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Qubit-efficient encoding scheme for quantum simulations of electronic structure
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Simulating electronic structure on a quantum computer requires encoding of fermionic systems onto qubits.
Common encoding methods transform a fermionic system of N spin-orbitals into an N-qubit system, but many
of the fermionic configurations do not respect the required conditions and symmetries of the system so the
qubit Hilbert space in this case may have unphysical states and thus cannot be fully utilized. We propose a
generalized qubit-efficient encoding (QEE) scheme that requires the qubit number to be only logarithmic in the
number of configurations that satisfy the required conditions and symmetries. For the case of considering only
the particle-conserving and singlet configurations, we reduce the qubit count to an upper bound of O(m log2 N ),
where m is the number of particles. This QEE scheme is demonstrated on an H2 molecule in the 6-31G basis set
and a LiH molecule in the STO-3G basis set using fewer qubits than the common encoding methods. We calculate
the ground-state energy surfaces using a variational quantum eigensolver algorithm with a hardware-efficient
ansatz circuit. We choose to use a hardware-efficient ansatz since most of the Hilbert space in our scheme
is spanned by desired configurations so a heuristic search for an eigenstate is sensible. The simulations are
performed on IBM Quantum machines and the Qiskit simulator with a noise model implemented from a IBM
Quantum machine. Using the methods of measurement error mitigation and error-free linear extrapolation, we
demonstrate that most of the distributions of the extrapolated energies using our QEE scheme agree with the
exact results obtained by Hamiltonian diagonalization in the given basis sets within chemical accuracy. Our
proposed scheme and results show the feasibility of quantum simulations for larger molecular systems in the
noisy intermediate-scale quantum (NISQ) era. The number of terms in the Hamiltonian has an upper bound of
O( N2m+1

(m−1)! m! ) for the QEE scheme while it scales as O(N4) for the Jordan-Wigner encoding scheme. Nevertheless,
we present several cases where QEE is useful.

DOI: 10.1103/PhysRevResearch.4.023154

I. INTRODUCTION

The simulation of physical systems is one of the most
prominent applications of quantum computing, as Feynman
suggested to simulate a quantum system using another [1].
Much progress [2–5] has been made since then, and several
quantum algorithms for solving molecular energies have been
proposed including quantum phase estimation (QPE) [5–14]
and variational quantum algorithms (VQAs) [3,10,15–23].
The time cost of a quantum simulation can scale polyno-
mially with system size as compared to exponentially using
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classical computers [4,14]. With such polynomial timescaling
of quantum algorithms and as quantum hardware is get-
ting increasingly reliable and scalable, quantum simulation
of physical systems has drawn great attention of researchers
since classically intractable ab initio calculations of proteins
and materials could one day be realized using quantum bits
(qubits) [3,24–29].

A significant challenge of quantum simulations is the
quantum resources required to reliably perform quantum al-
gorithms. Some previous works show that the number of
qubits needed can be reduced [30,31] and how to execute
quantum circuits on noisy intermediate-scale quantum (NISQ)
devices [32]. A practical approach for NISQ devices is the
variational quantum eigensolver (VQE) algorithm [3,10,15]
which is a hybrid quantum-classical method to obtain the min-
imum eigenvalue of a given Hamiltonian operator. It requires a
systematic encoding from fermionic systems to qubit systems
and a preparation of trial states, or ansatzes, on the qubits. For
NISQ devices, the depth of an ansatz circuit should not be too
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deep in case the quantum state operated by the circuit loses
its coherence before the measurement process [4,16], and a
minimal number of two-qubit operations should be used as
the errors in performing them are generally larger than those
of single-qubit operations.

The encoding schemes also play important roles in the
success of the VQE algorithm. Commonly used encoding
schemes such as the Jordan-Wigner (JW), parity, and Bravyi-
Kitaev (BK) encoding methods often require N qubits for a
system with N spin-orbitals [4,33–35]. However, the number
N is often too large even for small molecules to be feasible on
the present and near-term NISQ devices as the circuit depth
and gate count of the ansatz circuit in the VQE algorithm usu-
ally also increases with N . Some compact encoding methods
[30,31,36] adopting symmetries or block diagonal features of
Hamiltonian have also been proposed to reduce the number
of qubits from N to O(m log2 N ), where m is the number
of electrons. Our work with the same reduction in the qubit
number, described in detail later, is based on the second quan-
tization formalism, whereas the works of Bravyi et al. [31] and
Babbush et al. [36] are based on the first quantization method,
and their encoding methods have a requirement on the number
of particles, such that m log2 N < N , for qubit reduction. In
Moll et al.’s work [30] they proposed a scheme by first trans-
forming the fermionic Hamiltonian into a qubit Hamiltonian
by a common encoding scheme (e.g., the JW or BK encoding
scheme) and the reduced Hamiltonian is then obtained from
a projected Hamiltonian using the block diagonal features of
the fermionic Hamiltonian. However, their scheme needs to
go through the whole qubit Hamiltonian using the reordering
operators to reduce the number of qubits one by one, and the
construction of the reordering operators is not generalized for
systems with different dimensions and numbers of electrons.
Therefore, these methods are not generalized as their imple-
mentations depend on the system size or particle number.

Several methods [37,38] provide generalized schemes for
qubit reduction where the implementations allow trade-off
between qubit counts and gate counts. One of the methods
presented in Steudtner and Wehner’s work [38] shows an ex-
ponential saving in qubit counts, but requires quantum devices
with well-implemented multicontrolled gates. By considering
the conservation of particles, Kirby et al. [37] presented an
encoding method which reduces the length of BK encoded
bitstrings with a given maximum allowed overlap of the
codewords. The optimal encoding in the N >> m limit has
a polylogarithmic complexity in both qubit and gate counts
[37]. The method from [37] has significant asymptotic savings
but has not yet been demonstrated for quantum simulations,
while in our work, we will be focusing on VQE algorithms
for NISQ devices.

Another method proposed by Di Matteo et al. [39] im-
proves the Hamiltonian encoding with the Gray code. The
work has a generalized encoding scheme but considers only
the two-body problem of a deuteron, which can be reduced
into an effective one-body problem involving only the relative
motion of the neutron and proton of the deuteron. In other
words, only the encoding of a one-particle system is presented
in [39].

In this paper we propose a generalized qubit-efficient
encoding (QEE) scheme to deal with many-electron

(many-body) systems. Instead of targeting the original system
Hamiltonian, our QEE scheme aims at eliminating undesired
electronic configurations, not only the configurations that do
not respect the symmetries but also insignificant configura-
tions found using perturbation arguments or other classical
preprocessing methods from the system. This is similar to
active space selection but the slight difference is that specific
electronic configurations are chosen. Thus, the qubit counts
can be further optimized as compared to previous commonly
used methods, and the encoding of qubit Hamiltonian is at
the last step of our scheme, so there is no need to obtain
the original N-qubit Hamiltonian as in [30]. With the desired
electronic configurations obtained, we then map these config-
urations to qubit basis states so we only need the qubit number
to be logarithmic in the number of the desired configurations.
Finally, the qubit Hamiltonian can be constructed with the aid
of operators that flip a qubit state or the operators that reflect
the qubit state (entry operators, as defined in Sec. II B 2)
which can be further decomposed to Pauli operator strings.
Note that the antisymmetric fermionic exchange factors are
directly taken into account from the transition matrix elements
of the excitation operators (including also the number opera-
tors) between the electronic configurations (see Sec. II B 2 for
details).

The rest of the paper is organized as follows. Section II A
briefly introduces the background of quantum computational
chemistry. Section II B formulates the QEE scheme we pro-
posed. In Secs. II C and II D we demonstrated how to
implement our method on quantum devices. Some examples
for the QEE of molecules that do not use only a minimal basis
set are shown in detail in Sec. II E. Sections III and IV sum-
marize and conclude our theoretical analysis and experimental
results.

II. METHOD

A. Quantum chemistry and fermionic Hamiltonian

One of the most important problems in quantum computa-
tional chemistry is to find the eigenvalues and eigenfunctions
of the time-independent Schrödinger equation

H |�〉 = E |�〉, (1)

where |�〉 is an eigenfunction of the Hamiltonian operator
H with corresponding eigenvalues E . By applying the Born-
Oppenheimer approximation, such a problem can be reduced
to an electronic structure problem by treating the nuclei as
fixed charges with the electronic Hamiltonian being

H = −
∑

i

∇2
i

2
−

∑
i,I

ZI

|ri − RI | + 1

2

∑
i �= j

1

|ri − r j | , (2)

where ZI and RI denote the atomic number and position of
the Ith nucleus, and ri denotes the position of the ith elec-
tron. Alternatively, the second-quantization formalism of the
electronic Hamiltonian projecting onto basis wave functions
{�p(xi)} (with xi being the spatial and spin coordinate of the
ith electron) is

Helec =
∑

pq

hpqa†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qaras, (3)
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where hpq and hpqrs are the one- and two-electron integrals
defined as

hpq =
∫

dx�∗
p (x)

(
−∇2

2
−

∑
I

ZI

|r − RI |

)
�q(x), (4)

hpqrs =
∫

dx1dx2
�∗

p (x1)�∗
q (x2)�r (x2)�s(x1)

|x1 − x2| . (5)

The creation and annihilation operators are defined as

a†
p| fN−1, . . . , fp, . . . , f0〉

= δ fp,0(−1)
∑p−1

i=0 fi | fN−1, . . . , 1 ⊕ fp, . . . , f0〉, (6)

ap| fN−1, . . . , fp, . . . , f0〉
= δ fp,1(−1)

∑p−1
i=0 fi | fN−1, . . . , 1 ⊕ fp, . . . , f0〉, (7)

where | fN−1, . . . , fp, . . . , f0〉 is a vector of occupation num-
bers representing whether an electron is presenting ( fp = 1)
in the Slater determinant or not ( fp = 0), the ⊕ sign denotes

addition modulo 2, and the term (−1)
∑p−1

i=0 fi addresses the
exchange antisymmetric nature of fermions [4,40].

B. Encoding

To simulate fermionic systems on quantum processors, an
encoding of fermionic states is needed. Following [31], an
encoding is an isometry E : Helec → Hq where Helec and Hq

denote fermionic and qubit Hilbert space. Note that in this
work, a ket state with subscript f or q indicates that it is a
fermionic or qubit state, respectively. A fermionic state |f〉f =
| fN−1, . . . , f0〉f ∈ Helec corresponds to a qubit state E |f〉f ∈
Hq, and a fermionic Hamiltonian Helec is mapped to its qubit
counterpart Hq ≡ E ◦ Helec ◦ E−1.

For example, the mapping of the JW encoding method
is defined as EJW|f〉f ≡ |f〉q. That is, the ith qubit represents
the occupation number of the ith spin-orbital. The mapping
of creation and annihilation operators under JW transform
are

ap → Qp ⊗ Zp−1 ⊗ · · · ⊗ Z0, (8)

a†
p → Q†

p ⊗ Zp−1 ⊗ · · · ⊗ Z0, (9)

where Q†
p = 1

2 (Xp − iYp) and Qp = 1
2 (Xp + iYp) are qubit cre-

ation and annihilation operators, respectively. For the rest
of the work, we often mention common encoding schemes
including the JW, parity, and the BK fermionic-to-qubit
mappings.

1. Qubit-efficient encoding

Common fermionic-to-qubit mappings often describe
a qubit Hamiltonian with a spin-orbital basis where some
segments of the Hilbert space are spanned by insignificant
electronic configurations such as configurations with
incorrect particle numbers. As Eq. (3) suggests that the
second-quantized Hamiltonian is particle conserving,
configurations with incorrect particle numbers should not
contribute to energy expectation values [Eq. (18)]. Using
a basis with relevant configurations to describe qubit

Hamiltonians will reduce the number of qubits required
for simulating fermionic many-body systems. We show how
to systematically construct qubit Hamiltonians from the
configurations that respect total particle numbers. We also
show that the total spin of the configurations can be restricted
to further reduce the number of qubits required.

For a system with N spin-orbitals and m electrons,
there are only

(N
m

)
particle-conserving electronic configu-

rations. Instead of using N qubits, we expect that Q =
�log2

(N
m

) qubits is enough for simulation. First, we define
a fermionic configuration |f〉f = | fN−1, . . . , f0〉f and the set of
all particle-conserving fermionic configurations Fm = {|f〉f ∈
Helec : |f | = m} where |f | = |{k : fk = 1}| denotes the Ham-
ming weight, i.e., the total number of 1 (nonzero element), of
f . Configurations in Fm are mapped to QQ = {|0〉q, |1〉q}⊗Q,
the computational basis states of a Q-qubit system, by E . On
the other hand, similar to the concepts of freezing or removing
insignificant orbitals, we can remove or add any electronic
configurations into the Fm set so that the Q-qubit Hilbert
space is optimally exploited. For example, even though we
have chosen all the particle-conserving configurations to be
in Fm, some of the configurations might not be contributing
to electronic correlation by using perturbation theory argu-
ments. Thus, these configurations can be removed from the
set and we can still map the rest of the configurations as-
cendingly to a Q-qubit Hilbert space or even smaller Hilbert
space.

The choice of E can be various as long as it is an
isometry. Previous works have used Gray-code encoding
for a m = 1 system [39] or sparse encoding to construct a
sparse qubit Hamiltonian [31]. As a configuration |f〉f =
| fN−1, . . . , f0〉f can be represented by a decimal number No.
|f〉f ≡ ∑N−1

i=0 fi2i, we sort Fm in an ascending order such
that Fm = {|f0〉f, |f1〉f, . . . } with No. |f0〉f < No. |f1〉f < · · · .
Similarly, states in QQ can be also sorted in an ascending
order as QQ = {|q0〉q, |q1〉q, . . . }. In this work we define QEE
as EQEE|fi〉f = |qi〉q. Even though the mapping of fermioinic
configurations to qubit basis states could be in an arbitrary
order, we align Fm with QQ in an ascending manner (from
Hartree-Fock configuration to the fully excited configuration).
In this way the asymmetric state preparation and measurement
(SPAM) error of the |0〉 and |1〉 qubit states can be taken into
account. Since the |1〉 state is often more error prone than
the |0〉 state in real quantum devices (see, e.g., the last two
columns of Table VI in Appendix C), we choose an ascending
encoding such that more significant configurations are repre-
sented by qubit states with more bits in the |0〉 state to increase
the fidelity of our computation. Note that this encoding does
not require single-qubit gates for initialization as in other
encoding methods because the |0〉⊗Q state is the Hartree-Fock
state that can be our reference state for post-Hartree-Fock
methods.

2. Hamiltonian encoding

In most common fermionic-to-qubit mapping schemes,
both creation and annihilation operators have their corre-
sponding qubit operators. However, a single creation or
annihilation operator changes the number of electrons in the
system, which results in irrelevant electronic states and cannot
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be encoded using QEE. We first rewrite the second-quantized
Hamiltonian as

Helec =
∑

pq

hpqa†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qaras (10)

=
∑

pq

hpqEpq + 1

2

∑
pqrs

hpqrs(δqrEps − EprEqs),

(11)

where we define excitation operators Epq ≡ a†
paq (which

also include number operators when p = q) and use the
fermionic anticommutation relation {a†

p, aq} = δpq. As Epq is a
particle-number-conserving operator, the electronic Hamilto-
nian expressed in terms of excitation operators can be mapped
to qubit operators with QEE.

Any excitation operator Epq can be written as Epq =∑|Fm|−1
k,k′=0 cpq

k′k|fk′ 〉f〈fk|f, where cpq
k′k = 〈fk′ |fEpq|fk〉f is the corre-

sponding coefficient. cpq
k′k is zero if the transition from |fk〉f

to |fk′ 〉f via Epq is impossible; otherwise it can be ±1 due
to the antisymmetric nature of fermions. In particular, for
|fk〉f = | fN−1, . . . , fp = 0, . . . , fq = 1, . . . , f0〉 and |fk′ 〉f =
| fN−1, . . . , fp = 1, . . . , fq = 0, . . . , f0〉, the coefficient cpq

k′k is
±1 if the sum of fi in between fp and fq is even/odd, i.e.,
cpq

k′k = ∏max(p,q)−1
i=min(p,q)+1(−1) fi . Note that we decompose Epq into

a linear combination of transitions from k to k′, but for each
k, only one k′ gives nonzero cpq

k′k .
As any excitation operator Epq can be decomposed as

Epq = ∑|Fm|−1
k,k′=0 cpq

k′k|fk′ 〉f〈fk|f, the corresponding qubit opera-

tor is Ẽpq = E ◦ Epq ◦ E−1 = ∑|Fm|−1
k,k′=0 cpq

k′k|qk′ 〉q〈qk|q, where
|qk〉q = E |fk〉f is the encoded qubit state of |fk〉f. In our
encoding scheme, all configurations in Fm are mapped to
some Q-qubit computational basis states. Hence for two
computational basis states |q〉q = |qQ−1, . . . , q0〉q and |q′〉q =
|q′

Q−1, . . . , q′
0〉q, the transition |q′〉q〈q|q can be factorized as⊗Q−1

k=0 |q′
k〉q〈qk|q. We further define the qubit creation operator

Q+, qubit annihilation operator Q−, qubit number operators
N (0) and N (1) as

Q+ = |1〉q〈0|q = 1
2 (X − iY ), (12)

Q− = |0〉q〈1|q = 1
2 (X + iY ), (13)

N (0) = |0〉q〈0|q = 1
2 (I + Z ), (14)

N (1) = |1〉q〈1|q = 1
2 (I − Z ). (15)

In this work these four operators are called entry operators
as each of them has exactly one nonzero entry in its matrix
representation. A qubit state transition can thus be written as
a tensor product of some entry operators. Then any (encoded)
excitation operator Ẽpq can be expressed as a sum of the
products of entry operators,

Ẽpq =
|Fm|−1∑
k,k′=0

cpq
k′k|qk′ 〉q〈qk|q =

|Fm|−1∑
k,k′=0

Q−1⊗
w=0

cpq
k′kTk′k,w, (16)

where Tk′k,w are some entry operators corresponding to
|qk′ 〉q〈qk|q. As each entry operator is a sum of two Pauli
operators, Eq. (16) can be then expressed in terms of Pauli

operator strings, which allows us to write down the qubit
Hamiltonian

Hq =
∑

pq

hpqẼpq + 1

2

∑
pqrs

hpqrs(δqrẼps − ẼprẼqs) (17)

as a sum of Pauli operator strings. Finally, the expectation
value of Hq can be evaluated and minimized on a quantum
processor with variational quantum algorithms.

C. Variational quantum eigensolver and ansatz circuit

After obtaining the qubit Hamiltonian, we then apply the
VQE algorithm to solve the electronic structure problem on
a quantum processor. Given a qubit Hamiltonian H with
unknown minimum eigenvalue Emin and its corresponding
eigenstate |�min〉, the variational method in Eq. (18) helps
find the ground-state energy by tuning θ (note that θ repre-
sents a vector that contains one or more parameters) in the
parametrized trial wave function |�(θ)〉,

E (θ) ≡ 〈�(θ)|H |�(θ)〉 � Emin. (18)

In other words, the ground-state energy and wave function
can be found by finding the parameters that minimize the
energy expectation value 〈�(θ)|H |�(θ)〉. Such a VQE algo-
rithm is separated into hybrid executions for quantum and
classical computers, where the trial wave functions prepa-
ration and measurement are done on a quantum processor,
and the parameters are updated classically using optimization
algorithms.

The parametrized wave function can be represented as

|�(θ)〉 = U (θ)|�ref〉, (19)

where |�ref〉 is a reference state that has great overlap with the
minimum eigenstate |�min〉 and U (θ) is the trial state circuit
(or ansatz circuit). Qubit registers are often initialized into the
|0〉⊗Q state and we often need to apply unparametrized oper-
ations on the |0〉⊗Q state to obtain a reference state |�ref〉 that
properly describes the chemical systems. For example, the ref-
erence state could be a Hartree-Fock state or a multireference
state [18–23]. Since the |0〉⊗Q state is the Hartree-Fock state
in our method so we do not need to apply any unparametrized
operations. For the measurement process of the VQE algo-
rithm, since a qubit Hamiltonian is a linear combination of
Pauli strings, the linearity of expectation can thus be used to
calculate the energy expectation value

〈�(θ)|H |�(θ)〉 =
∑

i

hi〈�(θ)|Pi|�(θ)〉 (20)

for each trial state with a given set of parameters θ.
The design of circuit ansatz determines the feasibility and

accuracy of the VQE algorithm. To capture or approximate
the complexity of the exact wave function, researchers came
up with chemically inspired quantum circuit design with in-
spiration from classical computational chemistry. The most
common one is the unitary coupled cluster (UCC) ansatz
stemming from classical coupled cluster theory [41,42].
However, chemically inspired approaches often need Trot-
ter approximation, and the depth of the circuits is often too
large to be practical on NISQ devices. Another common type
of circuit ansatz design is the hardware-efficient approach
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TABLE I. Mapping of fermionic configurations to qubit basis
state for a total-spin-restricted H2 molecule in the STO-3G basis set.

Filled spin-orbitals f3 f2 f1 f0 q1 q0

σ1s,g↓σ1s,g↑ 01 01 0 0
σ1s,g↓σ1s,u↑ 01 10 0 1
σ1s,u↓σ1s,g↑ 10 01 1 0
σ1s,u↓σ1s,u↑ 10 10 1 1

where it aims at heuristically describing a wave function
with thorough consideration of hardware constraints for NISQ
devices [15–17]. Hardware-efficient circuits are often built
up by single-qubit rotation operators and few numbers of
nearest neighbor CNOT gates. This type of circuit ansatz
can also capture the complexity of the exact wave function
because of its high expressibility and entangling capability
where the parametrized circuits span most of the Hilbert space
including the chemical subspace required to find minimum
eigenenergies [43]. The concern of using hardware-efficient
ansatz for qubit Hamiltonian obtained from common mapping
schemes is that the parameters often get stuck on barren
plateaus or local minimum where gradients vanish in this
region during optimization. This is because these heuristic
ansatz circuits are often used to solve problems by trial and
error method with repeated, varied attempts. In the case of
using VQE to solve an electronic structure problem, the span
of the hardware-efficient parametrized circuits often includes
not only appropriate symmetry subspace but also insignificant
sectors of the Hilbert space. Thus, the final state obtained from
hardware-efficient ansatz using common mapping schemes
might include configurations that do not respect the conser-
vation of particle numbers or other symmetries.

Using QEE, most of the Hilbert space is spanned by signif-
icant configurations with appropriate symmetry. If the number
of fermionic configurations that respect the required symme-
try is |Fm| = 2Q, i.e., we can use exactly Q qubits to encode
all the configurations so no insignificant configurations will
be in Q-qubit Hilbert space Hq (see, e.g., Table I). Whereas
if 2Q−1 < |Fm| < 2Q, since we still need a Q-qubit Hilbert
space to accommodate all the fermionic configurations, there
will be some qubit basis states not representing any of the
desired fermionic configurations (see, e.g., Table III). Never-
theless, the number of insignificant configurations presenting
in such a Q-qubit Hq is still much fewer than that of in a
N-qubit Hilbert space using common mapping or encoding
schemes for the case of 2Q−1 < |Fm| < 2Q. Thus, we can
use hardware-efficient ansatz circuits since the final states
are more likely to respect the required symmetry. Also, it
is stated in [44] that the gradients of parametrized circuits
vanish exponentially as qubit counts increase. Therefore, our
encoding method would suffer less from the barren plateau
problem compared to common encoding schemes that require
exponentially more qubits than our QEE method. More im-
portantly, our encoding method reduces the coherence time
required for operating the quantum circuit in the VQE algo-
rithm as compared to common mapping schemes that require
a larger number of qubits and consequently a higher ansatz
circuit depth to reach the same level of entanglement.

FIG. 1. Four-qubit ansatz circuit without redundant CNOT gates.

For the illustrative example in Secs. II E 3 and II E 4, we
use a four-qubit hardware-efficient ansatz circuit that consists
of alternating layers of Ry rotations and CNOT entanglements
shown in Fig. 1. This is because the circuit depth for UCC
scales at least quadratically with respect to the number of
qubits [45] compared to linear scaling for our hardware-
efficient ansatz, so it might not be practical to use UCC ansatz
circuits in this case. The number of repetitions of the alter-
nating layers is two with an additional final rotation layer,
and the entanglement pattern uses only the nearest neighbor
CNOT gates. Since only Ry and CNOT gates are employed
in the circuit, the prepared quantum states will only have
real amplitudes. This circuit is also called the real-amplitudes
two-local circuit [46].

D. Error mitigation

Errors in near term quantum processors accumulate
quickly during computations which could ruin the results or,
specifically, energy expectation values for the VQE algorithm.
Quantum error correction methods could help fix this prob-
lem, but these methods often require a large number of qubits
that would be impractical on near-term NISQ devices. Even
though compared to common mapping schemes, our encoding
method has reduced the number of qubits and lowered the
circuit depth, the error in noisy hardware is still considerable,
preventing us from reaching the desired accuracy of the ob-
servables. Therefore, we adopt error mitigating methods in
our illustrative examples to demonstrate the feasibility of our
method.

The first error mitigating method we use is measurement
error mitigation. It calibrates readout counts by applying the
inverse of the matrices generated from measurement calibra-
tion circuits from each basis state [47,48]. The other method
we adopt is an extrapolation method. This is done by amplify-
ing the major error rate of the ansatz circuit and approximate
the error-free limit of the energy expectation value by linear
extrapolation [17,47–49]. For example, the noise of the ansatz
circuit in Fig. 1 is dominated by two-qubit CNOT gate errors
so we can perform the VQE algorithm using similar constructs
of the ansatz circuit but with some redundant CNOT pairs
as shown in Figs. 2 and 3. We can thus assume that the
observable depends on a noise variable ε = cε0, where c is the
number of CNOT gates, and ε0 is the error of a single CNOT
gate (assuming the same CNOT gate error for every qubit).
After extrapolating the results from each circuit, we could get
the observable by linear extrapolation method at error-free (no
CNOT gate error) condition. This is done by assuming that the
CNOT gate error is still small enough so that we could do a

023154-5



SHEE, TSAI, HONG, CHENG, AND GOAN PHYSICAL REVIEW RESEARCH 4, 023154 (2022)

FIG. 2. Four-qubit ansatz circuit with six redundant CNOT gates.

first-order Taylor expansion of the noisy observable O(ε) with
respect to ε at ε ≈ 0,

O(ε) ≈ O(0) + cε0O′(0), (21)

so that we would see a linear response of the observable error
to the CNOT gate error and can find the error-free observable
O(0).

E. Illustrative examples

1. H2, STO-3G, total-spin restricted

We show here a step-by-step instruction of how QEE
maps the excitation operators Epq to qubit operators in Pauli
operator strings. We use an H2 molecule in the STO-3G
basis set as an example. In this case, the system includes
only two 1s atomic orbitals so there are four converged
spin-orbitals (σ1s,u↓, σ1s,g↓, σ1s,u↑, σ1s,g↑) from a Hartree-Fock
self-consistent field calculation. We can write an electronic
configuration in the fermionic occupation basis of this
system as∣∣ fσ1s,u↓ , fσ1s,g↓ , fσ1s,u↑ fσ1s,g↑

〉 = | f3, f2, f1, f0〉. (22)

Furthermore, we restrict the total spin such that only the
singlet electronic configurations are present in the system. We
can then map these fermionic configurations in an ascending
order into the qubit state basis as shown in Table I.

With the mapping from the fermionic configurations to the
qubit states and Eq. (16), we can transform the excitation
operators in the fermionic basis to the qubit state basis where
the entry operators can help us build the Pauli operators as
shown in Table II.

Lastly, with the help of the identity in Eq. (11) that
represents double excitation terms with the excitation oper-
ators Epq, we can write the second-quantized Hamiltonian in
Eq. (10) as a qubit Hamiltonian. For example, at the inter-
atomic distance of 0.735 Å (the equilibrium distance in the
STO-3G basis set) for the two hydrogen atoms, the qubit

Hamiltonian can be written as

Hq = − 1.052373 · I1I0 − 0.397937 · Z1I0

− 0.397937 · I1Z0 + 0.011280 · Z1Z0

+ 0.180931 · X1X0. (23)

2. H2, STO-3G, total-spin unrestricted

In this subsection we do not restrict the total spin to singlet
configurations, so there will be triplet electronic configura-
tions present in the system. Similarly, for an H2 molecule in
the STO-3G basis set, we can write an electronic configuration
in the fermionic occupation basis as

|ψ〉 = ∣∣ fσ1s,u↓ , fσ1s,u↑ , fσ1s,g↓ , fσ1s,g↑
〉 = | f3, f2, f1, f0〉. (24)

Note that the ordering of occupation numbers in Eq. (24) is
slightly different from the total-spin-restricted case of Eq. (22)
in Sec. II E 1. However, there are six fermionic configurations
in this case so three qubits are required to represent all these
configurations as shown in Table III (also in an ascending
order). Thus, using similar mapping procedure shown in the
previous example, we can write the qubit Hamiltonian at the
interatomic distance of hydrogen bond length 0.735 Å as

Hq = − 0.837333 · I2I1I0 − 0.198969 · I2I1Z0

− 0.305506 · I2Z1I0 − 0.198969 · I2Z1Z0

− 0.464882 · Z2I1I0 + 0.050873 · Z2I1Z0

+ 0.066945 · Z2Z1I0 + 0.050873 · Z2Z1Z0

− 0.045233 · I2I1X0 + 0.045233 · I2Z1X0

− 0.045233 · Z2I1X0 + 0.045233 · Z2Z1X0

− 0.045233 · X2I1X0 − 0.045233 · X2Z1X0

+ 0.045233 · Y2I1Y0 + 0.045233 · Y2Z1Y0. (25)

FIG. 3. Four-qubit ansatz circuit with 12 redundant CNOT gates.
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TABLE II. Mapping of excitation operators to Pauli operators for a total-spin-restricted H2 molecule in the STO-3G basis set. Note that Ik

in the entry-operator column denotes an identity operator on the kth qubit.

Excitation Fermionic basis Qubit state basis Entry operator Pauli

E10 |0110〉f〈0101|f + |1010〉f〈1001|f |01〉q〈00|q + |11〉q〈10|q I1Q+
0

1
2 IX − i

2 IY
E32 |1001〉f〈0101|f + |1010〉f〈0110|f |10〉q〈00|q + |11〉q〈01|q Q+

1 I0
1
2 XI − i

2Y I
E00 |0101〉f〈0101|f + |1001〉f〈1001|f |00〉q〈00|q + |10〉q〈10|q I1N (0)

0
1
2 II + 1

2 IZ
E11 |0110〉f〈0110|f + |1010〉f〈1010|f |01〉q〈01|q + |11〉q〈11|q I1N (1)

0
1
2 II − 1

2 IZ
E22 |0101〉f〈0101|f + |0110〉f〈0110|f |00〉q〈00|q + |01〉q〈01|q N (0)

1 I0
1
2 II + 1

2 ZI
E33 |1001〉f〈1001|f + |1010〉f〈1010|f |10〉q〈10|q + |11〉q〈11|q N (1)

1 I0
1
2 II − 1

2 ZI

3. H2, 6-31G, total-spin restricted

By adopting symmetries in conservation of electrons and
spins (Z2 symmetries, two qubits reduction), it is possible
for the parity or BK mappings to reduce two qubits for the
encoding of a system with an arbitrary number of spin-orbitals
[31]. For the case of an H2 molecule in the STO-3G basis
set, our QEE method as well as the parity and BK mappings
only require two qubits, i.e., a reduction of two qubits from
a four-qubit setting. Therefore, it is more pedagogical to do
experiments on a larger system where the QEE reduces more
than two qubits. We show here the reduction of four qubits in
the case of H2 in the 6-31G basis set, where there are eight
spin-orbitals and two electrons in the system. The VQE data
are shown in Sec. III.

Similar to what we have done for the case of the STO-3G
basis set, for an H2 molecule in the 6-31G basis set, we can
write an electronic configuration in the fermionic occupation
basis as∣∣ fσ2s,u↓ , fσ2s,g↓ , fσ1s,u↓ , fσ1s,g↓ , fσ2s,u↑ , fσ2s,g↑ , fσ1s,u↑ , fσ1s,g↑

〉
= | f7, f6, f5, f4, f3, f2, f1, f0〉, (26)

where the 2s atomic orbitals are also included to form molecu-
lar orbitals. With the electron number being conserved and the
total spin being restricted such that there are only singlet elec-
tronic configurations, there are 16 fermionic configurations,
so only 4 (log2 16) qubits are used to map these configurations
to the qubit basis states as shown in Table IV. Thus, we can
simulate this system with four qubits using QEE, and a qubit
Hamiltonian can be constructed in the same way as previous
examples (see Appendix A for the qubit Hamiltonian). We
show the potential energy surface of this system at different
interatomic distances of the two hydrogen atoms in Sec. III by
running the VQE algorithms for the QEE qubit Hamiltonian.

TABLE III. Mapping of fermionic configurations to qubit basis
state for a total-spin-unrestricted H2 molecule in the STO-3G basis
set.

Filled spin-orbitals f3 f2 f1 f0 q2 q1 q0

σ1s,g↓σ1s,g↑ 0011 000
σ1s,u↑σ1s,g↑ 0101 001
σ1s,u↑σ1s,g↓ 0110 010
σ1s,u↓σ1s,g↑ 1001 011
σ1s,u↓σ1s,g↓ 1010 100
σ1s,u↓σ1s,u↑ 1100 101

4. LiH, STO-3G, total-spin restricted

We also apply our encoding method to a LiH molecule
in the STO-3G basis set with the core frozen and the
2py orbital removed (assuming zero filling) for the Li atom.
In this case there are also eight spin-orbitals and two electrons
in the system so it requires eight qubits for the JW encoding.
We choose to only consider the singlet configurations so this
system is similar to the case in Sec. II E 3. Thus, this system
requires four qubits for our encoding scheme since there are
16 fermionic configurations. We show the potential energy
surfaces of this system in Sec. III as well.

Note that we present the reduction using particle-
conserving and total-spin symmetries, but our method has
the flexibility of removing any configurations by perturbation
arguments or imposing other symmetries or constraints to
systematically reduce the dimension of a Hilbert space.

III. RESULTS AND DISCUSSION

Simulations for an H2 molecule in the 6-31G basis set and
a LiH molecule in the STO-3G basis set with restricted total
spin at some given interatomic distances of the two atoms of
each molecule are performed with the quantum subroutine of
the VQE algorithms using Qiskit. The classical optimization
of the variational parameters was done using the constrained
optimization by linear approximation (COBYLA) algorithm

TABLE IV. Mapping of fermionic configurations to qubit basis
state for a total-spin-restricted H2 molecule in the 6-31G basis set.

Filled spin-orbitals f7 f6 f5 f4 f3 f2 f1 f0 q3q2 q1q0

σ1s,g↓σ1s,g↑ 0001 0001 00 00
σ1s,g↓σ1s,u↑ 0001 0010 00 01
σ1s,g↓σ2s,g↑ 0001 0100 00 10
σ1s,g↓σ2s,u↑ 0001 1000 00 11
σ1s,u↓σ1s,g↑ 0010 0001 01 00
σ1s,u↓σ1s,u↑ 0010 0010 01 01
σ1s,u↓σ2s,g↑ 0010 0100 01 10
σ1s,u↓σ2s,u↑ 0010 1000 01 11
σ2s,g↓σ1s,g↑ 0100 0001 10 00
σ2s,g↓σ1s,u↑ 0100 0010 10 01
σ2s,g↓σ2s,g↑ 0100 0100 10 10
σ2s,g↓σ2s,u↑ 0100 1000 10 11
σ2s,u↓σ1s,g↑ 1000 0001 11 00
σ2s,u↓σ1s,u↑ 1000 0010 11 01
σ2s,u↓σ2s,g↑ 1000 0100 11 10
σ2s,u↓σ2s,u↑ 1000 1000 11 11
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FIG. 4. Potential energy surfaces and energy errors of an H2 molecule in the 6-31G basis set and a LiH molecule in the STO-3G basis set.
(a) H2 potential energy surfaces. (b) H2 energy errors. (c) LiH potential energy surfaces. (d) LiH energy errors. For (a) and (c) the red curves
were obtained using the Hartree-Fock method and the black curves represent the exact energy surfaces obtained by diagonalization of the JW
qubit Hamiltonian with classical algorithms. The blue curves were the extrapolated energies over three different CNOT gate counts with the
energies of each CNOT gate count being averaged over ten sets of VQE experiments and with 104 shots for each iteration using a QEE qubit
Hamiltonian. The simulations were performed on the QASM simulator with a noise model implemented from the calibration data of IBM
quantum device ibmq_santiago shown in Appendix C using qubits 0, 1, 2, and 3. For (b) and (d) the curves and data points represent the
energy errors with respect to the exact energy surfaces of each molecule. The error bars represent 95% confidence uncertainties that took the
standard deviations of experiments at each CNOT gate count and the residues of linear regression into account. Most of the distributions agree
within the chemical accuracy defined as 1 kcal/mol.

with a maximum iteration number of 500. The QEE Hamil-
tonian of the system at different interatomic distances are
generated using the implementation method (code) at [50].
The exact energies and ground-state configurations of the JW
encoded qubit Hamiltonian are used to verify the correctness
of these QEE qubit Hamiltonian using the state vector simu-
lator in Qiskit.

The ansatz circuits used in the VQE algorithms are the
real-amplitudes two-local circuits [46] with two layers of
linear entanglement (Fig. 1) and its variants with redundant
CNOT pairs (Figs. 2 and 3) so the CNOT gate counts of the
circuits were 6, 12, and 18, respectively. To mimic the effect
of the realistic noisy quantum machine, the simulations are
performed on the QASM simulator with a noise model im-
plemented from the calibration data of IBM Quantum device
ibmq_santiago shown in Appendix C. The first four qubits
of the device ibmq_santiago in the noise model are used
because they form a linear chain of qubits so that no extra
CNOT gates were needed to implement our ansatz circuits.
The experiments are run with 104 or 105 readout shots per

circuit with the measurement error being mitigated by the
inverse of a calibrated matrix. For each CNOT gate count, ten
independent VQE experiments are done to find the error-free
limit of the energy expectation values using the linear extrap-
olating error mitigating method.

The potential energy surfaces of the H2 system are plotted
in Fig. 4(a) from discrete data points at the interatomic dis-
tances of 0.3 to 2.8 Å with more data points plotted from 0.7
to 0.8 Å close to the equilibrium distance, and the potential
energy surfaces of the LiH system are plotted in Fig. 4(c)
from 0.5 to 4.0 Å with more data points plotted from 1.5
to 1.6. The number of measurement shots for both cases
is 104. The Hartree-Fock energies are obtained using the
“PySCF” Python-based chemical simulation package and the
exact energies (ground-state energies) are obtained from diag-
onalization of the JW encoded qubit Hamiltonian. Since there
are errors arisen from finite numbers of measurements (shots),
SPAM errors of the qubits, and single-qubit gate errors in
VQE experiments even at the error-free limits of the CNOT
gates, ten independent VQE experiments are done for each of

023154-8



QUBIT-EFFICIENT ENCODING SCHEME FOR QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023154 (2022)

FIG. 5. The extrapolated energies to the error-free limits of an H2 molecule in the 6-31G basis set at an interatomic distance of 0.745 Å and
a LiH molecule in the STO-3G basis set at an interatomic distance of 1.55 Å with the experiments run on a noisy simulator. (a) H2 extrapolated
energies. (b) LiH extrapolated energies. The simulations were performed on the QASM simulator with a noise model implemented from the
calibration data of IBM quantum device ibmq_santiago shown in Appendix C using qubits 0, 1, 2, and 3. Each of the data points in solid
circles was averaged over ten sets of experiments using 104 or 105 shots per circuit with the rotation angles pre-evaluated on a noiseless
simulator. Each of the error bars of the solid circles is twice the standard deviation over the energy distribution for the ten experiments. The red
and blue lines are the linear fits of the energies in solid circles. The hollow circles are the extrapolated energies with the error bars being 95%
confidence uncertainties estimated from the standard deviations and linear regression residues. The distributions of the extrapolated energies
using 105 shots agree within the chemical accuracy and there is significantly less variance in this case. Note that the blue circles in (b) are
slightly lower than the red circles.

the CNOT gate counts. The errors of the extrapolated energies
with respect to the exact energies are plotted in Figs. 4(b) and
4(d) with the error bars showing the uncertainties in 95% con-
fidence intervals. These uncertainties are propagated from the
residues of the linear regressions and the standard deviations
of the distributions at each of the CNOT gate counts. Even
though the energy errors of the VQE experiments are slightly
higher than the chemical accuracy (1 kcal/mol), most of the
uncertainties reach the chemical accuracy. Thus, another ex-
periment on increasing the measurement shots per circuit is
done to further test the feasibility of this method in the NISQ
era. We will discuss this result later.

In Kandala et al.’s work [17], they used a similar extrapo-
lation method to estimate the ground-state energies of an H2

molecule and a LiH molecule in the STO-3G basis set using
the BK encoding. Instead of stacking up redundant CNOT
gates, they extended the pulse times of the CNOT gates to am-
plify the major errors. In general, our ground-state potential
energy surfaces obtained from VQE have less error than their
results at different interatomic distances. Since, for the H2

cases, we used a larger basis set (6-31G) and more qubits than
those of their work, it would be more reasonable to compare
the LiH cases. The authors in [17] also froze the core orbital of
LiH but they remove both the 2py and 2pz orbitals. Thus, there
are two extra spin-orbitals in our system, but we use the same
number of qubits (four qubits) as theirs. With these two extra
spin-orbitals, we can capture slightly more correlation using
the same number of qubits. It can be observed from Fig. 4(d)
and the bottom right of Fig. 4. in [17] that some of their extrap-
olated energies were found to be quite far away from chemical
accuracy comparing to our result. Such improvement was not
directly due to the inclusion of the 2pz orbital in our system,
because the 2pz orbital does not interact strongly with other
orbitals, and the energy errors are the comparison criteria for
the VQE performance here. Instead, the entire Hilbert space
is spanned by the configurations with desired symmetries in

our case, so the final state would not include undesired or
unphysical configurations after an optimization search using a
heuristic hardware-efficient ansatz circuit. This shows that we
can use the same number of qubits to reach a better accuracy
for the same chemical system.

To demonstrate that chemical accuracy could be achievable
for QEE on the present and near-term devices, more measure-
ment shots per circuit are performed on the same noise model
to investigate how noise in a finite number of measurements
affects the variational computations and the results are plotted
in Fig. 5. The tunable parameters (the rotation angles) of the
ansatz circuits are first optimized and obtained using Qiskit’s
state vector simulator (noiseless simulator) so the parameters
(rotation angles) of the ansatz circuits are fixed in this exper-
iment to prevent the uncertainties in the variational process.
The measurement error mitigation and extrapolation to the
error-free limit are also done in this experiment. Note that
the error distribution of the experiment using 104 shots per
iteration in Fig. 5(a) is far from chemical accuracy because
the parameters are preoptimized on a noiseless simulator and
fixed during the experiments, so the robustness from VQE
against some noise, such as noise in single-qubit gates, would
not be present as compared to the experiments in Fig. 4
[3,10]. Figure 5(a) shows that the error of the extrapolated
energy with respect to the exact ground-state energy obtained
by Hamiltonian diagonalization at the interatomic distance
of 0.745 Å (the equilibrium distance in the 6-31G basis set)
decreases as the number of shots per circuit increases and the
uncertainties decreases significantly as well. The distribution
of the extrapolated energy using 105 shots at the error-free
limit agrees with the exact ground-state energy within chem-
ical accuracy. A similar result is shown for a LiH molecule
in Fig. 5(b) where both the error and the uncertainty of the
extrapolated energy decrease using more shots per circuit.
In particular, the overestimated extrapolated values of the
ground-state energy lower than the exact energy obtained by

023154-9



SHEE, TSAI, HONG, CHENG, AND GOAN PHYSICAL REVIEW RESEARCH 4, 023154 (2022)

FIG. 6. The extrapolated energies to the error-free limits of an H2 molecule in the 6-31G basis set at an interatomic distance of 0.745 Å and
a LiH molecule in the STO-3G basis set at an interatomic distance of 1.55 Å with the experiments run on quantum devices. (a) H2 extrapolated
energies. The experiments were performed on qubits 0, 1, 2, and 3 of ibmq_santiago on October 13, 2021. (b) LiH extrapolated energies.
The experiments were performed on qubits 0, 1, 3, and 5 of ibmq_lagos on December 14, 2021. Each of the data points in solid circles was
averaged over ten sets of experiments using 1000 or 8192, 2000, or 20 000 shots per circuit with the rotation angles pre-evaluated on a noiseless
simulator. Each of the error bars of the solid circles is twice the standard deviation over the energy distribution for the ten experiments. The
red and blue lines are the linear fits of the energies in solid circles. The hollow circles are the extrapolated energies with the error bars being
95% confidence uncertainties estimated from the standard deviations and linear regression residues.

diagonization indicated by the error bar (red solid line) at
the error-free point in the case of 104 shots is significantly
improved (see the error bar in the blue solid line at the error-
free point) by using 105 shots. Similar trends could be seen
in Fig. 6 where the experiments were done on IBM quantum
devices. These results indicate that substantial numbers of
measurements are still needed for the simulations on noisy
quantum devices. Therefore, given that the measurement error
mitigation and extrapolation to the error-free limit for two-
qubit CNOT gates are performed, the main concern for our
method for the H2 molecule in the 6-31G basis set and the LiH
molecule in STO-3G basis set is the probabilistic behavior
of a finite number of measurements in the noisy simulations
instead of decoherence or SPAM error of the quantum pro-
cessors. In short, all of our results demonstrate that quantum
chemical simulations using QEE qubit Hamiltonians are suit-
able in the NISQ era. Some additional admissible use cases
for our QEE scheme are provided in Table V.

IV. CONCLUSION

In conclusion, in order to realize molecular quantum
simulations of large systems, quantum hardware should be im-
proved and the quantum algorithms should also be optimized
to respect hardware constraints. We have designed an alterna-
tive encoding scheme to reduce qubit resources by filling up
(most of) the Hilbert space with desired configurations. For
an H2 molecule in the 6-31G basis set and a LiH molecule in
the STO-3G basis set, we have reduced the required number
of qubits from 8 to 4 with our encoding scheme and have
simulated the molecules by incorporating a noise model from
a real IBM Quantum machine with the distribution of the ex-
trapolated energies agreeing with the exact energies obtained
by Hamiltonian diagonalization to chemical accuracy.

For electron number m � N
2 , the number of qubits

Q needed in our QEE scheme has an upper bound of
O(m log2 N ), and for m > N

2 , the upper bound of the number
of qubits Q is of O[(N − m) log2 N] (see Appendix B for the

TABLE V. Comparison between qubit counts and Hamiltonian Pauli term counts of the JW encoding and QEE for certain molecules (in
the STO-3G basis sets and equilibrium bond distances) with some molecular orbitals being frozen/removed. Note that the molecular orbitals
are ordered from the lowest to the highest energies and the labels start from 0.

Molecule Frozen/removed orbitals JW qubit count JW terms QEE qubit count QEE terms

LiH 0, 3 8 193 4 100
HF N/A 12 631 6 1 184
HF 0 10 276 6 608
HCl 0 18 3 772 8 8 960
HCl 0, 1 16 2 329 6 640
HBr 0–2 32 40 705 8 18 490
HBr 0–4 28 21 891 8 18 472
F2 0, 1 16 1 177 6 1 040
Cl2 0, 1 32 21 481 8 17 500
Cl2 0–9 16 1 177 6 1 040
Br2 0–27 16 1177 6 1 040
I2 0–45 16 1 177 6 1 040
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derivation), which is a noticeable advantage compared to Q =
N in most present encoding schemes. For a given molecular
system, the number of spin-orbitals N for quantum chemical
simulation increases rapidly as the basis set becomes larger.
For example, a water molecule with the ccpV5Z basis set has
201 molecular orbitals, or 402 spin-orbitals. Using the parity
or BK mapping with Z2 reduction, one still needs 400 qubits,
which may be beyond the capability of quantum processors in
the near future. With QEE, we use only Q = �log2

(402
10

) = 65
qubits in the total-spin-unrestricted case, which is a prominent
reduction and would be a good starting point to realize the
advantage of quantum processors over classical computers in
solving quantum chemistry problems. Currently, one of the
largest quantum processors available on IBM quantum is the
65-qubit machine ibmq_manhattan. However, its quantum
volume [51,52] is just 32, so a lot of effort still needs to be
made to increase the reliable circuit depth, i.e., the number
of gates that can be successively and reliably performed in a
quantum circuit on the quantum machine. In most previous
VQE works, the basis sets used are minimal and insufficient
to achieve results with the desired accuracy compared with
experimental data. With QEE, one may perform chemical
simulations with larger basis sets but only require a lower
amount of qubit resources, which permits a greater accuracy
for quantum chemistry calculation in the NISQ era.

Compared to previous compact encoding studies
[30,31,37,39], our work has a generalized scheme and is
practical for NISQ devices, where such qubit reduction
can be applied to fermionic systems of any size, and the
encoding of two-electron terms is also included. However,
the number of Hamiltonian terms that has to be preprocessed
by classical computing seems to be a bottleneck in both our
work and some compact encoding studies [30,31,38,39]. By
considering all the possible excitations, the total number
of Pauli operator terms before combining like terms of
our QEE scheme that should be processed has an upper
bound of O( N2m+1

(m−1)! m! ) as shown in Appendix E due to
the decompositions of all entry operators. In most cases,
the numbers of Hamiltonian terms will be more than
those of the JW encoding scheme, which scale as O(N4).
Nevertheless, Table V provides several use cases for the QEE
scheme, where there are significant reductions of qubit counts
and modest numbers of Hamiltonian terms (sometimes even
fewer terms than the systems using the JW encoding scheme).

On the other hand, the advantage of significant reduction
of the qubit number by our QEE scheme for large molecules,
which substantially alleviates the vanishing gradient and long
ansatz circuit problems, will be useful in the NISQ era if
there is a better classical preprocessing method. Besides, in
our proposed QEE scheme, one has the degree of freedom
to map certain fermionic states to qubit states in an arbi-
trary order or basis. This corresponds to choosing suitable
basis orders since the decomposition of all entry operators
within a qubit-number-reduced Hamiltonian is equivalent to
the tensor product decomposition of that Hamiltonian using
Pauli operators. In this work we order fermionic states in an
ascending manner to respect hardware SPAM errors. Some
suitably chosen mappings between fermionic states and qubit
states may enable us to systematically decompose the encoded
excitation operators without expanding all entry operators.

In other words, qubit Hamiltonian with different mappings
corresponds to different similar matrices so there may exist
specific arrangements of the basis to construct qubit Hamil-
tonian efficiently. Hence further analysis should be done on
other ordering methods to possibly reduce classical prepro-
cessing time or the number of terms in the qubit Hamiltonian.
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APPENDIX A: 6-31G H2 QEE QUBIT HAMILTONIAN

The QEE qubit Hamiltonian for an H2 molecule in the
6-31G basis set at an interatomic distance of 0.745 Å is

Hq = − 0.363395 · IIII − 0.260044 · IZII

− 0.482367 · ZIII − 0.007374 · ZZII

+ 0.029427 · XIII − 0.061555 · XZII

− 0.260044 · IIIZ − 0.482367 · IIZI

− 0.007374 · IIZZ + 0.029427 · IIX I

− 0.061555 · IIXZ + 0.007946 · IZIZ

− 0.001401 · IZZI + 0.004264 · IZZZ

− 0.001401 · ZIIZ + 0.010898 · ZIZI

− 0.011880 · ZIZZ + 0.004264 · ZZIZ

− 0.011880 · ZZZI + 0.025182 · ZZZZ

+ 0.001979 · XIIZ − 0.004488 · XIZI

+ 0.005020 · XIZZ + 0.006781 · XZIZ

− 0.021515 · XZZI + 0.044350 · XZZZ
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+ 0.010276 · IX IX − 0.011928 · IXZX

− 0.011928 · ZXIX + 0.094119 · ZXZX

+ 0.005441 · XXIX − 0.054641 · XXZX

− 0.016451 · YY IX + 0.046704 · YY ZX

+ 0.001979 · IZXI + 0.006781 · IZXZ

− 0.004488 · ZIXI − 0.021515 · ZIXZ

+ 0.005020 · ZZXI + 0.044350 · ZZXZ

+ 0.007491 · XIXI + 0.010322 · XIXZ

+ 0.010322 · XZXI + 0.080979 · XZXZ

+ 0.005441 · IXXX − 0.016451 · IXYY

− 0.054641 · ZXXX + 0.046704 · ZXYY

+ 0.032133 · XXXX − 0.025336 · XXYY

− 0.025336 · YY XX + 0.054367 · YYYY. (A1)

Note that for brevity we have ignored the qubit indices of the
Pauli terms in Eq. (A1). All terms are labeled with descending
indices, e.g., XY ZI = X3Y2Z1I0.

APPENDIX B: DERIVATION OF SCALING OF Q

As previously mentioned, qubit count Q = �log2

(N
m

) for
QEE. The binomial coefficient can be simplified as(

N

m

)
= N · (N − 1) · · · (N − m + 1)

m!
<

Nm

m!
,

so

log2

(
N

m

)
< m log2(N ) − log2(m!) = O[m log2(N )],

which is the upper bound of Q for the case of m � N
2 .

Similarly, since
(N

m

) = ( N
N−m

)
, for the case of m > N

2 ,(
N

m

)
= N · (N − 1) · · · (m + 1)

(N − m)!
<

NN−m

(N − m)!
,

so Q = �log2

(N
m

) < O[(N − m) log2 N].

APPENDIX C: DEVICE CALIBRATION DATA

Tables VI and VII show the calibration data of a IBM
quantum machine ibmq_santiago. These calibration data
were used to construct the noise model used in this work.

TABLE VI. The single-qubit calibration data of
ibmq_santiago on March 5, 2021.

Qubit Gate error Readout error P(0 | 1)a P(1 | 0)b

0 0.0228% 1.45% 2.04% 0.86%
1 0.0183% 1.34% 1.42% 1.26%
2 0.0217% 8.00% 1.66% 14.34%
3 0.0262% 3.36% 4.20% 2.52%
4 0.0174% 0.89% 1.48% 0.30%

aThe probability of measuring the |0〉 qubit state given that it was
prepared in the |1〉 qubit state.
bThe probability of measuring the |1〉 qubit state given that it was
prepared in the |0〉 qubit state.

TABLE VII. The CNOT gate calibration data of
ibmq_santiago on March 5, 2021.

Coupling pair Gate error Gate length (ns)

[0, 1] 0.573% 526.22
[1, 0] 0.573% 561.78
[1, 2] 0.686% 604.44
[2, 1] 0.686% 568.89
[2, 3] 0.670% 376.89
[3, 2] 0.670% 412.44
[3, 4] 0.636% 376.89
[4, 3] 0.636% 341.33

APPENDIX D: PROPAGATION OF UNCERTAINTIES

The error bars for the extrapolated energies at different in-
teratomic distances in Figs. 4(b), 4(d), and 5 are calculated by
assessing the propagation of uncertainties from the standard
deviations σi’s of the experiments for different CNOT gate
counts xi’s and their linear regression residues. The uncer-
tainty σ of the y intercept (in a energy versus CNOT gate count
plot) can be written as

σ =
√√√√ 1

�

∑
i

x2
i

σ 2
i

,

where � = (
∑

i
1
σ 2

i
)(

∑
i

x2
i

σ 2
i

) − (
∑

i
xi

σ 2
i

)2. Note that the 95%
confidence intervals of the distributions are plotted as the error
bars in Figs. 4(b), 4(d), and 5 so the lengths of error bars
are 2σ .

APPENDIX E: COMPLEXITY OF HAMILTONIAN
ENCODING WITH ENTRY OPERATORS

To obtain the qubit Hamiltonian Hq corresponding to the
second-quantized electronic Hamiltonian Helec, one has to
first calculate qubit counterparts of all possible excitation
operators Epq. Each Epq = ∑|Fm|−1

k,k′=0 cpq
k′k|fk′ 〉f〈fk|fis a linear

combination of various fermionic state transitions. The num-
ber of transitions with nonzero coefficients in Epq is

(N−1
m−1

)
for p = q and

(N−2
m−1

)
for p �= q. Thus, the total number of

transitions needs to be calculated for all Epq is N × (N−1
m−1

) +
N (N − 1) × (N−2

m−1

)
. If m � N

2 , one has
(N

m

)
< Nm

m! . Then the

total number of transitions has an upper bound of O( Nm+1

(m−1)! ).
For each transition |fk′ 〉f〈fk|f, it is mapped to a qubit transi-
tion |qk′ 〉q〈qk|q and then factorized into a product of Q entry
operators. As an entry operator is a sum of two Pauli (or
identity) operators, expanding the product gives 2Q terms of
Pauli operators. To derive all excitation operators in terms
of Pauli operator strings with brute force, O(2QNm+1) Pauli
operator terms have to be calculated classically. In the case
where m � N

2 , Q has an upper bound of log2( Nm

m! ), so the total
number of Pauli operator terms before combining like terms
has an upper bound of O( N2m+1

(m−1)! m! ). Similar results can be

obtained for m > N
2 using the relation of

(N
m

) = ( N
N−m

)
, and
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in this case the total number of Pauli operator terms has an
upper bound of O( N2(N−m)+1

(N−m−1)! (N−m)! ). In most cases, the number
of Pauli operator terms that need to be processed for QEE is
larger than O(N4) for JW encoding.
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