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Multistable excitonic Stark effect
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The optical Stark effect is a tell-tale signature of coherent light–matter interaction in excitonic systems,
wherein an irradiating light beam tunes exciton transition frequencies. Here we show that, when excitons are
placed in a nanophotonic cavity, the excitonic Stark effect can become highly nonlinear, exhibiting multivalued
and hysteretic Stark shifts that depend on the history of the irradiating light. This multistable Stark effect
(MSE) arises from feedback between the cavity mode occupation and excitonic population mediated by the
Stark-induced mutual tuning of the cavity and excitonic resonances. Strikingly, the MSE manifests even for
very dilute exciton concentrations and can yield discontinuous Stark shift jumps of order meV. We expect that
the MSE can be realized in readily available transition metal dichalcogenide excitonic systems placed in planar
photonic cavities at modest pump intensities. This phenomenon can provide new means to engineer coupled
states of light and matter that can persist even in the single exciton limit.
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I. INTRODUCTION

Strong light–matter interaction can provide a versatile
platform for dynamically controlling quantum matter [1]. A
striking example is the excitonic optical Stark effect [2–5]:
Off-resonant irradiation of an excitonic system, with fre-
quency below the exciton transition energy, continuously
blue-shifts the exciton transition to higher frequencies as
the light intensity increases [4–8]. In contrast with the fixed
Rabi splitting found for polaritons, which is independent
of the intensity of light [9–11], the optical Stark effect is
linear in the irradiation intensity. This dependence grants
on-demand tunability of excitonic properties. On a fun-
damental level, the Stark effect arises from a variety of
origins, including the underlying fermionic nature of the ex-
citon’s constituents as well as Coulomb interactions [6,12].
In transition metal dichalcogenides (TMDs), Stark shifts are
furthermore sensitive to light polarization, thereby enabling
direct control over the valley excitons necessary for valley
optoelectronics [8,13,14].

Here we propose that the optical Stark effect can take on
a markedly different character when an excitonic system is
placed in a nanophotonic cavity (Fig. 1, inset). In this setting,
the Stark shift becomes a dynamical variable, with the cavity
field taking on the role of the irradiating field that shifts the
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excitonic levels. In particular, when the excitonic and cav-
ity modes are simultaneously pumped with separate driving
fields, the optical Stark effect can become multistable, exhibit-
ing a hysteretic Stark shift that depends on the history of the
optical drive. As we explain below and indicate in Fig. 1, this
multistable Stark effect (MSE) arises due to a Stark-induced
mutual tuning; the excitonic transition frequency (right panel)
is sensitive to the cavity mode occupation, while the cavity
resonance (left panel) is sensitive to the exciton population.
When applied exciton and cavity driving fields are detuned
from their respective bare transition frequencies, the mutual
tuning sets up a feedback that shifts the exciton and cavity
transition frequencies into resonance with their respective
drives (dashed to solid lines, Fig. 1). This feedback leads
to large nonlinearities that result in the MSE, which, as we
discuss below, can persist even in very dilute systems.

The MSE features discontinuous transitions between mul-
tiple distinct steady states of the combined cavity-exciton
system and can exhibit large discontinuous Stark shift jumps
of order meV. Indeed, we find that the exciton population
can take on multiple steady-state values [Fig. 2(a)] with a
hysteretic behavior that is controlled by a weak cavity drive
far detuned from the original exciton resonance. Further, the
magnitude of the Stark shift jump from one stable state to
another can be directly tuned by the drive that pumps the exci-
tonic population. These mechanisms provide in situ means of
tailoring the switching behavior in the exciton/cavity system.

In what follows, we will first demonstrate the origin of the
MSE in a simple illustrative setup of a single exciton emitter
coupled to a cavity mode. We then extend our analysis to a
monolayer TMD (e.g., WS2) hosting a large number of degen-
erate and delocalized excitonic states coupled to a photonic
crystal cavity. We show that the MSE can be achieved when
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FIG. 1. Mutual tuning of exciton (right panel) and cavity (left
panel) transitions induced by the optical Stark effect, wherein the
exciton transition frequency is sensitive to the cavity mode occupa-
tion (and vice versa). When the excitons and the cavity mode are
simultaneously pumped by their individual driving fields (downward
arrows indicate the corresponding pump frequencies), the exciton
and cavity transitions can shift into resonance with their drives (from
dashed to solid curves). These population-induced shifts generate the
feedback loop that gives rise to the MSE. (Inset) A two-dimensional
excitonic material such as a TMD can be readily layered on top of
a planar nanophotonic cavity formed by a photonic crystal defect to
achieve the conditions for realizing the MSE.

the valley excitons and the cavity mode are both driven by
individual circularly polarized light fields with realistic TMD
parameters, see below. We expect that the MSE can be realized
in TMDs on currently available high quality factor planar pho-
tonic cavities [15–18] (Fig. 1, inset) even at moderate optical
drive strengths of tens of kW/cm2. As we argue below, this
MSE platform provides new means of constructing hysteretic,
nonlinearly coupled states of light and matter that can, in
principle, persist even at the single exciton limit.

II. STARK-INDUCED MUTUAL TUNING
AND NONLINEARITY

The key to achieving the MSE is the nonlinearity medi-
ated by strong coupling between cavity photon modes and
excitons. As we now explain, this nonlinearity in the cavity-
exciton system can arise directly through the Stark effect. As
a simple and clear illustration of the MSE, we first focus on
a single localized excitonic mode interacting with a single
discrete cavity mode of a single polarization (e.g., that of a
localized exciton mode in a quantum dot). We will discuss the
MSE for delocalized excitons in a large TMD sample coupled
to a discrete cavity mode later in the text.

We model the localized exciton mode as a simple two-
level system with bare resonance angular frequency ν (0); we
denote the ground state (no exciton) by |P = 0〉 and the ex-
cited state (exciton present) by |P = 1〉. The cavity photon
mode has angular frequency ω(0). In the dispersive limit, the
dynamics of the system are described by the Hamiltonian
H = HX + H0 + Hint with (setting h̄ = 1 here and throughout,
unless otherwise stated):

HX = ν (0)P̂, H0 = ω(0)a†a, Hint = Va†aP̂, (1)

where a† is the creation operator for the cavity photon mode,
and P̂ = sz + 1/2 counts the exciton population via P̂|P〉 =
P|P〉, where 1 is the 2 × 2 identity matrix and sz = σ z/2,
where σ z is the third Pauli matrix.

The last term in Eq. (1) encodes a dispersive coupling,
V , between the excitons and the cavity photons that is valid
for V � |ν (0) − ω(0)|, ω(0), ν (0). In this limit, the magnitude
of V can be controlled directly through engineering of the
microcavity mode profile and its detuning from the exciton
resonance. Throughout this work we will consider V > 0 and
treat V as a phenomenological material-dependent parameter.
We note that this simple phenomenological model of a dis-
persive exciton-photon coupling captures the essential feature
of the exciton Stark shift—its dependence on the intensity
of light—that is widely seen in experiments [8,13,14]. For a
detailed discussion of the dispersive coupling strength in an
extended excitonic system and realistic parameter estimates
in a TMD/cavity structure, see later sections.

Crucially, through the dispersive coupling, both the exciton
and the cavity photon resonances are mutually dependent on
the other’s occupation. For a state with m cavity photons
present and excitonic state P = {0, 1}, the (cavity-dressed) ex-
citon and (exciton-dressed) cavity photon resonance angular
frequencies, ν̃(m) and ω̃(P), respectively, are given by:

ν̃(m) = ν (0) + V m, ω̃(P) = ω(0) + V P. (2)

The excitonic resonance ν̃(m) experiences a blue shift away
from its bare resonance frequency that is proportional to
the photon number in the cavity—the optical Stark ef-
fect [3,4,6,8]. We characterize this by the excitonic Stark
shift: δE ≡ ν̃(m) − ν (0) = V m. Similarly, the cavity photon
resonance frequency ω̃(P) also depends on the occupation of
the excitonic state, shifting as P changes. The mutual tuning
of exciton and cavity photon transitions exhibited in Eq. (2)
provides a natural means of feedback, and as we now discuss,
gives rise to nonlinear dynamical phenomena in the system.
Indeed, this Stark-induced mutual tuning (and the nonlinear
dynamical phenomena it enables) is not dependent on the
simple two-level structure of Eq. (1); as we will see later in the
text, Stark-induced mutual tuning persists even in a bosonic
framework.

III. MSE AND CAVITY-EXCITON STEADY STATES

To demonstrate the MSE, we consider an exciton-photon
microcavity system with laser drives at angular frequencies
νd and ωd . These fields pump the excitonic and cavity pho-
ton modes, respectively. This selectivity can be achieved by
choosing νd and ωd to be slightly detuned from ν̃(0) and ω̃(0),
respectively, with their individual detunings much smaller
than |ν (0) − ω(0)|.

In the presence of these laser driving fields, the Hamilto-
nian becomes H(t ) = H + H (d )

X (t ) + H (d )
0 (t ), with

H (d )
X (t ) = FX

2
(e−iνd tσ+ + H.c.),

H (d )
0 (t ) = F0

2
(e−iωd t a† + H.c.), (3)

where FX and F0 are the drive amplitudes, and σ+ = (σ x +
iσ y)/2, where σ x,y are the x, y Pauli matrices. In anticipation
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FIG. 2. A single excitonic emitter coupled to a cavity can dis-
play bistable and hysteretic steady states of the (a) exciton and
(b) cavity photon populations (reflected in the Stark shift, δE ). The
steady states are obtained by solving Eqs. (8) and (9); the thick
solid lines indicate the stable solutions, and the thin dashed lines
indicate the unstable solutions. Illustrative dimensionless parameters
used: FX /γ = 2, V/γ = 0.25, νd − ν(0) = 7γ , ωd − ω̃(0) = 1.5κ ,
and γ /κ = 10.

of making a rotating wave approximation below, we have
discarded counter-rotating terms in Eq. (3).

To explicitly demonstrate the MSE, we track the ex-
citon and cavity photon populations in the driven system
in the presence of Markovian dissipation that accounts for
exciton relaxation (recombination) and cavity photon loss.
As a first step, we transform into a frame that coro-
tates with the drives using U (t ) = exp (−iωdt a†a − iνdt P̂).
In the rotating frame, the system evolves according to
the (static) Hamiltonian H̃ = H̃X + H̃0 + H̃int , with H̃X =
(ν (0) − νd )P̂ + FX σ x/2, and H̃0 = (ω(0) − ωd )a†a + F0(a† +
a)/2. The interaction H̃int = Va†aP̂ does not change under the
transformation.

Using the rotating-frame Hamiltonian H̃, we take the den-
sity matrix of the composite exciton and cavity system (in
the rotating frame), ρ̃(t ), to evolve according to the master
equation

∂t ρ̃ = i[ρ̃(t ), H̃0 + H̃X + H̃int] + IX [ρ̃(t )] + I0[ρ̃(t )], (4)

where IX [ρ̃] = γ (2σ−ρ̃σ+ − σ+σ−ρ̃ − ρ̃σ+σ−) accounts
for recombination of the exciton, with rate γ , and I0[ρ̃] =
κ (2aρ̃a† − a†aρ̃ − ρ̃a†a) describes losses in the microcavity
photon mode with rate κ . The interaction H̃int �= 0 couples the
cavity and exciton subsystems by the mutual tuning of their
transition frequencies as in Eq. (2).

While Eq. (4) can generically encode a variety of com-
plex dynamical regimes of the composite system, as we now
discuss, a large separation in the cavity and exciton decay
timescales enables direct evaluation of the MSE steady states
(cf. Ref. [19] for a general discussion). Indeed, the regime
wherein the excitonic system relaxes far faster than the cavity
photon system can be readily achieved in many exciton-
cavity setups; see estimate below. Physically, this separation
of timescales means that the reduced density matrix of the
excitonic system ρ̃X (t ) ≡ Tr0 ρ̃(t ) rapidly reaches a quasis-
tationary state over a time that is short compared with the
characteristic evolution timescale of the cavity photon; here
Tr0 [TrX ] denotes the partial trace over photonic [excitonic]
degrees of freedom. On the timescale of excitonic relaxation,
the cavity state ρ̃0(t ) ≡ TrX ρ̃(t ) can be treated as quasistatic,
allowing the formation of an excitonic steady state that de-

pends parametrically on ρ̃0. On the timescale that the cavity
state ρ̃0(t ) evolves, ρ̃X (t ) maintains a quasistationary state that
adiabatically follows the slow evolution of ρ̃0(t ).

Using this separation of timescales, in describing the time
evolution of the exciton and cavity photons we adopt a
mean-field decoupling [19] of Eq. (4) by replacing the cavity-
exciton coupling by its mean-field averages Tr0[ρ̃(t )H̃int] →
V 〈m(t )〉P̂ and TrX [ρ̃(t )H̃int] → Va†a〈P̂(t )〉, where 〈P̂(t )〉 ≡
Tr[P̂ρ̃X (t )] and m(t ) ≡ Tr[a†aρ̃0(t )]. This mean-field decou-
pling is justified in the semiclassical regime where the photon
number in the cavity is large and fluctuations are small [19].
With this mean-field decoupling, the (rotating frame) exci-
ton and cavity density matrices ρ̃X (t ) and ρ̃0(t ), respectively,
evolve according to:

∂t ρ̃X (t ) = i[ρ̃X (t ), H̃X + V 〈m(t )〉P̂] + IX [ρ̃X (t )], (5)

∂t ρ̃0(t ) = i[ρ̃0(t ), H̃0 + Va†a〈P̂(t )〉] + I0[ρ̃0(t )]. (6)

The exciton population dynamics can be obtained by
directly evaluating the elements of ρ̃X (t ) in Eq. (5) to ob-
tain effective Bloch equations. Writing 〈si(t )〉 ≡ Tr [siρ̃X (t )]
where si = σ i/2 for i = x, y, z, and noting Tr [ρ̃X (t )] = 1, we
obtain

∂t 〈sx(t )〉 = δν(t )〈sy(t )〉 − γ 〈sx(t )〉,
∂t 〈sy(t )〉 = −FX 〈sz(t )〉 − δν(t )〈sx(t )〉 − γ 〈sy(t )〉, (7)

∂t 〈sz(t )〉 = FX 〈sy(t )〉 − 2γ (〈sz(t )〉 + 1/2),

where δν(t ) = νd − ν̃[〈m(t )〉]. We solve for the excitonic
(quasi)-steady state by setting the three equations above
equal to zero, and assuming that the cavity mode occupation
〈m(t )〉 = m is fixed. We thus obtain the (quasi)-steady-state
population of the excitonic mode as a function of the cavity
occupation, m:

P(m) = 〈sz〉 + 1

2
= F 2

X /2

F 2
X + 2[γ 2 + (νd − ν̃(m))2]

, (8)

where 〈sz〉 is the time independent steady-state solution of
Eq. (7). As is evident from Eq. (8), the steady-state excitonic
population depends both on the excitonic drive strength, FX,
and parametrically on the cavity population through the stark-
shifted exciton resonance, ν̃(m). We note that the exciton
population is always zero in the absence of exciton drive
(i.e., FX = 0), and we will see later that we need both the
exciton drive and the cavity drive to achieve mutual tuning
and multistability.

The steady-state cavity population can be obtained heuris-
tically by first considering the familiar expression for the
average population of a driven cavity mode with a fixed res-
onance frequency, ω: m̄ = (F 2

0 /4)/{κ2 + (ωd − ω)2}. Due to
the Stark-induced mutual tuning described above, the cavity
resonance frequency changes with the exciton population; see
Eq. (2). As a result, we replace ω → ω̃[P(m = m̄)] to yield a
self-consistency relation for the cavity mode population:

m̄ = (
F 2

0

/
4
)/{κ2 + (ωd − ω̃[P(m̄)])2}. (9)

We note that this heuristically obtained self-consistency rela-
tion agrees with results obtained through careful analysis of
the evolution of the full density matrix of the joint system in
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the regime κ/γ � 1 and V 2/γ � κ [19]. The steady-state
cavity occupation thus depends on the steady-state exciton
population through its mutually tuned cavity transition in
Eq. (2). For a detailed discussion of nonadiabatic effects and
switching near bifurcation points, see, e.g., Ref. [19].

We now explicitly exhibit the multistability described by
Eqs. (8) and (9). Choosing drive frequencies slightly blue
detuned from the bare exciton and cavity resonances (see
Fig. 2 and caption for parameter values), Eqs. (8) and (9)
yield multiple solutions for P as a function of F0 (for all
other parameters held fixed in this regime). These multiple
steady states arise from the MSE, as evidenced by the jumps
of the Stark shift δE (on the order of the exciton decay rate γ )
displayed in Fig. 2(b).

Within the bistable regime, two distinct stable steady-state
solutions for P and δE exist for the same drive parameters
(solid lines). This enables a hysteretic behavior of the exci-
tonic system that depends on the history of the optical drive.
Indeed, as F0 increases from zero (forward sweep), P (as well
as m̄) jumps to the upper branch of solutions (upward arrow)
at a forward threshold amplitude. However, when F0 is then
decreased (reverse sweep), both P (and δE ) jump to the lower
branch of solutions (downward arrow) at a distinct reverse
threshold amplitude. This hysteresis enables the system to
operate as an optically controlled “exciton switch” with “off”
and “on” states as the lower and upper branches.

Strikingly, this excitonic hysteresis can occur even for the
extreme case of a single excitonic mode (described above),
in sharp contrast with other types of excitonic nonlineari-
ties that are only induced at high exciton density and large
exciton–exciton interactions [20]. As we will see below, in the
presence of multiple excitonic modes/emitters, this unusual
property enables the MSE to manifest in dilute exciton gases.
We note that such driven modes are a prime venue for realiz-
ing nonlinear behavior in a wide variety of parameter regimes;
see, e.g., Ref. [21] where nonlinearities in circuit QED were
analyzed in the regime of large V > κ,
.

IV. MSE IN TMDS

Having exhibited the MSE mechanism for a single
excitonic emitter, we now discuss the MSE in readily avail-
able two-dimensional excitonic systems. A natural class of
candidate materials are the atomically thin TMDs, which
possess room-temperature stable excitons and large Stark
effects [8,13,14] and can be easily integrated with planar
photonic crystal cavities, as in the inset of Fig. 1. Here we
will focus on the zero center of mass momentum (COMM)
excitons in a single valley, where excitons obey circular polar-
ization selection rules [22–27]. By driving both the TMD and
the cavity mode with individual circularly polarized driving
fields of fixed handedness, only circularly polarized cavity
photons and excitons in the corresponding valley will be ex-
cited.

To describe the MSE in TMDs, we consider an extended
TMD layer placed on top of a photonic cavity formed by
a defect in a planar photonic crystal; see Fig. 1 inset. We
first note that the TMD excitonic mode at ν (0) can have a
large effective degeneracy N . This degeneracy accounts for
excitons at distinct exciton center of mass spatial coordinates;

these degenerate exciton emitters can form plane-wave super-
positions that lead to delocalized excitonic modes [28–30].
Importantly, the modes with zero COMM interact coherently
(in phase) with the same cavity photonic mode [28–30] (with
a wavelength of a few hundred nanometers); similarly, for
exciton pumping fields that have large wavelengths of or-
der several hundred nanometers, multiple excitonic emitters
can be driven in phase with each other. As such, in de-
scribing the TMD layer excitonic-cavity system, we replace
P̂ → P̂tot = ∑

j P̂j in the Hamiltonian Eq. (1), as well as
σ+,− → s+,−

tot = ∑
j σ

+,−
j in Eq. (3), where the sum over j

runs over each of the j = 1, . . . ,N degenerate excitonic emit-
ters. Similarly, ω̃(Ptot ) → ω̃ = ω(0) + V Ptot in Eq. (2) where
Ptot = 0, 1, 2, · · · are eigenvalues of P̂tot . Since all the emitters
interact with the same cavity photon mode, ν̃(m) in Eq. (2) re-
mains unchanged. Importantly, in the regime of low-excitation
density which we focus on, this treatment produces the same
results as a bosonic approach; see the Supplemental Material
[31].

We follow a similar procedure and use the separation of
timescales as discussed above for tracking the exciton and
cavity photon populations (see the Supplemental Material for
full details [31]). As we will discuss below, in the coupled
system of a monolayer TMD embedded in a photonic crys-
tal, we will work with (realistic) choices of exciton (
) and
cavity (κ) linewidths and exciton-photon coupling constant
V with κ/
 � 1 and V 2/
 � κ such that the mean-field
decoupling is valid. In so doing, we take a spin-coherent-state
ansatz so that the dynamics of the multiple emitter system
can be analyzed in terms of the dynamics of a giant spin
stot = sx

totx̂ + sy
totŷ + sz

tot ẑ, where sx,y,z
tot = ∑

i sx,y,z
i is summed

over the excitonic emitters. For fixed cavity occupation m
we obtain the steady-state exciton population in the extended
system (see the Supplemental Material [31]) as

Ptot = NF 2
X /2

F 2
X + 2(
2 + [νd − ν(m)]2)

, (10)

where 
 is the exciton recombination rate (for the zero
COMM excitons) in the extended TMD system; we note,
parenthetically, that this rate can be estimated from the re-
combination rate γ of a single localized exciton emitter as

 ∼ Nγ [28–30]. In obtaining Eq. (10) we have taken a
large degeneracy N 	 1 as well as focused on the low-
excitation regime. We note in the low-density/low-excitation
regime, FX � 
, νd , ν̃, Eq. (10) reproduces Ptot obtained from
a bosonic treatment; see the Supplemental Material [31]. In-
deed, both approaches produce a Ptot that is described by a
Lorentzian resonance peak that is tuned by the cavity photon
mode, m, as illustrated schematically in Fig. 1. As we will
see below, it is this mutual tuning of resonance peaks that is
critical for MSE.

Before we exhibit the MSE in TMD systems, we first
discuss the parameters for the cavity-exciton system. We note
that the excitonic mode degeneracy N can be large and can
range from N ∼ 102 − 104 [28]; this arises from the large
number of excitonic modes that can interact coherently within
a single wavelength of either the cavity photon mode or the
exciton drive [28–30]. An estimate of N can be obtained
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from the ratio of the mode area of the photonic mode (the
square of its wavelength) and the effective size of an exciton
(the square of its Bohr radius) [30]. Further, recombination
times for zero COMM excitons in typical monolayer TMDs
can range from 
−1 ∼ 0.5 to a few picoseconds [32–36],
whereas cavity relaxation times can be as long as tens to a
hundred picoseconds [15–18]. As a result, κ � 
, justifying
the separation of timescales and the mean-field decoupling
approach we have used to describe the MSE. Last, strong
light–matter interaction in monolayer TMDs [8,13] can lead
to values of the dispersive coupling V up to 0.5 meV; see
the Supplemental Material for a detailed estimate [31]. In
the plots we have chosen V ≈ 0.061 meV, which is directly
obtained from experimental measurements at photon-exciton
detuning �cav = 120 meV for the TMD system monolayer
WS2 [8].

Solving Eq. (10) together with Eq. (9) yields an exci-
tonic multistability and the MSE, as shown in Fig. 3. With
realistic parameters for monolayer WS2 and photonic crystal
cavities, discontinuous jumps in the excitonic Stark shift can
be readily achieved by moderate exciton drive intensities of
order kW/cm2 and moderate cavity drives of order of tens of
kW/cm2.

Interestingly, distinct regimes of multistability can be
accessed; at low exciton drive strength, a bistable MSE man-
ifests (as cavity drive is swept) whereas larger exciton drives
display tristabilities [see Fig. 3(a)]. Indeed, the MSE displays
hysteretic behavior as either exciton or cavity drives are swept,
with Figs. 3(b) and 3(c) displaying sizable discontinuities of
δE of order meV. We note that together with multistable δE
shown in Fig. 3, the exciton population Ptot similarly exhibits
multistability and hysteresis (see also Fig. 2). While we have
focused on the MSE and its concomitant excitonic multista-
bility, multiple stable states of the cavity mode (so-called
“optical multistability” characterized by distinct steady-state
values of m̄) can also arise via the MSE. [Note that in Fig. 2(b),
δE is directly proportional to the cavity photon occupation.]
This effect is similar to dispersive optical multistability in
highly nonlinear optical media [37–42] and may provide new
means for controlling optical states.

Strong light–matter coupling enables the MSE to persist
even in dilute exciton systems. Indeed, we find in Fig. 3 that
a MSE manifests for a steady-state excitonic population on
the order of Ptot ∼ 1; see the Supplemental Material [31].
This indicates that the MSE occurs even as approximately one
exciton is excited in the entire photonic cavity (corresponding
to a low exciton density of order 1010 cm−2). This enables
the MSE to persist to low exciton densities that are chal-
lenging to realize in other mechanisms for bistability [43,44].
Looking forward, we anticipate that MSE-controlled excitons

FIG. 3. (a) MSE shift δE of the excitonic system in a monolayer
TMD coupled to a cavity obtained from Eqs. (9) and (10) displaying
multiple steady states (bistable [low exciton drive] and then tristable
[larger exciton drive]) and discontinuous δE jumps. Panel (b) shows
a line cut of δE as a function of exciton drive at a fixed cavity
drive of 80 kW/cm2 [as indicated by the blue line in (a)]. Panel
(c) displays δE as a function of cavity drive at a fixed exciton
drive of 1.5 kW/cm2 [as indicated by the orange line in (a)]. Solid
lines indicate stable solutions, whereas dashed lines indicate unstable
states. Here we used parameters 
 = 1 meV, νd − ν(0) = 4 meV,
dispersive coupling V ≈ 0.061 meV [8], κ = 0.1 meV, N = 1000,
and ωd − ω(0) = 0.2 meV; see the Supplemental Material for de-
tailed estimates and discussion of parameters [31].

may provide new tools to tune the properties and the collec-
tive dynamics of dilute excitonic systems and new quantum
materials [1,45–47].
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