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Molecular dynamics study of shear-induced long-range correlations in simple fluids
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We investigate long-range correlations (LRCs) induced by shear flow using the molecular dynamics (MD)
simulation. We observe the LRCs by comparing the MD result with the linearized fluctuating hydrodynamics
(LFH). We find that the MD result has large finite-size effects, and it prevents the occurrence of LRCs in small
systems. We examine the finite-size effects using sufficiently large systems consisting of more than ten million
particles, and verify the existence of shear-induced LRCs without ambiguity. Furthermore, we show that MD
result is quantitatively consistent with the LFH solution for the large system. As we reduce the system size L or
increase the shear rate γ̇ , the hydrodynamic description gradually breaks down in the long-wavelength region. We
define a characteristic wave number kvio associated with the breakdown and find the nontrivial scaling relations
kvio ∝ L−ω and kvio ∝ γ̇ , where ω is an exponent depending on γ̇ . These relations enable us to estimate the
finite-size effects in a larger-size simulation from a smaller system.
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I. INTRODUCTION

For equilibrium systems with short-range interactions,
long-range correlations (LRCs) appear in certain situations,
such as for a critical point and for an ordered phase with
spontaneous symmetry breaking. Near the critical point, the
correlation length diverges and the correlation function ex-
hibits a long-range nature [1]. In the ordered phase with
spontaneous breaking of the continuous symmetry, the so-
called Nambu–Goldstone mode [2–4] appears and leads
to the LRC.

For nonequilibrium systems, the LRCs exist in various
situations, even in a disordered phase far from the critical
point [5–7]. Extensive theoretical studies since the 1980s have
shown that LRCs are a general feature of stationary nonequi-
librium systems with conservation laws and anisotropy [5].
In addition, experimental studies have observed LRCs un-
der a temperature gradient [8–11]. Recently, nonequilibrium
LRCs have attracted attention as the origin of Casimir-like
long-range forces [12–15]. Moreover, they have been studied
in relation to nonequilibrium phase transitions [16–19] and
in the context of constructing the theoretical framework of
nonequilibrium statistical mechanics [20–23].

The mechanism and nature of nonequilibrium LRCs
have been established using phenomenological models such
as fluctuating hydrodynamics [24–28] and stochastic lat-
tice gases [29–31]. These coarse-grained models enable the
nonequilibrium fluctuations to be examined in terms of the vi-
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olation of a detailed-balance condition, conservation law, and
anisotropy. However, they do not produce the mechanism of
nonequilibrium LRCs from molecular-scale dynamics. There
are few theoretical attempts to study nonequilibrium LRCs
from the underlying Hamiltonian dynamics. Then, how LRCs
arise from the molecular-scale dynamics remains poorly un-
derstood.

In this paper, we study nonequilibrium LRCs in simple
fluids under shear flow using molecular dynamics (MD) sim-
ulations. A particle system under shear flow is one of the
simplest nonequilibrium setups, and has been used to probe
nonequilibrium LRCs in a large number of simulation studies
[32–51]. However, it is difficult to probe shear-induced LRCs
without ambiguity in the MD simulations as reported in the
previous studies [15]. We now briefly review the previous
studies and the difficulties.

In the hydrodynamic description, nonequilibrium fluctua-
tions consist of two terms:

〈A(r)B(r′)〉 ∼ c1δ(r − r′) + c2

|r − r′|α , (1)

where A(r) and B(r) are density fields [e.g., density fluctu-
ations δρ(r) or velocity fluctuations δva(r)], and c1 and c2

are appropriate constants. The first term proportional to the
delta function implies that A(r) and B(r) are uncorrelated on
the hydrodynamic scale. Then, the second term represents the
LRCs, which are generally absent in equilibrium fluids.

The fluctuating hydrodynamics provides a phenomenolog-
ical model for describing the fluctuations at the hydrodynamic
scale. This model is widely used to study shear-induced
LRCs. One characteristic behavior of shear-induced LRCs
is the crossover between two power-law decays [21,26]. For
example, the spatial correlation of the density fluctuation
〈δρ(r)δρ(r′)〉 decays according to |r − r′|−1 for short-distance
scales and crosses over to the stronger decay |r − r′|−11/3 for
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long-distance scales. Similarly, the spatial correlation of the
velocity fluctuations 〈v(r) · v(r′)〉 crosses over from |r − r′|−1

to |r − r′|−5/3.
Another important prediction from the fluctuating hydro-

dynamics is the existence of shear-induced corrections to the
pressure P and shear viscosity η. These corrections arise
from the nonlinear coupling of the LRCs. Kawasaki and
Gunton initially found these corrections by using the pro-
jection operator method and the mode-coupling theory [52].
They were subsequently derived from the fluctuating hy-
drodynamics [15,21,53]. The shear-induced correction to the
pressure P depends on the Reynolds number Re, and is given
in the two limits as

P − Peq ∝ Lγ̇ 2 for Re � 1,

P − Peq ∝ γ̇ 3/2 for Re � 1,
(2)

where P, L, and γ̇ are the pressure, system size, and shear
rate, and Peq is the pressure in the limit γ̇ → 0. For the shear
viscosity, the corresponding behavior is given by

η − ηeq ∝ γ̇ 1/2, (3)

where η is the viscosity and ηeq is the viscosity in the
limit γ̇ → 0.

After these results had been obtained by the fluctuating
hydrodynamics or kinetic theory, numerous MD simulations
attempted to verify them. The basic idea was to probe the
shear-induced LRCs by observing Eq. (2) and (3). The results
remain controversial. Earlier simulation results [32–34] were
interpreted in favor of the nonanalytical shear-rate depen-
dence. In particular, Evans and coworkers [35–38] calculated
the shear viscosity at the Lennard–Jones triple point and
observed Eq. (3). However, more sophisticated simulations
[41–45] support the assertion that the shear-induced cor-
rection behaves as γ̇ 2, not as γ̇ 3/2. Furthermore, the MD
simulations of Sadus and coworkers [46,47] found that the
exponent of pressure varies continuously between 1.2 and
2.0 depending on the temperature and density. More recently,
Ortiz de Zárate et al. [15] reported that the shear-induced cor-
rection has two different origins, from short- and long-range
scales. The long-range correction comes from the nonlinear
coupling of the LRCs, which is calculated by the fluctuating
hydrodynamics. The short-range correction is a molecular-
scale effect and is independent of the LRCs. Ortiz de
Zárate et al. estimated the magnitude of the short-range cor-
rection using kinetic theory and demonstrated that it yields
non-negligible contributions. Their argument suggests the
possibility that previous MD simulations captured the short-
range correction. Thus, we find it difficult to extract the
shear-induced LRCs from the shear-rate dependence of pres-
sure P and shear viscosity η.

Another direction for probing the existence of LRCs is
through direct observations, such as Eq. (1). Two groups
studied the LRCs along this direction: Otsuki and Hayakawa
[48,49] and Varghese et al. [44,45]. Otsuki and Hayakawa ini-
tially succeeded in observing the power-law decay of density
and velocity fluctuations in a granular particle system, and
found that the exponent α is close to the value predicted by
the fluctuating hydrodynamics [48]. Their simulation size was
insufficient for quantitatively examination of large-distance
correlations beyond 10σ , where σ is the diameter of the par-

ticles. Subsequently, Varghese et al. performed a mesoscale
simulation based on the multiparticle collision dynamics [45].
They successfully observed the shear-induced LRCs, and re-
ported the behavior that is quantitatively consistent with the
fluctuating hydrodynamics. However, the multiparticle colli-
sion dynamics is not based on microscopic interactions and
cannot describe the molecular-scale behavior.

In this paper, we directly observe the LRCs by comparing
the MD results with the linearized fluctuating hydrodynamics
(LFH). We find that the MD result has large finite-size effects,
and it prevents the occurrence of LRCs in small systems. We
examine the finite-size effect using a sufficiently large system
consisting of more than ten million particles, and show the
existence of shear-induced LRCs without ambiguity.

Furthermore, we verify that our MD result is quantita-
tively consistent with the LFH solution for the large system.
However, as we reduce the system size or increase the shear
rate, the MD result gradually deviates from the LFH solution
in the long-wavelength region. As a quantitative description
of how the deviation increases, we define the characteristic
wave number kvio such that the prediction from the fluctuating
hydrodynamics is valid for k > kvio. We find that kvio has a
nontrivial scaling dependence on the system size and shear
rate.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the analysis results based on the
fluctuating hydrodynamics. In Sec. III, we explain the setup
of the MD simulations. The main part of this paper is
Sec. IV, where the MD result is presented and compared with
the LFH solution. Section V gives our concluding remarks
and discussions.

II. HYDRODYNAMIC DESCRIPTION OF
SHEAR-INDUCED LONG-RANGE CORRELATIONS

The fluctuating hydrodynamics provides a powerful ana-
lytical tool for describing the nonequilibrium LRCs. Here, we
briefly review the established results regarding shear-induced
LRCs.

A. Model

We consider an isothermal fluid with a uniform tempera-
ture T defined in a three-dimensional region [−Lx/2, Lx/2] ×
[−Ly/2, Ly/2] × [−Lz/2, Lz/2]. The isothermal fluid is de-
scribed by two fluctuating fields, namely the density ρ(r, t )
and the velocity v(r, t ). The time evolution of ρ(r, t ) and
v(r, t ) is given by [54]

∂ρ

∂t
+ ∂

∂xl
(ρvl ) = 0, (4)

∂

∂t
(ρvi ) + ∂
i j

∂x j
= 0, (5)

where 
i j (r, t ) is the momentum flux tensor, written as


i j = ρviv j + pδi j − η0

(
∂v j

∂xi
+ ∂vi

∂x j
− 2

3
δi j

∂vl

∂xl

)

− ζ0δi j
∂vl

∂xl
+ si j . (6)
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FIG. 1. Schematic illustration of shear flow. The x axis is in the
direction of the flow velocity and the z axis is in the direction of the
velocity gradient.

Here, η0 is the bare shear viscosity, ζ0 is the bare bulk viscos-
ity, p(r, t ) is the pressure, and si j (r, t ) is the Gaussian random
noise tensor satisfying

〈sik (r, t )slm(r′, t ′)〉 = 2T ηiklmδ3(r − r′)δ(t − t ′), (7)

ηiklm = η0δilδkm + η0δimδkl + (
ζ0 − 2

3η0
)
δikδlm. (8)

We study the nonequilibrium steady state characterized by the
average density field and velocity field. i.e.,

〈ρ(r)〉 = ρ0, 〈v(r)〉 = (γ̇ z, 0, 0). (9)

A schematic illustration of the steady state is presented in
Fig. 1. In analyzing the fluctuating hydrodynamics, we focus
on the bulk region and neglect boundary effects. Therefore,
we do not have to specify the boundary condition. This is
crucially different from the setup adopted in the MD simula-
tions. Boundary effects are inevitable in the MD simulations
because the nonequilibrium steady state is maintained using
the Lees–Edwards boundary condition as explained in the next
section. We will revisit this difference in Sec. IV, where we
compare the MD result with the LFH solution.

B. Spatial correlation of momentum field

In the fluctuating hydrodynamics, the spatial correlation of
the momentum is defined as

CFH
i j (r, r′) = 〈δgi(r, t )δgj (r′, t )〉, (10)

where δgi(r, t ) is given by

δg(r, t ) = ρ(r, t )
(
v(r, t ) − 〈v(r, t )〉). (11)

In the MD simulations, we define a counterpart of this cor-
relation function in terms of phase-space variables. To avoid
confusion, we introduce the superscript FH to denote the
fluctuating hydrodynamics. The existence of nonequilibrium
LRCs is identified by the power-law decay of the correlation
function.

The steady state under shear flow has translational symme-
try [55]. This is expressed in terms of the correlation function
as CFH

i j (r, r′) = CFH
i j (r + a, r′ + a), where a is an arbitrary

constant vector. It is useful to introduce the Fourier transform

of the correlation function

CFH
i j (r, r′) =

∫
d3k

(2π )3
CFH

i j (k)e−ik·(r−r′ ). (12)

We restrict our interest to the two correlation functions CFH
xx (k)

and CFH
zz (k) at ky = kz = 0, and denote these as CFH

xx (kx ) and
CFH

zz (kx ). Note that linear approximations of CFH
yy (kx ) are not

affected by the shear flow [26,45]. Therefore, we do not dis-
cuss CFH

yy (kx ) in this paper.
From Eqs. (4) and (5), we derive the integral expressions

for CFH
xx (kx ) and CFH

zz (kx ) under the linear approximations:

CFH
xx (kx ) = T ρ0 − γ̇ 2T ρ0

×
∫ ∞

0
ds

s

(1 + γ̇ 2s2)3/2
e−0k2

x (s+ 1
3 γ̇ 2s3 ), (13)

CFH
zz (kx ) = T ρ0 + 2γ̇ 2T ρ0

∫ ∞

0
dsse−2ν0k2

x (s+ 1
3 γ̇ 2s3 ), (14)

with

ν0 = η0

ρ0
, 0 = ζ0 + 4η0/3

ρ0
. (15)

We call Eqs. (13) and (14) the LFH solution. CFH
xx (kx ) and

CFH
zz (kx ) correspond to the longitudinal and transverse mo-

mentum fluctuations, respectively. Therefore, Eq. (14) for
CFH

zz (kx ) does not contain ζ0, and is the same as that for an
incompressible fluid. In contrast, CFH

xx (kx ) is strongly affected
by the compressibility of the fluid. These expressions were
initially derived in Ref. [26]. Appendix A provides a brief
sketch of the derivation; for further details, see Ref. [48].

From the LFH solution of Eqs. (13) and (14), we can see
the existence of the shear-induced LRCs. First, as γ̇ → 0,
Eqs. (13) and (14) reduce to

CFH
xx (kx ) = CFH

zz (kx ) = T ρ0. (16)

This means that the correlation in the real space is given
by the delta function. The correlation length is interpreted
to be of the molecular scale. For γ̇ > 0, Eqs. (13) and (14)
have nonequilibrium corrections, which lead to the LRCs.
The asymptotic expression of Eq. (14) in the long-wavelength
region is calculated as

CFH
zz (kx ) = T ρ0

(
1 + 1

2

γ̇ 2

ν2
0 k4

x

)
(17)

for kx � kcross
x , and

CFH
zz (kx ) = T ρ0

(
1 +

(
2

3

)1/3



(
2

3

)
γ̇ 2/3

ν
4/3
0 k4/3

x

)
(18)

for kx � kcross
x . Here, kcross

x determines the crossover scale
between Eqs. (17) and (18), and is given by

kcross
x =

(
3

16


(
2

3

)3
)1/8√

γ̇

ν0
. (19)

These expressions imply that an additional correlation pro-
portional to k−4

x appears at short-distance scales and crosses
over to k−4/3

x at large-distance scales. Such power-law behav-
ior in the Fourier space corresponds to an algebraic decay in
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the real space. We can repeat the same discussion for CFH
xx (kx )

and derive the LRC [26].
We use the LFH solution of Eqs. (13) and (14) to probe

the existence of shear-induced LRCs in the MD simulation.
Additionally, we quantitatively examine the validity of the
LFH solution. Note that expressions such as Eqs. (13) and (14)
provide a starting point for explaining various phenomena
coming from shear-induced LRCs. For example, Lutsko and
Dufty [53] derived a nonequilibrium correction to the shear
viscosity in the form of Eq. (3). Similarly, Wada and Sasa
[21] and Ortiz de Zárate et al. [15] derived the shear-rate
dependence of pressure for incompressible fluids. Therefore,
it is important to establish the LFH solution quantitatively
from the molecular-scale dynamics.

III. SETUP OF MD SIMULATIONS

A. Model

We consider an N particle system that is confined in
a three-dimensional region [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ×
[−Lz/2, Lz/2]. The dynamics is given by

dri

dt
= pi

m
, (20)

d pi

dt
= −∂U

∂ri
+ f th

i , (21)

where (ri, pi ) is the position and momentum of the ith particle,
m is the mass, U (r) is the interparticle interaction, and f th

i
is the force acting on the ith particle from a thermostat. We
use the Weeks–Chandler–Andersen (WCA) potential as the
interparticle interaction, which is the Lennard–Jones potential
with the cutoff-length rLJ

c = 21/6σ , i.e.,

U (r) = 4ε

{(
σ

r

)12

−
(

σ

r

)6

+ 1

4

}
θ (21/6σ − r), (22)

where θ (r) is the Heaviside step function and σ is the diameter
of the particle.

To maintain a constant temperature under the shear flow,
we use the dissipative particle dynamics (DPD) thermostat
[56], which is given by

f th
i =

∑
j �=i

[−γωD(ri j )(r̂i j · vi j )r̂i j

+
√

2γ kBT ωD(ri j )θi j (t )r̂i j]. (23)

Here, r̂i j is a unit vector in the direction ri j = ri − r j , ωD(ri j )
is the cutoff function

ωD(r) = 1 − r/rDPD
c for r < rDPD

c ,

ωD(r) = 0 for r � rDPD
c ,

(24)

and θi j (t ) is random noise satisfying 〈θi j (t )θkl (t ′)〉 = (δikδ jl +
δilδ jk )δ(t − t ′). γ and T represent the friction and the temper-
ature of thermostat, respectively. Because the DPD thermostat
satisfies the fluctuation-dissipation relation, our model relaxes
to equilibrium when no external forces are imposed. The
cutoff length rDPD

c is set to 2.0σ .
Note that the DPD thermostat obeys Newton’s third law,

which ensures momentum conservation [57]. This is why

we apply the DPD thermostat. Indeed, one of the origins of
nonequilibrium LRCs is the conservation law [5,6].

The shear flow is realized using the Lees–Edwards bound-
ary condition [58,59] along the z axis. Along the x and y axes,
we impose standard periodic boundary conditions. Thus, the
velocity profile in the steady state is realized as

ṽ(r) = (γ̇ z, 0, 0). (25)

Note that the Lees–Edwards boundary condition violates the
momentum conservation law along the x direction. The total
amount of momentum along the x direction depends on the
number of atoms that leave the lower and upper boundaries.
This is because, when one atom leaves the lower (upper)
boundary z = −Lz/2 (z = Lz/2) with velocity u, the corre-
sponding atom is introduced from the upper (lower) boundary
with velocity u ± γ̇ Lzêx. However, except at the boundaries,
the local conservation law still holds. Moreover, in the steady
state, because the net mass transfer via the lower or upper
boundary is balanced, the violation is sufficiently small and
the time-averaged total momentum must be zero. Thus, we
expect that the effect of the violating the conservation law
through the Lees–Edwards boundary condition will be suffi-
ciently small [60].

B. Parameters

In the numerical simulations, all quantities are measured
by the Lennard–Jones units (m, σ, ε). In particular, the time
is measured by τunit =

√
mσ 2/ε. All the MD simulations

are performed by LAMMPS (large-scale atomic/molecular
massively parallel simulator) [61,62]. The time integration is
calculated by the velocity Verlet algorithm. The timestep is
set to 0.0025, 0.00375, or 0.005 depending on the shear rate
and the system size. We fix the temperature and friction of the
thermostat to T = 1.0 and γ = 1.0, respectively. The density
ρ0 ≡ N/LxLyLz is fixed to 0.78.

The transport coefficients take almost the same value in all
simulations. In particular, we use η0 = 1.74 and ζ0 = 14.04
to compare the MD result with the LFH solution, which are
calculated from the Green–Kubo formula (see Appendix B for
details).

C. Observation method

All observations are performed in the nonequilibrium
steady state, which is prepared by different methods de-
pending on the system size Lz. For Lz � 512, we start from
the initial state in which the particles are randomly located
with zero overlaps. We then perform the relaxation run for
about 10 times the relaxation time. The relaxation time is
estimated from the relaxation of the velocity profile (see Ap-
pendix C for details). For Lx = 1024, Ly = 32, and Lz = 512
(N = 13086228), the relaxation time is about 3000, and the
relaxation run with a timestep 0.0025 takes 100 hours using
16 nodes of the ISSP supercomputer (AMD EPYC 7702, 64
cores ×2 per node).

For Lz > 512, we adopt a locally relaxed state as the initial
state and perform the relaxation run for about three times
the relaxation time. For example, for Lx = 1024, Ly = 32,
and Lz = 1024, the initial state is prepared by combining
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FIG. 2. Left: Linear plot of Cxx (kx ). Middle: Linear plot of Czz(kx ). Right: Double-log plot of Czz(kx ) − ρ0T . The parameters are set to
γ̇ = 0.02, Lx = 1024, Ly = 32, and Lz = 1024 (N = 26172456). The red line is the MD result and the black line is the LFH solution. In the
left and middle panels, the blue lines give the equilibrium value from Eq. (16). The insets show enlargements of the long-wavelength region.
In the right panel, the green and blue lines indicate the two power-law dependencies k−4/3

x and k−4
x .

two different relaxation states for Lx = 1024σ , Ly = 32σ , and
Lz = 512σ .

After the relaxation run, we observe the correlation func-
tion of the momentum fluctuation:

CMD
i j (k; γ̇ ) = 1

V
〈δg̃i(k)δg̃j (−k)〉, (26)

where 〈·〉 represents the time average in the steady state and
the ensemble average over different noise realizations. Here,
δĝi(k) (i = x, y, z) is the Fourier transform of the momen-
tum density field with the mean flow subtracted, which is
expressed as

δg̃(k) =
∫

d3rδg̃(r)e−ik·r

=
N∑

i=1

[pi − mγ̇ ziêx]e−ik·ri (27)

with

δg̃(r) =
N∑

i=1

[pi − mγ̇ ziêx]δ(r − ri ). (28)

We rewrite δg̃(r) in terms of the microscopic density
field ρ̃(r) = ∑N

i=1 mδ(r − ri ) and momentum field g̃(r) =∑N
i=1 piδ(r − ri ) as

δg̃(r) = g̃(r) − ρ̃(r)〈ṽ(r)〉. (29)

By comparing Eq. (29) with Eq. (11), we find that CMD
i j (k; γ̇ )

is the microscopic counterpart of CFH
i j (k; γ̇ ).

We also introduce the relative deviation �i j (kx ) to verify
the validity of the LFH solution:

�i j (kx ) =
∣∣∣∣∣C

MD
i j (kx ) − CFH

i j (kx )

CMD
i j (kx )

∣∣∣∣∣. (30)

In a region where the relative deviation is large, the LFH
solution cannot be applied to describe the MD result. For a
quantitative discussion, we introduce the criterion �i j (kx ) <

0.1 for the applicability of the LFH solution. We then de-
fine the characteristic wave number kvio

x as the largest wave
number satisfying �i j (kx ) > 0.1. For the wave number region
kx > kvio

x , the descriptions given by the fluctuating hydrody-
namics are quantitatively valid.

IV. MAIN RESULTS

A. Nonequilibrium LRC

Figure 2 presents the results for γ̇ = 0.02, Lx = 1024,
Ly = 512, and Lz = 1024 (N = 26172456), which is the
largest system size that we examined. The blue lines in
the left- and middle-hand panels represent the equilibrium
value from Eq. (16), and the deviations from this value give
the shear-induced correction. The black lines show the LFH
solutions of Eqs. (13) and (14). The MD result clearly exhibits
shear-induced corrections, and is in quantitative agreement
with the LFH solution except in the long-wavelength region.

We can identify the nonequilibrium LRC from the power-
law behavior of Eqs. (17) and (18), as explained in Sec. II B.
The right-hand panel of Fig. 2 shows double-log plots of
CMD

zz (kx ) and CFH
zz (kx ) (red and black lines, respectively). From

the LFH solution, the crossover scale between the k−4
x and

k−4/3
x behavior is kcross

x = 0.086. The MD result is quantita-
tively consistent with the LFH solution around the crossover
region. Thus, we conclude that the MD result exhibits the
nonequilibrium LRC.

In the long-wavelength region, there is a qualitative dif-
ference between CMD

xx (kx ) and CFH
xx (kx ). Specifically, as shown

in the left-hand panel of Fig. 2, the MD result monotonically
increases from the equilibrium value as kx → 0, whereas the
LFH solution monotonically decreases from the equilibrium
value. We expect that the boundary effect has a strong in-
fluence on the long-wavelength behavior, and thus causes
this difference. The boundary effect is neglected in the LFH
solution, as explained in Sec. II A. We now study how the MD
result is affected by changes in the shear rate and system size.

B. System-size dependence of nonequilibrium LRC

We first examine the MD result for the various system
sizes. Figure 3 shows that the MD result does not depend
on Ly. In contrast, we can observe strong Lz dependence in
Fig. 4, where the MD result approaches the LFH solution as
Lz increases.

In Figs. 4(a) and 4(d), we present the Lz dependence of
CMD

xx (kx ) and CMD
zz (kx ). Figure 4(d) shows that the nonequilib-

rium LRC of CMD
zz (kx ) gradually grows from the equilibrium

value as Lz increases. In contrast, Fig. 4(a) shows that the
nonequilibrium correction of CMD

xx (kx ) is positive for the small
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FIG. 3. Left: Ly dependence of Cxx (kx ). Right: Ly dependence of
Czz(kx ). Red, blue, and cyan lines show the MD result with Ly =
32, 64, and 128, respectively. In all cases, Lx = 1024, Lz = 256, and
γ̇ = 0.02.

system sizes of Lz = 32, 64, and 128. This behavior is in-
consistent with the LFH solution; the correction of CFH

xx (kx ),
which is the second term of Eq. (13), is always negative. As
Lz increases, the correction dips into the negative region and
the positive correction region becomes smaller. We can infer
that the positive correlations for smaller Lz mainly come from
finite-size and boundary effects.

We now examine how the MD result approaches the LFH
solution as Lz increases. The deviations �xx(kx ) and �zz(kx )
are plotted in Figs. 4(b) and 4(e). Moreover, the characteristic
wave number kvio

x is plotted as a function of Lz in Figs. 4(c)
and 4(f). The figures suggest that kvio

x scales as kvio
x ∝ L−ω

z
for a fixed γ̇ . By fitting the data with the functional form
kvio

x = AL−ω
z , we obtain the following scaling relations with

nontrivial exponents:

kvio
x = 0.209L−0.283

z (31)
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0.05
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k
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o
x
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γ̇ = 0.03

γ̇ = 0.06
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0.02

k
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o
x

γ̇ = 0.02

γ̇ = 0.03

γ̇ = 0.06

FIG. 5. kvio
x as a function of Lz calculated using the data of Cxx (kx )

(left) and Czz(kx ) (right) for various shear rates. In all cases, Lx =
1024 and Ly = 32. Red, blue, and green symbols show the results for
γ̇ = 0.02, 0.03, and 0.06, respectively. The black lines are the fitting
results, which are as follows. Left: kvio

x = 0.209L−0.283
z for γ̇ = 0.02,

kvio
x = 0.218L−0.263

z for γ̇ = 0.03, and kvio
x = 0.302L−0.274

z for γ̇ =
0.06. Right: kvio

x = 0.512L−0.450
z for γ̇ = 0.02, kvio

x = 0.498L−0.404
z

for γ̇ = 0.03, and kvio
x = 0.493L−0.338

z for γ̇ = 0.06.

for Cxx(kx ), and

kvio
x = 0.512L−0.450

z (32)

for Czz(kx ). These are depicted by the blue lines in Figs. 4(c)
and 4(f). Note that Eqs. (31) and (32) are the quantitative
relations and enable us to estimate the finite-size effects.

Furthermore, we consider the dependence of the scaling
relation on the shear rate γ̇ . We plot kvio

x as a function of Lz

for several γ̇ in Fig. 5. The figure shows that the scaling form
kvio

x ∝ L−ω
z holds, regardless of the value of γ̇ . For Czz(kx ),

ω takes values of 0.34–0.45 depending on γ̇ . In contrast, for
Cxx(kx ), ω is close to 0.27, and is largely insensitive to γ̇ .

FIG. 4. Left: Lz dependence of Cxx (kx ). (a) Cxx (kx ) for various system sizes. (b) �xx (kx ) for various system sizes. (c) kvio
x as a function of

Lz, calculated using the data in (b). Right: Lz dependence of Czz(kx ). (d) Czz(kx ) for various system sizes. (e) �zz(kx ) for various system sizes.
(f) kvio

x as a function of Lz, calculated using the data in (e). In all cases, Lx = 1024, Ly = 32, and γ̇ = 0.02. In (a), (b), (d), and (e), the red,
blue, cyan, green, purple, and orange lines show the MD result with Lz = 32, 64, 128, 256, 512, and 1024, respectively. The black line shows
the LFH solution. The orange line is the same as Fig. 2.
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FIG. 6. [(a)–(f)]: γ̇ dependence of Czz(kx ) for various shear rates. (g): �zz(kx ) as a function of kx . The system size is Lx = 1024, Ly =
32, Lz = 256. (a) γ̇ = 0.005, (b) γ̇ = 0.01, (c) γ̇ = 0.02, (d) γ̇ = 0.03, (e) γ̇ = 0.04, (f) γ̇ = 0.06. The color in (g) corresponds to that in
[(a)–(f)]. Inset in (g) shows kvio

x as a function of γ̇ . The blue line is the fitting result, which is given by kvio
x = 0.924γ̇ + 0.011.

C. Shear-rate dependence of nonequilibrium LRC

We now examine the shear-rate dependence of the LRCs
for a fixed system size. In Fig. 6, we plot the correlation
Czz(kx ) and the deviation �zz(kx ) for various values of γ̇

from 0.005 to 0.06. We observe that the deviation increases
monotonically as γ̇ increases from 0.01 to 0.06 in Fig. 6(g).
However, the result for γ̇ = 0.005 does not exhibit this ten-
dency. We can infer that the LRC does not fully develop when
γ̇ = 0.005 because Lz is too small.

The inset of Fig. 6(g) shows kvio
x as a function of γ̇ . Clearly,

kvio
x is linearly dependent on γ̇ from γ̇ = 0.01 to γ̇ = 0.06.

By fitting this with the functional form Aγ̇ + B, we obtain the
quantitative relation

kvio
x = 0.924γ̇ + 0.011. (33)

Similar behavior can be observed for Cxx(kx ),

kvio
x = 0.583γ̇ + 0.032. (34)

D. Kinetic temperature and pressure

Finally, we study the kinetic temperature Tke, which is
defined as

Tke ≡ 1

2N

〈
N∑

i=1

(
p2

iy

m
+ p2

iz

m

)〉
, (35)

and the pressure Pz along the z direction, which is defined as

Pz = 1

V

〈
N∑

i=1

p2
iz

m
+

N∑
i=1

∑
j>i

(zi − z j ) fi j,z

〉
. (36)

Here, fi j,z is the z component of the intermolecular force be-
tween particles i and j. These quantities are plotted in Fig. 7.
Previous MD simulations [32–43,46,47,50,51] have explored
the γ̇ dependence of the kinetic temperature and pressure to
probe the LRC, as explained in the Introduction. Following
these studies, we fit the simulation data to the form Aγ̇ B + C
and obtain

Tke = 0.9894γ̇ 1.9777 + 1.00069, (37)

Pz = 4.8985γ̇ 1.9831 + 6.0638. (38)

Both exponents are close to 2.

We now consider whether the long- or short-range contri-
butions dominate our result, as suggested in Ref. [15]. To this
end, we decompose the corrections into the contributions from
the short- and the long-range scales:

δTke = δT SR
ke + δT LR

ke , (39)

δPz = δPSR
z + δPLR

z . (40)

Our result suggests the dominance of the short-range scale as
follows. The correction proportional to γ̇ 2 in the fluctuating
hydrodynamics is linearly dependent on the system size L:

δT LR
ke ∼ δPLR

z ∼ Lγ̇ 2, (41)

which comes from the k−4
x behavior of Eq. (17). However,

our result is almost independent of Lz, as shown in the inset
of Fig. 7, although our result catches the k−4

x -tail. Thus, our
result supports the assertion that the γ̇ 2 dependence comes
from the short-range scale instead of the nonequilibrium LRC.
However, recall that the LFH solution is not valid in the
long-wavelength region, as shown in Fig. 4. Therefore, further
theoretical studies on the short-range corrections are required
to form a final conclusion.
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1.002

1.003

T
ke 32 128 256 512

L
1.000
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T
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6.0700

6.0775

P
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L
6.0650

6.0675

P

FIG. 7. Left: Kinetic temperature Tke as a function of γ̇ for
Lx = 1024, Ly = 32, and Lz = 256. The blue line is the fitting result
given by 0.9894γ̇ 1.9777 + 1.00069. Inset shows the Lz dependence
of the kinetic temperature Tke for γ̇ = 0.02. Right: Pressure Pz as
a function of γ̇ for Lx = 1024, Ly = 32, and Lz = 256. The blue line
is the fitting result given by 4.8985γ̇ 1.9831 + 6.0638. Inset shows the
Lz dependence of the pressure Pz for γ̇ = 0.02.
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TABLE I. Setup of simulations in the previous studies. σ and a are, respectively, typical length scales characterizing the particle size or
interaction range.

Previous study Otsuki and Hayakawa (2009) Varghese et al. (2015) Our study

Model Hard sphere with Multiparticle collision Weeks–Chandler–
restitution coefficient e dynamics fluid Andersen fluid

Boundary condition Lees–Edwards Lees–Edwards Lees–Edwards
Thermostat e �= 1: none Cell-level Maxwell–Boltzmann Dissipative particle

e = 1: velocity scaling rescaling of relative velocity dynamics
Local momentum e �= 1: yes Yes Yes
conservation e = 1: no
Typical system size 32σ ∼ 112σ 20a ∼ 120a 32σ ∼ 1024σ

V. CONCLUDING REMARKS AND DISCUSSION

Let us compare our result to those reported by Otsuki and
Hayakawa [48] and Varghese et al. [45]. These previous stud-
ies directly observed the shear-induced LRC in particle-based
simulations. Table I presents a comparison of their setups
with that of our simulations. The system size in our study
is about 10 times larger than that in the previous studies.
As a result, we can systematically study the finite-size effect
on shear-induced LRCs. We showed that the LFH solution
is quantitatively consistent with the MD result when Lz is
sufficiently large. Conversely, for smaller Lz, the MD result
deviates from the LFH solution in the long-wavelength region.
Such deviations were also observed in the previous studies
[45,48]. Varghese et al. proposed that these deviations origi-
nated from the density dependence of viscosity. However, our
simulations have clarified that the derivations are caused by
an insufficient system size.

Furthermore, we examined how the deviations depend
on the system size and the shear rate. As a quantitative
examination, we introduced the characteristic wave number
kvio

x associated with the breakdown of the hydrodynamic
description. kvio

x determines the applicable wave number re-
gion of the LFH solution as kx > kvio

x . We then found two
scaling relations, kvio

x ∝ L−ω
z at fixed γ̇ and kvio

x ∝ γ̇ , for a
fixed Lz.

The interesting point is that the finite-size effect is non-
negligible in a large region. For example, kvio

x is obtained
from Fig. 2 as kvio

x  0.0237 for Lz = 1024 and γ̇ = 0.02. In
the real space, the corresponding xvio ≡ 2π/kvio

x is about 265.
Therefore, if we consider the system with Lx = Ly = Lz =
1024, the LFH solution breaks down in about three quarters
of the region, 0.26Lx < x < Lx, where large finite-size effects
exist. Note that the magnitude of the finite-size effects is
related to the value of the exponent ω. The scaling relation
kvio

x ∝ L−ω
z can be rewritten as xvio ∝ Lω

z . By noting that the
breakdown of the LFH solution occurs in the region Lω

z <

x < Lx, we find that a smaller ω yields finite-size effects in
a larger region. Actually, ω = 0.27–0.45 as our model is quite
small.

The question to be asked is the origin of such large
finite-size effects. We can infer that they come from the
Lees–Edwards boundary condition and the nonlinearity of
the fluctuating hydrodynamics. Future work should analyze
these effects in the fluctuating hydrodynamics. As a related
problem, it is interesting how the hydrodynamic description
predicts the exponent ω.

Finally, we remark on the utility of the quantitative re-
lations for kvio

x , such as Eqs. (31)–(34). They enable us to
estimate the finite-size effects in larger-size simulations from
smaller-size simulations. For example, we can use the estima-
tion to observe the k−4/3

x -tail of Czz(kx ). We could not observe
this tail as shown in the right-hand panel of Fig. 2 because
the hydrodynamic description breaks down before Czz(kx ) ex-
hibits the k−4/3

x tail. To observe the k−4/3
x tail at γ̇ = 0.02, we

need to reduce kvio
x to 0.01. This value is estimated from the

LFH solution. The required Lz is then calculated from Eq. (31)
as Lz  6286. Such a quantitative estimation is useful for
preparing larger-size simulations and laboratory experiments.
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APPENDIX A: BRIEF SKETCH OF DERIVATION
OF EQS. (13) AND (14)

To derive the integral expressions in Eqs. (13) and (14)
for Cxx(kx ) and Czz(kx ), we use two approximations. Here,
we briefly sketch their derivation while focusing on these
approximations.

The first approximation is to neglect the nonlinear fluc-
tuations. ρ(r, t ), p(r, t ), and v(r, t ) are expanded around the
zero-order solution as

ρ(r, t ) = ρ0 + δρ(r, t ),

p(r, t ) = p0 + c2
T δρ,

vx(r, t ) = γ̇ z + δvx(r, t ), (A1)

vy(r, t ) = δvy(r, t ),

vz(r, t ) = δvz(r, t ),

where cT is the isothermal speed of sound. By substituting
Eq. (A1) into Eqs. (4) and (5) and neglecting the higher-order
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terms of δρ and δv, we have

(
∂

∂t
− γ̇ kx

∂

∂kz

)⎛
⎜⎝

δρ̃

δṽx

δṽy

δṽz

⎞
⎟⎠ +

⎛
⎜⎝

0 0 0 0
0 0 0 γ̇

0 0 0 0
0 0 0 0

⎞
⎟⎠

⎛
⎜⎝

δρ̃

δṽx

δṽy

δṽz

⎞
⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎝

0 −ikx −iky −ikz

−i c2
T

ρ0
kx

η

ρ0
|k|2 + ηk

3ρ0
k2

x
ηk

3ρ0
kxky

ηk

3ρ0
kxkz

−i c2
T

ρ0
ky

ηk

3ρ0
kxky

η

ρ0
|k|2 + ηk

3ρ0
k2

y
ηk

3ρ0
kykz

−i c2
T

ρ0
kz

ηk

3ρ0
kxkz

ηk

3ρ0
kykz

η

ρ0
|k|2 + ηk

3ρ0
k2

z

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

δρ̃

δṽx

δṽy

δṽz

⎞
⎟⎠ −

⎛
⎜⎝

0
ik j s̃x j

ik j s̃y j

ik j s̃z j

⎞
⎟⎠. (A2)

Under this approximation, the momentum correlations are
connected with the velocity correlations as

〈δgi(r, t )δg j (r′, t )〉  ρ2
0 〈δvi(r, t )δv j (r′, t )〉. (A3)

The second approximation is used when we decompose
the longitudinal and transverse waves. Here, it is conve-
nient to introduce the oblique coordinate used by Lutsko and
Dufty [26]: ⎛

⎜⎜⎜⎜⎝
ξ̃1(k, t )

ξ̃2(k, t )

ξ̃3(k, t )

ξ̃4(k, t )

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(cT /ρ0)δρ̃(k, t )

δṽ(k, t ) · ê(1)(k)

δṽ(k, t ) · ê(2)(k)

δṽ(k, t ) · ê(3)(k)

⎞
⎟⎟⎟⎟⎠. (A4)

The vectors {ê(a)(k)}a=1,2,3 are a set of orthogonal unit vectors
given by

ê(1)(k) = k̂ =

⎛
⎜⎜⎝

kx
k
ky

k
kz

k

⎞
⎟⎟⎠, (A5)

ê(2)(k) = ẑ − ê(1)(k)(ê(1)(k) · ẑ)

k̂⊥
=

⎛
⎜⎝

− kxkz

kk⊥

− kykz

kk⊥
k̂⊥

⎞
⎟⎠, (A6)

ê(3)(k) = ê(1)(k) × ê(2)(k) =

⎛
⎜⎜⎝

ky

k⊥
− kx

k⊥
0

⎞
⎟⎟⎠, (A7)

where k = |k|, k⊥ = √
k2 − k2

z , and k̂⊥ = √
k2 − k2

z /k.
The time evolution of ξ̃(k, t ) is immediately obtained

by substituting the inverse transformation of Eq. (A4) into
Eq. (A2) as

(
∂

∂t
− γ̇ kx

∂

∂kz

)⎛
⎜⎜⎜⎝

ξ̃1

ξ̃2

ξ̃3

ξ̃4

⎞
⎟⎟⎟⎠ + L(k)

⎛
⎜⎜⎜⎝

ξ̃1

ξ̃2

ξ̃3

ξ̃4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f̃1

f̃2

f̃3

f̃4

⎞
⎟⎟⎟⎠ (A8)

with

L(k) = −ikB + k2C + γ̇ D(k), (A9)

and

f̃1 = 0, (A10)

f̃α+1 = ê(α)(k) ·

⎛
⎜⎝

0
ik j s̃x j

ik j s̃y j

ik j s̃z j

⎞
⎟⎠, (A11)

where α = 1, 2, 3 and the matrices B, C, and D(k) are
given by

B =

⎛
⎜⎝

0 cT 0 0
cT 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (A12)

C = 1

ρ0

⎛
⎜⎜⎝

0 0 0 0

0 η + ηk

3 0 0
0 0 η 0
0 0 0 η

⎞
⎟⎟⎠, (A13)

D =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 kxkz

k2 2 kxk⊥
k2 0

0 − kx
k⊥

− kxkz

k2 0

0 kykz

kk⊥
ky

k 0

⎞
⎟⎟⎟⎟⎠. (A14)

To decompose the longitudinal and transverse waves in
Eq. (A8), we need to solve the eigenvalue problem:

(
− γ̇ kx

∂

∂kz
+ L(k)

)⎛
⎜⎜⎝

ζ̃
(i)
1 (k)

ζ̃
(i)
2 (k)

ζ̃
(i)
3 (k)

ζ̃
(i)
4 (k)

⎞
⎟⎟⎠ = λi(k)

⎛
⎜⎜⎝

ζ̃
(i)
1 (k)

ζ̃
(i)
2 (k)

ζ̃
(i)
3 (k)

ζ̃
(i)
4 (k)

⎞
⎟⎟⎠, (A15)

where ζ̃
(i)(k) and λi(k), respectively, are the ith eigenvector

and eigenvalue (i = 1, 2, 3, 4). At zero shear rate, the eigen-
value problem in Eq. (A15) reduces to the diagonalization of
the matrix −ikB + k2C, which can be solved exactly. How-
ever, for a finite shear rate, the longitudinal and transverse
waves obtained at zero shear rate are strongly coupled and,
as a result, the eigenvalue problem in Eq. (A15) is difficult
to solve exactly. Therefore, we use the perturbation expansion
with respect to the wave vector k:⎛

⎜⎜⎝
ζ̃

(i)
1 (k)

ζ̃
(i)
2 (k)

ζ̃
(i)
3 (k)

ζ̃
(i)
4 (k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ζ̃
(i),0
1 (k)

ζ̃
(i),0
2 (k)

ζ̃
(i),0
3 (k)

ζ̃
(i),0
4 (k)

⎞
⎟⎟⎠ + k

⎛
⎜⎜⎝

ζ̃
(i),1
1 (k)

ζ̃
(i),1
2 (k)

ζ̃
(i),1
3 (k)

ζ̃
(i),1
4 (k)

⎞
⎟⎟⎠ + · · · , (A16)

λi(k) = kλ0
i (k) + k2λ1

i (k) + · · · , (A17)
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and calculate the solution to O(k2). This approximation is
the second one that is used to obtain Eqs. (13) and (14).
The calculation of the perturbation expansion is lengthy but
straightforward, and so the detailed steps are omitted in this
paper.

The solution of Eq. (A8) is written using the eigenvector as⎛
⎜⎜⎝

ξ̃1

ξ̃2

ξ̃3

ξ̃4

⎞
⎟⎟⎠ =

4∑
i=1

a(i)(k, t )

⎛
⎜⎜⎝

ζ̃
(i)
1 (k)

ζ̃
(i)
2 (k)

ζ̃
(i)
3 (k)

ζ̃
(i)
4 (k)

⎞
⎟⎟⎠, (A18)

and a(i)(k, t ) is given as the solution of the following equation(
∂

∂t
− γ̇ kx

∂

∂kz
+ λi(k)

)
a(i)(k, t ) = 0. (A19)

We can solve Eq. (A19) without any approximations to obtain
the integral expression for a(i)(k, t )

a(i)(k, t ) = a(i)
(
k(−t ), 0

)
exp

(
−

∫ t

0
dsλi

(
k(−s)

))
, (A20)

where k(−t ) = (kx, ky, kz + γ̇ tkx ).
For ky = kz = 0, which is discussed in the main text, the

vector {ê(a)(k)}a=1,2,3 can be simplified as ê(1)(k) = (1, 0, 0),
ê(2)(k) = (0, 0, 1), and ê(3)(k) = (0,−1, 0). Then, we have
expressions for Cxx(kx ) and Czz(kx ) in terms of ξ̃

(i)
(k):〈

ξ̃2(kx )ξ̃2(k′
x )

〉 = Cxx(kx )δ(kx + k′
x ), (A21)〈

ξ̃3(kx )ξ̃3(k′
x )

〉 = Czz(kx )δ(kx + k′
x ). (A22)

Thus, Eqs. (13) and (14) are obtained by using Eqs. (A18) and
(A20) and substituting the explicit forms of the eigenvector
and eigenvalue to O(k2).

APPENDIX B: MEASUREMENT OF VISCOSITY

There are two viscosities, η0 and ζ0, in the fluctuating
hydrodynamic equation. We use the Green–Kubo formula
to measure them in the MD simulations [63,64]. The
Green–Kubo formula provides the microscopic expression of
the transport coefficient, and is a useful tool for computing the
transport coefficient in the MD simulations.

The Green–Kubo formula for the viscosity is given by [65]:

η0 = V

3kBT

∑
αβ

∫ ∞

0
dt〈P̂αβ (t )P̂αβ (0)〉, (B1)

ζ0 = V

kBT

∫ ∞

0
dt〈δP̂(t )δP̂(0)〉, (B2)

where P̂αβ (t ) is the microscopic expression of total stress
tensor

P̂αβ (t ) = 1

V

(
N∑

i=1

piα piβ

m
+

N∑
i=1

∑
j>i

(riα − r jα ) fi j,β

)
, (B3)

and δP̂(t ) = 1
3

∑
α P̂αα (t ) − 〈 1

3

∑
α P̂αα (t )〉. The summation

in the expression for η0 is taken over the off-diagonal
elements.
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t
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FIG. 8. Time integral of equilibrium time correlation as a func-
tion of t . Red: ζ0(t ). Blue: η0(t ). The setup and parameters are the
same as in the main text, but the system size is fixed to Lx = Ly =
Lz = 64.

Figure 8 displays the time integral of the equilibrium time
correlation function

η0(t ) = V

3kBT

∑
αβ

∫ t

0
ds〈P̂αβ (s)P̂αβ (0)〉, (B4)

ζ0(t ) = V

kBT

∫ t

0
ds〈δP̂(s)δP̂(0)〉 (B5)

for Lx = Ly = Lz = 64. The setup and parameters of the MD
simulation are the same as in the main text. We take an ensem-
ble average over 16 noise realizations and a time average over
10 000. This figure indicates the existence of a plateau region
of the time integral. We adopt the plateau value as the values
of η0 and ζ0.

APPENDIX C: MEASUREMENT OF RELAXATION TIME

In the MD simulations, all observations are taken in the
nonequilibrium steady state. This state is prepared by a relax-
ation run lasting about 3–10 times longer than the relaxation
time. Here, we explain how to estimate the relaxation time.

Because the slow variables of our system are the density
and momentum, it is reasonable to assume that the relaxation
time can be estimated from the relaxation process of the
velocity field. Thus, we prepare the initial state in which the
particles are randomly located with zero overlaps and their
velocities are given according to the uniform distribution with
a temperature of T = 1.0. We run the simulation under the
Lees–Edwards boundary condition. The left-hand panel of
Fig. 9 displays the typical relaxation process of the veloc-
ity profile vx(z) for Lx = 1024, Ly = 32, Lz = 512, and γ̇ =
0.02. The velocity field relaxes to Eq. (25) after a sufficiently
long time.

The gradient of the velocity profile γ̇obs(t ) at z = 0 (the
farthest position from the boundaries) is presented in the right-
hand panel of Fig. 9. From this figure, we find that γ̇obs(t )
decays to the target shear rate γ̇target = 0.02 in the exponential
form

γ̇obs(t ) = γ̇target + Ag exp(−t/τrelax ), (C1)
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FIG. 9. Relaxation process of velocity field for Lx = 1024, Ly = 32, Lz = 512, and γ̇ = 0.02. Left: Time evolution of velocity profile
vx (z). Right: log(γ̇obs(t ) − γ̇target ) vs t .

where τrelax is the relaxation time of the velocity field. The
red line in the right-hand panel of Fig. 9 represents the fitting

result using Eq. (C1). In this case, the relaxation time τrelax is
estimated as τrelax = 3265.
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