
PHYSICAL REVIEW RESEARCH 4, 023166 (2022)

Locomotion of magnetoelastic membranes in viscous fluids
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The development of multifunctional and biocompatible microrobots for biomedical applications relies on
achieving controllable locomotion. Here we describe the conditions that allow homogeneous magnetoelastic
membranes composed of superparamagnetic particles to swim through viscous fluids. By solving the equations of
motion, we find the dynamical modes of circular membranes in precessing magnetic fields, which are found
to actuate in or out of synchronization with a magnetic field precessing above or below a critical precession
frequency ωc, respectively. For frequencies larger than ωc, synchronized transverse waves propagate on the
membrane along the rotational (perimeter) and radial directions. Using the lattice Boltzmann approach, we show
how these waves give rise to locomotion in an incompressible fluid at low Reynolds numbers. Nonreciprocal
motion resulting in swimming is achieved by breaking the morphological symmetry of the membrane, attained
via truncation of a circular segment. The membrane translation can be adapted to a predetermined path by
programming the external magnetic field. Our results lay the foundation for achieving directed motion in thin,
homogeneous magnetoelastic membranes with a diverse array of geometries.
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I. INTRODUCTION

Magnetically controlled microrobots have applications in
drug delivery [1–4], sensing [5–7], micromixing [8], detoxi-
fication [9,10], and microsurgery [11,12]. Such versatile use
of magnetic microrobots is possible because magnetic fields
can penetrate organic matter, do not interfere with biological
or chemical functions, can replace chemical fuels that drive
robotic actuation, and, most importantly, can be externally
controlled. These properties allow for noninvasive and precise
spatiotemporal execution of desired function. Superparamag-
netic particles, in particular, are ideal candidates for robotic
functions because they lack residual magnetization, which
lowers their propensity to agglomerate, and they are less
toxic than ferromagnetic particles [13]. When linked along a
linear elastic chain, they form magnetoelastic filaments that
bend and swim in response to time-dependent magnetic fields
[2,14]. While filaments possess a repertoire of possible ac-
tuating modes, magnetoelastic membranes [15,16] combine
the functionality of 1D filaments, such as their high surface
area-to-volume ratio and ability to swim, with the function-
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ality of 3D magnetic gels, such as encapsulation and tunable
porosity [17]. Using 2D patterning methods, membranes pos-
sess unique shape-transforming properties that allow them to
dynamically switch between functional states [18,19], making
membranes highly suited for designing multifunctional micro-
robots.

Nonreciprocal motion induced via competing magnetic
and elastic interactions is required for microscopic, magne-
toelastic robots to navigate viscous environments [20]. That
is, the sequence of configurations that the robot adopts must
break time-reversal symmetry to swim at low Reynolds num-
bers (Re = vL/ν � 1 where L and v are the length and speed
of the robot, respectively, and ν is the kinematic viscosity
of the fluid). Under these conditions, inertia is negligible.
Hence a microrobot in water experiences the same difficulty
that a sardine may experience trying swim in peanut butter
(Re ∼ 10−3), that is, reciprocal back-and-forth motion will
not produce swimming [21]. Magnetoelastic filaments achieve
nonreciprocal motion with a nonhomogeneous distribution of
magnetic components or with shape asymmetry [2–4,22,23].
In these previous studies, asymmetries in magnetic filaments
induce bending waves that propagate along the filament, re-
sulting in propulsion.

In nature, microscopic organisms such as euglenids swim
using self-propagating waves directed along their cellular
membrane [24]. G. I. Taylor was the first to model such or-
ganisms using a transverse wave traveling along an infinite 2D
sheet [25]. Taylor found that the wave induced motion in the
sheet opposite to the propagating wave direction. Subsequent
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FIG. 1. An image of a truncated magnetoelastic membrane in a
precessing magnetic field. The degree of truncation S = h/2R, where
h is the sagitta length of the removed circular segment, and R is the
membrane radius, determines membrane symmetry. The magnetic
field �H precesses at the angle θ around the z axis with a phase given
by φ = ωt , where ω is the precession frequency and t is time. The
field induces a transverse wave along the membrane perimeter with
amplitude A, measured from the x-y plane. Coloration indicates the z
position as shown by the color bar on the left.

works expanded on Taylor’s findings [26] and developed
a rotational counterpart [27] that produces a hydrodynamic
torque on circular membranes with prescribed waves traveling
around their perimeter.

In this article, we study rotational waves in homoge-
neous magnetoelastic membranes under precessing magnetic
fields. The membrane is composed of hexagonally packed,
superparamagnetic colloids that are bonded to their nearest
neighbors. Similarly to magnetoelastic filaments [6,7], the
bonding between colloids makes the membrane inextensible
but able to elastically bend. We investigate the dynamic modes
of these membranes that are separated by a critical precession
frequency ωc, below which the membrane motion is asyn-
chronous with the field and above which rotational waves
propagate in-phase with the field precession. Breaking the
membrane’s center of inversion symmetry by removing part of
the circle [Fig. 1] allows for locomotion in the fast frequency
phase (ω > ωc). Shape asymmetry is needed to disrupt the
inversion symmetry of the magnetic forces experienced by
a circular membrane. We show that the torque and velocity
of the membrane counterintuitively resemble the linear Tay-
lor sheet rather than its rotational analogue. Furthermore, by
controlling a magnetoviscous parameter and the membrane
shape asymmetry, we demonstrate swimming directed by a
programmed magnetic field and diagram its nonreciprocal
path through conformation space.

The paper is organized as follows. In Sec. II, we estab-
lish the phase diagram of a circular magnetoelatic membrane
in a precessing magnetic field and determine the transition
frequency ωc. In Sec. III, we introduce hydrodynamic in-
teractions and observe circular locomotion in asymmetric
membranes. We demonstrate a programmed magnetic field,
in Sec. IV, that directs a membrane swimmer along a pre-
determined path. Finally, we make concluding remarks on
the necessary conditions for superparamagnetic swimmers in
Sec. V.

II. PHASE SPACE FOR UNTRUNCATED MEMBRANE

We construct the phase diagram for the dynamic modes of
the membrane using molecular dynamics (MD) without hy-
drodynamics to efficiently search for nonreciprocal actuation
relevant to locomotion. Actuation of magnetoelastic mem-
branes in time-dependent magnetic fields necessitates a model
that captures elastic bending in response to magnetic forces,
which are imparted by the dipolar interactions of embedded
magnetic colloids. The membrane is composed of a hexagonal
close-packed monolayer of hard spherical colloids, each of
diameter σ and possessing a point dipole moment μ at its
center. The bonds between the colloids are approximately
inextensible but able to bend with rigidity κ . The energy scale
for κ is given by the energy unit ε.

We model an implicit, uniform magnetic field by constrain-
ing the orientation of the colloids’ dipole moments in the
direction of the field, H = μ/χ , where χ is the magnetic
susceptibility of the material and μ is the dipole moment with
magnitude μ. The instantaneous dipole orientation is given
by μ̂ = sin θ sin ωt î + sin θ cos ωt ĵ + cos θ k̂, where θ is the
field precession angle, ω is the precession frequency, and t is
time. The scale for t and ω−1 is given in units of t∗ = σ

√
m/ε,

where m is the mass of a colloid, and the dipole μ is reported
in units of

√
μ0/4πσ 3ε, where μ0 is the magnetic permeabil-

ity.
A diverse set of possible actuations develops depending

on the radius R of the thin membrane and the magnetic field
parameters (μ, θ , ω). While varying these parameters, we
solve the equations of motion for an overdamped system with
a friction force imparted on each colloid given by −ξv(t ),
where v(t ) is the colloid velocity, and ξ is the damping co-
efficient. See Appendix A for more details on the MD model.

Within this approximation, two dynamic mode regimes
develop. At fast frequencies (ω > ωc), the membrane motion
synchronizes with the field to produce transverse waves that
propagate around the membrane [Fig. 2(a)]. We refer to these
membranes as “wobblers.” At slow frequencies (ω < ωc), we
observe a collection of modes that are asynchronous with
the field resulting in membrane “dancers” that periodically
buckle and spin. The actuation modes of these two regimes
are separated by a critical frequency, ωc [Fig. 2(b)].

As the field precesses, the forces along the membrane
perimeter generate internal buckling and create a torque that
rotates the membrane around its diameter. If the magnetic
field precession is fast (ω > ωc), the continuous change in
the direction of the axis of rotation leads to the development
of a constant-amplitude wave traveling along the membrane
perimeter; see Supplemental Material for Video 1 in Ref. [28].
On average, the membrane remains perpendicular to the pre-
cession axis and simply “wobbles,” synchronous to the field,
and with no significant rotation around the precession axis.
This state closely resembles acoustically levitated granular
rafts [29].

The direction of the propagating wave matches the
handedness of precession because the dipole-dipole forces,
which cause buckling, point in the direction of the magnetic
field. However, the field polarity does not affect the magnitude
or travel direction of the wave since the superparamagnetic
dipoles are always oriented in the same direction as the field.
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FIG. 2. A circular magnetoelastic membrane in a precessing magnetic field. (a) Transverse waves propagate around the membrane above
a critical frequency (ω > ωc) with negligible membrane rotation highlighted by the black-colored colloid. Coloration indicates the z position
as shown by the color bar in the top right corner. (b) A schematic plot showing the phase diagram of a membrane. Above the dotted black
curve, the “wobbling” membrane remains perpendicular to the precession axis and possess the rotational waves from (a). The wave amplitude
maximizes just before the transition. Below this curve, the membrane buckles and rotates asynchronously with the field, hence “dancers.”
(c) The bending stiffness controls the shape of the rotational waves. The black arrows indicate the direction of wave propagation along the
perimeter (thick arrow) and radially toward the membrane center (thin arrow).

Hence the force due to the dipole-dipole interactions Fdipole

remains unchanged (Fdipole ∝ (μ · r)μ = (−μ · r)(−μ),
where r is the displacement vector between dipoles [30]).

In addition to the rotational waves, the wobbling mode
also manifests radially propagating (inward) bending waves
[Fig. 2(c)] that terminate at the membrane center. The wave
shape weakly depends on the membrane stiffness κ; the wave
form is better defined as κ decreases. However, totally com-
pliant membranes (κ → 0) do not transmit bending waves and
therefore this phenomenon exists only for intermediate κ .

If the precession is slow (ω < ωc), the membrane has
enough time to rotate completely parallel to the precession
axis and will adopt new configurations due to elastic buckling.
How the membrane buckles depends on the magnetoelastic
parameter [15] � = ML2/κ , which characterizes the ratio
between the membrane’s magnetic and bending energies,
where M is the magnetic modulus, and L2 is the mem-
brane area. If the magnitude of � is very small (� � 1) or
very large (� 	 1), we observe hard disk behavior because
bending distortions become impossible due to mechanical
stiffness or due to unfavorable magnetic interactions, respec-
tively. While not investigated here, strong magnetic coupling
[31,32] between colloids will adversely affect membrane
synthesis.

At intermediate �, membrane edges buckle several times
per precession period and produce magnetically stabilized
conformations that, while periodic, run out of sync with the
field; see Supplemental Material for Video 2 in Ref. [33].

Much of this back-and-forth “dancing” motion is essentially
reciprocal and is, therefore, a poor candidate for studying
swimming at small Re. Subsequently, we seek to formally
define ωc and focus on the wobbling regime (ω > ωc).

To accurately determine the transition frequency ωc that
separates the wobblers from the dancers, we investigate
how the magnetic field parameters (precession angle θ ,
dipole magnitude μ) and membrane radius R, in units of σ

[Fig. 3(a)], contribute to the characteristic response time τ

of the rotating membrane. When the membrane rotation time
τ increases, it necessarily requires a slower field to keep the
membrane in the wobbling mode, decreasing ωc. A larger τ

can be achieved by weakening the magnetic torque (θ closer
to π/2 or smaller μ) or increasing the drag on the membrane
(larger R). Similarly, a smaller τ implies a fast membrane
response from a strong field or a small membrane. We observe
that ωc diverges as θ approaches the magic angle, partly due
to instability of the wobbling phase at angles below the magic
angle [34].

The transition to the wobbling state is characterized by
the abrupt shift in the membrane’s total potential energy U ,
given in units of ε, from a time-dependent function to a
constant value [Fig. 3(b), top]. When the potential energy
does not change, this implies that the shape of the membrane
conformation becomes invariant in the rotating field reference
frame. This change in the dynamic buckling results in a single
Fourier mode for the displacement of the colloids parallel
to the precession axis [Fig. 3(b), bottom]. This resembles
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FIG. 3. The synchronous-asynchronous (wobbler-dancer) tran-
sition frequency ωc for a magnetoelastic membrane. (a) MD
calculation of ωc as a function of the field precession angle θ . The
solid and dashed lines indicate a dipole magnitude of μ = 2 and
μ = 1, respectively. The inset shows the dimensionless transition
frequency ωc/�, where � is the membrane’s characteristic rotation
frequency. The green-dashed line represents the theoretical transition
at ωc/� = 2/π , which, near θ = 90◦, is independent of bending
stiffness (κ = 1, orange. κ = 100, blue/red). The black squares show
the transition calculated from lattice-Boltzmann simulations. (b) Su-
percritical and subcritical behavior of the total energy U (magnetic +
bending) in units of ε. The precession frequency is close to the criti-
cal frequency, 0.029 < ωc < 0.030 (θ = 80◦). Fourier transform of
the rotational wave amplitude (bottom).

the transition between the synchronous and the asynchronous
motion for oblate magnetic particles [34].

When the precession angle approaches π/2, the membrane
motion becomes independent of the stiffness of the mem-
brane; the membrane remains flat at all times and for all values
of ω. As the field precesses, the forces perpendicular to the
membrane plane vanish near θ = π/2 preventing significant
radial bending and, consequently, changing κ does not shift ωc

[Fig. 3(a), inset]. By solving an Euler-Lagrange (EL) equa-
tion with Rayleigh dissipation (see Appendix B), we derive
an equation of motion for a membrane in a field precessing
at a large angle. It reveals a characteristic frequency of mem-
brane motion, � = 6ζ (3)μ0μ

2 sin 2θ/π2ηR2σ 4, where μ0 is
the magnetic permeability of free space, R is the radius of
the membrane, η is the viscosity, and ζ (x) is the Riemann
zeta function. The frequency � comes from the magnetic (∝
μ0μ

2 sin 2θR2/σ 5) and drag (∝ ηR4/σ ) potential functions.
The ωc curves in Fig. 3(a) can be scaled by � to obtain a
dimensionless transition frequency ωc/� = 2/π [Fig. 3(a),
inset]. This number predicts the mode of actuation of a mem-
brane and defines the membrane response time τ = �−1.

III. HYDRODYNAMIC EFFECTS
ON “WOBBLING” MEMBRANES

The previous section investigates the broad range of actuat-
ing modes accessible to a magnetoelastic membrane. Using an
overdamped system, we identify that membrane wobblers dis-
play nonreciprocal motion due to waves propagating around

its perimeter. To study wobbler locomotion, we introduce
hydrodynamic interactions using the lattice Boltzmann (LB)
method [35] to confirm that the dancer-wobbler transition
exists in a viscous fluid. We rewrite the EL equation using
a hydrodynamic drag term for a disk (∝ ηR3), which modifies
the characteristic frequency � = 27ζ (3)μ0μ

2 sin 2θ/64ηRσ 5

(see Appendix B). We will use this definition for � hereafter.
Both the EL and the LB methods result in the same dimen-
sionless transition ωc/� [Fig. 3(a), black squares].

The LB method reveals the effect of the wobbler’s non-
reciprocal motion on the surrounding fluid. This technique,
which comes from a discretization of the Boltzmann trans-
port equation, reproduces the incompressible Navier-Stokes
equation in the macroscopic limit. The LB method calculates
the evolution of a discrete-velocity distribution function fi at
each fluid node that fills the simulation box on a square lattice
mesh with a spacing of �x. The surface of the colloids acts
as a boundary and is defined by surface nodes that interact
with the fluid using the model developed by Peskin [36].
Care must be taken when implementing the LB method with
MD because compliant springs can cause translation of the
membrane due to in-plane stretching, which is a mechanism
observed in systems of a few colloids [37]. See Appendix C
for a complete description of the model.

The fluid flow around the membrane is determined by
its symmetry and actuation. The wobbling mode circulates
fluid around the membrane diameter in a similar manner to
spinning disks [38]. However, the wobbler’s axis of rotation
moves continuously with the field, which produces an addi-
tional circulating flow in the x-y plane far above and below
the membrane. For a circular membrane, the speed of the flow
field possesses the same mirror symmetry as the forces that
drive actuation [Fig. 4(a)].

The centrosymmetry of a circular membrane prevents its
center of mass from translating. To induce locomotion, we
truncate the membrane by removing a circular segment with
a sagitta of length h (Fig. 1). We normalize h by the diam-
eter of the circle to define the degree of truncation of the
circular membranes as S = h/2R. In contrast with the circular
membrane case, the shape of the fluid flow in the truncated
membrane changes during a single precession period leading
to asymmetric flow field that depends on the relative orienta-
tion between the field and the truncation cut [Fig. 4(b)].

The amplitude of propagating waves is particularly relevant
for predicting the translational [25] or rotational [27] velocity
of a membrane. Here the wobble amplitude can be calculated
by balancing the magnetic [30] and drag [38] torque in a
viscous fluid (see Appendix D). Under small amplitudes for
the rotational wave, we obtain the simple relation

A

R
= C

τω
, (1)

where A is the amplitude, and C = 32/9π2 [Fig. 5(a)]. In
the limit of small deformations, the bending contribution
to the torque along the edge is negligible, unless κ → ∞.
Equation (1) allows us to calculate the maximum flow speed
umax = 4A/(2π/ω) from Fig. 4, assuming no-slip boundaries.

The amplitude A is independent of the membrane size
since τ ∝ R. However, the membrane is not free to increase
in radius arbitrarily. The small Re condition implies that
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FIG. 4. Fluid flow around a magnetoelastic membranes in the “wobbler” regime. The top images show the total force vector for each
colloid (blue arrows) alongside the dipole orientation (cyan arrows) for a precessing field (μ = 1, θ = 70◦, ω = 0.1). The bottom images
show streamlines around the membrane, where the color indicates flow speed u. (a) A snapshot of a circular membrane. (b) Two snapshots of
a truncated circular membrane separated by a shift in the field precession �φ = ωt = 6π/5.

ν 	 R2/τ , where ν is the kinematic viscosity. Obeying this
constraint on τ , we can define a magnetoviscous parameter
τω and use it to predict locomotion.

Asymmetry in the fluid flow due to S > 0 leads to a mem-
brane that travels with a net velocity in the direction of the
truncation cut. This net motion is caused by the decrease in
the amplitude of the waves traveling along the truncated edge.
Since the truncated edge is closer to the center of mass and κ

is homogeneous, the membrane will bend to a lesser extent
along the truncation. This manifests as a net motion every
2π/ω, where reversing the handedness of the field reverses
the locomotive direction.

While there is a net velocity along the truncation cut,
rotation causes the membrane to follow a curved path. This
rotation emerges exclusively due to the magnetic interactions
perpendicular to the wobbling membrane. If the projection of
the forces, visualized in Fig. 4, on the x-y plane is nonzero,
the membrane will rotate. This rotation increases as ω ap-
proaches ωc. Torque due to the underlying colloidal lattice
is negligible. Over many precession periods, the membrane
moves in a circular path around a central point [Fig. 5(b)].
The radius ρ of the path depends on S and Aavg. Untruncated
S = 0 and fully truncated S = 1 do not translate and result
in ρ = 0. Hence a maximum for ρ exists at intermediate S

FIG. 5. Actuation drives circular locomotion of truncated magnetoelastic membranes through a viscous fluid. (a) The average rotational
(“wobble”) wave amplitude Aavg, scaled by the membrane radius R, depends inversely on the magnetoviscous parameter τω. Data points from
lattice Boltzmann simulations are compared to our analytical model (solid blue line). The coloration of the simulation data notes the degree of
truncation S. The inset shows the variation in A/σ over time based on membrane geometry (S = 0.05, black; S = 0.5, gray), where σ is the
colloid diameter. (b) The path taken by a membrane in a precessing field. The arrow indicates the travel direction with velocity V . The inset
shows the radius ρ of this path as a function of S. (c) The membrane velocity is proportional to A2

avg ∝ (τω)−2 and scales with S3/2 due to
changes in the length of the membrane perimeter. The data point shapes are coded by the membrane radius (R = 7, triangle; R = 9, square;
R = 12, circle). The blue line shows our analytical prediction (slope = 1.0). The inset shows the continuous inversion symmetry measure for
a flat truncated membrane.
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FIG. 6. A two-step magnetic field directs a swimming membrane along a path. (a) First, a membrane wobbler moves under a precessing
magnetic field. After it rotates a half turn (#1), the precession switches to a fast frequency at θ = π/2 while the axis rotates to flip the membrane
(#2). (b) We define the angles that the normal vector n and the truncation vector S make with the x axis as ζn and ζS , respectively. (c) The path
in conformation space over the two-step field. (c) Repeated cycles from (a) move the membrane against the Brownian motion of a thermalized
fluid. The upper panel shows the motion of the membrane in the x-y plane. The black arrow indicates the direction of motion. The lower panel
shows the displacement in the z direction.

values [Fig. 5(b) inset]. Since the membrane is composed of
colloids, irregularities in the ρ(S, Aavg) curve appear because
the symmetry of the membrane changes in discrete steps as
subsequent rows of colloids are removed with increasing S. In
the limit σ → 0, the plot of ρ vs S would become smooth.

The magnetic field controls how quickly the membrane
travels along the circular path and affects its angular velocity.
Together with the truncation S, the velocity V at which the
membrane translates along the path can be determined using
a singularity method. With a nearest-neighbor assumption for
the magnetic interactions and treating them as point distur-
bances, the advective flow through the center of mass leads to
the velocity

V

Rω
= C2

12ζ (3)

S3/2

(τω)2 , (2)

where the S3/2 dependence comes from the number of uncom-
pensated point forces formed by truncation. The velocity is
normalized by the phase speed Rω and is displayed as the
blue line in Fig. 5(c). The inverse squared relation on τω

for the velocity is a result of the dependence on the product
of the magnetic force and wave amplitude, which in turn
relies on the magnetic force. Here we recover the velocity
dependence on the square of the wave amplitude [25] but with
a lower velocity (V � VTaylor/6). Details of the full derivation
are found in Appendix E. We see a deviation between sim-
ulations and Eq. (2) at large values of S3/2/(τω)2 owing to
either a high degree of truncation (a linear polymer) or a small
viscomagnetic parameter (“dancer”). The direction of travel
along the circular path is dictated by the handedness of the
precessing field and is an example of magnetically induced
symmetry breaking. We find that the continuous symmetry
measurement [39] can predict relative changes in the velocity
of locomotion. When the inversion asymmetry increases, V
increases [Fig. 5(c), inset] because the conformational path
taken by the membrane widens, leading to greater net work
done on the fluid [40].

IV. MEMBRANE SWIMMING

Here we give an example of how a programmed magnetic
field can produce a nonreciprocal conformational path that
results linear swimming. In Fig. 6(a), we show that a pre-
cessing field can rotate the membrane 180◦ from its initial
configuration. Then, the precession frequency is increased
and θ is set to π/2. This keeps the membrane flat in the
precession plane while the precession axis is rotated to flip
the membrane. This field is turned on for a period of π/ωs

to flip the membrane orientation, where ωs > ω. Once the
membrane resembles the starting configuration, the two-step
field is repeated. After half the orbit from Fig. 5(b) is obtained,
the membrane’s center of mass has shifted ∼2ρ. The “flip”
from the second field places the membrane back into its orig-
inal configuration. This recovery stroke moves the membrane
back toward its original position, but not entirely, leading to
a net translation. The chirality and duration of the magnetic
field precession controls the displacement in the membrane
plane and the flip direction controls the direction for the out-
of-plane displacement. The fastest achievable velocity using
this method is Vmax = (2/π )V but will be slowed by the time
taken during the recovery step.

This cycle forms a closed loop in configuration space based
on two independent degrees of freedom, ζn and ζS , defined by
the angles the normal vector n and the truncation vector S
make with the x axis, respectively [Fig. 6(b)]. This configu-
ration loop is an example of nonreciprocal motion, like the
wobbling mode but is needed to achieve efficient swimming
since the latter only follows circular paths. Thermalizing the
LB fluid to 1 kBT , by the method of Adhikari et al. [41]
for S3/2/(τω)2 ≈ 10−2, shows a swimming membrane as ζn

and ζS changes [Fig. 6(c)]. In this instance, the path during
the rotation step, to change ζS , is dominated by Brownian
motion. The largest displacement occurs during the flipping
step to change ζn. Additionally, each flip shifts the membrane
along the z axis, where the traveling direction is determined by
the handedness of the flip. By controlling the precession axis
orientation, a membrane may be directed along an arbitrary
path.
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The useful swimming regime is bound by the Péclet
number (Pe) and the dimensionless transition frequency. In
other words, the system parameters, in particular the field
frequency ω, must be large enough to maintain the wob-
bling mode but not too large as to attenuate the wobble
amplitude below an efficient swimming velocity. In practice,
this implies operating at a driving frequency just above ωc.
The range for the frequency can be written as ωc < ω <

C2ηR3S3/2/
√

2 ζ (3)τ 2kBT , where the upper bound is set to
Pe = 1. Here we calculate Pe = V R/D using the membrane
swimming velocity V , the radius R as the characteristic length,
and set the diffusion coefficient D using the radius of gyra-
tion of a disk [42]. For example, a membrane of R = 1 µm
composed of 25 nm magnetite nanoparticles at 25◦C in water
subject to 50 mT field [43] precessing at 80◦ gives an effective
frequency range of 1–10 kHz.

V. CONCLUSION

Superparamagnetic membranes with homogeneous com-
position require both nonreciprocal motion and shape asym-
metry to swim in viscous fluids. While the Scallop Theorem
[20] makes the necessity for nonreciprocal motion known,
implementing such motion without modifying the elastic or
magnetic homogeneity implies using a “nonreciprocal” mag-
netic field, where the field vector returns to its starting position
without retracing its path. Using a field that does not self-
retrace imparts a change in membrane conformation that
breaks time-reversal symmetry. However, this type of exter-
nal magnetic field will still generate centrosymmetric forces
within a symmetric membrane. Therefore shape asymmetry is
also needed to displace the membrane center of mass during
each period of motion, where more asymmetry leads to a
larger per-period displacement.
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APPENDIX A: THE MD MODEL

We describe a membrane of radius R that is inextensible
but can bend in response to a dynamic magnetic field. The
membrane is a monolayer of N hexagonally, close-packed
magnetic colloids with diameter σ . Membrane flexibility
is determined by the quadratic dihedral potentials between
each colloid i and three of its nearest neighbors Ubend =
κ
2

∑N
i

∑n
j ϕ2

j , where κ is the bending rigidity, ϕ j is the di-
hedral angle, and n is the number of dihedrals around i. The
bending rigidity κ has units of energy and is scaled by the
energy unit ε.

We model an implicit, uniform magnetic field by constrain-
ing the orientation of the colloids’ dipole moments in the
direction of the field, H = μ/χ , where χ is the magnetic

susceptibility of the material and μ is the dipole moment
with magnitude μ. The instantaneous dipole orientation is
μ̂ = sin θ sin ωt î + sin θ cos ωt ĵ + cos θ k̂, where θ is the
field precession angle, ω is the precession frequency, and t
is time. The timescale of the simulation is given in units of
t∗ = σ

√
m/ε, where m is the mass of a colloid. We use the

simulation time step �t = 10−3 t∗.
The contribution of the dipole potential energy Udipole to

the total energy U is the sum of the dipole-dipole potential
energy over all colloids. The dipole-dipole interaction is given

by Udipole = ∑N
i

∑N ′
j

μ0μ
2

4πr3
i j

(1 − 3(μ̂ · r̂i j )2), where r̂i j is the

displacement vector between colloids i and j. The total energy
U is scaled by ε, and the dipole μ is reported in units of√

μ0/4πσ 3ε, where μ0 is the magnetic permeability. The
dipole-dipole interaction is cut off for all colloids ri j > 10σ .
Finally, the motion of the colloids are damped by a drag
force, −ξv(t ), proportional to the colloid velocity, v(t ), and
the damping coefficient ξ = 5 × 102 m/t∗.

The dynamic states of the membrane were determined
by calculating the total potential energy of the membrane
over 102 precession periods. The transition frequency was
determined to within an error of ±10−3. The transition was
confirmed by taking the Fourier transform of the beads po-
sition data over time, F[x(t )], F[y(t )], F[z(t )]. The MD
simulations were performed using LAMMPS [44] and snap-
shots of the membrane were visualized using the software
OVITO [45].

APPENDIX B: EL APPROACH FOR THE CRITICAL
FREQUENCY TRANSITION

We derive the dimensionless transition frequency ωc/�

from Fig. 2. A rigid disk of radius R and thickness σ moves
in response to a magnetic field. The motion of the disk
is synchronous to the field and is visually similar to the
rotational wobble of an Euler disk. The disk’s orientation
is defined by the central normal vector on the face of the
disk n̂ = − sin γ cos ωt î + sin γ sin ωt ĵ + cos γ k̂ where γ

is the angle of precession around the z axis for n̂. We find
γ for the steady state by solving the EL equation with a
velocity-dependent (Rayleigh) dissipation function [46]. For
convenience, we define a second angle α(t ) with respect to the
x-y plane. This angle is formed by a vector r̂x that points along
the x axis in the disk plane. From the equation for n̂, we get
the relationship α(0) = γ . The EL equation for the dynamics
of the disk, using the degree of freedom α(t ), is written as

d

dt

∂L

∂α̇
− ∂L

∂α
+ ∂P

∂α̇
= 0, (B1)

where α = α(t ), α̇ = dα/dt ; P is the dissipation function;
and L is the Lagrangian. The Lagrangian is defined as the
difference T − U , where T is the kinetic energy, and U is the
potential energy. Now we can expand Eq. (B1) as

d

dt

∂T

∂α̇
− d

dt

∂U

∂α̇
− ∂T

∂α
+ ∂U

∂α
+ ∂P

∂α̇
= 0. (B2)
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Since ∂T
∂α

= 0 and angular acceleration is negligible when Re
� 1, we are left with

∂U

∂α
+ ∂P

∂α̇
= 0. (B3)

We take P as the Rayleigh dissipation function defined as

P = 1

2

N∑
i

ξ (yα̇)2, (B4)

where the sum is over all N colloids i in the disk, y is the
distance from the rotation axis and ξ = 3πησ , where η is the
dynamic viscosity and σ is the colloid diameter. The sum over
all colloids is given by the integral

P = 2ξ

σ 2

∫ R

0

∫ √
R2−x2

0
(yα̇)2dydx = 3π2ηR4

4σ
α̇2. (B5)

To calculate the total potential energy U , we only need to
consider the contribution by the magnetic potential energy.
For simplicity, we use a nearest-neighbor approximation on
a hexagonal lattice and sum the magnetic interactions over all
colloids in the membrane.

U = μ0

4π

μ2

σ 3

N∑
i

n∑
j

(1 − 3(μ̂ · r̂)2), (B6)

where the sum is over each colloid i in the disk of
N colloids, for all n nearest neighbors indexed by j,
μ0 is the magnetic permeability of free space, μ is the
dipole magnitude, and σ is the nearest-neighbor distance.
Each colloid on a hexagonal lattice has a set displace-
ment vectors, r̂, that point toward its six nearest neighbors:

r̂x = ±(
√

1 − C2
x , 0,Cx ), r̂y1 = ±(

√
1−C2

1

2 ,

√
3−3C2

1

2 ,C1), r̂y2 =
±(

√
1−C2

2

2 ,−
√

3−3C2
2

2 ,C2), where Cx = − tan α, C1 = −( 1
2 +√

3
2 tan ωt ) tan α, C2 = −( 1

2 −
√

3
2 tan ωt ) tan α. We ignore a

correction for the colloids along the perimeter by assuming
2πR/πR2 is small for large R 	 σ . Plugging in μ̂ and the
displacement vectors r̂i, into Eq. (B6), we expand U in a
Taylor series to the first order about the point α = 0 (the small
wave amplitude regime) to yield

U = A0 + 9R2μ0μ
2 sin 2θ sin ωt

2σ 5
tan α + O(α2). (B7)

The lower order terms in A0 are not dependent on α and
therefore can be ignored. The accuracy of U can be increased
by summing the contribution from dipole-dipole interactions
between all colloids. While explicitly adding the contribution
from second-nearest neighbors, third and so on is possible,
doing so rapidly increases the complexity of U . Since the
contribution to the potential energy decreases as 1/r3 on a
regular lattice 1

r3 (1 + 1
23 + 1

33 + ...), the sum can be modi-
fied by the Riemann zeta function, ζ (3) ≈ 1.202. Therefore
to better approximate the full potential, we replace U with
U ′ = ζ (3)U .

Plugging U ′ and P into Eq. (B3), we obtain

α̇ + �l sec2 α sin ωt = 0, (B8)

where �l = 6ζ (3)μ0μ
2 sin 2θ/π2σ 4ηR2 for a system with

simple friction on each colloid. For a hydrodynamic system,
the potential dissipation function P = 1

2ξ β̇2 is taken to be
consistent with the torque acting on a rotating disk in a viscous
fluid, ξ = 32

3 ηR3. This changes the size scaling dependence
to yield �h = 27ζ (3)μ0μ

2 sin 2θ/64σ 5ηR. The inverse of �h

represents the timescale of the membrane’s magnetoviscous
response τ = 1/�h and is part of the magnetoviscous param-
eter τω. Solving Eq. (B8) for α,

1

2

(
α + sin 2α

2

)
= �i

ω
cos ωt + Z, (B9)

where i = l or h, and Z = 0 using the boundary condition
α = 0 at ωt = −π/2. The dynamic transition occurs at α →
π/2 during the maximum possible amplitude over a field pre-
cession. During steady-state conditions this occurs at ωt = 0.
Doing so leads to a simple relation for the transition frequency

ωc

�
= 2

π
. (B10)

APPENDIX C: COUPLING OF LB FLUID
TO THE MD MODEL

Hydrodynamic interactions are coupled to the MD model
using the LB method [35]. This technique, which comes
from a discretization of the Boltzmann transport equation,
reproduces the incompressible Navier-Stokes equation in the
macroscopic limit. The LB method calculates the evolution of
a discrete-velocity distribution function fi at each fluid node
that fills the simulation box on a square lattice mesh with a
spacing of �x. The surface of the colloids act as a boundary
and is defined by surface nodes that interact with the fluid
using the model developed by Peskin [36].

Using the Bhatnagar-Gross-Krook collision operator [47],
the LB equation becomes fi(x + ci�t, t + �t ) − fi(x, t ) =
−�t

τ
( fi(x, t ) − f eq

i (x, t )) + Wi. The left-hand side describes
the fluid streaming from one node to neighboring nodes along
the velocity ci. The first term on the right-hand side describes
the relaxation of the distribution fi to the equilibrium distribu-
tion f eq

i , where τ is the relaxation time. The Wi term defines
external forces on the fluid. These forces are distributed from
nodes that define the surface of the colloids, σ/2 distance
away from the particle center. These nodes interact with the
fluid using the immersed boundary model developed by Pe-
skin [36].

The fluid parameters are set to reproduce the frictional
coefficient of a spherical colloid, which accurately reproduces
the drag on a disk. The disk is immersed within a box of
112×112×113 nodes. The spacing between nodes was set
as �x = σ/2 while the time step was set to match the MD
simulations. Decreasing Reynolds numbers in a LB fluid can
be achieved by choosing an increasing the lattice spacing �x,
increasing the time relaxation parameter or decreasing the
Mach number, set by the speed of sound cs = 1√

3
�x
�t [48]. It is

necessary to maintain resolution of the fluid circulation along
the membrane edge and avoid numerical errors associated
with increasing the relaxation parameter. Therefore we rely on
a small time step �t that also integrates effectively with the
harmonic potentials in the MD scheme to maintain Re � 1.
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The “two-step” magnetic field was employed using a trun-
cated membrane (S = 0.48). The temperature of the LB fluid
was thermalized to 1 kBT [41]. The first step ran for 21 pre-
cession periods with S3/2/(τω)2 = 2×10−2. The second step
set the precession angle to π/2 and rotated the precession axis
at a frequency ω/ωs ≈ 10 for roughly 1/3 the duration of the
first step. Because the wobbling mode is stable, the flip does
not need to lie perfectly in the x-y plane for the process to
repeat effectively.

APPENDIX D: DERIVATION OF THE
MAGNETOVISCOUS PARAMETER τω

The magnetoviscous parameter is found by considering a
magnetoelastic membrane in the small amplitude limit. Under
small distortions, the bending and stretching forces can be
neglected. However, the flexibility of the membrane means
that only a small area δa near the perimeter is in motion.
Therefore we consider Eq. (B3) over δa moving freely along
the z direction. We write the drag as simply ∂P

∂ ż = 3πησ żδa.
Solving for the resulting first-order differential equation yields

z

R
= C cos ωt

τω
, (D1)

where the equation is put in terms of τ = 1/�, and
C = 32/9π2. The amplitude is maximized zmax = A when
cos ωt = 1, From this equation, we see that the reduced am-
plitude of the rotational waves is inversely proportional to the
magnetoviscous parameter.

APPENDIX E: SINGULARITY METHOD
FOR MEMBRANE ADVECTION

We use a singularity method to determine the advection of
the membrane in a viscous fluid due to point forces generated
by magnetic dipole interactions. The fluid velocity at x is
calculated by summing over all point disturbances [49]

v(x) = 1

8πη

∫
G(x − y) · f (y)dy, (E1)

where η is the dynamic viscosity, f (y) is a point force located
at y, G(r) = I

|r| + rr
|r|3 is the Oseen tensor, and I is the identity

matrix.
At every point on the membrane surface, the no-slip fluid

velocity is related to the rigid translation V and angular rota-
tion W by

v(x) = V + W (x − xcom ), (E2)

where xcom is the initial center of mass located at the ori-
gin. Since we are interested in the center of mass advection
v(xcom ), we can ignore the rotation W of the membrane and
solve Eq. (E1) to obtain V .

Equation (E1) can be simplified by considering the under-
lying lattice and membrane symmetry. For colloids arranged
in a lattice along a rigid disk, the magnetic dipole force can-
cels out for all colloids in the bulk. Therefore the forces along
the perimeter dominate. Furthermore, the center of inversion
symmetry for all points along the perimeter of a circular mem-
brane yields opposite forces of equal distance from the center
resulting in no locomotion, v(xcom ) = 0. Therefore we create
an imbalance of point forces by making a small truncation
along the y direction in the x > 0 domain (i.e., we remove
a circular segment centered on the x axis). The difference in
the number of point forces due to truncation �N on opposite
sides of the membrane is due to the number of colloids that
can fit along the difference in the edge lengths �L/σ , where
�L = 2R[2

√
S(1 − S) − sin−1(2

√
S(1 − S))]. By using the

Puiseux series, we can approximate �N = 8RS3/2/3σ , which
is accurate for S < (3/8)2/3 ≈ 0.52. Since the truncation is
small, the point force imbalance occurs along the vector
x = −Rr̂x. We calculate V = v(xcom ) for an infinitesimally
thin disk. With these simplifications, Eq. (E1) and takes the
form

V = �N (μ̂ · r̂x )

8πηR
(I + r̂x r̂x ) · μ̂. (E3)

Time-averaging v over the precession period 2π/ω, we
obtain

〈Vx〉 = 〈Vz〉 = 0 (E4)

〈Vy〉 = S3/2μ0μ
2 sin 2θ tan γ

8π2ησ 5
(E5)

and see that the membrane velocity V is directed along the
truncation cut. We can replace the reduced amplitude tan γ

with the previous definition of the magnetoelastic parameter
to obtain a nondimensional swimming velocity reduced by
Rω,

V

Rω
= C2

12ζ (3)

S3/2

(τω)2
. (E6)

For the two-step linear swimmer, the theoretical maximum
swimming speed, assuming no distance loss during the re-
covery stroke, is the path the membrane follows around
consecutive semicircles, Vmax = 2

π
〈Vy〉.
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