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Distributed quantum phase sensing for arbitrary positive and negative weights
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Estimation of a global parameter defined as a weighted linear combination of unknown multiple parameters
can be enhanced by using quantum resources. Advantageous quantum strategies may vary depending on the
weight distribution, requiring the study of an optimal scheme achieving a maximal quantum advantage for
a given sensing scenario. In this work, we propose a Heisenberg-limited distributed quantum phase sensing
scheme using Gaussian states for an arbitrary distribution of the weights with positive and negative signs. The
proposed scheme exploits entanglement of Gaussian states only among the modes assigned with equal signs
of the weights, but separates the modes with opposite weight signs. We show that the estimation precision of
the scheme exhibits the Heisenberg scaling in the mean photon number and it can be achieved by injecting
two single-mode squeezed states into the respective linear beam-splitter networks and performing homodyne
detection on them in the absence of loss. Interestingly, the proposed scheme is proven to be optimal for Gaussian
probe states with zero displacement. We also provide an intuitive understanding of our results by focusing on
the two-mode case, in comparison with the cases using non-Gaussian probe states. We expect this work to
motivate further studies on quantum-enhanced distributed sensing schemes considering various types of physical
parameters with an arbitrary weight distribution.
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I. INTRODUCTION

Quantum sensing enables more precise estimation of
unknown parameters than what is possible with classical re-
sources [1]. A quantum enhancement is only achieved using
an appropriate combination of a probe and a measurement,
and can thus be maximized by the use of the optimal quantum
resource [2,3]. Therefore, it is of utmost importance to iden-
tify the optimal quantum probe state and measurement setting
in order to achieve the ultimate quantum limit leading to the
maximum quantum enhancement [4]. Since the pioneering
work of Caves [5], a number of quantum sensing and metro-
logical techniques have been developed and experimentally
demonstrated in various sensing scenarios in diverse physical
systems [6–10].

While most studies have focused on an estimation of a
single unknown parameter, recent research on multiple param-
eter estimation has started to attract intensive interest from
the quantum sensing community for unrevealed fundamen-
tal questions and practical perspectives [11–15]. The main
question is if quantum correlation of a probe state is advanta-
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geous when multiple parameters are estimated simultaneously
as compared to estimating them individually [16]. Upon the
derivation of quantum Cramér-Rao matrix inequality for the
covariance of estimates of multiple parameters [12], the ques-
tion has been answered in particular sensing scenarios by
using various quantum states such as a coherent superposition
of N photons [17], Gaussian states [18], or particle-mode-
entangled states [19]. A more tricky scenario has also been
discussed, e.g., estimating multiple phases governed by non-
commuting generators [20,21].

The use of entanglement does not always promise a
quantum enhancement in simultaneous estimation [16,22], but
the role of entanglement becomes significant in estimating
a global parameter composed of multiple parameters that
are encoded across multiple modes or locations [13–17,19,
23–27], called distributed sensing. Distributed quantum
sensing has various applications such as global clock syn-
chronization [28], phase imaging [17,29], and detection of
radio-frequency signals [25]. The most common type of a
global parameter having been of interest in distributed sensing
is a linear combination of multiple parameters with weights
[16,23,24,27,30,31]. The weights determine not only the opti-
mal allocation of modal energies over the modes, but also the
type of optimal state. The particular weight distributions have
been considered in several theoretical studies [24,26,32,33].
For equal positive weights, a quantum enhancement has been
experimentally demonstrated in a scheme using a squeezed
vacuum state being injected into a beam-splitter array for an
estimation of the average phase [26] and the average displace-
ment parameter [25]. For unequal weights, entangled photons
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have been used to achieve a reduced noise below the shot-
noise limit, with postselection [27] and without postselection
[34]. Furthermore, a linear combination of displacements with
unequal weights has been measured using a squeezed light
[25]. In general, entanglement is known to be advantageous
for a global parameter estimation [16] and shown to achieve
the Heisenberg scaling in distributed phase sensing for arbi-
trary weights [16,23]. However, the optimal scheme to achieve
the Heisenberg scaling needs to be identified, particularly
for continuous-variable systems such as Gaussian states, al-
though a Gaussian scheme with entanglement attaining the
Heisenberg scaling has been studied very recently [35].

In this work, we consider distributed quantum sensing to
estimate a linear combination of phases with arbitrary posi-
tive and negative weights. We propose a Heisenberg-limited
scheme using Gaussian states that takes into account both
arbitrary magnitudes of the weights and their signs, and
find an achievable estimation error. In particular, we prove
that our scheme is optimal when we restrict input states to
Gaussian states with zero displacement. It is interesting that
the optimal zero-displacement Gaussian scheme decomposes
the modes into two groups according to the sign of the asso-
ciated weights, i.e., no entanglement between the two groups,
but only within the individual groups. To further understand
the role of entanglement, we elaborate on the two-mode case,
where the two phases are linearly combined with arbitrary
signs. Through the numerical optimization performed for the
two-mode case, we show that the optimal scheme employs
neither entanglement nor displacement when the weights have
the opposite signs. This result is more general than the result
in Ref. [36], where the product of two single-mode squeezed
states is shown to be the optimal input when only the phase
difference is unknown in a two-mode interferometer. We also
discuss the origin of the above behavior through a comparison
with the cases using (non-Gaussian) entangled photons.

II. RESULTS

A. Multiparameter estimation theory

Let us consider an estimation of M parameters φ =
(φ1, φ2, . . . , φM )T using measurement outcomes x, follow-
ing a conditional probability p(x|φ). The multiparameter
Cramér-Rao inequality imposes a lower bound of the M × M
estimation error matrix �i j = 〈(φ̂i − φi )(φ̂ j − φ j )〉 of any
unbiased estimator φ̂i by the Fisher information matrix
F(φ), i.e., � � F−1, where F i j (φ) = ∑

x
1

p(x|φ)
∂ p(x|φ)

∂φi

∂ p(x|φ)
∂φ j

[37]. In quantum estimation theory, the quantum Cramér-
Rao matrix inequality gives a lower bound for the error of
any unbiased estimator, i.e., � � F−1 � H−1, where Hi j =
Tr[ρ̂φ{L̂i, L̂ j}]/2 is the quantum Fisher information matrix
(QFIM), with L̂i being a symmetric logarithmic derivative
operator associated with ith parameter φi [38]. Here, {Â, B̂} ≡
ÂB̂ + B̂Â. Especially when a linear combination of φ′

is is
of particular interest, i.e., φ∗ ≡ wTφ = ∑M

i=1 wiφi with an
arbitrary weight vector w, the estimation error is lower
bounded as [4]

�2φ∗ ≡ 〈(φ̂∗ − φ∗)2〉 � wTF−1w � wTH−1w, (1)

FIG. 1. Schematic of distributed sensing under investigation. A
multimode probe state ρ̂probe generated from the first beam-splitter
network (BSN) for a given product state input ⊗M

i=1ρ̂i undergoes
the individual phase shifts on each mode. The parameter-imprinted
state ρ̂φ is fed into the second BSN (if necessary), followed by mea-
surement. The measurement outcomes are used in postprocessing to
estimate the parameter φ∗ = ∑M

i=1 wiφi with the weight vector w.

where the bound is called the quantum Cramér-Rao bound
(QCRB). Here, if the matrices are singular, F−1 and H−1 are
understood as the inverse on their support. Throughout this
paper, we assume the normalization ‖w‖1 ≡ ∑M

i=1 |wi| = 1
for simplicity.

B. Distributed Gaussian phase sensing

In this work, we focus on using Gaussian states as a probe
to encode multiple parameters φ. Gaussian states are defined
as states whose Wigner function follows a Gaussian distri-
bution. Thus, a Gaussian state ρ̂ is fully characterized by
its first moment vector di = Tr[ρ̂Q̂i] and covariance matrix
�i j = Tr[ρ̂{Q̂i − di, Q̂ j − d j}/2]. Here, a quadrature operator
vector of a M-mode continuous-variable quantum system is
defined as Q̂ = (x̂1, p̂1, . . . , x̂M , p̂M )T, satisfying the canoni-
cal commutation relation, [Q̂ j, Q̂k] = i(�2M ) jk , where �2M =
1M ⊗ ( 0 1

−1 0) and 1M is the M × M identity matrix.
We consider a setting shown in Fig. 1, through which any

Gaussian probe state ρ̂probe can be prepared by applying a
beam-splitter network (BSN) to a product Gaussian state input
⊗M

i=1ρ̂i [39,40]. Multiple phases are then encoded on the probe
state via a unitary operation Ûφ = ⊗M

j=1e−iφ j N̂ j . The output

state ρ̂φ = Ûφρ̂probeÛ
†
φ is finally measured after the second

BSN that is inserted to realize a nonlocal measurement if nec-
essary. Here, a strong reference beam is implicitly assumed to
define the phases, accessible in each mode for phase-sensitive
measurement [41]. In many cases of quantum sensing, the
energy constraint is imposed to the modes that pass through
objects whose features are estimated. We thus impose the
energy constraint to M modes, i.e., the energy for the reference
beam is excluded in accounting of the resource cost.

For the Gaussian probe state ρ̂probe characterized by the
covariance matrix � and first moment vector d, the QFIM in
Eq. (1) can be written as [12,42–46]

Hi j = 2Tr[�(i, j)�( j,i)] − δi j + (�2d (i) )T[�−1](i, j)(�2d ( j) ),

(2)

where A(i, j) denotes the 2 × 2 submatrix in the ith row and
jth column of the M × M block matrix A, and similar for
the vector d (i). The derivation of the QFIM of Eq. (2) can be
found in Ref. [24]. We note that considering pure probe states
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is sufficient to find an optimal state maximizing the QFIM
because of its convexity [23], while the analytical form of the
QFIM for general Gaussian states including mixed states can
also be found [12,42–46]. Since the generators of parameters,
{N̂i}M

i=1, commute, the QCRB in Eq. (1) can be saturated [47].
Throughout this work, we assume zero displacement, i.e.,
d = 0, for which all the off-diagonal elements of QFIM are
non-negative. The latter feature is important to analyze the
results of this work, as discussed later.

C. Distributed Gaussian phase sensing for arbitrary weights
without entanglement

Standard quantum limit. The standard quantum limit (SQL)
in distributed phase sensing for arbitrary weights is defined by
the use of a product coherent probe state, for which the QCRB
is written as [24]

�2φ∗ �
M∑

i=1

w2
i

N̄i
= 1

4N̄
. (3)

The best strategy for a given total average photon number N̄
is to distribute the average photon number N̄ over the modes
according to the weight magnitudes |wi|, i.e., N̄i = |wi|N̄ ,
independent of the weight signs.

Optimal separable Gaussian scheme. More useful prod-
uct Gaussian states leading to a smaller error than the SQL
of Eq. (3) can be found and the best strategy under the
photon-number constraint N̄ is to prepare the probe state in a
product of single-mode squeezed vacuum states with N̄2

i (N̄i +
1)2/(2N̄i + 1) ∝ w2

i and encode phases without implement-
ing a BSN. In this case, the lower bound of the estimation
error becomes

�2φ∗ �
M∑

i=1

w2
i

8N̄i(N̄i + 1)
, (4)

where individual modes scale with N̄2
i , i.e., Heisenberg scal-

ing is achieved. One can also show that the QCRB bound of
Eq. (4) can be achieved by performing homodyne detection
on each mode without the second BSN [48].

D. Optimal entangled scheme for Gaussian states with zero
displacement

We now consider a more general case where an entangled
zero-mean Gaussian state is employed. Assuming wi 
= 0 for
all i′s without loss of generality, let us decompose the weight
vector w into a positive part w+ and a negative part w−, so
that w = w+ + w−, i.e., all nonzero elements of w+ (w−)
are positive (negative). Let M± be the number of modes
corresponding to the weights w±. Grouping the modes cor-
responding to w± (i.e., two groups), we propose a scheme
that treats the two groups independently, i.e., first estimating
φ∗

± = wT
±φ individually and finally calculating φ∗ = φ∗

+ +
φ∗

−, which is illustrated in Fig. 2. The estimation error of the
particularly proposed scheme for φ∗ is given simply by the
sum of individual optimal estimation errors of φ∗

+ and φ∗
− [see

Eq. (7)], i.e.,

�2φ∗ = ‖w+‖2
1

8N̄+(N̄+ + 1)
+ ‖w−‖2

1

8N̄−(N̄− + 1)
, (5)

FIG. 2. Optimal scheme to estimate an arbitrary linear com-
bination of phases φ∗. Here, φ∗ ≡ ∑M

i=1 wiφi with wi > 0 for
1 � i � M+ and wi < 0 for M+ < i � M+ + M− = M, i.e., φ∗

+ =∑M+
i=1 wiφi and φ∗

− = ∑M++M−
i=M++1 wiφi. We constitute two independent

BSNs (BSN±) and squeezed vacuum states to estimate φ∗
+ and φ∗

−
separately and estimate φ∗ by their sum, φ∗ = φ∗

+ + φ∗
−. Finally,

homodyne detection on each site is performed to achieve the optimal
precision. Thus, the second BSN in Fig. 1 is not necessary.

where N̄± represent the average photon numbers of the opti-
mal entangled states used for probing in the respective groups.
Interestingly, the error of Eq. (5) is the same as the QCRB that
is obtainable by a globally optimal scheme, whose proof is
provided in Sec. II E. This means that the proposed scheme is
optimal over all schemes using Gaussian states with zero dis-
placement. One can easily show that if we choose N̄± = N̄/2,
the QCRB of Eq. (5) follows the Heisenberg scaling, i.e., it
scales as 1/2N̄2. A further optimization can be made by opti-
mally allocating N̄± under the constraint N̄ = N̄+ + N̄−. The
optimal allocation can be found to be N̄2

±(N̄± + 1)2/(2N̄± +
1) ∝ ‖w±‖2

1 by using the Lagrange multiplier method. While
further analytical simplification of the QCRB with the optimal
photon-number allocation N̄± is cumbersome, we show in
Appendix A that the QCRB minimized by optimal N̄± is upper
bounded as

‖w+‖2
1

8N̄+(N̄+ + 1)
+ ‖w−‖2

1

8N̄−(N̄− + 1)
<

1

4N̄2
. (6)

Thus, it is evident that the QCRB follows the Heisenberg
scaling in N̄ . It also becomes clear that the QCRB of Eq. (5)
is always smaller than or at least equal to the one in Eq. (4) by
showing that the optimal precision for each group is given by
‖w±‖2

1/[8N̄±(N̄± + 1)].
Optimality for the individual group with equal weight signs.

The derivation of the optimal sensitivity for the individual
groups is given as follows. Denoting w = w± and M = M±
for convenience of the derivation, we further develop the
QCRB of Eq. (1) as

�2φ∗ � wTH−1w � (w · v)2

vTHv
= (w · v)2

4(�2Ĝ′)ψ

� (w · v)2

4 maxψ (�2Ĝ′)ψ
= ‖w‖2

1

8N̄ (N̄ + 1)
, (7)
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where we have chosen v as vi = 1/M for all i′s and defined
Ĝ′ ≡ ∑M

i=1 N̂i/M [16], and maxψ denotes the maximiza-
tion over Gaussian states with a photon-number constraint
〈ψ | ∑M

j=1 N̂j |ψ〉 = N̄ . Here, the second inequality uses the
Cauchy-Schwarz inequality, (wTH−1w)(vTHv) � (w · v)2,
with the equality condition being Hv ∝ w, which will be used
to show the tightness of the inequality. In addition, we have
used the fact that (vTHv)−1 is equivalent to the QCRB for
estimating a parameter generated by Ĝ′ [16]. The third in-
equality is obtained via the maximization over Gaussian states
with a given photon number N̄ . For the final equality, we have
used w · v = ‖w‖1/M and maxψ (�2Ĝ′)ψ = 2N̄ (N̄ + 1)/M2

[24]. This result is used as the individual lower bounds of
�2φ∗

± in Eq. (5). Note that here we do not assume the first
moment vector to be zero in deriving the QCRB of Eq. (7), so
applicable to Gaussian states with nonzero displacement. Fur-
thermore, it is worth emphasizing that the optimal estimation
error derived in Eq. (7) holds even if we include an ancillary
system that does not pass through phase shifters. Thus, the
ultimate bound of Eq. (7) is valid for any Gaussian probe state.

It is interesting to note that the ultimate estimation error
of Eq. (7) is the same for all the cases when w′

is have the
equal sign. It does not depend on the magnitude distribution
{wi}M

i=1, but its norm ‖w‖2
1. Furthermore, the bound of Eq. (7)

for arbitrary {wi}M
i=1 generalizes the previous result that has

been found for wi = 1/M ∀i [24].
We further emphasize that the bound of Eq. (7) can be

achieved by a single-mode squeezed vacuum state injected
into a BSN whose parameters are determined by the magni-
tude distribution {wi}M

i=1. One example of a BSN to implement
it is written as

ÛBSN = B̂M−1,M (θM−1)B̂M−2,M−1(θM−2) · · · B̂1,2(θ1), (8)

where B̂i, j (θ j ) = exp[θ j (â
†
i â j − âiâ

†
j )] and θ j =

arccos(w j/‖w‖1
∏ j−1

k=0 sin2 θk )1/2 with defining θ0 = π/2
(see Appendix B for the details). For the multimode Gaussian
probe state prepared as above, the homodyne detection is the
optimal measurement setting to reach the bound of Eq. (7)
(see Appendix E for the details). There, the homodyne angle
needs to be set to θ i

HD = φi − arccos(tanh 2r) for a squeezing
parameter r of the input squeezed vacuum state.

Therefore, using the aforementioned optimal scheme indi-
vidually for the two groups in the entire scheme for arbitrary
positive and negative weights, the error bound of Eq. (5) can
be achieved in practice.

E. Optimality for the entire scheme with arbitrary weights

Now, we prove that the proposed scheme separating the
two groups, as shown in Fig. 2, is indeed optimal when
Gaussian states with zero displacement are used. For the
purpose, consider an estimation of φ∗ under the condition
that φ∗

± = wT
±φ are unknown, but the other (M − 2) param-

eters φ̃ = uTφ are known for u being linearly independent
of w±. Note that the estimation of φ∗ when φ̃′s are known
is obviously easier than the case when all the other parame-
ters are unknown. Thus, the optimal estimation error of the
latter (harder), which is the focus of this work, cannot be
smaller than that of the former task (easier), i.e., �φ∗QCRB

easy �

�φ
∗QCRB
hard (see its formal proof in Appendix C). Below, we

derive the optimal estimation error �φ∗QCRB
easy of the easier case

and then show that our proposed scheme can achieve it, i.e.,
�φ∗QCRB

easy = �φ
∗QCRB
hard . We note that the choice of u does not

change the analysis below since the knowledge of φ̃′s for a
given basis can be converted to the one in a different choice of
basis [4,16].

Let us derive the optimal estimation error for φ∗ when
(M − 2) parameters of φ̃′s are all known, i.e., �φ∗QCRB

easy . To
do that, consider the relevant QFIM for φ∗

±, which reads
H̃αβ = 2〈{Ĝα − 〈Ĝα〉, Ĝβ − 〈Ĝβ〉}〉 for α, β ∈ {+,−}, where
Ĝ+ = ∑

i:wi>0 wiâ
†
i âi and Ĝ− = ∑

i:wi<0 wiâ
†
i âi. One can

then show

H̃+− = H̃−+ = 4
∑

i:wi>0

∑
j:w j<0

wiw jC(N̂i, N̂j ) � 0, (9)

where wiw j < 0 and

C(N̂i, N̂j ) ≡ 〈N̂iN̂ j〉 − 〈N̂i〉〈N̂j〉 (10)

= 2(〈x̂ix̂ j〉2+〈x̂i p̂ j〉2+〈p̂ix̂ j〉2+〈p̂i p̂ j〉2)�0 (11)

for Gaussian states with zero displacement. Note that
C(N̂i, N̂j ) represents the photon-number correlation function
and that the equality C = 0 holds if and only if the Gaussian
state is a product state. The QCRB for φ∗ = φ∗

+ + φ∗
− can thus

be written as

�2φ∗
easy � [H̃

−1
]11 + [H̃

−1
]22 + 2[H̃

−1
]12 (12)

� [H̃
−1

]11 + [H̃
−1

]22 (13)

� ‖w+‖2
1

8N̄+(N̄++1)
+ ‖w−‖2

1

8N̄−(N̄−+1)
≡�2φ∗QCRB

easy , (14)

where we have used Eq. (9) for the second inequality and
Eq. (7) for the third inequality. Note that the minimized QCRB
for the easier task is the same as Eq. (5). This means that
our proposed scheme achieves the optimal error bound to
�2φ∗

easy for estimating φ∗ when φ̃′s are fixed and known. More
formally, we have

�2φ∗QCRB
easy � �2φ

∗QCRB
hard � ‖w+‖2

1

8N̄+(N̄+ + 1)
+ ‖w−‖2

1

8N̄−(N̄− + 1)
,

(15)

where the first inequality is trivial and the second inequality is
from the fact that �2φ

∗QCRB
hard is lower than an estimation error

of a particular scheme [see Eq. (5)]. Interestingly, the upper
bound of Eq. (15), which is set by the proposed scheme, is
equivalent to the lower bound of Eq. (15). This means that
Eq. (5) is the QCRB for an arbitrary scheme using Gaussian
states with zero displacement.

One may suggest to use a globally entangled state naively
prepared considering only the weight magnitudes while ig-
noring their signs, i.e., the scheme shown in Fig. 1. In
Appendix D, we show that the scheme distributing a squeezed
vacuum state via the BSN according to the weight magnitudes
leads to the same error bound as the SQL of Eq. (3), i.e.,
even worse than the case using optimal product Gaussian
states leading to the bound of Eq. (4). Therefore, the scheme
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distributing the squeezed vacuum into multiple modes is not
useful when opposite weight signs are involved. For the latter,
it is clear that the scheme in Fig. 2 is optimal, but Heisenberg-
limited suboptimal schemes can also be found as in Ref. [35].

One can also notice that the optimal scheme using
Gaussian states with zero displacement estimates φ∗

+ = wT
+φ

and φ∗
− = wT

−φ individually and then combine them via post-
data processing. Such a treatment leads to no difference in
the estimation uncertainty between the estimation of φ∗

+ + φ∗
−

and φ∗
+ − φ∗

−. However, the estimation of φ∗
+ − φ∗

− boils down
to the average phase estimation with equal weight signs, i.e.,
(wT

+ + |wT
−|)φ. In this case, the scheme in Fig. 2 is not op-

timal; the scheme distributing a squeezed vacuum state over
multiple modes via the BSN is optimal as we have shown in
both the present work [see Eq. (7)] and our previous work
in Ref. [24]. Therefore, it should be noted that the scheme in
Fig. 2 is only advantageous when estimating the sum of the
individual subglobal parameters, φ∗

+ + φ∗
−.

F. Two-mode scheme for arbitrary weights

Gaussian probe state. To have a better understanding, let
us concentrate here on a two-mode distributed sensing scheme
using Gaussian states with zero displacement to estimate φ∗ =
w1φ1 + w2φ2 for arbitrary w1 and w2. In such a scheme, the
QCRB of Eq. (1) can be written as

�2φ∗ � w2
1[H−1]11 + w2

2[H−1]22 + 2w1w2[H−1]12, (16)

where [H−1]12 = [H−1]21 has been used. In this case, H12 =
4C(N̂1, N̂2) > 0 for all two-mode Gaussian states with zero
displacement, leading to [H−1]12 � 0 in Eq. (16). One can
now see that the last term in Eq. (16) becomes positive (neg-
ative) when w1 and w2 have opposite (equal) signs. This
implies that entanglement between the two modes is detri-
mental when the weight signs are opposite, whereas it is
advantageous otherwise.

Instead of directly applying the above approach to
Gaussian states with nonzero displacement, we alterna-
tively perform numerical optimization over all two-mode
Gaussian probe states to minimize the QCRB. Suppose that
two arbitrary single-mode Gaussian pure states (i.e., squeezed
displaced states) are injected into a beam splitter and then un-
dergo the phase shifts. For a given total energy N̄ and weights
(w1,w2), the squeezing parameters (ξ1 = r1eiϕ1 , ξ2 = r2eiϕ2 ),
the displacement parameters (α1, α2), and the beam-splitter
parameter θ are optimized while keeping a certain ratio be-
tween N̄s = sinh2 r1 + sinh2 r2 and N̄d = |α1|2 + |α2|2 (i.e.,
N̄ = N̄s + N̄d). Hence, the probe state to be optimized reads

|ψin〉 = eiθ (â1â†
2−â†

1 â2 )D̂1(α1)Ŝ1(ξ1)D̂2(α2)Ŝ2(ξ2)|0〉, (17)

where â j is the annihilation operator in the jth mode, and
Ŝ(·) and D̂(·) are the squeezing and displacement operators,
respectively. Figure 3 presents the minimized QCRB in terms
of the ratio of N̄s to N̄ for N̄ = 10 and three example cases
of (w1,w2). It clearly shows that the QCRB becomes smaller
as the contribution of displacement is reduced, i.e., Gaussian
states with zero displacement are optimal. We also emphasize
that the optimized BSN for all cases shown in Fig. 3 turns
out to be an identity (not shown), implying that the optimized
scheme does not exploit entanglement even when displace-

FIG. 3. Numerically minimized QCRB �2φ∗ for different ratios
of the average energy allocated for squeezing, N̄s, to the total average
energy, N̄ . As an example, three cases of the weights (w1, w2) are
considered for a given N̄ = 10. It is clear that the estimation error
bound is minimized when all the energies are spent for squeezing,
i.e., when N̄s/N̄ = 1. Also note that in any case, the optimized BSN
turns out to be an identity, implying that no entanglement is used in
the optimized two-mode scheme when the weight signs are opposite.

ment is involved. It is worth noting that the estimation error
increases only slightly when a small portion of photons is
allocated for displacement for a given N̄ (see gradual curves
around N̄s/N̄ = 1 in Fig. 3).

As analyzed above, for the case of the opposite signs, the
best choice is to remove the correlation, leading to [H−1]12 =
0 in Eq. (16). Furthermore, the diagonal terms can be mini-
mized, under the photon-number constraint, by employing a
product state of two single-mode squeezed vacua, for which
the QCRB is written as

�2φ∗ � w2
1

8N̄1(N̄1 + 1)
+ w2

2

8N̄2(N̄2 + 1)
, (18)

where the optimal condition for N̄i in each mode is, again,
N̄2

i (N̄i + 1)2/(2N̄i + 1) ∝ w2
i . Again, as in Eq. (6), the QCRB

in Eq. (18) is upper bounded by 1/4N̄2, i.e., it achieves the
Heisenberg scaling in N̄ . The optimality of the two single-
mode squeezed vacua input has been similarly identified when
only the phase difference is unknown in a two-mode inter-
ferometer [36]. To avoid a wrong impression that Gaussian
entanglement between the two modes is useless in phase-
difference sensing, we stress that the Heisenberg-limited
QCRB can be achieved by entangling a coherent state and
a single-mode squeezed vacuum via a beam splitter [49],
although the product Gaussian states without displacement is
optimal for a given total-energy constraint. For the case of
the same signs, on the other hand, the optimal scheme is to
distribute a single squeezed vacuum state to the two modes
via a beam splitter, so as to manipulate the interplay between
the photon-number fluctuation of each mode and the photon-
number correlation between the modes. It finally leads to the
QCRB of Eq. (7). It is thus clear that the optimal two-mode
phase-sensing scheme depends on the signs of w′

is as well as
their magnitudes.
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Non-Gaussian probe state. Note, however, that the above
behavior may change when non-Gaussian probe states are
used. Here, let us consider particularly a quantum state with
the maximum photon number of N as an example for esti-
mation of the global parameter φ± = (φ1 ± φ2)/2. Note that
the constraint of the maximum photon number N is further
imposed to non-Gaussian probe states for conciseness in ad-
dition to the total average photon-number constraint N̄ being
considered throughout this work. For the estimation of φ−,
one can find that the optimal entangled state in the absence of
loss is a so-called NOON state, which reads

|ψNOON〉 = 1√
2

(|N0〉 + |0N〉), (19)

for which N̄1,2 = N/2, such that N̄ = N . For this state, the
correlation function reads (see Appendix F for the detail)

CNOON = − N̄2

4
. (20)

The latter clearly shows that the crucial feature to enhance the
sensitivity in the estimation of φ− is the anticorrelation of the
photon number between the two modes. When estimating φ+,
on the other hand, one can similarly show that the best strategy
is to employ a photon-number-correlated state written as

|ψNNOO〉 = 1√
2

(|NN〉 + |00〉), (21)

for which

CNNOO = N̄2

4
. (22)

The above example shows that advantageous (non-Gaussian)
entangled states can be found for arbitrary positive and neg-
ative weights. It stems from the fact that photon-number
correlated or anticorrelated non-Gaussian states are all avail-
able. Such a property, however, does not exist in the class
of zero-mean Gaussian states, for which all the off-diagonal
elements of QFIM are non-negative. The latter feature thus
explains why reducing the quantum correlation between
Gaussian states is more advantageous than enhancing it in es-
timating a linearly combined parameter with opposite weight
signs [36], although the latter scheme is still helpful [49].

III. DISCUSSION

We have proposed a Gaussian quantum phase sensing
scheme using Gaussian probe states with no displacement for
a global parameter defined as a linear combination of multiple
phases with arbitrary positive and negative weights. We have
shown that the scheme is optimal among zero-mean Gaussian
probe states. The scheme divides the modes into two groups
based on the sign of the corresponding weights, and uses
entangled input resources only within the individual groups,
i.e., no entanglement between the two separate groups. Such
an interesting feature has been understood by elaborating on
the two-mode distributed sensing scenario and comparing it
with the cases using entangled photons. Particularly for the
two-mode case, we have numerically demonstrated that the
optimal Gaussian scheme exploits neither entanglement be-
tween the two groups nor displacement at all. To be accurate,

Gaussian entanglement is still helpful [49] for outperforming
classical schemes, but it is better to reduce its strength from
the perspective of optimality for a given total-energy con-
straint.

It is worth noting that another scheme of estimating ar-
bitrary linear combination of phases has been proposed to
achieve the Heisenberg scaling using a Gaussian state input
[35]. Their scheme is to distribute a squeezed vacuum state
over M modes using a BSN, and the M-mode Gaussian output
state is fed into the respective Mach-Zehnder interferometers
with an additional coherent state for each mode followed
by photon-number detection. A crucial difference from our
scheme is that their scheme uses an entanglement over the
M modes regardless of the signs of weights. Interestingly, it
achieves the Heisenberg scaling using Gaussian entanglement
over the M modes regardless of the signs of the weights.
It implies that while our scheme is optimal for zero-mean
Gaussian states, there still exist other schemes that attain the
Heisenberg scaling.

It is interesting to further study the effect of loss in the opti-
mal error bound of the proposed scheme. The most interesting
question would be whether or not the scheme we propose
in this work is ultimately optimal even for Gaussian states
with nonzero displacement. We think that it is likely to be
the case as in single-parameter estimation, where the optimal
scheme using Gaussian states does not employ displacement
for a given total energy [50]. We, however, leave its proof for
future study due to the complexity of the analysis required.
Whether the Heisenberg scaling is maintained with reducing
the ratio of photons for squeezing in the optimal scheme needs
to be elaborated in future study in that displacing is easier
than squeezing from a practical perspective. Similar questions
addressed in this work can also be asked for other kinds of
physical parameters such as displacement or intensity. More-
over, the use of non-Gaussian probe states can be considered
and compared with schemes using only Gaussian states.
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APPENDIX A: UPPER BOUND OF THE QUANTUM
CRAMÉR-RAO BOUND OF TWO SQUEEZED VACUUM

SCHEME

In this Appendix, we show that the quantum
Cramér-Rao bound (QCRB) of our scheme is upper bounded
by the Heisenberg scaling in N̄ . Recall the QCRB in Eq. (5).
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It can be generally written as

‖w+‖2
1

8N̄+(N̄+ + 1)
+ ‖w−‖2

1

8N̄−(N̄− + 1)
<

‖w+‖2
1

8N̄2+
+ ‖w−‖2

1

8N̄2−
(A1)

for arbitrary N̄± such that N̄+ + N̄− = N̄ . Optimizing N̄± for
each expression, one can minimize each side individually,
so that

min
{N̄±}

( ‖w+‖2
1

8N̄+(N̄+ + 1)
+ ‖w−‖2

1

8N̄−(N̄− + 1)

)

< min
{N̄±}

(‖w+‖2
1

8N̄2+
+ ‖w−‖2

1

8N̄2−

)
. (A2)

The minimization can be done via the Lagrange multiplier
method under the constraint N̄+ + N̄− = N̄ , consequently
leading to the optimal energy allocation for each: N̄∗

± satisfy-
ing N̄∗2

± (N̄∗
± + 1)2/(2N̄∗

± + 1) ∝ ‖w±‖2
1 for the left-hand side

and N̄± = N̄‖w±‖2/3
1 /(‖w+‖2/3

1 + ‖w−‖2/3
1 ) for the right-

hand side. Plugging the latter solution into Eq. (A2), one can
find the upper bound of the minimized QCRB written as

‖w+‖2
1

8N̄∗+(N̄∗+ + 1)
+ ‖w−‖2

1

8N̄∗−(N̄∗− + 1)
< min

{N̄±}

(‖w+‖2
1

8N̄2+
+ ‖w−‖2

1

8N̄2−

)

= ‖(‖w+‖1, ‖w−‖1)‖2
2/3

8N̄2

� 1

4N̄2
, (A3)

where we have used the inequality between p-norms, ‖x‖p �
n1/p−1/q‖x‖q for 0 < p � q < ∞ and ‖x‖p ≡ (

∑
i xp

i )1/p for a
n-dimensional vector x. Hence, the minimized QCRB is upper
bounded as

‖w+‖2
1

8N̄∗+(N̄∗+ + 1)
+ ‖w−‖2

1

8N̄∗−(N̄∗− + 1)
<

1

4N̄2
. (A4)

APPENDIX B: OPTIMAL GAUSSIAN STATE FOR
ARBITRARY WEIGHTS WITH AN EQUAL SIGN

Here, we find the optimal state to estimate a linear com-
bination of phases for arbitrary weights with an equal sign,
namely, the elements of the weight vector w are all positive.
Let us begin with rewriting the elements of quantum Fisher
information matrix (QFIM) of Eq. (2) for Gaussian states
without displacement as

Hi j = 2Tr[PiO�inOTPjPjO�inOTPi] − δi j

= 2Tr[OTPiO�inOTPjO�in] − δi j, (B1)

where Pi ≡ |i〉〈i| ⊗ 12 is a projector, O ≡ Õ ⊗ 12 is the first
beam-splitter network (BSN), and �in is the covariance matrix
of an input state. The covariance matrix of an input state
assumed to be a product state of a squeezed vacuum state and
(M − 1) vacua can be written as

�in = |1〉〈1| ⊗ D +
M∑

n=2

|n〉〈n| ⊗ 12

2
, (B2)

where D = 1
2 diag(e2r, e−2r ).

First, let us show that the above state satisfies Hv ∝ w

with vi = 1/M, corresponding to the equality condition of the

second Cauchy-Schwarz inequality in Eq. (7). When vi =
1/M, the vector Hv can be developed as follows:

(Hv)i = 1

M

M∑
j=1

Hi j (B3)

∝
M∑

j=1

(2Tr[OTPiO�inOTPjO�in] − δi j ) (B4)

= 2Tr[OTPiO�2
in] − 1 (B5)

= 2Tr

[
(ÕT|i〉〈i|Õ ⊗ 12)

(
|1〉〈1| ⊗ D2

+
M∑

n=2

|n〉〈n| ⊗ 1

4
12

)]
− 1 (B6)

= 2Tr[D2]〈1|ÕT|i〉〈i|Õ|1〉 +
M∑

n=2

〈n|ÕT|i〉〈i|Õ|n〉 − 1

(B7)

= 2Tr[D2]〈1|ÕT|i〉〈i|Õ|1〉 + 〈i|Õ(1M −|1〉〈1|)ÕT|i〉−1

(B8)

= (2Tr[D2] − 1)〈1|ÕT|i〉〈i|Õ|1〉
(B9)

= (2Tr[D2] − 1)|〈i|Õ|1〉|2. (B10)

It is thus clear that Hv ∝ w if the first BSN operator O is
constituted such that |〈i|Õ|1〉|2 = wi/‖w‖1. More specifically,
a particular example BSN setup to satisfy the above condition
can be written as ÛBSN = B̂M−1,M (θM−1)B̂M−2,M−1(θM−2) ×
· · · × B̂1,2(θ1), where B̂i, j (θ j ) = exp[θ j (â

†
i â j − âiâ

†
j )] and

θ j = arccos[w j/(‖w‖1
∏ j−1

k=0 sin2 θk )]1/2 with defining
θ0 = π/2.

Second, let us show that �2Ĝ′ can be maximized by the
probe state prepared in the aforementioned setup, satisfying
the equality condition of the third inequality in Eq. (7). Recall
that Ĝ′ = ∑M

i=1 viN̂i = ∑M
i=1 N̂i/M when vi = 1/M. In addi-

tion, it can be easily shown that the sum of photon-number
operators

∑M
i=1 N̂i is invariant under the BSN operation

and that the maximum photon-number variance is then at-
tained by a product of the single-mode squeezed vacuum
state and (M − 1) vacua. Thus, the proposed probe state
maximizes �2Ĝ′.

APPENDIX C: COMPARISON OF QCRBS WITH AND
WITHOUT ADDITIONAL INFORMATION

Here, we show the QCRB for φ∗ when (M − 2) parame-
ters φ̃′s are all known, except φ∗

± is upper bounded by that
for φ∗ when all parameters are unknown. Intuitively, this is
obvious because the former has more information than the
latter, so that it is easier than the latter, i.e., �φ∗

easy � �φ∗
hard.

To explicitly show it, consider an M × M weight matrix W
that consists of linearly independent weight vectors: w± and
u. It maps M parameters {φi} into M global parameters, i.e.,
φ∗

± = wT
±φ and φ̃ = uTφ. For M global parameters, the QFIM
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can be partitioned into four block matrices as

H =
(

H (A) H (AB)

H (BA) H (B)

)
, (C1)

where the superindices A and B denote the first two dimen-
sions and the rest (M − 2) dimensions, respectively. When the
(M − 2) parameters φ̃′s are all known, H (A) is the QFIM for
φ∗

±. Therefore, to show �φ∗
easy � �φ∗

hard is equivalent to prov-

ing [H−1](A) � [H (A)]−1, and it can be verified by applying an
analytical blockwise inversion formula to H−1:

[H−1](A) = [H (A) − H (AB)(H (B))−1H (BA)]−1 � [H (A)]−1,

(C2)

where the inequality comes from H (AB)(H (B))−1H (BA) � 0.

APPENDIX D: GLOBALLY ENTANGLED GAUSSIAN
STATE IGNORING THE WEIGHT SIGNS

Let us consider the case where wi = 1/M for 1 � i � M/2
and wi = −1/M for M/2 < i � M, assuming M to be even
for this example. Ignoring the weight signs, one can employ
the optimal scheme that has previously been found for wi =
1/M ∀i [24], which uses a single-mode squeezed vacuum state
input into a balanced BSN. It can be shown that the estimation
error bound is given as

�2φ∗ � 1

4N̄
= 1

4Mn̄
, (D1)

where we have introduced a parameter n̄ ≡ N̄/M, represent-
ing the photon number allocated in each mode. Notably, the
error bound is the same as the SQL, and even worse than
the case using product Gaussian states, which is written from
Eq. (4) as

�2φ∗ � M

8N̄ (N̄ + M )
= 1

8Mn̄(n̄ + 1)
. (D2)

On the other hand, the proposed scheme that uses the respec-
tive single-mode squeezed vacuum states for the individual
groups reaches the error bound written as

�2φ∗ � 1

4N̄ (2N̄ + 1)
= 1

8Mn̄(Mn̄ + 1)
. (D3)

This clearly shows the Heisenberg scaling. Therefore, when
the opposite weight signs are involved, the previous scheme
using globally entangled Gaussian states fails to gain a quan-
tum advantage and is even worse than that using the product
nonentangled Gaussian states, whereas the proposed scheme
in this work achieves a quantum enhancement in comparison
with the error bounds of Eqs. (3) and (4). Such an enhance-
ment is clear from the Heisenberg scaling with M for a fixed n̄.

APPENDIX E: OPTIMALITY OF HOMODYNE
DETECTION

Here, we show that homodyne detection is the optimal
measurement setting when estimating a global parameter for
arbitrary weights with an equal sign using two independent
squeezed input states, as proposed in the main text. For sim-
plicity, we assume that the weight vector w is normalized as
‖w‖1 = 1. The optimality can be demonstrated by showing

that the classical Cramér-Rao bound (CCRB) for homodyne
detection is the same as the QCRB that is obtainable by the
optimal measurement setting. To this end, we first derive the
classical Fisher information matrix (CFIM) for a probability
distribution of the homodyne detection outcomes and then use
it to find the CCRB.

The covariance matrix of the Gaussian probe state �probe

before phase shifters, written as (see Appendix B)

�
(i, j)
probe =

M∑
k=1

〈i|Õ|k〉〈k|ÕT| j〉Dk (E1)

= 〈i|Õ|1〉〈1|ÕT| j〉D1 +
M∑

k=2

〈i|Õ|k〉〈k|ÕT| j〉12

2
(E2)

= 〈i|Õ|1〉〈1|ÕT| j〉D1 + 〈i|Õ(1M − |1〉〈1|)ÕT| j〉12

2
(E3)

= √
wiw j

(
D1 − 12

2

)
+ δi j

12

2
, (E4)

is transformed after phase shifters ⊗M
i=1R̂(φi) as

�
(i, j)
out = R(φi )�

(i, j)
probeRT(φ j )

= √
wiw jR(φi )D1RT(φ j )+(δi j −√

wiw j )
R(φi)RT(φ j )

2
,

(E5)

where

R(φ) =
(

cos φ sin φ

− sin φ cos φ

)
, (E6)

represents the symplectic transformation corresponding to a
phase shifter R̂(φ). Noting that

[R(φi)diag(d1, d2)RT(φ j )]11=d1 cos φi cos φ j +d2 sin φi sin φ j,

(E7)

one can find the elements of the covariance matrix �HD ob-
tainable from homodyne detection performed along the x axis,
written as

〈i|�HD| j〉 = �
(2i−1,2 j−1)
out

= √
wiw j (d1 cos φi cos φ j

+ d2 sin φi sin φ j ) + (δi j − √
wiw j )

cos(φi − φ j )

2
.

(E8)

Its derivative with respect to φk can be written as

∂k〈i|�HD| j〉= √
wiw j[δik (−d1 sin φi cos φ j + d2 cos φi sin φ j )

+ δ jk (−d1 cos φi sin φ j + d2 sin φi cos φ j )]

+ (δi j − √
wiw j )(δ jk − δik )

sin(φi − φ j )

2
.

(E9)

Here, d1 = e−2r/2 and d2 = e2r/2 are given from the input
squeezed vacuum state with a squeezing parameter r. Note
that the homodyne angle in homodyne detection is tunable
and adds an additional phase to φi, so we can treat them
together by an overall phase φi without loss of generality.
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Assuming the homodyne angles are optimally chosen for the
given phases such that 2φi = arccos(tanh 2r) for all i′s, we
can set φi = φ ∀i for convenience. Such an optimal angle
condition further simplifies Eq. (E9) as

∂k〈i|�HD| j〉 = √
wiw j (d2 − d1)(δik + δ jk ) cos φ sin φ

= √
wiw j (δik + δ jk )

tanh 2r

2
. (E10)

Thus, we have

∂k�HD = tanh 2r

2

∑
i

√
wiwk (|i〉〈k| + |k〉〈i|)

=
√

wk tanh 2r

2
(|√w〉〈k| + |k〉〈√w|), (E11)

where we have defined |√w〉 ≡ ∑M
i=1

√
wi|i〉.

The inverse matrix of the covariance matrix can be
obtained similarly by setting φi = φ ∀i such that 2φi =
arccos(tanh 2r). Equation (E8) now reads

〈i|�HD| j〉 = √
wiw j

(
d1 cos2 φ + d2 sin2 φ − 1

2

)
+ δi j

2

= 1

2
√

wiw j (A − 1) + δi j, (E12)

where A ≡ sech2r. Thus, the covariance matrix of the resul-
tant probability distribution obtained by homodyne detection
with the optimal angles can be simply written as

�HD = 1

2
[(A − 1)|√w〉〈√w| + 1M], (E13)

and its inverse matrix is simplified as

�−1
HD = 2[A−1|√w〉〈√w| + (1M − |√w〉〈√w|)]

= 2[(A−1 − 1)|√w〉〈√w| + 1M]

= 2(2 sinh 2 r|√w〉〈√w| + 1M ). (E14)

Substituting Eqs. (E11) and (E14) into the CFIM,
written as

Fi j = 1
2 Tr[�−1

HD(∂φi�HD)�−1
HD(∂φ j �HD)], (E15)

we can further develop the CFIM as

Fi j = 2(4 sinh4 r〈√w|∂φi�HD|√w〉〈√w|∂φ j �HD|√w〉
+ 4 sinh2 r〈√w|∂φi�HD∂φ j �HD|√w〉
+ Tr[∂φi�HD∂φ j �HD]) (E16)

= αwiw j + βwiδi j, (E17)

where α ≡ tanh2 2r(8 sinh4 r + 6 sinh2 r + 1) and β ≡
tanh2 2r cosh 2r. The CFIM is thus of the form

F = α|w〉〈w| + B, (E18)

where |w〉 ≡ ∑M
i=1 wi|i〉 and B ≡ β

∑M
i, j=1 wiδi j |i〉〈 j|. Ap-

plying the Sherman-Morrison formula to the matrix F [51,52],
we have

F−1 = (α|w〉〈w| + B)−1 = B−1 − αB−1|w〉〈w|B−1

1 + α〈w|B−1|w〉 .

(E19)

The CCRB for �2φ∗ is then written as

wTF−1w = 〈w|B−1|w〉 − α
〈w|B−1|w〉2

1 + α〈w|B−1|w〉
= 1

β
− α

β

1

α + β
= 1

8N̄ (N̄ + 1)
, (E20)

where N̄ = sinh2 r. One can easily check that if we lift the
normalization condition ‖w‖1 = 1, the CCRB becomes

wTF−1w = ‖w‖2
1

8N̄ (N̄ + 1)
. (E21)

As a result, the CCRB for homodyne detection is shown
to be equal to the QCRB of Eq. (7), implying that homodyne
detection is optimal for the estimation of a global parameter
φ∗ for arbitrary weights with an equal sign.

APPENDIX F: OPTIMALITY OF NOON STATE AND NNOO
STATE

Here, we show that the NNOO state and NOON state
are the optimal states achieving the maximum sensitivity to
estimate φ± = (φ1 ± φ2)/2, respectively, when the maximum
photon number is bounded to N . The maximum photon-
number constraint allows the system to be treated as an (N +
1)-dimensional discrete variable system. In this case, it is well
known that the optimal state to estimate φ± when its com-
plementary parameter (φ∓) is known, i.e., in single-parameter
estimation, is a Greenberger–Horne–Zeilinger (GHZ)-type
state, namely, the NNOO state and NOON state, respectively
[53]. One can easily show that the QFIs for single-parameter
estimation of φ± with the NNOO state and NOON state are
given by

H (S)
NNOO(φ+) = N2, H (S)

NOON(φ+) = N2, (F1)

respectively. Note that the total average photon number N̄ of
the NNOO state and NOON state is equal to N .

On the other hand, the multiparameter estimation approach
considered in this work derives the sensitivity bound for φ± =
(φ1 ± φ2)/2 written as

�2φ± � wT
±H−1w±, (F2)

where w± = (1,±1)/2 and the QFIM H reads

H =
(

H11 H12

H21 H22

)
, (F3)

with Hi j = 4(〈N̂iN̂ j〉 − 〈N̂i〉〈N̂j〉). For estimation of φ+ with
the NNOO state, the QFIM elements are thus given by

H11 = H12 = H22 = N̄2, (F4)

while for the estimation of φ− with the NOON state, the QFIM
elements are given by

H11 = H22 = N̄2, H12 = −N̄2. (F5)

Notice that the QFIMs are singular in both cases. Thus, we
project the matrices on the subspaces spanned by w±, respec-
tively, resulting in

�2φ± � 1

N̄2
. (F6)
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Noting that the multiparameter error bound for estimating
φ± is always greater than or equal to the single-parameter
bound implied by Eq. (F1) and that the above bounds (F6)
obtained from multiparameter estimation theory are the same

as Eq. (F1) obtained from a single-parameter estimation point
of view, the NNOO state and NOON state are optimal in
achieving the maximum sensitivity for the estimation of φ± =
(φ1 ± φ2)/2 as well.
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ometry with and without an external phase reference, Phys. Rev.
A 85, 011801(R) (2012).

[42] L. Banchi, S. L. Braunstein, and S. Pirandola, Quantum Fidelity
for Arbitrary Gaussian States, Phys. Rev. Lett. 115, 260501
(2015).

[43] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Boca Raton, FL, 2017).

[44] R. Nichols, P. Liuzzo-Scorpo, P. A. Knott, and G. Adesso,
Multiparameter Gaussian quantum metrology, Phys. Rev. A 98,
012114 (2018).

[45] C. Oh, C. Lee, L. Banchi, S.-Y. Lee, C. Rockstuhl, and H. Jeong,
Optimal measurements for quantum fidelity between Gaussian
states and its relevance to quantum metrology, Phys. Rev. A
100, 012323 (2019).

[46] J. S. Sidhu and P. Kok, Geometric perspective on quantum
parameter estimation, AVS Quantum Sci. 2, 014701 (2020).

[47] L. Pezzè, M. A. Ciampini, N. Spagnolo, P. C. Humphreys, A.
Datta, I. A. Walmsley, M. Barbieri, F. Sciarrino, and A. Smerzi,
Optimal Measurements for Simultaneous Quantum Estimation
of Multiple Phases, Phys. Rev. Lett. 119, 130504 (2017).

[48] S. Olivares and M. G. Paris, Bayesian estimation in homodyne
interferometry, J. Phys. B: At., Mol. Opt. Phys. 42, 055506
(2009).

[49] M. D. Lang and C. M. Caves, Optimal Quantum-Enhanced
Interferometry Using a Laser Power Source, Phys. Rev. Lett.
111, 173601 (2013).

[50] T. Matsubara, P. Facchi, V. Giovannetti, and K. Yuasa, Optimal
Gaussian metrology for generic multimode interferometric cir-
cuit, New J. Phys. 21, 033014 (2019).

[51] J. Sherman and W. J. Morrison, Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,
Ann. Math. Stat. 21, 124 (1950).

[52] W. H. Press, H. William, S. A. Teukolsky, W. T. Vetterling,
A. Saul, and B. P. Flannery, Numerical Recipes: The Art of
Scientific Computing, 3rd ed. (Cambridge University Press,
Cambridge, 2007).

[53] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia,
Generalized Limits for Single-Parameter Quantum Estimation,
Phys. Rev. Lett. 98, 090401 (2007).

023164-11

https://doi.org/10.1103/PhysRevX.11.031009
http://arxiv.org/abs/arXiv:2109.09178
https://doi.org/10.1103/PhysRevA.90.025802
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/PhysRevA.85.011801
https://doi.org/10.1103/PhysRevLett.115.260501
https://doi.org/10.1103/PhysRevA.98.012114
https://doi.org/10.1103/PhysRevA.100.012323
https://doi.org/10.1116/1.5119961
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1088/0953-4075/42/5/055506
https://doi.org/10.1103/PhysRevLett.111.173601
https://doi.org/10.1088/1367-2630/ab0604
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1103/PhysRevLett.98.090401

