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Biexciton-like quartet condensates in an electron-hole liquid
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We theoretically study the ground-state properties and the condensations of exciton-like Cooper pairs and
biexciton-like Cooper quartets in an electron-hole system. Applying the quartet Bardeen-Cooper-Schrieffer
(BCS) theory to the four-component fermionic system consisting of spin- 1

2 electrons and spin- 1
2 holes, we

show how Cooper pairs and quartet correlations appear in the equation of state at the thermodynamic limit.
The biexciton-like four-body correlations survive even at the high-density regime as a many-body BCS-like
state of Cooper quartets. Our results are useful for further understanding of exotic matter in the interdisciplinary
context of quantum many-body physics with multiple degrees of freedom.

DOI: 10.1103/PhysRevResearch.4.023152

I. INTRODUCTION

Quantum many-body systems exhibit nontrivial states
which are absent in classical ones. The interplay between
quantum degeneracy and interactions leads to exotic conden-
sation phenomena such as superfluidity and superconductivity
[1]. The common states of matter surrounding us such as
liquid droplets and crystalline solids are also deeply related to
the interaction and quantum statistics of constituent particles
from the microscopic viewpoint.

While it is known that superconductors and fermionic su-
perfluids are triggered by the formation of two-body loosely
bound states called Cooper pairs as a result of the Fermi-
surface instability in the presence of two-body attractions [2],
it is an interesting problem to explore condensation phenom-
ena accompanying more than two-body bound states. While
spin- 1

2 fermions with s-wave interaction tend to form two-
body Cooper pairs because of their spin degree of freedom
and Pauli’s exclusion principles, multibody counterparts such
as Cooper triples [3–6] and quartets [7–15] can be formed in
the presence of larger degrees of freedom for fermions (e.g.,
isospin, color, and atomic hyperfine states).

To study the nontrivial superfluid state associated with the
Cooper instability leading to multibody bound states, semi-
conductor systems consisting of spin- 1

2 electrons and holes
can be promising candidates since these can be regarded
as four-component fermionic systems with strong interac-
tions. In such systems, two- and four-body bound states
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called excitons and biexcitons are formed due to the at-
tractive Coulomb electron-hole interaction [16]. Moreover,
the formation of polyexcitons consisting of more than two
excitonic bound states was reported [17]. While the sys-
tem is dominated by these bound states, e.g., excitons and
biexcitons (or electron-hole plasma at finite temperature), in
the low-carrier density regime, the quantum droplet appears
as a many-body bound state in the higher-density regime
(before the semiconductor-metal transition) at low temper-
ature [18–21]. The Bardeen-Cooper-Schrieffer (BCS)–to–
Bose-Einstein condensation (BEC) crossover associated with
excitonic pairs with increasing the carrier density has been
discussed extensively in previous theoretical works [22–30].
In highly excited CuCl, the condensation of biexcitons was
observed [31–33]. In the past years, the formation of biex-
citons was observed also in transition metal dichalcogenide
crystals [34–37]. Recently, it was reported that biexcitons play
a key role for the formation of quantum droplets in photoex-
cited semiconductors [38]. Moreover, biexciton condensation
has been found in an electron-hole Hubbard model at positive
chemical potentials via a sign-problem-free quantum Monte
Carlo simulation [39]. Also, two-dimensional semiconductor
systems in the biexciton-dominated regime have been investi-
gated at finite temperature [40]. These studies suggest that it
is important to clarify physical properties of the exciton and
biexciton condensates for understanding many-body states at
sufficiently low temperature.

Quartet condensation phenomena associated with the four-
body bound states have also attracted much attention in
nuclear systems [41]. Nuclear equations of state and their
droplet properties are associated with strongly attractive nu-
clear forces leading to the formation of bound states such
as deuterons, alpha particles, and heavier nuclei in the low-
density region [42], and the Fermi degenerate pressure of
nucleons and multibody forces in the high-density region
[43]. Since alpha particles consisting of two neutrons and two
protons is a stable cluster state with a large binding energy,
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the so-called alpha-particle condensation has been extensively
studied in the context of Cooper quartets [7–15]. Note that
fluctuation-driven quartet formations have also been investi-
gated in unconventional superconductors [44,45].

Moreover, the quantum droplet state has been realized in
ultracold Bose-Bose mixtures [46–49]. The stabilization of
the dilute quantum droplet is achieved by the competition
between the mean-field attraction and the repulsive quantum
fluctuations [50]. While the Lee-Huang-Yang energy density
functional can explain such saturation properties but exhibit
a complex value in the region where the mean-field collapse
occurs, it is reported that the complexity of the energy density
functional can be avoided by considering the bosonic pairing
[51,52]. This fact implies that a biexciton, which can be re-
garded as the two-exciton pairing state, plays a crucial role in
the formation of self-bound quantum droplets in electron-hole
systems. Moreover, similar self-bound quantum droplets have
been realized in dipolar Bose gases [53], which is analogous
with an exciton gas with an electric dipole moment.

In this paper, we theoretically investigate thermodynamic
properties in an electron-hole system at zero temperature
within the quartet BCS framework, which uses the extended
BCS variational wave function involving Cooper pairing and
quarteting in the momentum space at the thermodynamic limit
[15]. Special attention is paid to the biexciton-like conden-
sates, that is, the Cooper quartets consisting of two electrons
and two holes as a result of the Cooper instability of Fermi
seas. (Note that we call it biexciton-like since a Cooper quartet
considered here is a loosely bound quantum state, unlike usual
point-like bound states.) Recently, such a framework has been
employed to study pair and quartet correlations in nuclear
systems [10,13–15]. Effects of Fermi degenerate pressure are
automatically considered in this framework as in the usual
BCS theory. The interplay among the Fermi degenerate pres-
sure of electrons and holes and the formation of exciton-like
Cooper pairs and biexciton-like Cooper quartets is examined
microscopically.

This paper is organized as follows. In Sec. II, we show a
theoretical model for an electron-hole system and a detailed
formalism of the quartet BCS theory. In Sec. III, the numerical
results and the corresponding discussions for the ground-state
properties are presented. Finally, we summarize this paper
with future perspectives in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

In this paper, we consider a three-dimensional electron-
hole system with the electron-electron, hole-hole, and
electron-hole interactions. The corresponding Hamiltonian is
written as

H = H0
e + H0

h + Ve-e + Vh-h + Ve-h. (1)

In detail, the single-particle part reads

H0
e =

∑
p,sz

εe,pe†
p,sz

ep,sz , (2a)

H0
h =

∑
p,sz

εh,ph†
p,sz

hp,sz , (2b)

where the creation operators e† and h† create an electron and
a hole, respectively; p is the single-particle momentum, q =
1
2 (p1 − p2) is the relative momentum, s is the single-particle
spin (sz is its third component), and P = p1 + p2 is the center
of mass momentum. In addition, the single-particle energy
reads εi,p = p2

2Mi
− μi (i = e, h), where μi is the chemical po-

tential, and Mi is the effective mass. Note that the particle-hole
transformation is taken for the hole band such that a hole has
the positive-curvature energy dispersion εh,p. The low-energy
interactions read

Ve-e =
∑

P,q,q′
Ue-e(q − q′)C†

e (P, q)Ce(P, q′), (2c)

Vh-h =
∑

P,q,q′
Uh-h(q − q′)C†

h (P, q)Ch(P, q′), (2d)

Ve-h = 1

4

∑
S,Sz

∑
P,q,q′

Ue-h(q − q′)E†
S,Sz

(P, q)ES,Sz (P, q′), (2e)

where we have introduced the two-electron and two-hole pair
operators:

C†
e (P, q) = e†

q+P/2,1/2e†
−q+P/2,−1/2, (3a)

C†
h (P, q) = h†

q+P/2,1/2h†
−q+P/2,−1/2, (3b)

and the exciton creation operators:

E†
0,0(P, q) =

∑
sz,s′

z

C00
(1/2)(1/2)szs′

z
e†

q+P/2,sz
h†

−q+P/2,s′
z
, (4a)

E†
1,Sz

(P, q) =
∑
sz,s′

z

C1Sz

(1/2)(1/2)szs′
z
e†

q+P/2,sz
h†

−q+P/2,s′
z
. (4b)

Here, Sz is the z component of the total spin S of an exciton.
The corresponding annihilation operators are their conjugates.
Also, Ue-e, Uh-h, and Ue-h are the interaction strengths for
the electron-electron, hole-hole, and electron-hole channels.
In general, the most relevant interaction is Ue-h which is an
attractive Coulomb force and induces the formation of ex-
citons. For Ue-e and Uh-h, these can be attractive when the
phonon-mediated interaction is present as in conventional
BCS superconductors. At high density, the Coulomb repulsion
and the screening effect also may become important. In this
paper, we assume attractive Ue-e and Uh-h for simplicity, but
eventually, these interaction effects are ignored since attrac-
tive Ue-h is expected to be stronger than Ue-e and Uh-h [29].

We briefly note that the present electron-hole system is like
symmetric nuclear matter where the attractive electron-hole
interaction can be regarded as a counterpart of the isospin-
singlet neutron-proton interaction, which induces a two-body
bound state (i.e., deuteron). Indeed, both systems are com-
posed of four-component fermions, and similar multibody
bound states appear in a certain density regime. A simpli-
fied model enables us to discuss similarities and differences
between two systems from an interdisciplinary viewpoint of
many-body physics, although their energy scales are largely
different from each other.
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B. Quartet BCS theory

With the consideration of the coherent state for the four-
body sector, the trial wave function is adopted as [10,15]

|�〉 =
∏

q

[
uq + 1

2

∑
S,Sz

vq,S,Sz E
†
S,Sz

(0, q)

+
∑
i=e,h

xq,iC
†
i (0, q) + 1

4
wqB†(q)

]
|0〉, (5)

where the biexcition creation operator at the zero center-of-
mass momentum is defined as

B†(q) = E†
1,+1(0, q)E†

1,−1(0, q). (6)

The contribution of excited excitons with finite center-of-mass
momenta is neglected since the low-energy cluster states can
dominate the system at sufficiently low temperatures. We note
that a similar approximation has been employed in studies of
nuclear systems [10]. The normalization condition is

|uq|2 + |vq|2 + |xq|2 + |wq|2 = 1, (7)

where the norms of the variational parameters are defined as
|vq|2 = ∑

S,Sz
|vq,S,Sz |2 and |xq|2 = ∑

i |xq,i|2 for convenience.
We note that, while more sophisticated variational wave

functions with the use of Hubbard-Stratonovich transforma-
tion are proposed in studies of finite nuclei [13,14], the present
wave function has an advantage in the practical numerical cal-
culation of the physical quantities at the thermodynamic limit
because of its natural extension of the BCS wave function.

The variational equations are obtained as

vq,1,±1 = uq�
e-h
q + wq�

∗
q

e-h

�q + (εe,q + εh,−q)
, vq,1,0 = uq�

e-h
q − wq�

∗
q

e-h

�q + (εe,q + εh,−q)
, vq,0,0 = uq�

e-h
q + wq�

∗
q

e-h

�q + (εe,q + εh,−q)
. (8a)

xq,e = uq�
e-e
q

�q + (εe,q + εe,−q)
, xq,h = uq�

h-h
q

�q + (εh,q + εh,−q)
, (8b)

wq = vq,1,+1�
e-h
q + vq,1,−1�

e-h
q + vq,0,0�

e-h
q − vq,1,0�

e-h
q

�q + 2(ε0,q + ε0,−q)
, (8c)

where we introduced

�q = 1

2uq

[
x∗

q,e�
e-e
q + xq,e�

∗
q

e-e + x∗
q,h�

h-h
q + xq,h�

∗
q

h-h +
∑
S,Sz

v∗
q,S,Sz

�e-h
q +

∑
S,Sz

vq,S,Sz�
∗
q

e-h

]
. (9)

The BCS-type energy gaps can be expressed in terms of the variational parameters as

�e-e
q = −

∑
q′

Ue-e(q − q′)u∗
q′xq′,e, (10a)

�h-h
q = −

∑
q′

Uh-h(q − q′)u∗
q′xq′,h, (10b)

�e-h
q = −

∑
q′

∑
S,Sz

Ue-h(q − q′)
[

u∗
q′vq′,S,Sz + δS,1δSz,+1v

∗
q′,S,−Sz

wq′ + δS,1δSz,−1v
∗
q′,S,−Sz

wq′ − 1

2
δS,1δSz,0

(
v∗

q′,S,−Sz
wq′+ v∗

q′,S,−Sz
w−q′

)

+ 1

2
δS,0δSz,0

(
v∗

q′,S,−Sz
wq′ + v∗

q′,S,−Sz
w−q′

)]
. (10c)

The detailed derivations of the variational equations are fur-
ther shown in Appendix A. In addition, we note that the
well-known BCS results can be obtained by taking wq = 0
[15].

To obtain the ground-state energy E = 〈�|H + μene +
μhnh|�〉, where

ne =
∑
p,sz

e†
p,sz

ep,sz , (11a)

nh =
∑
p,sz

h†
p,sz

hp,sz (11b)

are the carrier density operators of electrons and holes, re-
spectively, we need to calculate the expectation values of ne

and nh. These quantities (i.e., ρe,h = 〈�|ne,h|�〉) are given
by

ρe =
∑

q

(|vq|2 + 2|xq,e|2 + 2|wq|2), (12a)

ρh =
∑

q

(|vq|2 + 2|xq,h|2 + 2|wq|2). (12b)

In the numerical calculations, we solve Eqs. (10a), (10b),
(10c), (9), (8a), (8b), and (8c) with respect to �e-e

q , �h-h
q , �e-h

q ,
�q, vq, xq, and wq self-consistently. Then uq is determined
by the normalization condition in Eq. (7). Substituting these
variational parameters to Eqs. (A1), (12a), and (12b), we
can numerically evaluate the ground-state energy E = 〈H〉 +
μeρe + μhρh and the fermion number density ρ = ρe + ρh.
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FIG. 1. Total fermion number density ρ as a function of chemical
potential μ. The four-body energy BXX corresponds to the point
where the total density becomes finite. Here, the four-body energy
per fermion BXX/4 is taken as 125 meV.

Practically, in this paper, we consider only the short-
range attractive electron-hole interaction described by the
contact-type coupling as Ue-h(q − q′) = −UC [29]. A similar
contact-type coupling has also been employed for the study of
monolayer MoSe2 [54]. Also, we consider the equal effective
masses as Me = Mh ≡ M. Although it is rather simplified
compared with the realistic cases, such a model is sufficient
for our purpose since we are interested in qualitative features
of BCS-like pair and quartet correlations in an electron-hole
system. Indeed, the long-range Coulomb attraction is nec-
essary to be considered for the description of the droplet
state [18–21]. Nevertheless, our approach is useful for un-
derstanding the Cooper pair and quartet correlations on the
ground-state energy.

III. RESULTS AND DISCUSSION

To figure out the differences between the results with and
without the biexciton-like Cooper quartet correlations, we
take the electron Me and hole mass Mh to be the same as 0.511
MeV, the four-body (biexciton) energy BXX as 500 meV to
characterize the electron-hole interaction strength UC, and the
momentum cutoff � = 100kF, where kF = (3π2ρ/2)1/3 is the
Fermi momentum. It should be noted that BXX = 500 meV is
close to the value 434 meV employed in Ref. [40].

A. Ground-state properties of biexciton-like quartet
condensates in an electron-hole system

In the low-density limit, the ground-state energy density E
is proportional to the cluster energy as [55]

Eρ→0 = − 1
4 BXXρ. (13)

Since the fermion chemical potential μe = μh ≡ μ for the
balanced system (ρe = ρh and Me = Mh) is given by μ =
( ∂E

∂ρ
) based on the thermodynamic relation, one can ob-

tain −BXX = 4μ (ρ → 0). Figure 1 shows the total fermion
number density ρ as a function of μ for the electron-hole
interaction strength UC that corresponds to BXX = 500 meV.

Note that BXX is associated with UC through Eqs. (8a) and
(8c) and electron-hole pairing gap given by Eq. (10c), so
that the value of BXX varies if UC changes and vice versa.
In this figure, it is clearly seen that ρ starts to be finite at
μ = −BXX/4 = −125 meV.

For the two-body sector, because the two-body (exciton)
energy BX cannot be determined from E , we evaluate BX by
solving the two-body problem with the same UC. The relation
between UC and BX is summarized in Appendix B. We nu-
merically confirmed that BXX is larger than 2BX in the region
where we explored in the present model. While it is difficult
to prove this relation of BXX and BX for arbitrary coupling
strength, our trial wave function can describe both pair and
quartet states in the common variational parameter space.
Therefore, based on the variational principle, it indicates that
the biexciton state is stable against the breakup to two exciton
states in the dilute limit. It is known that, for the contact-type
interaction, the cutoff dependence will appear in the numer-
ical calculations, and a density-dependent cutoff is adopted
here. However, we calculate BX according to Appendix B in
the low-density limit (ρ ∼ 10−6 nm−3) and obtain that BX 	
225 meV. Consequently, we regard that the two-body energy
BX = 225 meV in vacuum. It is close to the value of exciton
energy, 193 meV, adopted in Ref. [40]. Note that, if we mea-
sure the biexciton binding energy EXX from the threshold for
two exciton states given by 2EX = −2BX, we obtain EXX =
−BXX − 2EX = −50 meV, which is also close to −43 meV
in Ref. [40]. In addition, although the calculations performed
in this paper are basically for the three-dimensional system,
the present theoretical framework can be further applied to
the two-dimensional ones by taking D = 2 in the momen-
tum summation,

∑
q → ∫ dDq

(2π )D . For instance, our framework
is closely related to the model for CdSe nanoplatelets in
Ref. [40] with a different dimension. Another relevant study
[56] was performed in the two-dimensional van der Waals
materials with a long-range (momentum-dependent) interac-
tion, where the coupled MoSe2-WSe2 monolayers were taken
as the objects of research. Nevertheless, the biexciton-like
quartet correlation was not considered in those works. There-
fore, the present theoretical framework can be applied to more
realistic systems.

Figure 2 shows the ground-state energy density E = 〈H〉 +
μρ as a function of ρ. To see the role of quartet correla-
tions, the energy density E without biexciton correlation is
also plotted. Because the bound-state formation reduces the
total energy, the equation of state becomes softer (i.e., the
ground-state energy becomes smaller) than the result without
biexciton correlations. As shown in Eq. (13), E decreases with
increasing ρ in the low-density regime, indicating that the sys-
tem obtains the energy gain associated with the bound-state
formations (i.e., excitons and biexcitons). In turn, the absolute
value of the quartet correction, indicated by the difference
between the results with and without biexciton correlation,
becomes larger with increasing ρ. This result indicates that
the Cooper instability associated with the Fermi surface and
the attractive electron-hole interaction assists the formation
of Cooper quartets in the high-density regime. In this sense,
the in-medium biexciton correlations in such a dense system
are not the usual four-body bound states in vacuum but the
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FIG. 2. Energy densities E as a function of total density energy
ρ with (blue solid line) and without (black dashed line) biexciton
correlation. The four-body energy BXX is taken as 500 meV.

BCS-like many-body states of biexciton-like Cooper quartets,
which are also different from polyexcitons.

In the quartet BCS framework, the low-energy excitation
is dominated by the quartet correlations. In the high-density
regime, such a low-energy sector relatively increases with
the increase of the Fermi energy. However, the quartet cor-
relations themselves are negligible compared with the Fermi
energy in such a regime. Although we do not explicitly show
it here, the increase of E in the high-density regime can be
understood from the behavior of the energy density EFG in an
ideal Fermi gas:

EFG = 2

5π2M

(
3π2ρ

2

)5/3

, (14)

which is a monotonically increasing function with respect to
ρ. We note that a triexciton, which is a six-body bound state
consisting of three electrons and three holes, is not consid-
ered in this paper because the Pauli-blocking effect tends to
suppress such bound states involving more than two fermions
with the same spins for the s-wave short-range interactions.

While the disappearance of quartet correlations with in-
creasing density was reported in nuclear matter [7,9], it is
deeply related to the form of the two-body interaction, such as
the effective range corrections and the higher-partial waves, as
well as the three- and four-body interactions. Since we employ
the contact-type two-body coupling with a large momentum
cutoff � = 100kF, pair and quartet correlations are not sup-
pressed in the high-density regime explored in this paper. This
result is also associated with the fact that the high-density
regime in our model with a contact coupling does not corre-
spond to the usual weak-coupling case as in conventional BCS
superconductors but rather the unitary (or crossover) regime
from the viewpoint of the BCS-BEC crossover because UC

involves the two-body bound state (i.e., positive scattering
length) in the free space [57]. On the other hand, at finite
temperature, the phase transition from Cooper quartet conden-
sates to an electron-hole plasma may occur even in the present
model. More detailed investigations with realistic interactions
in the high-density regime and the semiconductor-metal tran-

sition are out of scope of this paper and will be addressed
elsewhere.

Moreover, we do not find a minimum of E/ρ (i.e., the en-
ergy per one fermion) with respect to ρ, implying the absence
of the droplet phase due to the artifact of the contact-type
interactions in the present model. To overcome this, we need
to consider the finite-range attractive interaction giving a finite
Hartree-Fock contribution, which is approximately propor-
tional to −ρ2 [58]. Nevertheless, the present results showing
how the quartet correlations affect the energy density could be
useful for future detailed investigations of droplet phase with
more realistic interactions.

B. Energy dispersion and excitation gap

In this subsection, we discuss how the quartet correlations
affect the excitation energy of the system. First, in the absence
of quartet correlations (wq = 0), one can obtain

�q = Eq − εq, (15)

where

Eq =
√

ε2
q + �2

q (16)

is the usual BCS dispersion with �2
q = ∑

S,Sz
|�e-h

q |2. One
can obtain the excitation gap Egap = infq[2Eq] ≡ 2|�q=qmin |,
where qmin is the momentum on the bottom of Eq. Note that
|qmin| = √

2Mμ in the present case with the contact coupling.
In the presence of quartet correlations (i.e., ωq �= 0), one can
obtain

�q = Eω
q − εq, (17)

where

Eω
q =

√√√√E2
q + 4

∣∣�e-h
q

∣∣4

(�q + 2εq)(�q + 4εq) − 4
∣∣�e-h

q

∣∣2 . (18)

In analogy with the usual BCS dispersion in Eq. (16), Eω
q

can be regarded as the quartet BCS dispersion [15]. Solving
Eq. (18) combined with Eq. (17), one can evaluate the excita-
tion gap Egap = infq[2Eω

q ] in the quartet BCS framework.
The energy dispersions with and without the biexciton cor-

relations (i.e., Eω
q and Eq) as a function of relative momentum

q = |q| are shown in Fig. 3, where we take BXX = 500 meV.
Because we are interested in the quartet BCS regime where
μ becomes positive and the Fermi surface effect is important,
the high-density case with ρ = 0.5 nm−3 is examined here. As
shown in Fig. 1, μ reaches 100 meV at ρ = 0.5 nm−3. With
the consideration of biexciton correlations, the excitation gap
Egap, namely, the minimum of the energy dispersion, becomes
larger by ∼5.5%, and the relative momentum which gives
the minimum of energy dispersion also becomes larger by
∼55.6%. While the quartet corrections are significant in the
low-momentum regime, Eω

q becomes closer to Eq in the high-
momentum regime. Thus, one can see that Eω

q increases at
low q compared with Eq because of the quartet corrections as
found in Eq. (18). This result indicates that excitons consisting
of lower relative momenta tend to form the biexciton-like
Cooper quartets, and such quartets are energetically broken
into two exciton-like Cooper pairs for larger q.
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FIG. 3. Energy dispersion Eω
q for a given density ρ = 0.5 nm−3

with (blue solid line) and without (black dashed line) biexciton-like
quartet correlations as a function of relative momentum q.

Finally, in Fig. 4, we plot Egap with quartet correlations
estimated from the minimum of Eω

q shown in Fig. 3. For
comparison, we also show the result of the excitation gap
without quartet correlations. In general, Egap with quartet
correlations becomes larger than the case without them. This
behavior is natural since a larger energy is needed to ex-
cite a single carrier accompanying the breakup of quartets
compared with the case with only two-body pairings. Also,
one can find that the difference between the cases with and
without quartet correlations becomes smaller with increasing
ρ. At first glance, this tendency seems to be opposite to
the quartet correlations on the ground-state energy E shown
in Fig. 3, but these results are found to be consistent by
considering how these quantities are associated with quartet
correlations in a relative-momentum-resolved way. While the
lower relative-momentum sector plays a significant role for
the quartet corrections on E involving the q summation, Egap

reflects the quartet correlations at q = qmin, which is relatively
large compared with the low relative momenta dominated by

FIG. 4. Excitation gap Egap with (blue solid line) and without
(black dashed line) biexciton-like quartet correlations as a function
of total density ρ.

the quartet formation. Indeed, the difference between Eω
q and

Eq near q = qmin is smaller than that at q 	 0. In this regard,
spectroscopic measurements for in-medium biexciton energy,
which are not momentum-resolved, would give a similar ten-
dency of ρ dependence as shown in Fig. 4.

IV. SUMMARY AND PERSPECTIVES

In this paper, we investigated the microscopic properties of
biexciton-like quartet condensates in an electron-hole system
within the quartet BCS theory at the thermodynamic limit.
The variational approach is applied to the three-dimensional
electron-hole system, which is described as four-component
fermions with short-range attractive interactions (correspond-
ing to the Coulomb electron-hole attraction). Numerically
solving the variational equations, we have obtained the
ground-state energy density as a function of the fermion num-
ber density.

On the one hand, the ground-state energy density decreases
with increasing number density in the dilute region because of
the energy gains associated with the biexciton formations. On
the other hand, such a tendency for the ground-state energy
density turns into the increase in the high-density regime due
to the Fermi degenerate pressure. To see the role of quartet
correlations, we compared the results with and without quartet
correlations and pointed out that the quartet condensation
leads to the lower ground-state energy. Moreover, we showed
the density dependence of the excitation gap, which is defined
as the minimal dispersion in analogy with the usual BCS
theory. While the quartet correlations induce a larger exci-
tation gap in the whole density regime, the difference from
the result with only pairing correlations can be smaller in the
high-density regime because the dispersion minimum itself
does not involve the quartet correlations associated with lower
momenta.

In this paper, we have employed a simplified model to
explore qualitative features of the condensation energy of the
biexciton-like quartet state. For further quantitative investi-
gations of the electron-hole droplet phase, it is needed to
apply more realistic models with long-range interactions (e.g.,
Coulomb interactions and their screening) and multibody
forces. For semiconductor systems such as layered transition
metal dichalcogenides, the two-dimensional model is relevant.
While the quadratic dispersion is adopted in this paper, the
band structure of each material should be considered. Nev-
ertheless, these extensions can be easily done in our quartet
BCS theory at the thermodynamic limit. It can be achieved
by replacing the three-dimensional momentum summation
with a two-dimensional one and fermionic dispersion εi,p with
realistic bands, respectively.

Also, quantum fluctuations associated with excited two-
and four-body states can be important. The energy density
functional involving these corrections would be useful for
further developments not only in condensed matter but also
nuclear and cold atomic physics. Moreover, since actual
electron-hole systems are realized as a nonequilibrium steady
state, the interactions with environments as an open quantum
system would also be an interesting topic. These are left for
future works.
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APPENDIX A: THE DERIVATION OF THE VARIATIONAL
EQUATIONS

In this Appendix, we derive the variational equation for
biexciton-like quartet condensates.

The expectation value of the Hamiltonian is evaluated as

〈�|H |�〉 = 〈�|H0|�〉 + 〈�|Ve-e|�〉 + 〈�|Vh-h|�〉 + 〈�|Ve-h|�〉
=

∑
q

[(|vq,1,+1|2 + |vq,1,−1|2 + |vq,1,0|2 + |vq,0,0|2)(εe,q + εh,−q)

+ |xq,e|2(εe,q + εe,−q) + |xq,h|2(εh,q + εh,−q) + 2|wq|2(ε0,q + ε0,−q)]

+
∑
q,q′

Ue-e(q − q′)(x∗
q,euq) · (u∗

q′xq′,e) +
∑
q,q′

Uh-h(q − q′)(x∗
q,huq) · (u∗

q′xq′,h)

+
∑
q,q′

∑
S,Sz

Ue-h(q − q′)
[

uqv
∗
q,S,Sz

+ δS,1δSz,+1vq′,S,−Szw
∗
q′ + δS,1δSz,−1vq′,S,−Szw

∗
q′

− 1

2
δS,1δSz,0(vq′,S,−Szw

∗
q′ + v−q′,S,−Szw

∗
q′ ) + 1

2
δS,0δSz,0(vq′,S,−Szw

∗
q′ + v−q′,S,−Szw

∗
q′ )

]

×
[

u∗
q′vq′,S,Sz + δS,1δSz,+1v

∗
q′,S,−Sz

wq′ + δS,1δSz,−1v
∗
q′,S,−Sz

wq′

− 1

2
δS,1δSz,0(v∗

q′,S,−Sz
wq′ + v∗

q′,S,−Sz
w−q′ ) + 1

2
δS,0δSz,0(v∗

q′,S,−Sz
wq′ + v∗

q′,S,−Sz
w−q′ )

]
. (A1)

By taking the variations of the expectation value of the Hamiltonian with respect to variational parameters, we obtain

δ〈�|H |�〉 =
∑
S,Sz

vq,S,Szδv
∗
q,S,Sz

(εe,q + εh,−q) +
∑

i

xq,iδx∗
q,i(εi,q + εi,−q) + 2wqδw

∗
q(ε0,q + ε0,−q)

− (uqδx∗
q,e + x∗

q,eδuq)�e-e
q − xq,e�

∗
q

e-e
δuq

− (uqδx∗
q,h + x∗

q,hδuq)�h-h
q − xq,h�

∗
q

h-h
δuq

−
∑
S,Sz

[
uqδv

∗
q,S,Sz

+ v∗
q,S,Sz

δuq + δS,1δSz,+1vq,S,−Szδw
∗
q + δS,1δSz,−1vq,S,−Szδw

∗
q

− 1

2
δS,1δSz,0(vq,S,−Sz + v−q,S,−Sz )δw∗

q + 1

2
δS,0δSz,0(vq,S,−Sz + v−q,S,−Sz )δw∗

q

]
�e-h

q

−
∑
S,Sz

[
vq,S,Szδuq + δS,1δSz,+1wqδv

∗
q,S,−Sz

+ δS,1δSz,−1wqδv
∗
q,S,−Sz

− 1

2
δS,1δSz,0(wq + w−q)δv∗

q,S,−Sz
+ 1

2
δS,0δSz,0(wq + w−q)δv∗

q,S,−Sz

]
�∗

q
e-h

. (A2)

The condition δ〈�|H |�〉 = 0 leads to the variational equations of vq,S,Sz , xq,e(h), and wq shown in the main text.

APPENDIX B: EXCITON ENERGY

Here, we derive the exciton energy in the present model
with the contact-type electron-hole interaction. The two-body
wave function for a Sz = +1 exciton reads

|ψ2〉 =
∑

q

φqE†
1,+1(0, q)|0〉, (B1)

where |0〉 is the vacuum state. The variational equation with
respect to φ∗

q given by ∂
∂φ∗

q
〈ψ2|H0

e + H0
h + Ve-h + BX|ψ2〉 = 0

leads to

φq(εe,q + εh,−q + BX) = UC

∑
p

φp. (B2)
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Eliminating φq from Eq. (B2), one can obtain

1 = UC

∑
p

1

q2/(2Mr ) + BX
, (B3)

where we have introduced the reduced mass M−1
r = M−1

e +
M−1

h and taken μe = μh = 0. Performing the momentum in-

tegration in Eq. (B3), we obtain

π2

UCMr
= � +

√
2MrBX tan−1

(
�√

2MrBX

)
, (B4)

where � is the momentum cutoff. In the limit of � �√
2MrBX, we obtain the exciton energy as

BX = 1

2Mr

(
2�

π
− 2π

MrUC

)2

. (B5)
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