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Bose-Hubbard realization of fracton defects
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Bose-Hubbard models are simple paradigmatic lattice models used to study dynamics and phases of quantum
bosonic matter. We combine the extended Bose-Hubbard model in the hard-core regime with ring-exchange
hoppings. By investigating the symmetries and low-energy properties of the Hamiltonian we argue that the model
hosts fractonic defect excitations. We back up our claims with exact numerical simulations of defect dynamics
exhibiting mobility constraints. Moreover, we confirm the robustness of our results against fracton symmetry
breaking perturbations. Finally, we argue that this model can be experimentally realized in recently proposed
quantum simulator platforms with big time crystals, thus paving a way for the controlled study of many-body
dynamics with mobility constraints.
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I. INTRODUCTION

Interacting many-body systems exhibit a variety of col-
lective phenomena and different phases of matter. They are
usually accompanied by emergent quasiparticles, whose prop-
erties differ from the elementary excitations. One example
of such a behavior is given by fractons—emergent quasi-
particles that lack the ability to move, either completely or
partially. Models with such excitations fall into two distinct
categories: gapless and gapped. Gapless excitations appear in
higher-rank gauge theories that emerge in the description of
spin-liquids [1–5], dipole-conserving lattice models [6–11],
elasticity [12–21], and hydrodynamics [22–24]. In the gapless
theories fractons can be understood as charges that act as
sources to the gauge fields and can be interpreted as topo-
logical defects. Gapped systems hosting fractons have been
identified as certain exactly solvable models [25–30] and
Chern-Simons gauge theories [31–34]. They display topo-
logical ground-state degeneracy accompanied by a unique
entanglement structure. Unfortunately all these models are
rather complicated, which obstructs either their experimental
realizations or even a detailed numerical study. In order to
remedy this we construct a Bose-Hubbard type Hamiltonian
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in two dimensions with nearest-neighbor interactions that is
feasible to the numerical analysis and has a potential of being
engineered and experimentally studied in recent state-of-the-
art quantum simulator platforms with big time crystals [35]
(for reviews see Ref. [36–38]).

The immobility of fracton excitations can be encapsulated
in a generalized set of global conservation laws, that pre-
serve various multipole moments of the charge density in
addition to the total charge of the system. These conservation
laws arise as a consequence of subsystem symmetry of the
Hamiltonian. The question that we want to address is how
to realize extended symmetries in a realistic Bose system
with two-body interactions between the bosonic constituents
taken into account? The standard Bose-Hubbard Hamiltonian
is invariant under a global U (1) symmetry. This means that
a constant shift of the phase leave the theory invariant. As
shown in Ref. [39] a natural generalization of this symmetry
to account for higher moment conservation is to employ the
so-called space-dependent polynomial shifts [3,4]. The shift
symmetries are broken by the usual hopping terms, which
is natural since the symmetries encode the restricted mobil-
ity of excitations. Hence, the inclusion of constraints on the
movement of particles in the model requires hopping terms
that are engineered to account for fracton mobility constraints.
One example of such terms is the ring-exchange term, which
has been extensively studied in a context of exciton Bose
liquids [40–43] and more recently in the context of frac-
tons [31,44]. However, due to the failure of the mean-field
treatment, the ring-exchange models are rather difficult to
handle numerically, especially in the frustrated regime where
quantum Monte Carlo algorithms cannot be applied [45,46].

On the other hand, in this paper we consider an extended
Bose-Hubbard Hamiltonian at half filling with ring-exchange
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interactions but on 1 × 2 and 2 × 1 plaquettes in a strongly re-
pulsive limit, where the low-energy physics can be efficiently
studied due to energetic constraints. This model provides a
complementary realization of gapped fractons. Furthermore,
as we argue below, the defect dynamics in this model resem-
bles the constrained motion of defects seen for example in
elasticity [47]. While the ground state of the system realizes
a checkerboard charge density wave (CDW), by means of
analytical and numerical analysis we find that the first ex-
cited band consists of fracton excitations (lineons) with the
restricted mobility to one-dimensional columns (or rows) of
the two-dimensional lattice. At the same time, we show that
the second excited band hosts both completely immobile exci-
tations and two joint excitations, which can move freely on the
entire lattice. In the later parts we investigate the robustness of
our findings and concentrate on the experimental realization
of the model.

II. THE MODEL

Bose-Hubbard models are simple but powerful models
to investigate quantum phases and many-body dynamics of
collective excitations [48–50]. Therefore Bose-Hubbard in-
carnation of fracton quasiparticles is desirable to understand
the dynamics of these excitations. In order to achieve this
let us consider a tight binding hard-core boson Hamiltonian
with repulsive interactions on a two-dimensional (2D) square
lattice with periodic boundary conditions,

Ĥ = −t1
∑
〈i j〉

b̂†
i b̂ j + V

2

∑
〈i j〉

n̂in̂ j − t2
∑
[i jkl]

b̂†
i b̂†

j b̂k b̂l , (1)

with b̂i (b̂†
i ) denoting the standard annihilation (creation) op-

erator of a bosonic particle localized on the ith site of the
lattice, n̂i = b̂†

i b̂i is the particle number operator. The first two
terms of the Hamiltonian (1) describe a familiar hard-core
boson extended Bose-Hubbard model [50] with t1 and V being
the tunneling amplitude and the nearest-neighbor interaction
strength respectively. The symbol 〈i j〉 indicate the sum over
nearest neighbors on the lattice. The last term contains si-
multaneous tunneling processes of two particles, dubbed the
ring-exchange interaction [40,51–53], with a hopping ampli-
tude t2. The ring-exchange interaction we are considering is
a combination of two second neighbor hoppings along 1 × 2
and 2 × 1 plaquettes, which preserves the center of mass of
two particles and the number of particles in bipartite sublat-
tices (cf. Fig. 1 for an illustration). The symbol [i jkl] denotes
the summation over all possible plaquettes. Throughout this
article we will be considering strongly repulsive limit, i.e.,
V � t1, t2, where the ground state realizes the checkerboard
charge density wave (CDW) order. A checkerboard CDW is a
single Fock state where all of the particles occupy one of the
two bipartite sublattices. While in the next section we focus
on the symmetries and conservation laws of this model, which
are necessary for the appearance of fractons, let us stress that
the underlying CDW order stabilizes the fracton excitations
we find in the lowest lying excited energy bands.

FIG. 1. An illustration of all possible hopping and interaction
processes in the model on a square 2D lattice: standard nearest-
neighbor hopping t1, ring-exchange terms t2 and the nearest-neighbor
interaction V . The ring-exchange interaction we are considering
consists of a simultaneous tunneling of two particles to the second
neighbors along 1 × 2 and 2 × 1 plaquettes. Site labels A and B
denote two bipartite sublattices of a square lattice. Throughout the
article we are considering strongly repulsive regime at half filling
where, in the ground state, all the particles fill completely only one
sublattice realizing the checkerboard charge density wave (CDW)
order. The focus of our analysis is put on the lowest lying excited
energy bands consisting of fracton excitations.

III. SYMMETRIES OF THE MODEL

In this section we show that the extended Bose-Hubbard
Hamiltonian with the ring-exchange term (1) possess cer-
tain symmetries, which enable the model to host fracton
excitations. Our analysis will be phrased in the language of
multipole algebras constructed in Ref. [7] (see also Ref. [54]).
The basic ingredient of this construction is the dipole moment
conservation, which follows from the so-called polynomial
shift symmetries. These shift symmetries act on a scalar field
ϕ that in our case corresponds to the phase associated with
creation and annihilation operators. Before we proceed let us
recall basic facts about this construction. We consider a low-
energy dynamics of the phase field given by the action S[ϕ].
We assume that the action is invariant under the following
transformation:

δϕ = λαPα (�x), (2)

where λα is a symmetry parameter and Pα (�x) is a polynomial.
It is enough for our purposes to consider only homogenous
polynomials. Furthermore we assume that our theory is invari-
ant under global shifts with a corresponding charge density
ρ(�x). It follows from the Noether theorem that charges

Q(α) =
∫

d2x Pα (�x)ρ(�x) (3)

are conserved. Since the polynomials Pα (�x) are homogenous
the symmetry leads to a conservation of proper multipole
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moments. The main ingredient of this abstract construction
is the conservation of the monopole and dipole charges.

dQ

dt
= d

dt

∫
d2x ρ = 0, (4a)

dQi

dt
= d

dt

∫
d2x xiρ = 0, (4b)

where xi ∈ {x, y}. In addition, if we assume that the system is
translationally invariant, the momentum is also conserved

dPi

dt
= d

dt

∫
d2x pi = 0. (5)

In order to see the monopole and dipole conservation on a
lattice, we first point out that a 2D theory has to be invariant
under the following symmetry transformation:

δϕ = λ0 + λ1x + λ2y, (6)

with λα=1,2 being symmetry parameters as in Eq. (2). There-
fore, we need to check if the Bose-Hubbard model respects
these symmetries. The interaction terms depend on the den-
sities and the symmetry transformation in Eq. (6) follows
immediately. We therefore only need to check the symmetry
transformations of the hopping term. Of course the usual hop-
ping implies full mobility and as such breaks the polynomial
shift symmetry. However, the ring-exchange term preserves it.
This can be seen explicitly by making a phase shift of the form

ϕ → ϕ + ζ (x) + χ (y), (7)

which is a specific local U(1) phase transformation, that
changes along rows or columns [7,42], more general than
the polynomial shift symmetry of Eq. (6). The nonlocal
ring-exchange term is invariant under the above phase trans-
formation, which can be shown explicitly

b̂†
i b̂†

j b̂k b̂l → b̂†
i b̂†

j b̂k b̂l · e−iζ (x1 )−iχ (y1 )e−iζ (x2 )−iχ (y2 )

× eiζ (x2 )+iχ (y1 )eiζ (x1 )+iχ (y2 ) = b̂†
i b̂†

j b̂k b̂l , (8)

where we have used the fact that the ring-exchange interac-
tions preserve the center of mass of the tunneling pair, cf.
Fig. 1. Note that our symmetry transformation in Eq. (7)
implies a conservation of additional moments. Similar phe-
nomenon occurs in other models as well. For example, the
traceless scalar theory [4], in addition to the conserved charges
Q, Qi, also conserves the moment Q(2) = ∫

d2x||x||2ρ and
elasticity conserves one component of the quadrupole mo-
ment [12]. The dipole moment conservation implies that an
isolated charge cannot move. However, if additional moments
are preserved it may put additional constraints on the move-
ment of excitations. Conservation of the quadrupole moment
implies that a dipole can only move in the direction perpendic-
ular to its vector charge. In two dimensions such a movement
is along a line and thus the quasiparticles giving rise to the
dipole charge are called lineons.

In fact, the extended Bose-Hubbard model with any num-
ber of ring-exchange interaction terms regardless of their
plaquette sizes n1 × n2 conserves a component of every nth
higher-moment of a given Cartesian coordinate

dQ(n)
i...i

dt
= d

dt

∫
d2x(xi )

n ρ(�x) = 0, (9)

FIG. 2. Schematic view of the CDW dislocation movement due
to ring-exchange interactions. White circles show particles missing
from the checkerboard pattern and red circles show particles present
in a sublattice, which is empty in the ground state. A red cross
indicates a prohibited hopping. When the system is in the ground
state (GS) there are no dislocations and no hopping can take place.
For nonlocal dislocations, hopping is still not possible, and hence the
motion of such excitations is zero-dimensional (0D). For a single
local dislocation one has one-dimensional (1D) motion and for a
double local dislocation one has two-dimensional (2D) motion.

where n ∈ N0. One can actually choose for ζ (x) and χ (y)
a family of functions, which form a basis for any integrable
functions of x or y over their respective domains. Complete-
ness of the basis states allows one to restate this fact as
conservation of marginal distributions of charge:

f1(x) =
∫

dyρ(�x), (10a)

f2(y) =
∫

dxρ(�x), (10b)

where functions f1 and f2 are conserved under ring-exchange
interactions. It turns out the properties of fracton excitations
can be easily understood by looking at the marginal distribu-
tions only, which we will elaborate on in the next section.

So far we have not used the fact the ring-exchange in-
teractions in our model take place along rectangular 1 × 2
and 2 × 1 plaquettes. Such a plaquette choice is motivated
by the presence of an additional symmetry, which implies
the conservation of the number of particles in each bipartite
sublattice

[NA, H] = [NB, H] = 0. (11)

Therefore, as long as the nearest-neighbor interaction strength
V is a dominant energy scale, the energy spectrum is divided
into isolated bands composed of Fock states with the same
interaction energy. While the ground state is a simple CDW
state, its first two excited bands consists of states with inter-
action energy 3V and 4V that differ from the CDW state by a
single or double dislocations (cf. Sec. IV and Fig. 2). Let us
also stress that although any system with the ring-exchange
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and the density-density interactions obeys subsystem sym-
metries leading to the multipole moments conservation, not
all of such processes will lead to the mobility restrictions
of localized excitations. In our case, due to the conservation
of the number of particles in each bipartite sublattice, the
ring-exchange term connects configurations with the same
nearest-neighbor interaction energy. As such, it constitutes
a minimal Bose-Hubbard model with the ring-exchange in-
teractions hosting single fractonic excitations. Due to the
conservation laws discussed in this section, which are exact
for t1 = 0 and approximate for t1 �= 0, the Hilbert space of
dislocations is fragmented into disjoint sectors. As we show
in the next section the latter enforces the mobility restrictions
of the excitations. We note that this fragmentation is distinct
from the dynamical Hilbert space shattering [10,55–57] where
fragmentation happens for fixed symmetry sectors due to dy-
namical constraints, which are responsible, among others, for
the subdiffusion in the tilted Fermi-Hubbard models [58,59].

IV. FRACTON EXCITATIONS

Before we turn to the description of fracton excitations and
their dynamics we start this section by looking at lowest en-
ergy excitations of the model in a strongly interacting regime
V � t1, t2 we consider in this paper. These lowest energy
excitations can be constructed by looking at single particle
dislocations in the CDW ground state. A single dislocation
state is created when one creates a particle on an empty site in
the CDW state and also annihilates a particle on the occupied
sublattice to preserve half filling. The space of lowest energy
excitations consists of single local particle dislocations

(
Dx

i j

)†|CDW〉 = (
b̂†

i+1, j b̂i, j + b̂†
i, j b̂i+1, j

)|CDW〉, (12a)
(
Dy

i j

)†|CDW〉 = (
b̂†

i, j+1b̂i, j + b̂†
i, j b̂i, j+1

)|CDW〉, (12b)

whose interaction energy is 3V . Note that the above definition
is indifferent to the choice of a filled sublattice in the charge
density wave. If the dislocation is not local, i.e., the two sites
that deviate from the CDW state are not nearest neighbors,
then such a state belongs to the second excited energy band
with an eigenenergy of 4V . The second excited energy band is
completed with states that compose of two neighboring local
dislocations

∣∣D(2)
i j

〉 = (
Dx

i j

)†(
Dx

i, j+1

)†|CDW〉
= (

Dy
i j

)†(
Dy

i+1, j

)†|CDW〉. (13)

Other states, such as nonneighboring double dislocations, be-
long to higher energy bands and are beyond the scope of
interest of this article. In the next parts we argue the single
dislocation states correspond to either completely immobile
zero-dimensional fractons or partially mobile lineons (one-
dimensional fractons), whereas the two dislocation state |D(2)

i j 〉
can be interpreted as two bound lineon states, which is al-
lowed to move in both directions, see Fig. 2 for an illustration.
First, we support our arguments by constructing approximate
eigenstates of the model in the t1 	 t2 limit and then we
numerically study the robustness of fracton excitations using
exact time propagation.

A. Fracton eigenstates

Let us first look at the eigenstates of the Hamiltonian
when normal hopping is set to zero, i.e., t1 = 0. First of all,
since the ring-exchange interaction is a combination of two
simultaneous local particle hoppings, the nonlocal dislocation
state is a completely immobile eigenstate of the model with
the eigenenergy equal to the interaction energy 4V and corre-
sponds to two isolated fractons, with one being a particle, and
the other one a hole (cf. Fig. 2). The first mobile excitation
one can have is a fracton dipole, which can be constructed
from single local dislocation states [cf. Eqs. (12a) and (12b)].
The fracton dipoles can only move orthogonally to the dipole
moment [4,5,53]. In two dimensions that means the state is
only allowed to move along a line and thus these states are
also called lineons (cf. Fig. 2). The momentum state of frac-
ton dipole with momentum orthogonal to the dipole moment
pointing in the y direction reads [60]

|kx, m〉 = 1√
L

∑
n

e2iankx
(
Dy

2n,m

)†|CDW〉, (14)

where L = Lx = Ly is the linear lattice size, a is the lattice
constant. The state |kx, m〉 is an eigenstate of the Hamiltonian,
which we can check explicitly, i.e.,

1

2

∑
〈kl〉

n̂k n̂l |kx, m〉 = 3 |kx, m〉, (15)

∑
[klmn]

b̂†
kb̂†

l b̂mb̂n|kx, m〉 = 2 cos(2kxa)|kx, m〉. (16)

It is easy to find out that the same results will be given by an
analogous momentum state |ky, n〉 for dipoles pointing in the
x direction. We thus conclude that the energy dispersion of the
first excited band is 2L-fold degenerate and given by

E (1)(ki, j) = 3V − 2t2 cos(2kia). (17)

This restricted mobility of lineons can be also understood
from the marginal distributions. The charge density state has
constant (featureless) marginal distributions f1(x) and f2(y),
Eqs. (10a) and (10b). The x dipole is generated from CDW by
moving particle in direction x, which leaves a hole and creates
a peak in f1(x) distribution and leaves f2(y) featureless. This
means that there can be no movement in direction x due to
ring-exchange interaction.

In a similar way we can construct the second kind of
mobile excitations in the lowest energy sector as a momentum
state in a two bound dislocations subspace [cf. Eq (13)],

|kx, ky〉 = 1

L

∑
m,n

ei(kxm+kyn)a
∣∣D(2)

i j

〉
, (18)

which is an approximate eigenstate of the model with the
eigenenergy

E (2)(kx, ky) ≈ 4V − 2t2[cos(kxa) + cos(kya)]. (19)

The full mobility of this state can be explained by the fact that
its marginal distributions are featureless and look the same as
for ground state. The latter is understandable since, due to the
indistinguishability of bosons, a state |D(2)

i j 〉 can be viewed as
two x or two y dipoles [cf. Eq (13)].
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FIG. 3. Exact time propagation of elementary dislocations. While panels [(a)–(c)] show a propagation of a single local dislocation, panels
[(d)–(f)] illustrate a motion of a bound double dislocation. Each row is associated with time point τ = 0, τ = 3.5/t2, and τ = 7/t2. The panels
confirm the analytical arguments of the main text that a single local dislocation can propagate only in one dimension but two bound dislocation
state propagates freely in two dimension. The movement of the later is twice slower compared to a single dislocation state. The lattice size is
48 x 48 sites, each site is represented by a single pixel. Positive probability (blue) shows particle density in empty lattice, as compared to the
CDW ground state. Negative probability (red) is used to show hole density, as compared to the CDW ground state. The color scale is cut at low
values to be consistent along all images in a column. Model parameters are t1 = 0, t2 = 0.01V .

If the two dislocations were far apart, then its interaction
energy would be equal to 6V , twice the energy of a single
lineon. However, two dislocations close to each other form a
bound state with an interaction energy 4V . The momentum
state Eq. (18) is only approximately the eigenstate because in
principle two dislocations can dissociate when either moves
in the opposite direction, but this would require a surplus
energy to break a bound state. Only processes that keep the
bound state together do not change its interaction energy. Each
ring-exchange interaction moves the center of mass of a bound
state by one lattice site, an hence the state propagates with
twice smaller group velocity v = max[∂ki E

(2)].

B. Time evolution of localized dislocations

In this section we first confirm numerically the consid-
erations of the previous section and then investigate the
robustness of our findings by looking at the time propagation
of dislocations with nonzero normal hopping on smaller lat-
tices. The numerical time propagation is feasible when we are
in the strongly interacting regime of parameters and can cut
the Hilbert space using the energy criterion.

The Hilbert space dimension for 20 × 20 lattice is then
about 2 × 106 for repulsive energies ER � 5V , which is
perfectly fine for vector exponentiation using Krylov tech-
niques [61]. We first discuss the ideal case at t1 = 0 where the
symmetries are perfectly satisfied. In Fig. 3, a single and dou-
ble defect is initialized and time-evolution is studied. Panels
(a)–(c) show that a localised local dislocation can propagate
only in a direction orthogonal to its dipole moment. On the
other hand, as shown in panels (d)–(f), two close dislocations

form a bound state, which does not have any mobility restric-
tions.

Now we consider the case of a finite t1. For t1 �= 0, the
defects will eventually dissolve, because the normal hopping
operator allows to transition to states that have a differ-
ent number of defects. However, our considerations concern
states that only locally deviate from the ground state. Al-
though the local dislocations will in principle decay for a
finite V/t1, due the Lieb-Robinson [62] bound the speed of
the information propagation will be always finite (∼2|t1|),
and therefore a state deviating locally from a ground state
will never quantum thermalize for an infinite system. For this
reason, the stability of fractonic excitations for t2 �= 0 is based
on the stability of the charge density. A zero-dimensional (0D)
immobile excitation is an exact eigenstate due the hardcore
boson constraint and therefore it does not thermalize at all.
Of course, the lack of quantum thermalization does not imply
that the 1D fractonic behavior will be always present in all
parameter regimes. To guarantee the latter, the lineon group
velocity (4|t2|) must an order of magnitude greater than the
Lieb-Robinson velocity, i.e., |t1| 	 2|t2|. To show the strength
of this effect, in Fig. 4 we consider the degree to which a sin-
gle defect signature disappears from the marginal distribution
after some time τ = 2/t1. We see that for larger values of
t1, the destabilizing effect of the normal hopping operator t1
starts to become noticeable past lines of t1 ≈ ±0.2t2, which
agrees with our theoretical predictions. Note that Fig. 4 is
symmetric for t1 → −t1, which is because the normal hop-
ping operator plays the same role of creating and annihilating
defects regardless of the sign of t1. There is no such symmetry
for t2 → −t2, because for finite t1 and negative t2 there is

023151-5



GIERGIEL, LIER, SURÓWKA, AND KOSIOR PHYSICAL REVIEW RESEARCH 4, 023151 (2022)

FIG. 4. Stability of the fractonic behavior of a single initial
dislocation as seen in the top-left panel of Fig. 3. The color scale rep-
resents root sum of squared differences of initial and final marginal
distributions. The plotted probability is the value achieved dur-
ing time evolution on 20 × 20 lattice for time τ = 2/t2. V = 1 is
assumed.

frustration, which is not the case for positive t2. Moreover,
in Fig. 5, we show the evolution of single dislocations after a
time τ for some specific cases values of t1 and t2. It is clear
from comparing the ideal case of panel (a) to panel (b) that
for a small value of t1 the mobility restrictions effectively
remain, whereas for large t1 compared to t2, as shown in
(c), the behavior starts to become two-dimensional, but for
a finite evolution time it is still possible to distinguish a one-
dimensional density profile.

Finally, we stress that our approach allows for the study of
more complex phenomena related to the evolution of fractonic
defects, such as few and many fracton interaction dynamics
with and without the presence of disorder. Although a detailed
analysis of interaction phenomena goes beyond the scope of
this paper, in Fig 6 we present some basic results: panels
(a)–(c) show the decays of a two dislocation state into two
orthogonal lineons, panels (d)–(f) show lineon collision and
panels (g)–(i) show a scattering of lineon on an immobile (0D)
fracton.

V. EXPERIMENTAL PROPOSAL

A pleasant feature of the model (1) in a strongly repul-
sive regime at half filling is that its low-energy physics can

be studied analytically (for t1 = 0) and efficiently simulated
numerically (for t1 �= 0), which is due to the energetic cut-
off of the basis states. Nevertheless other parameter regimes
still present a challenge for a numerical analysis. On the
other hand, for a few decades now, quantum simulators
have provided a fertile ground for the study of many-body
physics. Recently it was also realized that condensed matter
phenomena can appear in time crystals. Although most the-
oretical [63–92] and experimental [93–102] papers on time
crystals have focused on the period-doubled discrete time
crystals, the upcoming gravitational bouncer experiment [90]
is expected to demonstrate big time crystals, where dis-
crete time translation symmetry broken states φn(τ ), n =
1, . . . , s evolve with a period sT , up to s = 100 times longer
than the periodicity of the drive T . The symmetry bro-
ken states φn(τ ) = φn+1(τ + T ) are localized wave packets,
which evolve periodically in the laboratory frame of reference
along a classical trajectory of the particle in the gravita-
tional field. As such, they can be interpreted as temporal
analogs of the familiar Wannier states localized on temporally
equidistant points on the closed classical trajectory. Although
the temporal Wannier states φn(τ ) break time translation sym-
metry of the periodic potential, they constitute a convenient
basis to study many-body temporal lattice models. Once the
field operator ψ̂ describing particles in a periodically driven
system is restricted to the states φn(τ ), the effective Floquet
Hamiltonian HF = H (τ ) − i∂τ describing the quasi-energy
structure of the system takes the form of a Bose-Hubbard
Hamiltonian

HF = 1

T

∫ T

0
dτ

∫
dxdy ψ̂†

(
H0(τ ) + g0

2
ψ̂†ψ̂ − i∂τ

)
ψ̂

≈ t1
∑
<i, j>

b̂†
i b j +

∑
i jkl

Ui jkl b̂
†
i b̂†

j b̂k b̂l , (20)

where H0(τ ) = H0(τ + T ) is a single particle’s time T -
periodic Hamiltonian, ψ̂ ≈ ∑

n φ j (τ )b̂ j is a field operator
with bosonic operators b̂ j annihilating a particle occupying
the φ j state. The parameter t1 is the tunneling ampli-
tude between neighboring sites and Ui jkl is the interaction
strength of a two particle scattering process between sites
k, l and i, j. Note that the quasi-energies of a time periodic
problem are unbounded and defined up to a shift by ω =
2π/T . Here we assume that ω is large compared to other
energy scales in a system so that an infinite Floquet matrix

FIG. 5. Exact time propagation for a single dislocation at time τ = 4/t2 for t2 = 1V and (a) t1 = 0, for (b) t1 = 0.2V and for (c) t2 = 0.1V
and t1 = 0.2V . The lattice size is 20 x 20 sites, each site is represented by a single pixel.
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FIG. 6. Exact time evolution of few fractons for t1 = 0. Columns present snapshot of the evolution for times τ = 0, 1, 7. [(a)–(c)] The
evolution of a double defect for t2 = 0.5V . Here the value of t2 is much larger than in panels [(d)–(f)] in Fig 6, and because of this, one-
dimensional defects, which have a larger interaction energy, appear out of the squared shape because of their larger group velocity. [(d)–(f)]
The evolution of two orthogonal separated single defects for t2 = 0.5V . We see that these defects move straight through each other and no
two-dimensional mobility arises, but due to their interaction the time evolution is asymmetric as the propagation is delayed after the collision.
[(g)–(i)] The scattering of a lineon on a zero-dimensional immobile fracton.

can be reduced to a single diagonal block as in the effective
Hamiltonian (20) [103].

The above description can be generalised to all motional
degrees of freedom of a particle, which would result in
multidimensional time crystals [38]. In particular, a particle
moving along closed periodic trajectories in two orthogonal
spatial directions in a gravitational bouncer model is described
by φn,m(x, y, τ ) = ψ (x)

n (x, τ )ψ (y)
m (y, τ ), where ψ (xi )

n (xi, τ ) =
ψ

(xi )
n+1(xi, τ + T ). Another relevant feature of the gravitational

bouncer model is that the microscopic parameters of HF

can be in principle manipulated experimentally by means of
the Feshbach resonance [104], which modifies atomic inter-
actions and hence the coefficients Ui jkl . This gives unique
possibilities to investigate the full phase diagrams of various
many-body lattice models experimentally.

In a recent Letter [35] it was shown that the gravita-
tional bouncer model with two periodically oscillating mirrors
has properties of a two-dimensional time crystal where the
geometry of a temporal lattice can be arbitrarily shaped. In
particular, one example shows how to design a Lieb lattice
with a well separated middle flat energy band where the dy-

namics is governed by a many-body Hamiltonian with long
range density-density and long-distance ring-exchange inter-
actions fulfilling fracton symmetries discusses in Sec. III. This
physical system should host fractons, but possesses additional
complications, because the Bose-Hubbard model analyzed in
Ref. [35] exists on a Möbius strip and the ring-exchange term
does not exhibit the full lattice translation symmetry.

Here we overcome these difficulties by showing how to
realize a minimally extended Bose-Hubbard model hosting
fractons, as in Eq. (1). The experimental proposal relies on
two basic steps:

(1) Effectively switching off the nearest-neighbor tunnel-
ings t1 by building a deep temporal lattice with well localized
states on a 2D torus, where t1 are negligible.

(2) Selecting the relevant interactions by the Feshbach
resonance.

In order to achieve this we choose a symmetric drive of
two orthogonal mirrors giving rise to a square n × n temporal
lattice [cf Fig. 7(a)]. In the first step only a subset of ring-
exchange interactions are realised. However, one can restore
the full translation symmetry by adiabatically moving lattice
in the x or y direction [cf Figs. 7(b) and 7(c)]. After n such
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FIG. 7. Schematic of the experimental protocol. Panels [(a)–(c)]
illustrate subsequent building blocks of the protocol, which is sum-
marized on panel (d). Note that for illustrative purposes each panel
presents a relatively small 5 × 5 lattice, but experimentally relevant
sizes can go up to 100 × 100 sites (cf. Ref. [90] for accessible lattice
sizes in 1D experiments). Panel (a) shows a 2D time crystal with
2 × 1 and 1 × 2 ring-exchange interactions. The axes θx and θy rep-
resent directions of the flat torus shown as black rectangle, with parts
of it repeated to illustrate the boundary conditions. Such a lattice is
achieved using drives: drivex (τ ) = drivey(τ ) = cos(5ωτ ). Note that
in the first step only a subset of the ring-exchange interactions is
realized and only a few of them are shown for illustrative purposes.
Panel (b) shows the adiabatic movement step, which is introduced to
restore the full translational symmetry of the effective Hamiltonian.
This is achieved by introducing a slow adiabatic shift in one of
the drives, e.g., drivex (τ ) = cos[5ωτ + θ0(τ )]. This drive change is
stopped after the lattice is moved by a single position to the right
θ0(τend ) = 2π , which also means that the x drive made one more
oscillation then the y drive. After this step new set of ring-exchange
interactions is realized [panel (c)]. After 5 such steps, we return to
original positions. Time averaged Bose-Hubbard Hamiltonian real-
izes exactly the model (1) described in this article.

steps, all of the ring-exchange tunnelings are realized and the
time averaging reproduces exactly the Hamiltonian (1), which
we analyze in the main part of this paper. A schematic of
the protocol is presented in Fig. 7(d). Note that the limit on
the speed of the adiabatic shift of the lattice is given by the
energy separation of the lowest and first excited quasi-energy
bands, which is the higher, the deeper is the lattice. This works
in a favour of our experimental proposal, as the fractons are
expected in parameter range t1 ≈ 0, where the driving change
can be the fastest.

VI. CONCLUSIONS AND PERSPECTIVES

We have studied an extended Bose-Hubbard model with
ring-exchange interactions in a strongly-interacting limit at
half filling. We have argued that this model has a ground
state that corresponds to a charge density wave and hosts

fracton excitations in the excited states, which appear due
to mobility constraints arising from symmetries and conser-
vation laws of the model. We have studied the dynamics of
these excitations and concluded that a single fractonic de-
fect is either completely immobile or can propagate only in
one dimension (lineon). On the other hand, a bound state of
two lineons is free to propagate in all directions. We have
argued that these properties can be also understood in terms
of conserved marginal charge distributions. We have also ad-
dressed the stability issue, showing that these states are stable
against small symmetry breaking perturbations such as the
usual nearest-neighbor hopping term. Finally we have devised
an experimental proposal to realize the fractonic extended
Bose-Hubbard model in the upcoming platforms hosting big
time crystals. As a result our construction provides a clear
path towards understanding of many-body dynamics with re-
stricted mobility.

The most interesting future extension of this paper involves
the investigation of the full phase diagram of our model.
Although the analysis of this paper has been restricted to
the excited states of the charge density wave, it is known
that both a simple and extended Bose-Hubbard models can
enter a superfluid regime [48–50] characterized by a spon-
taneously broken U (1) symmetry and associated Goldstone
modes. The notion of a fractonic analogues of superfluids
was recently introduced in [105,106] (see also [107]), using
low-energy Hamiltonians defined in continuum. It is there-
fore desirable to have a microscopic understanding of such
phases and a detailed study of phases and phase transitions.
Although arguments presented in Ref. [105,106] based on the
Mermin-Wagner theorem indicate that d = 3 is the lowest
stable dimension at zero temperature, a phase with a quasi-
long-range order is possible in two spatial dimensions. This
is similar to the ordinary Bose-Hubbard model, which at
zero temperature can have a quasi-long-range order for d = 1
and true long-range order only for d = 2 [108]. However,
the phase with a quasi-long-range order will effectively be a
superfluid phase for small system sizes. A detailed numerical
study can shed light onto exotic superfluids, which go beyond
the mean field treatment.
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