e.g., the blue dashed line in
Fig. 2(b), which will result in multiple local maxima. This
behavior is different from the previous result [35] in which
there exists one single peak. Such a result was also reported
in Refs. [24,53] and may be linked to the exchange of in-
formation between the thermal reservoir and the probe. The
reversed information flow from the reservoir back to the probe
is commonly regarded as evidence of non-Markovianity.

B. The scaling relation

For the initial state given by Eq. (10), the averaged photon
number reads

n̄ ≡ Tr[ρp(0)a†a] = |α|2 + sinh2 r, (12)

which can be regarded as the quantum resource employed
in our sensing scheme. Furthermore, we introduce a squeez-
ing ratio ζ ≡ sinh2 r/n̄ to quantify the weight of quantum
squeezing in the total quantum resource. The ratio of ζ varies
from ζ = 0 for a purely coherent state to ζ = 1 for a purely
squeezed vacuum state. Next, we shall explore the scaling
relation versus n̄ and ζ .

The scaling relations between maxt Fλ and n̄ with different
squeezing ratios are displayed in Fig. 4. One can find that
maxt Fλ is proportional to n̄, which means the sensing pre-
cision scales as the SQL in our scheme. However, we find that
the slope of the SQL can be enhanced by increasing the weight
of quantum squeezing, which implies that quantum squeezing
can be used as a resource to boost the sensing performance.
These results are in agreement with many previous studies
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FIG. 4. The maximum QFI of (a) maxt Fγ and (b) maxt F� vs
the average number of photons, n̄, with different squeezing ratios:
ζ = 0 (blue dashed lines), ζ = 0.5 (magenta solid lines), and ζ = 1
(red dot-dashed lines). Other parameters are chosen as ω0 = 1 THz,
� = 10ω0, T = 3ω0, and γ = ω0.

of noisy quantum metrology: in a noiseless ideal case, using
quantum resource can indeed boost the metrological perfor-
mance and result in a better scaling relation (such as the Zeno
limit [11,61] or the Heisenberg limit [72]), but these quantum
superiorities generally degrade back to the SQL under the
influence of decoherence [33,54,73,74]. Such a result is called
the no-go theorem of noisy quantum metrology.

C. Breakdown of the Markovian approximation in the
long-encoding-time regime

In this subsection, we shall discuss the steady-state QFI
in the long-encoding-time regime. As demonstrated in many
previous works [42,75–79], within the Markovian treatment,
the long-time steady state of the probe can be described
by a canonical Gibbs state at the same temperature as the
quantum reservoir. On the other hand, the contribution from
the counterterm Hc is completely washed out by the probe-
reservoir interaction under the Markovian approximation [42].
The above two points mean the steady state of the probe will
be

ρp(∞) = ρG
p = e−βHp

Tr(e−βHp )
, (13)

instead of ρp(∞) ∝ e−β(Hp+Hc ). This result is quite different
from that of the qubit-based temperature sensing case [24], in
which the effect of frequency renormalization is fully included
in the steady state of the probe. From the above Eq. (13), one
can easily that find dM(∞) = (0, 0)T and

σM(∞) = coth
( ω0

2T

)(
ω−1

0 0
0 ω0

)
(14)

are independent of the details of the spectral density, which
leads to FM

λ (∞) = 0. It is necessary to point out that
dM(∞) = (0, 0)T and Eq. (14) can be reproduced by directly
calculating the equilibration dynamics of the probe under the
Markovian approximation (see Appendix B for details).

However, such a canonical thermalization totally breaks
down, namely, ρp(∞) �= ρG

p , in the strongly non-Markovian
regime where the noncanonical equilibrium state appears.
As demonstrated in Refs. [77,78], the emergence of a non-
canonical distribution is commonly linked to the existence of
probe-reservoir correlations, which implies there exists infor-
mation exchange between the probe and the thermal reservoir.
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FIG. 5. The steady-state second moments of (a) σxx (∞) and
(b) σpp(∞) are plotted as a function of temperature. The steady-state
QFIs of (c) Fγ (∞) and (d) F�(∞) are displayed with the increase of
temperature. The red five-pointed stars are Markovian results, while
the blue crosses represent the results predicted by our non-Markovian
method. Other parameters are chosen as ω0 = 0.5 THz, � = 10ω0,
γ = 3ω0, r = ω0, α = 0, and θ = 0.

This result suggests, in the non-Markovian case, the long-time
steady state of the probe will rely on not only the reservoir’s
temperature, but also the details of the spectral density, result-
ing in Fλ(∞) > 0.

To check the above analysis, in Figs. 5(a) and 5(b) we
display σxx(∞) and σpp(∞) versus the temperature of the
quantum reservoir using both the non-Markovian and the
Markovian methods. One can find that the non-Markovian
results depart from the results predicted by the canonical
Gibbs state when temperature is very low, for example,
T/ω0 ∈ (0, 2] in Fig. 5(b). This result means the breakdown
of the Markovian approximation and the appearance of the
noncanonical equilibration in the low-temperature regime.
In Figs. 5(c) and 5(d), Fλ(∞) is plotted as a function of
the temperature. One can see Fλ(∞) > 0 if the temper-
ature is very low. However, with increasing temperature,
the non-Markovianity becomes ignorable and Fλ(∞) grad-
ually vanishes. In this sense, the nonzero residual QFI at
low temperature stems from non-Markovian effects which
cannot be predicted by the previous Markovian approaches
[35,39,40,51]. This result means the non-Markovianity is not
only a mathematical concept, but also a valuable resource to
improve the sensing precision.

D. Enhanced sensing performance by adding an external
driving field

In this subsection, we present a dynamical steer protocol to
improve the sensing performance by using an external driving
field, which is solely applied to the probe. To this aim, in the
original Hamiltonian of the probe, we add the following time-
dependent term [80,81]

Hf(t ) = −F0 sin(ωft )x, (15)
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FIG. 6. 
Fγ is plotted as a function of (a) the driving frequency
ωf and (b) the driving amplitude F0. 
F� vs (c) the driving frequency
ωf and (d) the driving amplitude F0. Parameters are chosen as ω0 =
0.5 THz, � = 10ω0, γ = 3ω0, r = 5ω0, α = 0, and θ = θopt.

where F0 and ωf are the driving amplitude and frequency,
respectively. Using the method of deriving the first two mo-
ments given in Appendix A, the QFI under driving can be
obtained without difficulties. To quantify the influences of the
continuous-wave driving field on the sensing precision, we
define the following quantity:


Fλ ≡ max
t

Fλ(F0, ωf ) − max
t

Fλ(F0 = 0, ωf = 0). (16)

As long as 
Fλ > 0, one can conclude that the external driv-
ing field plays a positive role in our sensing performance. As
shown in Fig. 6, via applying an external driving field, the
sensing precision can be effectively improved. Moreover, by
adjusting either the driving amplitude F0 or the frequency ωf,
the effect of the external driving field can be further optimized.
From Fig. 6, one can see that the constructive effect generated
by optimizing the driving amplitude is rather robust: 
Fλ

scales linearly with the increase of the value of F0. However,
when the driving frequency ωf is neither too high nor too
low, the dynamical steer effect induced by varying the driving
frequency ωf becomes negligible.

IV. CONCLUSION

In summary, we employ a harmonic oscillator, which is
initially prepared in a squeezed state, acted as a probe to
estimate the parameters of the spectral density of a bosonic
reservoir. Going beyond the usual Markovian treatment, a
SQL-type scaling relation, which can be further optimized by
increasing the proportion of squeezing in the initial quantum
resource, is revealed. To maximize the sensing precision, we
analyze the influences of the form of probe-reservoir inter-
action, the non-Markovianity, as well as an external driving
field on the sensing performance. It is found that the sensing
sensitivity the can be significantly improved by including pxk-
type coupling, which is commonly neglected in the standard
Caldeira-Leggett model. At low temperature, we find that
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the non-Markovianity can lead to a noncanonical equilibrium
state, which contains information of the spectral density under
the influence of decoherence. Using such a non-Markovian ef-
fect, our sensing scheme still works in the long-encoding-time
regime where the Markovian one completely breaks down.
Moreover, we propose a dynamical steer protocol, in which
an external driving field is applied to the probe, to boost the
sensing outcome. Our results presented in this paper may
provide some theory supports for designing a high-precision
quantum sensor. Furthermore, due to the importance of the

spectral density in the theory of open quantum systems, we
expect our results to be of interest for understanding and
controlling the decoherence.
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APPENDIX A: THE EXACT EXPRESSIONS OF d AND σ

In this Appendix, we would like to show how to derive exact expressions of d and σ . Using the Heisenberg equation of motion
of Ȯ = −i[O, H], one can find that the equations of motion of x, xk , p, and pk are given by (m = 1)

ẋ = p + sin θ

( ∑
k

ckxk +
∑

k

c2
k

mkω
2
k

S
)

, (A1)

ṗ = −ω2
0x − cos θ

(∑
k

ckxk +
∑

k

c2
k

mkω
2
k

S
)

, (A2)

ẋk = pk

mk
, ṗk = −mkω

2
k xk − ckS. (A3)

From Eq. (A3), one can find that the formal solution of xk is

xk (t ) = xk (0) cos(ωkt ) + pk (0)

mkωk
sin(ωkt ) −

∑
k

ck

mkωk

∫ t

0
dτ sin[ωk (t − τ )]S (τ ), (A4)

where S (t ) = x(t ) cos θ + p(t ) sin θ . Substituting the above formal solution of xk into Eqs. (A1) and (A2), one can find the
following integrodifferential equation for the position operator:

ẍ(t ) + ω2
0x(t ) +

(
cos θ

d

dt
− sin θ

d2

dt2

) ∫ t

0
dτZ (t − τ )S (τ ) = sin θṘ(t ) − cos θR(t ), (A5)

where

Z (t ) ≡
∑

k

c2
k

mkω
2
k

cos(ωkt ), R(t ) ≡
∑

k

ck

[
xk (0) cos(ωkt ) + pk (0)

mkωk
sin(ωkt )

]
, (A6)

are, respectively, the so-called damping kernel and environment-induced stochastic force. In this paper, we consider the reservoir
to be initially prepared as ρG

r = e−βHr/Tr(e−βHr ). This assumption leads to 〈R(t )〉r = 0 and the symmetrized environmental
correlation function is given by

C(t ) ≡ 1

2
[〈R(t )R(0)〉r + 〈R(0)R(t )〉r] =

∑
k

c2
k

2mkω
2
k

coth
(βωk

2

)
cos(ωkt ), (A7)

where 〈O〉r ≡ Trb(ρG
r O). For the Ohmic spectral density considered in this paper, one can find Z (t ) = γ�e−�t and

C(t ) =2γ

β
e−�t + 4γ�2

β

∞∑
n=1

νne−νnt − �e−�t

ν2
n − �2

= 2γ

β
e−�t − 4γ�2

β

∞∑
n=1

�e−�t

ν2
n − �2

+ 4γ�2

β

∞∑
n=1

νne−νnt

ν2
n − �2

=γ

β

[
2(1 − �) + β�2 cot

(β�

2

)]
e−�t + γ�2

π

[
H

(
e− 2πt

β , 1, 1 − β�

2π

)
+ H

(
e− 2πt

β , 1, 1 + β�

2π

)]
e− 2πt

β ,

(A8)

where νn ≡ 2nπ/β are the Matsubara frequencies, and H(a, b, c) denotes the Lerch transcendent function.
Solving the Eq. (A5) by using Laplace transformation, one can find

x(t ) = G1(t )x(0) + G2(t )p(0) +
∫ t

0
dτG3(t − τ )R(τ ), (A9)

p(t ) = G4(t )x(0) + G5(t )p(0) +
∫ t

0
dτG6(t − τ )R(τ ). (A10)
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FIG. 7. The dynamics of the second moment σxx (t ) with different temperatures: (a) T = 0.1ω0, (b) T = 0.3ω0, (c) T = 0.7ω0, (d) T =
1.6ω0, (e) T = 5ω0. The red hexagons are the Markovian results, while the blue solid lines are obtained by the non-Markovian method. Other
parameters are chosen as ω0 = 1 THz, � = 10ω0, γ = ω0, r = ω0, α = 0, and θ = 0.

Here, Gα (t ) with α = 1, 2, 3, 4, 5, 6 are determined by the following inverse Laplace transformation

G1(t ) = L−1

[
z + z cos θ sin θZ̃ (z)

ζ (z)

]
, G2(t ) = L−1

[
1 + z sin2 θZ̃ (z)

ζ (z)

]
, G3(t ) = L−1

[
z sin θ − cos θ

ζ (z)

]
, (A11)

G4(t ) = L−1

[
−ω2

0 − z cos2 θZ̃ (z)

ζ (z)

]
, G5(t ) = L−1

[
z − z sin θ cos θZ̃ (z)

ζ (z)

]
, G6(t ) = L−1

[
−ω2

0 sin θ − z cos θ

ζ (z)

]
, (A12)

where ζ (z) ≡ ω2
0 + z2 + zZ̃ (z)(cos2 θ + ω2

0 sin2 θ ) and Z (z) = L[Z (t )] = γ�/(z + �). By making use of residue theorem, the
inverse Laplace transformation can be exactly worked out :

Gα (t ) =
3∑

i �=j �=k=1

Gα (zi )ezit

(zi − zj )(zi − zk)
, (A13)

where zi are the roots of the cubic polynomial z3 + �z2 + [ω2
0 + γ�(cos2 θ + ω2

0 sin2 θ )]z + ω2
0� = 0, and Gα (z) are given by

G1(z) = z(z + �) + zγ� cos θ sin θ, G2(z) = z + � + zγ� sin2 θ, G3(z) = (z + �)(z sin θ − cos θ ), (A14)

G4(z) = −ω2
0(z + �) − zγ� cos2 θ, G5(z) = z(z + �) − zγ� cos θ sin θ, G6(z) = −(z + �)(ω0 sin θ + z cos θ ). (A15)

Using Eqs. (A9), (A10), and some straightforward calculations, we can finally obtain the exact expressions of the first two
momentums as dx,p = G1,4(t )〈x(0)〉p + G2,5(t )〈p(0)〉p and

σxx(t ) = G2
1 (t )σxx(0) + G2

2 (t )σpp(0) + 2G1(t )G2(t )σxp(0) + 2
∫ t

0
dτ

∫ t

0
dτ ′G3(t − τ )G3(t − τ ′)C(τ − τ ′), (A16)

σpp(t ) = G2
4 (t )σxx(0) + G2

5 (t )σpp(0) + 2G4(t )G5(t )σxp(0) + 2
∫ t

0
dτ

∫ t

0
dτ ′G6(t − τ )G6(t − τ ′)C(τ − τ ′), (A17)

σxp(t ) =G1(t )G4(t )σxx(0) + G2(t )G5(t )σpp(0) + 2[G2(t )G4(t ) + G1(t )G5(t )]σxp(0)

+ 2
∫ t

0
dτ

∫ t

0
dτ ′G3(t − τ )G6(t − τ ′)C(τ − τ ′),

(A18)

where 〈O〉p ≡ Trp[ρp(0)O] and σi j (0) denotes the initial covariant matrix with respect to ρp(0).

APPENDIX B: MARKOVIAN RESULTS

In the case of γ , ω0 � min{�, 2πT }, Refs. [42,70] provided a Markovian approximate expressions of Gα (t ) in the case of
θ = 0 as follows:

GM
1 (t ) �

[
κ

�
sin(�t ) + cos(�t )

]
e−κt , GM

2 (t ) � 1

�
sin(�t )e−κt , GM

3 (t ) � − 1

�
sin(�t )e−κt , (B1)

GM
4 (t ) � −ω2

0

�
sin(�t )e−κt , GM

5 (t ) � cos(�t )e−κt − κ

�
sin(�t )e−κt , GM

6 (t ) � − cos(�t )e−κt + κ

�
sin(�t )e−κt , (B2)

where κ ≡ γ /2 and �2 ≡ ω2
0 − κ2. On the other hand, in the Markovian treatment, the environmental correlation function

C(τ − τ ′) reduces to a Dirac-δ function, i.e., CM(τ − τ ′) � 4γ T δ(τ − τ ′). With these above approximate expressions of GM
α (t )

and CM(τ − τ ′) at hand, the first two momentums under the Markovian approximation can easily be obtained. In Fig. 7, we
display σxx(t ) from both the Markovian and non-Markovian methods. Good agreement is found between results from the above
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two different approaches at high temperature, say T = 5ω0 in Fig. 7(e). However, as the environmental temperature decreases,
the non-Markovian effect becomes strong. At low temperature, e.g., T = 0.1ω0 in Fig. 7(a), a relatively large deviation is
found, which means the breakdown of the Markovian approximation. Moreover, using Eqs. (B1), (B2), and the Dirac-δ-type
environmental correlation function, one can easily derive the expressions of the first two momentums in the long-encoding-limit,
which recovers dM(∞) = (0, 0)T and Eq. (14) in the main text. This result demonstrates that the probe experiences a canonical
thermalization under the Markovian approximation, which is consistent with Refs. [75–78].

APPENDIX C: THE DERIVATION OF EQ. (11)

In this Appendix, we show the details of deriving the Eq. (11). By making the Lagrange interpolation method, a smooth
function fλ = f (λ), which is defined in a tiny interval λ ∈ [λmin, λmax], can be approximately expressed as a sum of polynomials,

f (λ) �
N∑

n=0

f (λn)Ln(x), (C1)

where λmin = λ0 < λ1 < · · · < λN = λmax with λn+1 = λn + δ; δ = (λmax − λmin)/N are (N + 1) uniformly spaced nodes; and

Ln(x) ≡
∏
m �=n

x − xm

xn − xm
(C2)

is the so-called Lagrange multiplier function. Taking N = 4 as an example, we have

f (λ) � (λ − λ1)(λ − λ2)(λ − λ3)(λ − λ4)

(λ0 − λ1)(λ0 − λ2)(λ0 − λ3)(λ0 − λ4)
f (λ0) + (λ − λ0)(λ − λ2)(λ − λ3)(λ − λ4)

(λ1 − λ0)(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)
f (λ1)

+ (λ − λ0)(λ − λ1)(λ − λ3)(λ − λ4)

(λ2 − λ0)(λ2 − λ1)(λ2 − λ3)(λ2 − λ4)
f (λ2) + (λ − λ0)(λ − λ1)(λ − λ2)(λ − λ4)

(λ3 − λ0)(λ3 − λ1)(λ3 − λ2)(λ3 − λ4)
f (λ3)

+ (λ − λ0)(λ − λ1)(λ − λ2)(λ − λ3)

(λ4 − λ0)(λ4 − λ1)(λ4 − λ2)(λ4 − λ3)
f (λ4).

(C3)

Assuming f (λ) is differentiable in the interval of [λ2 − 2δ, λ2 + 2δ], then the first-order derivative evaluated at λ = λ2 can be
approximately written as

f ′(λ2) � d

dλ
f (λ)

∣∣∣∣
λ=λ2

= 1

12δ
[ f (λ0) − 8 f (λ1) + 8 f (λ3) − f (λ4)], (C4)

which recovers Eq. (11) in the main text.
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