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Tensor-network renormalization approach to the q-state clock model
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We simulate the phase diagram and critical behavior of the q-state clock model on the square lattice by using
the state-of-the-art loop optimization for tensor-network renormalization (loop-TNR) algorithm. The two phase
transition points for q � 5 are determined with very high accuracy. Furthermore, by computing the conformal
scaling dimensions for both transition points, we are able to determine the radius R of the compactified boson
theories at both transition points with high precision. In particular, the radius R at higher temperature phase
transition point is precisely the same as the one predicted by Berezinskii-Kosterlitz-Thouless (BKT) transition.
Moreover, we find that the fixed-point tensors at higher temperature transition point also converge to the same
one approximately for large enough q and the corresponding operator product expansion (OPE) coefficient of
the compactified boson theory can also be read out directly from the fixed-point tensor.
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I. INTRODUCTION

Berezinskii-Kosterlitz-Thouless (BKT) [1–3] transition
was originally proposed in classical XY model with a con-
tinuum U(1) symmetry. It is well known that spontaneous
breaking of continuum symmetry is not allowed in 2D clas-
sical systems and the BKT transition provides us the first
example beyond Landau’s symmetry breaking paradigm. On
the contrary, spontaneous breaking of discrete symmetry is
generally allowed for 2D classical systems and BKT transition
is usually not expected for these systems. In recent years,
researchers have found very strong numerical evidence that
BKT transition indeed also happens in systems with discrete
symmetry, e.g., the q-state clock model [4]. It has been pointed
out that for q � 5, the q-state clock model typically has
two critical points [5]. At the high-temperature critical point,
the system undergoes a BKT transition, while at the low-
temperature critical point, the long-range order would emerge
and the usual symmetry breaking transition happens. Theo-
retically, it has been well known that q-state model with large
enough q is effectively described by Zq deformed sine-Gordon
model [6], and the renormalization analysis also suggests that
the model will undergo two phase transitions as the temper-
ature decreases. Between the two phase transition points, the
effective field theory reduced to a simple compactified boson
theory with emergent U(1) symmetry. Previously, a number of
studies have been focused on how to determine the two critical
temperatures [7–16], but how to extract the exact conformal
data at critical points is still very challenging. Although re-
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cently there is some progress on computing compactification
radius, the operate product expansion (OPE) coefficient is still
impossible with the current numerical techniques [17–29].

Tensor renormalization group (TRG) or tensor entan-
glement filtering renormalization group (TEFRG) algorithm
[30,31] is a powerful tool to study the phase diagram of 2D
classical statistical models. By investigating the properties of
the corresponding fixed-point tensor for off-critical systems,
the phase diagram can be read out directly. However, for
critical systems, the conformal data such as central charge
and scaling dimensions are still not accurate enough and
seriously suffer from the stability problem after a few renor-
malization group (RG) steps. In recent years, by eliminating
short-range quantum entanglement, tensor-network renormal-
ization (TNR) [32] algorithm was first proposed as real space
renromalization group method to improve the accuracy and
stability of conformal data. Subsequently, the so-called loop
optimization for tensor-network renormalization (loop-TNR)
[33] was developed to significantly increase the efficiency of
TNR scheme. Comparing with other singular value decompo-
sition based methods, such as TRG/TEFRG and higher order
TRG (HOTRG) [34,35], the loop-TNR algorithm provides
us much more precise and stable conformal data for critical
systems.

In this paper, we use loop-TNR algorithm to study the
phase transition properties of the q-state clock model. We find
very strong numerical evidence that the physics of self-dual
critical points for q < 5 model matches very well with the pre-
vious proposal from conformal field (CFT) theory and other
numerical results. For q � 5 model, the middle phase between
the symmetry-breaking transition point and BKT critical point
is described by the compactified boson theory with central
charge c = 1. By computing the scaling dimensions of the
two transition points as well as the so-called self-dual points,
we are able to determine the compactification radius R of
the corresponding compactified boson theory with very high
accuracy. We find that at both phase transition points as well
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FIG. 1. Tensor-network representation of q-state clock model on
square lattice.

as self-dual point, the obtained compactification radii R per-
fectly agree with the field theory predictions. Furthermore, we
also find that for big enough q, the corresponding fixed-point
tensors at the high-temperature transition point Tc2 converge
to the same one approximately, describing BKT transition
with an emergent U(1) symmetry, and the corresponding OPE
coefficients of the compactified boson theory can also be read
out directly. We stress that our method not only gives critical
temperature with very high precision, but also provides us
accurate conformal data, especially for the cases with q = 5
and q = 6, which are very hard to be simulated by density
matrix renormalization group (DMRG)/matirx product state
(MPS) based methods [11,29] as well as Monte Carlo (MC)
simulation [7,9,10,14,20,21,23,24,27,28] due to the presence
of marginal irrelevant terms [36]. Our numerical results also
suggest that 2D CFT could be reformulated as an infinite
dimensional fixed-point tensor, which encodes the complete
conformal data, such as scaling dimensions and OPE coeffi-
cients. This might lead to an algebraic way to reformulate and
classify all 2D CFT.

II. TENSOR-NETWORK RENORMALIZATION FOR
q-STATE CLOCK MODEL

The q-state clock model is describe by the Hamiltonian

H = −J
∑
〈i j〉

cos (θi − θ j ), (1)

where θi = 2πni/q, and ni ∈ {1, 2, ...q}. We note that for q =
2 and q = 3 the model is equivalent to classical Ising model
and 3-states Potts model. The partition function of the q-state
clock model can be expressed as a trace of local tensors:

Z = Tre−βH =
∑
i jkl···

∏
Ti jkl ≡ tTr ⊗ T . (2)

As seen in Fig. 1, we use red dots to represent the original
square lattice, and the tensor Ti jkl is defined on the dual lattice
with light blue dots. Here we consider systems with periodic
boundary condition (PBC) with all edges of the dual lattice
are summed over. The element tensor Ti jkl is defined as

Ti jkl = exp β(cos θi j + cos θ jk + cos θkl + cos θli ), (3)

where θi j = 2π (i − j)/q and i, j, k, l take values {1, 2, ...q}.
Below we will use the loop-TNR algorithm [33] to determine

r1

r2

u1 u2

l1

l2

d1 d2
FIG. 2. We use the 2 by 2 block to represent the fixed-point

tensor T when calculating χ , where we group the index (i1, i2) into
a single index i for tensor T .

the critical points of this model and compute the correspond-
ing conformal data.

For q < 5, it is well known that the self-dual critical tem-
perature reads [37]:

βc =
⎧⎨⎩

ln(
√

2 + 1)/2, q = 2
2 ln(

√
3 + 1)/3, q = 3

ln(
√

2 + 1), q = 4
. (4)

We will first benchmark with these exact results to examine
the accuracy of our algorithm. Since the q = 2 case has al-
ready been studied before, here we will begin with the q = 3
and q = 4 cases. To find the critical point, we first calculate
the gauge invariant quantity χ introduced in Ref. [31]:

χ =
(∑

i j Ti ji j
)2∑

i jkl Ti jkl Tkli j
, (5)

where we use the 2 by 2 block to represent the fixed-point
tensor T (composed by TA and TB on sublattices A and B,
respectively) when calculating the gauge invariant quantity χ ,
as shown in Figs. 2 and 3.

As seen in Fig. 4, we see that there is a sudden jump from
ordered phase to disordered phase. This is because the tensors
for ordered and disordered phase would flow to different fixed
points. To understand better for the gauge invariant quantity
χ , we introduce matrix Mh and Mv:

Mh
i j =

∑
k

T fixed-point
ik jk , Mv

i j =
∑

k

T fixed-point
kik j . (6)

(a) (b)

FIG. 3. Gauge invariant quantity χ formed by T , where the nu-
merator is represented by the square of part (a), and the denominator
is given by part (b).
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FIG. 4. The invariant quantity χ as a function of temperature.
We find that the critical temperature Tc for q = 3 model is around
1.4925(5), which agrees with the prediction of the self-dual analysis.
Here we keep Dcut = 36 in the loop-TNR algorithm and system size
up to 223.

We see that for ordered phase, the eigenvalue λ of Mh and Mv

is

λ1, λ2, ...λq = 1/q
others = 0

. (7)

In disordered phase, we have λ1 = 1, and all the others ap-
proach 0, which shows clearly the symmetry breaking nature
of the phase transition. Here, we have already normalized the
fixed-point tensor as ∑

jk

T fixed-point
jk jk = 1. (8)

Next, we compute the central charge and scaling dimen-
sions (we keep Dcut = 36 in our loop-TNR algorithm). We
find that the central charge c = 0.80005, which agrees pretty
well with the value predicted by the CFT with c = 4/5. In
Fig. 5, we see that both central charge and scaling dimensions
are very stable up to 20 renormalization steps, which corre-
sponds to a total system size 223.

Similarly, we can compute the gauge invariant quantity χ ,
central charge and scaling dimensions for the q = 4 model
(again, we keep Dcut = 36 in our loop-TNR algorithm), as
shown in Figs. 6 and 7. We find that c = 1.00021, which is
also consistent with previous theoretical predictions. In fact,
the critical point of q = 4 model can be just regarded as two
copies of the Ising CFT. Again, we see that both central charge
and scaling dimensions are very stable up to 20 renormaliza-
tion steps.

III. q = 5 AND q = 6 MODELS

For q � 5, it is conjectured that the q-state clock model is
described by Zq-deformed sine-Gordon theory [4,6]

S = 1

2πK

∫
d2r(∇φ)2 + g1

2πα2

∫
d2r cos(

√
2φ)

+ g2

2πα2

∫
d2r cos(q

√
2	), (9)

FIG. 5. The scaling dimensions at the critical point of q = 3
model with Dcut = 36. We see that the conformal data rapidly con-
verges to CFT predictions during the renormalization process.

where φ,	 are compactified as φ ≡ φ + √
2π , 	 ≡

	 + √
2π, and they satisfy the dual relation ∂xφ =

−K∂y	, ∂yφ = K∂x	. The coupling constants K, g1, g2 are
temperature dependent, and α is a UV cutoff.

With decreasing temperature, the above effective theory
will describe two phase transitions, which can be understood
from the renormalization group flow of the second and third
terms. The high-temperature critical point is described by
the well known BKT transition while the low-temperature
transition is described by the usual symmetry breaking tran-
sition. As the coupling g1 and g2 become irrelevant between
the two critical points Tc1 < T < Tc2, the effective theory re-
duced to compactified boson theory in the middle phase, with
compactification radius R = √

2K . In addition, if g1 = g2,
Eq. (9) is self-dual. From the scaling dimension analysis, the

FIG. 6. The invariant quantity χ as a function of temperature.
We find that the critical temperature Tc for q = 4 model is around
1.1345(5), which also agree with the prediction of the self-dual anal-
ysis [37]. Here we also keep Dcut = 36 in the loop-TNR algorithm
and system size up to 223.
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FIG. 7. The scaling dimensions at the critical point of q = 4
model with Dcut = 36.

compactification radius can be computed exactly for both
phase transition points as well as for the self-dual point [29].
We have:

Rc2 = 2
√

2, BKT transition point

Rself−dual =
√

2q, self-dual point

Rc1 = q/
√

2, symmetry-breaking point.

Similar to the q < 5 model, two transition points of q = 5
model can be read out from the gauge invariant quantity χ . In
Fig. 8, we plot χ as a function of temperature near the critical
point. Very different from the q < 5 model, there is no sharp
change in χ near the two phase transition points. Similar to the
q < 5 model, in ordered phase, the tensor would flow to the
fixed point with χ = 5, while in disordered phase, the fixed-
point tensor gives rise to χ = 1. However, in the middle phase,
the structure of fixed-point tensor is very complicated and we
will discuss the details later. An interesting feature is that the
gauge invariant quantity χ becomes size independent in the
middle critical phase and this help us pin down the critical
temperature for both high-temperature and low-temperature
phase transitions. As seen from Fig. 8, we can read out that
the low-temperature symmetry breaking transition point Tc1

is around 0.909(1) while the high-temperature BKT phase
transition point is around 0.949(1). Similar analysis can be
applied to q = 6 model as well, and we can read out from
Fig. 9 that the low-temperature critical point Tc1 is around
0.699(1), and high-temperature phase transition point Tc2 is
around 0.909(1). In order to increase the stability of accuracy,
here and below we will use the Zq symmetric loop-TNR algo-
rithm (see Appendix D for more details) with Dcut being the
integer multiple of q, and 60 < Dcut < 70 for simulating all
q-state clock models.

Since the middle phase is described by compactified boson
model, we can further use the fixed-point tensor to compute its
central charge and scaling dimensions. As seen in Fig. 10, we
find c = 0.99987 for q = 5 model with T = 0.93kB/J , which
agree pretty well with the theoretical prediction with c = 1. It
is well known that the scaling dimension of the primary fields

FIG. 8. Invariant quantity of q = 5 model around Tc1 and Tc2.
We can read that Tc1 = 0.909(1), and Tc2 = 0.949(1), with the same
analysis with q = 5 model.

of the compactified boson model can be expressed as

�e,m = m2

R2
+ e2R2

4
, (10)

where R is the compactified radius and m, e are integers,
which label the primary fields. In Fig. 10, we also plot the
scaling dimension for q = 5 model with T = 0.93kB/J . We
find that all the low-scaling dimension can be fit quite well
with R = 3.08607. Here we choose the scaling dimensions of
RG steps from 15–20 to fit the compactification radius R, see
Appendix A for more details. We note that the deviations for
high-scaling dimensions are due to the numerical error and
we can further improve the accuracy by increasing Dcut in the
loop-TNR algorithm.

The BKT transition point Tc2 can also be determined by
the susceptibility peak method with extremely high accuracy.
First, by applying a very small external field, we can compute
the susceptibility at different external field h and temperature
T [38]:

χ (h, T ) = ∂m

∂h

∣∣∣∣
T

. (11)
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FIG. 9. Invariant quantity of q = 6 model around Tc1 and Tc2.
We can read that Tc1 = 0.699(1), and Tc2 = 0.909(1), with the same
analysis with q = 6 model.

FIG. 10. An example of scaling dimensions in the critical phase
for q = 5 model.

FIG. 11. Susceptibility of (a) q = 5 and (b) q = 6 models with
external field h = 10−5.

For example, in Fig. 11, we plot the susceptibility function
at different system size for q = 5 and q = 6 models with a
very small external field h = 10−5. We see that all the sus-
ceptibility functions collapse to a single curve, which implies
that the thermodynamic limit has already been achieved for
physical quantities, despite to the fact that the gauge invariant
quantity χ still has very strong size dependence near both
critical temperatures. If we assume that the high-temperature
transition is indeed KBT type, the susceptibility peak tem-
perature should approach Tc2 as a power law function with
respect to the external fields. By plotting the peak position
of χ with different external fields and extrapolating the peak
temperature to the h = 0 limit, we can read out Tc2 by using
the following formula [38]:

Tpeak(h) − Tc = ahb. (12)

We find that for q = 5 model, Tc2 = 0.9507(5), a =
0.5605, b = 0.3028, and for q = 6 model, Tc2 = 0.9111(5),
a = 0.4057, b = 0.1662. Figures 12 and 13 show the
susceptibility-peak fitting for q = 5 and q = 6 models, re-
spectively. We see that the results of Tc2 is comparable with
what we get from the gauge invariant quantity χ .
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FIG. 12. Susceptibility peak temperature versus external field for
q = 5 model, from which we find that Tc = 0.9507(5), a = 0.5605,
b = 0.3028.

In Table I, we compare our results with all previous known
results for Tc1 and Tc2 using other methods. We see that our
method gives much more precise critical temperatures than
HOTRG based method [13,15], and the results are comparable
with recent MPS based method [29] and large scale M.C.
results [23,28]. We note that the small disagreement in the last
digit might arise from the finite-size effect in other methods.
Our loop-TNR method can handle system size up to 223 with
very high accuracy.

We further compute the scaling dimensions at Tc1 and Tc2

for of both q = 5 and q = 6 models. From the results of
scaling dimension at each RG step, we can clearly observe
the logarithmic flow of some higher scaling dimensions, as
seen in Figs. 14 and 15. This implies the existence of marginal
irrelevant terms [36] for these transition points, and it explains
why these transition points are very hard to be determined
precisely in previous studies. From the scaling dimensions,

FIG. 13. Susceptibility peak temperature vs external field for
q = 6 model, from which we find that Tc = 0.9111(5), a = 0.4057,
b = 0.1662.

FIG. 14. Scaling dimensions at the critical point (a) Tc1 and
(b) Tc2 for q = 5 model, from which we can fit the compactifica-
tion radius R of the compactified boson theory. We find that at Tc1,
R = 3.52954, and at Tc2, R = 2.83894.

we can fit the compactification radius R by using Eq. (10).
In Table II, we list the compactification radius R at both
transition points and we find a perfect agreement with the field
theory predictions. We see that comparing with the very recent
studies by using MPS based method [29], our results give rise
to much more precise compactification radius R at these phase
transition points. In addition, we also computed the scaling
dimensions and fit compactification radius R in Table II for the
so-called self-dual point, see Appendix B for more details.

IV. q > 6 MODELS AND FIXED-POINT TENSOR
FOR BKT TRANSITION

A. Critical temperature and compactification radius

By using the same methods for q = 5 and q = 6 models,
we also studies the phase diagram for q > 6 models. By
computing both the gauge invariant quantity χ and fitting
the susceptibility peak position under different external field,
we can determine both Tc1 and Tc2 with very high precision
(see Appendix C for more details). In Table III, we compare
our results for q = 7, 8, 9 models with previous studies using
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TABLE I. A comparison of Tc1 and Tc2 with previous results by using other methods.

Reference Method Tc1 Tc2

q = 5

Tobochnik [7] MCRG 0.8 1.1
Borisenko et al. [23] M.C. cluster 0.905(1) 0.951(1)
Kumano et al. [10] Boundary-flip M.C. 0.908 0.944
Chatelain [11] DMRG 0.914(12) 0.945(17)
Chatterjee et al. [27] Swendsen-Wang M.C. 0.897(1)
Chen et al. [15] HOTRG 0.9029(1) 0.9520(1)
Surungan et al. [28] CTMRG 0.911(5) 0.940(5)
Hong and Kim [16] HOTRG 0.908 0.945
Li et al. [29] VUMPS 0.9059(2) 0.9521(2)
Our result loop-TNR (gauge invariant quantity χ ) 0.909(1) 0.949(1)

loop-TNR (magnetic susceptibility) - 0.9507(5)

q = 6

Tobochnik [7] MCRG 0.6 1.3
Challa and Landau [17] M.C. 68(2) 0.92(1)
Yamagata and Ono [19] M.C. 0.68 0.90
Tomita and Okabe [20] Probability-changing cluster M.C. 0.7014(11) 0.9008(6)
Hwang [21] Wang-Landau M.C. 0.632(2) 0.997(2)
Brito et al. [22] Heat-bath single spin flipping M.C. 0.68(1) 0.90(1)
Baek et al. [26] Wolff M.C. 0.9020(5)
Kumano et al. [10] Boundary-flip M.C. 0.700(4) 0.904(5)
Krčmár et al. [12] CTMRG 0.70 0.88
Chen et al. [13] HOTRG 0.6658(5) 0.8804(2)
Chatterjee et al. [27] Swendsen-Wang M.C. 0.681(1)
Surungan et al. [28] CTMRG 0.701(5) 0.898(5)
Hong and Kim [16] HOTRG 0.693 0.904
Li et al. [29] VUMPS 0.6901(4) 0.9127(5)
Ueda et al. [39] CTMRG (correlation length etc.) 0.694(3) 0.908(3)

CTMRG (entanglement Spectrum) 0.693 0.900
Krčmár et al. [40] CTMRG (entanglement entropy) 0.70 0.88
Our results loop-TNR (gauge invariant quantity χ ) 0.699(1) 0.909(1)

loop-TNR (magnetic susceptibility) 0.9111(5)

other methods. Remarkably, for models with big enough q,
i.e., q > 6, Tc2 becomes very close to the BKT transition value
in classical XY model with Tc = 0.8929.

Similar to q = 5 and q = 6 models, we can also use loop-
TNR method to compute the scaling dimensions and fit the
corresponding compactification radius R (see Appendix C
for more details). We find that the radius R at Tc2 also sat-
urates to a fixed value 2.81987 for big enough q, which
agree pretty well with the theoretical prediction R = 2

√
2.

We can also use the same method for q = 5 and q = 6
models to determine the self-dual point and fit the corre-
sponding compactification radius R. In Table IV, we also
list the compactification radius R for Tc1 and self-dual point

TABLE II. Compactification radius R on both critical points as
well as self-dual point of q-state clock model with q = 5 and q = 6.

Tc1 Tdual Tc2

q Theory Numerical Theory Numerical Theory Numerical

5
√

25/2 3.52954
√

10 3.17354 2
√

2 2.83894
6

√
18 4.23870

√
12 3.46002 2

√
2 2.82024

Tdual. Again, all the values agree pretty well with theoretical
predictions.

B. Fixed-point tensor for BKT transition

Since the Tc2 for q > 6 models is already very close to the
BKT transition in classical XY model, and the compactifica-
tion radius R is also approaching the expected value for BKT
transition, it is natural to ask whether the corresponding fixed
point tensors in these models also converge to the same one
approximately or not? Below we will study the structure of
fixed point tensor for q > 6 models at BKT transition and try
to read out the (leading) OPE coefficients of primary fields
directly for the corresponding compactified boson CFT. We
note that Ref. [41] proposed a more generic method to com-
pute the OPE coefficient in TNR-based algorithm, however,
here our major purpose is to understand the structure of the
fixed-point tensor.

1. The gauge choice of the fixed-point tensor

It is well known that there exists a gauge degree of freedom
for the fixed-point tensor in any TNR based scheme and it
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TABLE III. A comparison of Tc1 and Tc2 with previous results by using other methods.

Reference Method Tc1 Tc2

q = 7

Borisenko [24] M.C. 0.533 0.900
Chatterjee et al. [27] Swendsen-Wang M.C. 0.531(6)
Li et al. [29] VUMPS 0.5305(3) 0.9071(5)
Our results loop-TNR (gauge invariant quantity χ ) 0.537(1) 0.899(1)

loop-TNR (magnetic susceptibility) 0.9065(5)

q = 8

Tomita and Okabe [20] Probability-changing cluster M.C. 0.4259(4) 0.8936(7)
Baek et al. [8] M.C. 0.417(3) 0.894(1)
Chatterjee et al. [27] Swendsen-Wang M.C. 0.418(1)
Li et al. [29] VUMPS 0.4172(3) 0.9060(5)
Our results loop-TNR (gauge invariant quantity χ ) 0.423(1) 0.899(1)

loop-TNR (magnetic susceptibility) 0.9051(5)

q = 9

Chatterjee et al. [27] Swendsen-Wang M.C. 0.334(1)
Our results loop-TNR (gauge invariant quantity χ ) 0.341(1) 0.899(1)

loop-TNR (magnetic susceptibility) 0.9051(5)

is actually the major difficulty for us to understand the full
structure of fixed-point tensors for critical systems.

We will begin with some general discussion for the nature
of such a gauge degree of freedom and explain why it can
be fixed by introducing enough symmetry conditions. Appar-
ently, if we apply some invertible matrices on every legs of a
tensor, the transformed tensor actually forms the same tensor
network as before:

T ′
i jkl =

∑
i′ j′k′l ′

Ti′ j′k′l ′Ui′iVj′ j[U
−1]kk′ [V −1]ll ′ . (13)

This gives rise to great difficulty to analyze the properties
of the tensor components of the fixed-point tensor, since they
could be randomly affected by the gauge choice in numerical
calculations. To get a proper gauge fixing, we have the follow-
ing considerations:

(i) The fixed-point tensor (defined on the 2 by 2 plaquette
composed by TA and TB tensors, as shown in Fig. 2) should
preserve the C4 lattice symmetry during the loop-TNR process
(see Appendix D for more details). Preserving C4 symmetry
will reduce the gauge freedom of the fixed-point tensor. The
gauge transformation in Eq. (13) can be simplified as

T ′
i jkl =

∑
i′ j′k′l ′

Ti′ j′k′l ′Oi′iO j′ jOk′kOl ′l , (14)

TABLE IV. Compactification radius R on critical points and self-
dual point for q = 7, 8, 9 models.

Tc1 Tdual Tc2

q Theory Numerical Theory Numerical Theory Numerical

7
√

49/2 4.94072
√

14 3.75035 2
√

2 2.83153
8

√
32 5.67377

√
16 4.00726 2

√
2 2.81987

9
√

81/2 6.36759
√

18 4.23573 2
√

2 2.81987

where O is an orthogonal matrix. Here we assume all the
tensors are real.

(ii) Since the q-state clock model has a Zq internal symme-
try, we should also keep such an internal symmetry during the
whole loop-TNR process (see Appendix D for more details).
By keeping the Zq symmetry, we can further reduce the gauge
degrees of freedom. In fact this is a crucial step to obtain
the right fusion rule for fixed-point tensor. It is well known
that the fusion rule of compactified boson theory has a U(1)
symmetry, which can be realized explicitly on XY model.
However, if we only focus on the leading components of
primary fields, Zq symmetry is a very good approximation
for U(1) with big enough q. [Strictly speaking, to eliminate
gauge degree of freedoms completely, the exact U(1) symme-
try is required, however, for big enough q, the effect of gauge
transformations can be neglected for leading primary fields.]

(iii) If we want the indices of the fixed-point tensor to
represent the primary fields and their descendants for the
corresponding compactified boson theory, we need to choose
a proper basis. The eigenstate of the transfer matrix is a
good choice. As shown in Fig. 16(d), we construct a rank-3
tensor with the building block tensor Mi jkl in C4-loop-TNR
algorithm (see Appendix D for more details). This is be-
cause in usual CFT, the 3-point correlation function is more
fundamental and has a much simpler form than the 4-point
correlation function. In fact, the basic renormalization step
in loop-TNR is similar to the crossing symmetry for 4-point
correlation function. We conjecture that the rank-4 tensor in
the TNR algorithm can be regarded as a 4-point correlation
function (with proper boundary conditions), as a result, the
decomposition of the rank-4 tensor into the summation of two
rank-3 tensors can be naturally regarded as decomposing of
a 4-point correlation function into summations of two 3-point
correlation functions. Thus, the rank-3 tensor constructed here
could be regarded as a 3-point correlation function (at least
for primary fields). As illustrated in Fig. 17, we construct the
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FIG. 15. Scaling dimensions at the critical point (a) Tc1 and
(b) Tc2 for q = 6 model, from which we can fit the compactifica-
tion radius R of the compactified boson theory. We find that at Tc1,
R = 4.23870, and at Tc2, R = 2.82024.

(a) (b) (c)

(d)

≈ =

i1

i2

j1j2

k1

k2

Mi1i2lk2Mj1j2k1lΣl

l

(e)
z1

z2

z3

FIG. 16. From loop-TNR algorithm, a square fixed-point tensor
(a) could be approximately represented by MPS on the octagon
lattice (b). Then, we decompose octagon MPS from (b) to (c). The
rank-3 tensor in (d) is the fixed-point tensor we will study here. (e)
The geometry of the corresponding 3-point correlation functions.

FIG. 17. (a) We choose the eigenstates of the transfer matrix in
as our basis. (b) We then project the rank-3 fixed-point tensors on to
these basis.

2 × 2 transfer matrix as shown in Fig. 17(a), and apply the
eigenvalue decomposition:

M(i1i2 )( j1 j2 ) =
∑

k

U(i1i2 )kλk[U −1]k(i1i2 ). (15)

We use eigenvectors U(i1i2 )i as the basis for the fixed-point
tensor, as shown in Fig. 17(b). As a result, the fixed-point
tensor is projected onto the basis representing primary fields
and their descendants.

2. Operator product expansion (OPE) coefficient
from the fixed-point tensor

In Table V, we list the leading nonzero components of
the fixed-point tensors of different q-state clock models at

TABLE V. A comparison of nonzero leading components of the
fixed-point tensor of q-state clock models with q = 7, 8, 9, 10 at
BKT critical point.

T q=7
r1r2r3

T q=8
r1r2r3

T q=9
r1r2r3

T q=10
r1r2r3

r1 r2 r3

1.00000 1.00000 1.00000 1.00000 I I I
0.81215 0.81594 0.81555 0.81725 I α β

0.81215 0.81594 0.81555 0.81725 I β α

0.44178 0.44747 0.45242 0.45253 I γ δ

0.44178 0.44747 0.45242 0.45253 I δ γ

0.81215 0.81594 0.81555 0.81725 α I β

0.59058 0.59609 0.59756 0.59821 α α δ

0.74242 0.74698 0.74671 0.74901 α β I
0.45419 0.46021 0.49495 0.46479 α δ α

0.81215 0.81594 0.81555 0.81725 β I α

0.74242 0.74698 0.74671 0.74901 β α I
0.59058 0.59609 0.59756 0.59821 β β γ

0.45419 0.46021 0.46369 0.46479 β γ β

0.44178 0.44747 0.45242 0.45253 γ I δ

0.45419 0.46021 0.46369 0.46479 γ β β

0.30919 0.31491 0.32114 0.32120 γ δ I
0.44178 0.44747 0.45242 0.45253 δ I γ

0.45419 0.46021 0.46369 0.46479 δ α α

0.30919 0.31491 0.32114 0.32120 δ γ I

023159-9



LI, PAI, AND GU PHYSICAL REVIEW RESEARCH 4, 023159 (2022)

BKT critical point. Here we normalize the largest component
TIII = 1. We use I , α, β, γ , δ, λ, and η to represent the leading
primary fields (0,0), (1,0), (−1, 0), (2,0), (−2, 0), (3,0), and
(−3, 0).

It is well known that the fusion rule of the primary fields in
compactified boson theory satisfies:[

φe1,m1

] × [
φe2,m2

] = [
φe1+e2,m1+m2

]
, (16)

where [φe,m] is a conformal family generated by primary field
φe,m with conformal dimension ((e/R + mR/2)2/2, (e/R −
mR/2)2/2). In particular, the primary field with m = 0 φe,0

is just the vertex operator and it can be written as

φe,0(z, z) = eieϕ(z,z)/R, (17)

with ϕ(z, z) is just the free boson field. The 3-point function
has a pretty simple form:〈

φe1,0(z1, z1)φe2,0(z2, z2)φe3,0(z3, z3)
〉

= C123

|z12|�1+�2−�3 |z23|�2+�3−�1 |z31|�3+�1−�2
, (18)

where C123 is the OPE coefficients, which equals 1 for e1 +
e2 + e3 
= 0 and vanishes for e1 + e2 + e3 = 0. |z12| ≡ |z1 −
z2|, and the scaling dimension �i = e2

i
R2 . We note that in gen-

eral only leading primary fields in our numerical fixed-point
tensor can satisfy the fusion rule since we use the Zq sym-
metry to approximate the U(1) symmetry in the gauge fixing
procedure, and with increasing q, more and more primary
fields with correct fusion rules can be resolved numerically.
Although we believe that the emergent U(1) must be present
for all finite q with q > 4, it is in general very hard to find
the proper gauge choice for small q, especially for q = 5 and
q = 6.

Next, we can try to fit our numerical fixed-point tensor by
using the 3-point correlation function Eq. (18). Let z13 = λ1x,
z23 = λ2x, z12 = λ3x. We can rewrite the right-hand side of
Eq. (18) as

C123

(λ1x)�1+�3−�2 (λ2x)�2+�3−�1 (λ3x)�1+�2−�3

= C123

(
λ2

λ1λ3x

)�1
(

λ1

λ2λ3x

)�2
(

λ3

λ1λ2x

)�3

≡ C123l�1
1 l�2

2 l�3
3 , (19)

with l1 = λ2
λ1λ3x , l2 = λ1

λ2λ3x , and l3 = λ3
λ1λ2x , respectively. From

the geometry of the square lattice, we conjecture that our rank-
3 fixed-point tensor can be regarded as 3-point correlation (at
least for primary fields) function on the vertex of an isosceles
right triangle on the complex plane, as seen in Fig. 16(e). Thus
we can choose λ1 = λ2 = λ3/

√
2 = 1 and Eq. (19) can be

simplified as

C123l�1
1 l�2

2 l�3
3 ≡ C123l�1 l�2 (2l )�3 , (20)

where l = 1√
2x

is a fundamental inverse length scale. For
q = 10 model at the temperature Tc2, the nonzero leading
components of fixed-point tensor are given by Table VI. If

TABLE VI. Leading nonzero components of the fixed-point ten-
sor of q = 10 model at BKT critical point Tc2.

Tr1r2r3 r1 r2 r3 Tr1r2r3 r1 r2 r3

1.00000 I I I 0.45253 γ I δ

0.81725 I α β 0.30155 γ α η

0.81725 I β α 0.46479 γ β β

0.45253 I γ δ 0.32120 γ δ I
0.45253 I δ γ 0.15522 γ η α

0.17675 I λ η 0.45253 δ I γ

0.17675 I η λ 0.46479 δ α α

0.81725 α I β 0.30155 δ β λ

0.59820 α α δ 0.32120 δ γ I
0.74901 α β I 0.15522 δ λ β

0.30155 α γ η 0.17675 λ I η

0.46479 α δ α 0.20004 λ β δ

0.20004 α η γ 0.15522 λ δ β

0.81725 β I α 0.08449 λ η I
0.74901 β α I 0.17675 η I λ

0.59820 β β γ 0.20004 η α γ

0.46479 β γ β 0.15522 η γ α

0.30155 β δ λ 0.08449 η λ I
0.20004 β λ δ

we fit our data with Eq. (20), we find

�(±1,0) = 0.12684,

�(±2,0) = 0.50869,

�(±3,0) = 1.17789, (21)

which match well with the results from our previous trans-
fer matrix calculation, with �(±1,0) = 0.12539, �(±2,0) =
0.50158, and �(±3,0) = 1.12851 (the corresponding compact-
ification radius R = 2.82402). The fundamental length scale
can also be fitted as x = 2.23035, and the corresponding OPE
coefficients are listed in Table VII. The relative error of our
fitting is estimated as√∑

N

[∣∣∣∣Tr1r2r3

∣∣ − C123l�1 l�2 (2l )�3
∣∣/∣∣Tr1r2r3

∣∣]2

N
, (22)

where N is the total number of components in our considera-
tion. We find the fitting error is around 4.0 × 10−3. Thus, we
conclude that the fixed-point tensor can be well described by
the 3-point function (at least for primary fields) and the OPE
coefficients can be read out directly.

C. Fixed-point tensor for general cases

In fact, the above structure of fixed-point tensor holds for
the whole critical phase between Tc1 and Tc2. In the following,
we further study the fixed-point tensor for the q = 10 case
at different temperatures. Table VIII shows that all the OPE
coefficients are very close to 1, as expected from the compact-
ified boson theory. Table IX shows the comparison between
the scaling dimensions read from the fixed-point tensor and
from the direct calculation of transfer matrix. We see that they
also match very well.

Therefore, we find very strong evidence that the fixed-point
tensor can be described by three-point correlation function for
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TABLE VII. Fitting OPE coefficients in Eq. (18) of q = 10
model at temperature T = Tc2, we see that they approach the ex-
pected value 1.

Cr1r2r3 r1 r2 r3 Cr1r2r3 r1 r2 r3

1.00000 I I I 1.00000 γ I δ

1.00000 I α β 1.01105 γ α η

1.00000 I β α 1.00350 γ β β

1.00000 I γ δ 1.00000 γ δ I
1.00000 I δ γ 0.99779 γ η α

1.00000 I λ η 1.00000 δ I γ

1.00000 I η λ 1.00350 δ α α

1.00000 α I β 1.01105 δ β λ

1.00023 α α δ 1.00000 δ γ I
1.00000 α β I 0.99779 δ λ β

1.01105 α γ η 1.00000 λ I η

1.00350 α δ α 0.99590 λ β δ

1.01105 α η γ 0.99779 λ δ β

1.00000 β I α 1.00000 λ η I
1.00000 β α I 1.00000 η I λ

1.00023 β β γ 0.99590 η α γ

1.00350 β γ β 0.99779 η γ α

1.01105 β δ λ 1.00000 η λ I
0.99590 β λ δ

primary fields. Such a structure also explains why loop-TNR
is a very accurate algorithm for critical systems since primary
fields with higher scaling dimensions will lead to a rapid
decay for the corresponding tensor components. We also find
that the components for descendant fields are always smaller
than the corresponding primary field in the fixed-point tensor.
We believe this is also because descendant fields will have
bigger scaling dimensions. However, the explicit fixed-point
tensor structure for descendant fields is rather complicated and
we will leave this problem in our future study.

TABLE VIII. OPE coefficients in Eq. (18) fitting from the data
of model q = 10 on different temperature.

Ct=0.70
r1r2r3

Ct=0.76
r1r2r3

Ct=0.80
r1r2r3

r1 r2 r3

1.00000 1.00000 1.00000 I I I
1.00000 1.00000 1.00000 I α β

1.00000 1.00000 1.00000 I β α

1.00000 1.00000 1.00000 I γ δ

1.00000 1.00000 1.00000 I δ γ

1.00000 1.00000 1.00000 α I β

0.99967 0.99961 0.99955 α α δ

1.00000 1.00000 1.00000 α β I
1.00016 1.00015 1.00010 α δ α

1.00000 1.00000 1.00000 β I α

1.00000 1.00000 1.00000 β α I
0.99967 0.99961 0.99955 β β γ

1.00016 1.00015 1.00010 β γ β

1.00000 1.00000 1.00000 γ I δ

1.00016 1.00015 1.00010 γ β β

1.00000 1.00000 1.00000 γ δ I
1.00000 1.00000 1.00000 δ I γ

1.00016 1.00015 1.00010 δ α α

1.00000 1.00000 1.00000 δ γ I

TABLE IX. Scaling dimension of the first 3 levels reads by
fitting fixed-point tensor with 3-point function of CFT and from the
calculation of transfer matrix.

Temperature �1 �2 �3 Fitting radius R

From fixed-point tensor

0.70 0.06941 0.27824 0.62659 3.79267
0.72 0.07228 0.28971 0.65169 3.72312
0.74 0.07532 0.30182 0.67813 3.64573
0.76 0.07851 0.31456 0.70589 3.57106
0.78 0.08191 0.32813 0.73536 3.49684
0.80 0.08566 0.34298 0.76683 3.41513

From transfer matrix

0.70 0.06940 0.27795 0.62510 3.79498
0.72 0.07217 0.28845 0.65024 3.72290
0.74 0.07508 0.30057 0.67854 3.64905
0.76 0.07830 0.31386 0.70314 3.57325
0.78 0.08178 0.32827 0.73366 3.49727
0.80 0.08571 0.34675 0.76734 3.41494

V. CONCLUSIONS AND DISCUSSIONS

In summary, we use loop-TNR algorithm to study the
phase transition properties of the q-state clock model. For
q < 5 models, we compute the central charge and scaling
dimensions at the self-dual critical points and find perfect
agreement with previous CFT predictions. For q > 5 mod-
els, we determine the critical temperatures Tc1 and Tc2 for
both phase transitions with very high precision. By further
computing the central charge and scaling dimensions at Tc1

and Tc2, we can further obtain the compactification radius R,
which also perfectly agrees with the Zq deformed sine-Gordon
theory predictions. Interestingly, for big enough q, we find
that the fixed-point tensor at Tc2 converges to the same one
(up to numerical errors) that describes the well known BKT
transitions, and the corresponding OPE coefficients can also
be read out directly.

For our future work, it will be of great interest to investigate
the explicit expression of the infinite dimensional fixed-point
tensor description for the compactified boson theory as well
as general CFT. In fact, the fixed-point tensor provides us a
purely algebraic way to describe CFT, which origins from
a geometric perspective. Very recently, it has been shown
that the p-adic CFT [42] admits an explicit finite dimen-
sional tensor-network representation. It is somewhat not quite
surprising since p-adic CFT has no descendant fields. The
fixed-point tensor form for the descendant fields might tell us
how geometry emerges from basic algebraic data.
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a b

cd

FIG. 18. Tensor-network representation of dual model, where the
original lattice is shown by solid line and the dual lattice is shown by
dash line.

APPENDIX A: FITTING CONFORMAL DATA FROM
LOOP-TRG ALGORITHM

We read off conformal data from fixed-point tensor such as
compactification radius R as follows:

We first choose the scaling dimensions of RG steps from
15–20. We note that for very small system size, the conformal
data is not converged into the thermal dynamical limit, while
for very big size, the truncation error will accumulate and
eventually destroy the RG fixed-point tensor.

Then we use the first two lowest levels of scaling dimen-
sion for data fitting, since the accuracy of higher level scaling
is not good enough as lower ones. We fit the compactification
radius by minimizing the following cost function:

f (R) =
20∑

j=15

(
1

R2
− l1

RG j

)
+

20∑
j=15

(
4

R2
− l2

RG j

)
,

where lk
RG j is the data of kth level of scaling dimension in jth

RG step.

APPENDIX B: COMPACTIFICATION RADIUS FOR q = 5
AND q = 6 MODELS AT SELF-DUAL POINT

In this section, we investigate the scaling dimensions and
compactification radius R for the so-called self-dual point.
The element tensor for dual model in Fig. 18, which is ob-
tained by Kramers-Wannier transformation [37,43,44], could
be expressed as

T̃abcd = exp
β

2
(cos θa + cos θb + cos θc + cos θd )

× δmod(a+b+c+d,q),0. (B1)

To determine the self-dual temperature, we compute the
magnetization at different temperatures for both q-state model
and its dual model. As seen in Fig. 19, the crossing point

FIG. 19. Magnetization of q-state clock model with (a) q = 5,
(b) q = 6, and their corresponding dual model.

corresponds to the dual temperature with g1 = g2. G. Ortiz
et al. [45] demonstrated the existence of two critical points
of q-state clock model in q > 4 cases in “bond-algebraic”
approach, and investigated the self-dual points of different
q model, which are comparable with our numerical results.
Again, we can use the loop-TNR algorithm to compute the
scaling dimensions (see in Fig. 20) and from the scaling
dimension data, we can further fit the compactification R. In
Table II, we compare our results with the theoretical predic-
tions. Again, we find a perfect agreement for both q = 5 and
q = 6 models.

APPENDIX C: TRANSITION TEMPERATURES AND
COMPACTIFICATION RADIUS R FOR q > 6 MODELS

For models with q > 6, e.g., q = 7, 8, 9 we can also use the
invariant quantity χ to determine the transition temperature
for Tc1 and Tc2, as seen in Figs. 21 and 22. In Figures 23–
25, we also use the susceptibility peak method Eq. (12) to
determine the BTK transition temperature Tc2 with very high
accuracy. Remarkably, we find that for q > 6, the fitting pa-
rameters a and b are already very close to those obtained
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FIG. 20. Scaling dimension on self-dual point for (a) q = 5 and
(b) q = 6 models, from which we can fit the compactification radius
R of the compactified boson theory. We find that R = 3.17354 for
q = 5 and R = 3.46002 for q = 6 model.

from classical XY model [38]. Finally, we use the loop-TNR
algorithm to compute the scaling dimensions at both high- and
low-temperature critical points as well as the self-dual point,
as seen in Figs. 26–28. The corresponding compactification
radius R can also be fitted by using Eq. (10).

APPENDIX D: IMPOSING C4 ROTATIONAL SYMMETRY
AND Zq INTERNAL SYMMETRY IN LOOP-TNR

ALGORITHM

In this Appendix we first give a short review for the loop-
TNR algorithm [33]. Then we will discuss how to implement
the C4 lattice symmetry and the internal Zq symmetry. Loop-
TNR method mainly contains the following steps, as shown in
Fig. 29. In general, there will be two types of tensors TA and
TB on sublattices A and B during the renormalization process.

(i) In step (a), we apply entanglement filtering to remove
the short-range entanglement [32], e.g., eliminating the corner
double line (CDL) tensor. The CDL tensor only contains local
entanglement and cannot be the fixed-point tensor describing

FIG. 21. Invariant quantity of for q-state clock model, (a), (b),
and (c) for q = 7, 8, 9 respectively, around Tc1.

critical systems. References [31,33] give a detailed explana-
tion on how to remove such short-range entanglement.

(ii) In step (b), we find 8 rank-3 tensor to form a octagon
MPS to approximate the square MPS, as shown in Fig. 29(d).
We are aiming to find the optimal choice of those 8 rank-3
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FIG. 22. Invariant quantity of for q-state clock model, (a), (b),
and (c) for q = 7, 8, 9 respectively, around Tc2.

tensors S1, S2, ...S8 to minimize the cost function in Fig. 29(d),
which can be expressed as

C(S1, S2, . . . , S8) = ‖TA · TB · TA · TB − S1 · S2 · · · · · S8‖2.

(D1)
Since S1, S2, ...S8 are independent variables, we can minimize
this cost function with variational method. We denote the two

FIG. 23. Susceptibility peak temperature versus external field.
For q = 7 model, we find that Tc = 0.9065(5), a = 0.4198, b =
0.1752.

FIG. 24. Susceptibility peak temperature versus external field.
For q = 8 model, we find that Tc = 0.9051(5), a = 0.4213, b =
0.1807.

FIG. 25. Susceptibility peak temperature versus external field.
For q = 9 model, we find that Tc = 0.9051(5), a = 0.4213, b =
0.1807.
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FIG. 26. Fitting of scaling dimensions at the critical point Tc1,
(a), (b), and (c) for q = 7, 8, 9 model, from which we can read the
character radius of the compactified boson theory.

MPS’s in above cost function as

|�A〉 = TA · TB · TA · TB,

|�B〉 = S1 · S2 · · · · · S8. (D2)

FIG. 27. Fitting of scaling dimensions at the critical point Tc2,
(a), (b), and (c) for q = 7, 8, 9 model.

Then, the cost function could be write down as

C(S1, S2, . . . , S8) = 〈�A|�A〉 + 〈�B|�B〉 − 〈�A|�B〉
− 〈�B|�A〉. (D3)
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FIG. 28. Fitting of scaling dimensions at the self-dual point, (a),
(b), and (c) for q = 7, 8, 9 model.

Taking variation on S1, we get

δC

δS†
1

∣∣∣∣
S2,S3,..S8

=
〈

δ�B

δS†
1

∣∣∣∣�B

〉
−

〈
δ�B

δS†
1

∣∣∣∣�A

〉
≡ [N1 · S1 − W1]. (D4)

FIG. 29. Loop optimization procedure, in step (a), we apply
entanglement filtering, and in step (b) we find the optimal Si to
minimize cost function as shown (d). (c) Then we trace the indices on
the small square marked by the circle. (e) is gauge invariant quantity,
which will be used as the overall normalization factor.

The minimum of C(S1) is given by the solution of the linear
equation:

N1 · S1 = W1. (D5)

The cost function (D5) and N1, W1 are illustrated in Fig. 30.
After optimizing S1, we can go on to the next site, and if we
finish the optimization from S1 to S8, we finish one circle. By
repeating this variational optimization, we can minimize the
cost function.

(i) After minimizing the cost function, we trace the inner
indices in the small circles, as shown in Fig. 29(b), and get the
coarse-grained tensor T ′

A and T ′
B, as in Fig. 29(c). Compared

with the original tensor network, we find the tensor network
composed of the renormalized tensor elements T ′

A and T ′
B (a)

rotates an angle of π/4 and (b) the system size of the new
network reduced to be half of the original. Then, we can start
the new RG step from this tensor network.

(ii) We will normalize the tensor TA and TB in every RG
step with the normalization factor as shown in Fig. 29(e).

1. Loop-TNR with C4 lattice symmetry

To keep the lattice symmetry in the renormalization pro-
cess, we need to find a octagon MPS with C4 symmetry when
minimizing the cost function in Fig. 31(d). We can construct
this octagon MPS with the rank-4 block tensor Mi jkl , as shown

FIG. 30. Components of the cost function and its derivative. (a) is
〈�A|�B〉. (b) is 〈�B|�B〉. (c) and (d) are the quantity W1 and N1 in
(D5), respectively.
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FIG. 31. Loop-TNR algorithm with C4 lattice symmetry is simi-
lar with usual loop-TNR. Notice that the cost function in this case is
nonlinear, so we need to use nonlinear optimization algorithm, such
as conjugate gradient method.

in Fig. 31(b). Then we can use the conjugate gradient method
to minimize the cost function:

C = ‖TA · TB · TA · TB − M · M · M · M‖2. (D6)

After the optimization, we can use tensor M to build the
renormalized tensor T ′

A, T ′
B, as shown in Fig. 31(c)

T A′
ruld =

∑
i j

Mi jrd Mjilu,

T B′
ruld =

∑
i j

Mi jld Mjiru. (D7)

Since the octagon network has C4 symmetry, the coarse-
grained tensor network on the square lattice marked by blue
circle has the same C4 symmetries.

The initial value of the tensor M is very important for the
numerical accuracy. We can decompose tensor TA and TB by
SVD method

T A
ruld ≈

∑
x

S1
ldxS2

rux =
∑

x

S1
ruxS2

ldx,

T B
ruld ≈

∑
x

S1
ulxS2

drx =
∑

x

S1
drxS2

ulx. (D8)

Thus, the initial M is could be constructed as Fig. 31(e), with

M0
i jkl =

∑
x

S1
ixkS2

x jl . (D9)

By keeping C4 lattice symmetries in each iteration step, we
have partially fixed the gauge of the building block M, which
would be very important for studying the structure of the
fixed-point tensor.

2. Loop-TNR with Z(q) symmetry in Hamiltonian

As the original tensor element of q-state model Ti jkl con-
tains Z (q) symmetry, we can keep such a symmetry for every
step in the loop-TNR algorithm [46]. As Z (q) is a cyclic

group, which contains group elements {I, g, g2, ...gq−1}, and
the generator g has the q-dimension faithful representation

Gq =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 ... 0 1
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
... ... ... ... ... ...

0 0 0 ... 1 0

⎞⎟⎟⎟⎟⎟⎠. (D10)

It is easy to check that

T ′
ruld =

∑
r′u′l ′d ′

[Gq]rr′ [Gq]uu′ [Gq]ll ′ [Gq]dd ′Tr′u′l ′d ′

= Truld. (D11)

In order to find out all the irreducible representation of the Zq

symmetry, we can just do eigenvalue decomposition for Gq,

Gq = V �V −1, (D12)

with eigenvalues �nn = λn = e2π in/q, n ∈ {0, 1, 2, . . . , q −
1}, and the components of the matrix V is given by

Vmn = e2π imn/q

√
q

, m, n ∈ {0, 1, 2, . . . , q − 1}. (D13)

Such that

Gq = V −1�−1V. (D14)

Then, we define two tensors:

T A
ruld =

∑
r′u′l ′d ′

[V −1]rr′ [V −1]uu′ [V −1]ll ′ [V
−1]dd ′Tr′u′l ′d ′ ,

T B
ruld =

∑
r′u′l ′d ′

Vrr′Vuu′Vll ′Vdd ′Tr′u′l ′d ′ . (D15)

Obviously, tensor T A and T B form the same tensor network
with T . In the new basis tensors T A and T B satisfy:

T A
ruld = λrλuλlλd T A

ruld,

T B
ruld = λ−1

r λ−1
u λ−1

l λ−1
d T B

ruld, (D16)

which implies that T A
ruld and T B

ruld only have nonzero compo-
nents when r + u + l + d ≡ 0(mod q). Thus, tensors T A and
T B are block diagonalized. It turns out that if we keep such
block diagonalized property during RG process, i.e., in every
RG step, we keep r + u + l + d ≡ 0(mod q), Z (q) symmetry
is preserved during loop-TNR process. In particular, we can
keep Dcut = nq (where n is an arbitrary integer), such that we
can always construct a dimension nq by nq block diagonalized
matrix �′

�′ =

⎛⎜⎝� 0 ... 0
0 � ... 0
... ... ... ...

0 0 ... �

⎞⎟⎠. (D17)

Obviously, �′ is a representation of Z (q) symmetry. So that
Z (q) symmetry is kept.
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