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Epidemic models are crucial to understand how an infectious disease spreads in a population and to devise the
best containment strategies. Compartmental models can provide a fine-grained description of the evolution of an
epidemic when microscopic information on the network of contacts among individuals is available. However,
coarser-grained descriptions prove also to be useful in many aspects. They allow to derive closed expressions
for key parameters, such as the basic reproduction number, to understand the relationship between the model
parameters, and also to derive fast and reliable predictions of macroscopic observables for a disease outbreak.
The so-called population models can be developed at different levels of coarse-graining, so it is crucial to
determine: (i) to which extent and how the existing correlations in the contact network have to be included in
these models and (ii) what is their impact on the model ability to reproduce and predict the time evolution of the
populations at the various stage of the disease. In this work, we address these questions through a systematic anal-
ysis of two discrete-time SEAIR (susceptible-exposed-asymptomatic-infected-recovered) population models: the
first one developed assuming statistical independence at the level of individuals, and the other one assuming
independence at the level of pairs. We provide a detailed derivation and analysis of both models, focusing on
their capability to reproduce an epidemic process on different synthetic networks, and then comparing their
predictions under scenarios of increasing complexity. We find that, although both models can fit the time
evolution of the compartment populations obtained through microscopic simulations, the epidemic parameters
adopted by the individual-based model for this purpose may significantly differ from those of the microscopic
simulations. However, pair-based model provides not only more reliable predictions of the dynamical evolution
of the variables but also a good estimation of the epidemic parameters. The difference between the two models is
even more evident in the particularly challenging scenario when one or more variables are not measurable, and
therefore are not available for model tuning. This occurs for instance with asymptomatic infectious individuals
in the case of COVID-19, an issue that has become extremely relevant during the recent pandemic. Under these
conditions, the pairwise model again proves to perform much better than the individual-based representation,
provided that it is fed with adequate information which, for instance, to be collected, may require a more detailed
contact tracing. Overall, our results thus hallmark the importance of acquiring the proper empirical data to fully
unfold the potentialities of models incorporating more sophisticated assumptions on the correlations among
nodes in the contact network.

DOI: 10.1103/PhysRevResearch.4.023145

I. INTRODUCTION

The last decades have witnessed the emergence of new
infectious diseases and the resurgence of old ones [1–3].
Examples include the outbreak of Ebola in West Africa [4],
the epidemic of Zika virus in North and South America [5],
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and the global spreading of respiratory diseases such as in-
fluenza A(H1N1) [6] and, more recently, COVID-19 [7,8],
all of which have risen international public health concern. In
this context, mathematical modeling of disease spreading has
played a fundamental role in the understanding, control and
prevention of epidemic outbreaks, guiding the policy-making
processes through quantitative analyses [9–11]. As the spread-
ing of an infectious disease within a population is heavily
affected by the precise patterns of contacts among individ-
uals and by their mobility habits, complex networks, which
allow to represent the intricate structure of human interactions
[12–14], are a fundamental tool for analyzing the dynam-
ics of an epidemic. A variety of techniques exists to model
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the dynamics of a disease spreading on a network [10,11],
ranging from macroscopic compartmental models based on
ordinary differential equations [15,16], to more sophisticated
data-driven agent-based microscopic simulations [17–19] and
metapopulation structured models [20,21]. In particular, de-
terministic representations of compartmental models can be
formulated, aiming at describing the epidemic process in
terms of the temporal evolution of the probabilities that a
node is in a given state. To this purpose, one can adopt ei-
ther a top-down approach, which consists in defining all the
possible configurations of the network and the mechanisms
ruling transitions from one network state to another, or a
bottom-up approach, focusing instead on the state of single
nodes [11]. The latter approach leads to a hierarchy of coupled
differential/master equations. Indeed, the dynamics of a node
typically depends on the state of the node itself and of its
neighbors, thus on the state of pairs of nodes, which in turns
depends on triples, in a hierarchy of dynamical correlations
and dependencies.

Such hierarchies are very common in kinetic and statis-
tical physics. For example, the classical derivation of the
Boltzmann equation of rarefied gas dynamics is based on
the so-called BBGKY hierarchy, formally obtained by the
integration of the Liouville equation of a system of N particles
undergoing binary collisions: the evolution equation for the k-
particle distribution function depends on the (k + 1)-particle
distribution function [22]. As another example, in extended
thermodynamics, the evolution equations of moments of order
k of the distribution function depend on the moments of order
k + 1 [23]. In all cases, to be of practical use the hierarchies
have to be truncated by introducing some approximation.
For instance, in the case of the Boltzmann equation, the hi-
erarchy is closed at the level of single-particle distribution
function by the so-called Stosszahlansatz and propagation
of chaos, while in extended thermodynamics, the closure is
usually based on the so-called maximum entropy principle
[22,23].

In the context of mathematical epidemiology, similar
bottom-up approaches have been adopted to develop individ-
ual and pair-based continuous-time models on networks, and
applied, for instance, to the SIS and to the SIR processes in the
homogeneous [24,25] and heterogeneous [26–29] mean-field
approximation. Individual and pair-based approximations for
the SIR process have also been analyzed in the discrete-time
case where, unlike the standard continuous-time BBGKY-type
hierarchy, the master equations describing the dynamics of the
system are expressed in terms of joint probabilities, whose or-
der is governed by the network structure itself via the degrees
of individual nodes [30], thus resulting in a richer although
more complicated mathematical structure. A relevant question
concerning these kinds of hierarchies is at which order one
needs to truncate them in order to get accurate predictions
about an epidemic process. Indeed, while it has been shown
how to close the system of equations at various orders [11,31],
it is less clear how the chosen approximation affects the fea-
tures of the model, and, more specifically, its ability to forecast
the dynamical evolution of the state variables. In particu-
lar, a systematic analysis of the reliability of the predictions
obtained by different hierarchy closures and under different
hypotheses on the quantity and quality of available data, is still

lacking. Indeed, the problem of data availability is of utmost
importance in the context of the COVID-19 pandemic, where
the epidemic process has been proven difficult to characterize
and the mechanisms at work have not yet been fully unveiled
[32–34].

In this paper, we address the issues above focusing
on the SEAIR model, a compartmental model with five
compartments. This is a generalization of the SIR model
accounting for two critical features of infectious diseases
such as the COVID-19, namely, the existence of a latency
period and the presence of asymptomatic carriers. While
being rather simple, the SEAIR model allows to study the
crucial case of two infectious population, namely, the symp-
tomatic and the asymptomatic, with the latter that, given
the difficulties in its measurement, had a significant role
in the COVID-19 pandemic [8,35–37]. In more detail, first
we derive the discrete-time master equations for the SEAIR
model with two different orders of approximation, closing
the system both at the level of individuals (individual-based
population models) and at the level of pairs (pair-based
population models), and deriving the corresponding set of
master equations. Notice that these models are also referred
to as first- and second-order approximations [38]. We then
compare these two approximations, analyzing to which ex-
tent they can capture the temporal evolution of the SEAIR
epidemic process. To do so, we consider scenarios of in-
creasing complexity, with the hypotheses on the amount of
available data gradually becoming more strict from case to
case.

The paper is organized as follows. First, we describe the
microscopic mechanisms underlying the epidemic process
and discuss the mathematical modeling approaches to de-
scribe it in Sec. II. We then derive an individual-based and a
pair-based version of the SEAIR model in Sec. III. Assuming
to know the epidemiological characteristics, in Sec. IV, we
compare the ability of the models in reproducing the dynamics
of an outbreak. In Sec. V, we analyze the predictive capability
of the models when parts of the information on the epidemic
are not available. Finally, we summarize and discuss the main
findings of the work in Sec. VI

II. MODELING AN EPIDEMIC PROCESS

In compartmental models, the population is partitioned
into several states, namely, the compartments, representing
the different stages of the disease course. For instance, in
the SIR model, which is one of the simplest compartmental
models, an individual can either be susceptible (S), infected
(I), or recovered/removed (R). To model the spreading of a
disease within a population, the most important step is to char-
acterize the processes governing the transitions of individuals
from one disease stage, to another, i.e., from a compartment
to another [10]. In the SIR model, the contagion is defined
by two fundamental mechanisms. First, we have a two-body
nonlinear process, representing the infection of a susceptible
individual (S) by an infected one (I), which acts as a mediator
of the transition. Second, we have a one-body linear process,
describing the recovery (R) of an infected individual (I). The
transitions from one compartment to another can be formally
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expressed with the following kinetic equations

S + I
β→ I + I,

I
μ→ R,

(1)

where β and μ represent, in the case of a continuous-time
model, the transition rates for the infection and recovery pro-
cesses, while they can be interpreted as transition probabilities
in the case of a discrete-time model. These are two tunable
control parameters of the model, which can be fixed based on
the previous knowledge we have of the disease under study.
For instance, the parameter regulating the recovery process,
i.e., μ, can be set from the knowledge of the typical infectious
period of the disease, i.e., the average time during which an
individual remains infectious before recovering. In a discrete-
time model, μ represents the probability that an infected
individual recovers in a time unit �t , typically one day. The
expected number of time units for recovery is therefore 1/μ.
The infectious period for influenza, for example, commonly
lasts about 2–8 days, while, for smallpox, it can last over
20 days [39], resulting in a smaller value of μ for smallpox,
compared to the value characterizing influenza.

From compartmental models, the basic reproduction num-
ber R0 of an infectious disease [40] can be evaluated. This
parameter, which represents the average number of secondary
infections produced by an infectious individual at an early
stage of an epidemic, is of utmost relevance in mathematical
biology, as it determines whether an infection can spread
across the population. Quantitatively, when R0 < 1, i.e., when
the number of new infections per infectious individual is less
than one, the infection is not able to spread. Otherwise, when
R0 > 1, an epidemic outbreak can occur [41]. In the simple
case of the SIR model, R0 is given by the ratio between the
infection and the recovery rates/probabilities, i.e., R0 = β/μ.

In this paper, we consider a compartmental model with five
compartments, in which, at any time, an individual can be
either susceptible (S), exposed to the disease but still unable
to spread it (E), asymptomatic infectious (A), symptomatic
infectious (I), or recovered/removed (R). We refer to this
compartmental model as the SEAIR model [42,43]. A com-
mon approach is to consider a Poisson process framework, in
which events, such as infections and spontaneous transitions,
can occur at any time with a certain rate. With this approach,
the evolution of the expected value of the variables is governed
by a set of ordinary differential equations in continuous time
[11]. In alternative, one can describe the evolution of the sys-
tem at discrete times, which is the approach we adopt in this
paper. The development of such discrete-time model is im-
portant for at least three reasons. First, as we will show later,
the discrete-time approach allows to describe the evolution
of the epidemics as a Markov chain with particularly elegant
expressions for the transition probabilities related to multino-
mial distributions, which are derived for the first time in the
case of second order models. Second, as a large variety of
discrete-time stochastic epidemic models has been proposed
in recent years [42,44,45], the derivation of the corresponding
discrete-time mean-field approaches [30] is fundamental to
complement the stochastic numerical simulations considered
in those papers. Finally, as empirical data are usually provided
at discrete sample times, building up epidemic models with

FIG. 1. Graphical representation of the SEAIR model considered
in this work. The model has five compartments, representing the
susceptible (S), exposed (E), asymptomatic infectious (A), symp-
tomatic infectious (I), and recovered/removed (R) state. Allowed
transitions from one state to another are indicated by arrows, so that
the flow diagram of the model can be represented as a directed graph
with an associated adjacency matrix AI (see Sec. III B). Transition
probabilities are governed by the six parameters reported close to
the arrows and in Eq. (2). Edges in black represent linear transitions
between states, while the edge in red refers to the nonlinear one.

the same sampling time provides a natural framework for a
direct comparison with these data.

The SEAIR model is a generalization of the SIR model,
as it incorporates two additional states, i.e., the E and A
compartments, which describe two essential aspects of several
infectious diseases, namely, the existence of a latency period
and the presence of asymptomatic carriers [46]. In particular,
the presence of infectious individuals with no symptoms of
the disease (state A) may play a critical role in an epidemic
outbreak, as it has been observed, for instance, in the recent
COVID-19 pandemic [8,35–37]. In the SEAIR model, the
progress of an individual through the disease stages is deter-
mined by the following kinetic equations:

S + A
βA→ E + A,

S + I
βI→ E + I,

E
αEA→ A,

A
αAI→ I,

A
μA→ R,

I
μI→ R. (2)

that are graphically illustrated in the flow diagram of Fig. 1. At
variance with the SIR model, the SEAIR model accounts for
two different types of infection mechanisms, as a susceptible
individual (in state S) may be infected upon a contact with
either an asymptomatic (in state A) or a symptomatic (in state
I) infectious individual. These processes are described by the
first two kinetic equations, and are governed by two infection
probabilities, βA and βI respectively, which may take different
values.

These probabilities depend on several factors. For rela-
tively short time step �t of the discrete-time model, we can
imagine that the probability βA that a susceptible individual
gets infected by an asymptomatic one in such a time step can
be expressed as βA = νA × pA × �t , where νA represents the
rate of encounters of an asymptomatic individual with other
individuals, and pA the probability that one such encounter
transmits the infection. The contact frequency depends on the
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awareness of the health condition: susceptible individuals tend
to avoid contacts with symptomatic people more than with
other susceptible or asymptomatic individuals. Furthermore,
the probability that one encounter transmits the infection,
pA, depends both on the intrinsic transmissibility of the dis-
ease, and on the preventive measures adopted, such as social
distancing, use of masks and disinfectant, and so on.1 For
example, in the case of COVID-19, it has been shown that the
absence of symptoms, such as coughing and sneezing, applies
a smaller a-priori transmissibility of the disease, and therefore
a small value of pA. It is therefore reasonable to assume
βA < βI [47,48]. However, as asymptomatic individuals can
be unaware about their condition, there are high chances that
they will maintain their habitual social behavior. Therefore,
as asymptomatic individuals can spread the virus without
knowing it, they constitute an important public-health risk.
Indeed, it is reasonable to consider βA > βI , assuming that
there is a higher chance of dangerous contacts with subjects
with no symptoms, thus incorporating such increased contact
rates in the value of the transmission probability pA, and con-
sequently on βA [49]. Hence, the possibility to tune separately
the values of the two parameters βI and βA, and to consider
both the regime with βA > βI and the one with βA < βI , is an
important aspect of the SEAIR model.

The other important feature, which makes the SEAIR
different from the SIR model, is the addition of the E com-
partment accounting for the presence of individuals exposed
to the disease but still unable to spread it. Notice, from the
flow diagram in Fig. 1, that in the SEIAR model the newly
infected individuals first move to the E state, meaning that
they are not immediately able to spread the disease. Before
becoming infectious, the exposed individuals undergo a la-
tency period, after which they are able to spread the disease as
asymptomatic carriers. The transition from E to A is governed
by the probability αEA, which is the parameter controlling the
average duration of the latency period τ = �t/αEA. Asymp-
tomatic individuals can eventually develop symptoms, and
this is taken into account by the transition from state A to
state I, which takes place with probability αAI . Subsequently,
the individuals recover, or are removed, either with or without
having previously shown symptoms, with two different prob-
abilities, μI and μA, respectively. In conclusion, the SEAIR
model is based on five compartments and is ruled by six
different tunable parameters βA, βI , αEA, αAI , μA, and μI .

As the disease can only spread through encounters be-
tween infectious and susceptible individuals, the progress of
an epidemic outbreak ultimately depends on the patterns of
contacts among the individuals themselves. These are strongly
ruled not only by social habits, but also by the geograph-
ical distributions of the individuals and by the way these
distributions change in time. Humans travel across a hierar-
chy of characteristic spatial scales, such as neighbourhoods,

1The number n = νA�t represents the average number of encoun-
ters. If pA is the probability of getting infected after one encounter,
so that the probability of not getting infected after one encounter
is 1 − pA, the probability of getting infected after n encounters is
1 − (1 − pA)n. We shall make frequent use of this formula in the
evaluation of the transition probabilities of our model.

cities and countries, so that their highly heterogeneous mo-
bility influences the way in which they interact [50–54].
Therefore a crucial aspect of any realistic modeling of epi-
demic spreading is how to model the contact patterns within
a population. Large-scale agent-based simulations [19] and
structured metapopulation models based on data-driven mo-
bility schemes at the interpopulation level [55] are usually
complemented by models amenable to mathematical analysis
[45] that capture the influence of human behavior and the ex-
istence of complex social structures. In this context, complex
networks [14] have revealed particularly useful as they allow
to represent the physical contact patterns that result from real
movements of individuals between specific locations [17],
and also to investigate in a controlled way how the social
structure of a population affects the evolution and outcome
of an epidemic.

Here, we will focus on network modeling of disease
spreading. Namely, we will implement the stochastic pro-
cesses that describe the infectious disease on an undirected
graph G = (V, E ), with N = |V| nodes and K = |E | links.
In the following, we will indicate as G = {gi j} (with gi j = 1
if node i and j are connected, while gi j = 0 otherwise) the
N × N adjacency matrix of such graph. In this framework,
each node i ∈ V of the graph represents an individual of the
population, and can be in one of the five different states
of SEAIR model. Each edge (i, j) ∈ E represents a contact
along which the infection can take place. Nodes change states
according to Eqs. (2), where the first two kinetic equations are
implemented over the links of the graph. Different graph
topologies will be studied in this article. For simplicity, how-
ever, the graphs considered here will always be fixed in time,
which means that the pattern of contacts is assumed not to
change during the evolution of the disease. This is, however,
a strong assumption, as humans tend to react to a disease by
avoiding contacts with infected individuals. This leads to a
rewiring of links depending on the states of the nodes that af-
fects the dynamics of the disease, which in turn influences the
rewiring process. Temporal networks and time-varying graphs
are an important subfield of network science [56–58], and
simple epidemic models, such as the SIS, have been studied
on temporal networks [59,60] and on adaptive networks, i.e.,
on networks whose structure is coevolving with the disease
[61]. Although the SEAIR model can be straightforwardly
implemented on a time-varying graph, this is beyond the scope
of this paper.

The dynamics of the disease spreading on a network can
be studied in several different ways [10,11]. Focusing on
probabilistic methods, one can decide to investigate a system
numerically, performing extensive stochastic simulations of
the epidemic process on the network, or, alternatively, one can
develop a deterministic representation of the process, writing
the evolution equations for the probability that the network is
in a given state. In general, the deterministic equations can be
derived at the level of each single node or at the population
(mean-field) level. The first approach requires to consider
a large number of evolution equations that can be imprac-
tical and computationally costly to integrate. Furthermore,
empirical data on both the contact network and the state of
the nodes may be limited or unavailable. For instance, the
information on the state of the individuals is usually provided
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at a coarser grain, i.e., at a population level [49,62]. Finally,
from a microscopic stochastic simulation on a large network,
it is more difficult to understand how the emerging collec-
tive behavior is related to the underlying parameters, which
could be better interpreted by a mesoscopic coarse-grained
modeling. For these reasons, it is common to assume that the
individuals are homogeneously mixed and interact with each
other completely at random. Under this hypothesis, each node
of the network can be considered statistically equivalent to any
other, which permits to describe the system at a population
level, drastically reducing the number of evolution equations.

In Sec. III, we develop two population-level models for the
contact-based SEAIR epidemic process described in Eqs. (2).
First, we assume statistical independence at the level of nodes,
deriving a model we refer to as the individual-based SEAIR
model. Next, we assume statistical independence at the level
of node pairs, crucially incorporating the dynamical corre-
lations within the network in a model we refer to as the
pair-based (or pairwise) SEAIR model.

III. POPULATION-LEVEL MODELS

To begin with, here we discuss the dynamical variables
characterizing the individual-based and the pairwise SEAIR
models. For the individual-based model, the description of the
system is carried out at the level of single individuals, i.e., the
nodes, while for the pairwise, one has to express the dynamics
at the level of pairs of individuals, i.e., the edges. Mathemati-
cally, this means to write a set of master equations governing
the temporal evolution of either the probability that a node
is in a given compartment, in the case of an individual-based
model, or the probability that an edge is in a certain state, in
the case of a pairwise model. Let us denote as � the set of
possible compartments, i.e., � = {S, E , A, I, R} in the SEAIR
model. Adopting a standard notation [11], we indicate as
〈Xi〉t the probability that a node i belongs to the compartment
X ∈ � at time t . For the sake of convenience, let us denote
as U the state of a node which is not infectious, namely, a
node that belongs to either S, E, or R. We denote with 〈Ui〉t

the probability that a node i is the state U at time t . Such a
probability can be evaluated as 〈Ui〉t = 〈Si〉t + 〈Ei〉t + 〈Ri〉t .
Under the homogeneous mixing hypothesis, each node of the
network is assumed to be statistically equivalent to any other,
meaning that 〈Xi〉t = 〈Xj〉t for i, j = 1, . . . , N . Hence, for the
population level model, we can drop the node index, as we
have

〈Xi〉t = 〈X 〉t = [X ]t

N
, ∀i = 1, . . . , N, ∀X ∈ �, (3)

where [X ]t represents the expected number of individuals
in the compartment X at time t , and N is the number of
individuals in the population. Here, 〈X 〉t is the probability
that a generic node of the network is found in the state X
at time t , and represents the fundamental variable of the
individual-based model. Analogously, the probability that a
generic node is in a noninfectious state U at time t is 〈U 〉t =
〈S〉t + 〈E〉t + 〈R〉t .

Similarly, we denote as 〈XiYj〉 the probability that the edge
(i, j) is in state (Xi,Yj ). Again, in a mean-field approximation,

we can drop the indices as we have

〈XiYj〉t = 〈XY 〉t = [XY ]t

2K
, ∀i, j = 1, . . . , N, X,Y ∈ �,

(4)
where [XY ]t represents the expected number of pairs in state
(X,Y ) at time t , K is the number of edges in the network,
and 〈XY 〉t represents the probability that a generic link of the
network is found in the state (X,Y ) at time t . The quantities
〈XY 〉t , with X,Y ∈ �, will be the fundamental variables of
the pair-based model. Note that from Eq. (4) it follows that
〈XY 〉t = 〈Y X 〉t . The individual (node) state probabilities in
any compartment, 〈X 〉t , can be obtained as the marginal prob-
abilities of the pair (edge) state probabilities as

〈X 〉t =
∑
Y ∈�

〈XY 〉t . (5)

In the most general case, the notation 〈Xi1Yi2 . . . Zin〉t de-
notes the probability that a given connected subgraph induced
by nodes i1, i2, . . . , in is found in the state (Xi1Yi2 . . . Zin ) at
time t . Once again, under the homogeneous mixing hypothe-
sis, we can write such a quantity as 〈XY . . . Z〉t .

Now, in order to develop an individual-based model for
the SEAIR dynamics, one has to write a set of equations de-
scribing how the individual state probabilities 〈X 〉t in Eq. (3)
evolve in time. To do so, however, it is necessary to intro-
duce an hypothesis of statistical independence at the level
of the individuals. Indeed, the infection processes described
in Eqs. (2) require to consider the joint probability that an
individual is susceptible and that one of its contacts in the
network is infectious, either asymptomatic or symptomatic,
i.e., the probabilities 〈SA〉t and 〈SI〉t , respectively. Therefore,
to write a set of equations involving only the individual state
probabilities, i.e., a closed-form expression, one has to express
these higher-order probabilities in terms of the quantities 〈X 〉t .
Mathematically, this is done by assuming statistical indepen-
dence at the level of the nodes, i.e., writing 〈XY 〉t ≈ 〈X 〉t 〈Y 〉t .
However, this assumption overlooks the impact of dynamical
correlations that indeed exist within the contact network, e.g.,
infected nodes are more likely to be in contact with other
infected nodes [11].

To take these correlations into account, one can develop
a pair-based model of the SEAIR dynamics, describing how
the pair state probabilities in Eq. (4) evolve in time [10]. As
we will see thereafter, even the pairwise model will require to
express some high-order joint probabilities in terms of lower-
order probabilities, in this case 〈X 〉t and 〈XY 〉t .

In the rest of this section, we formulate the master equa-
tions for both the individual-based and the pairwise models,
and discuss under which hypotheses a closed set of equa-
tions can be obtained.

A. Individual-based SEAIR model

Here we derive the individual-based population-level
model of the SEAIR epidemic process. As previously dis-
cussed, under the hypothesis of homogeneous mixing, we can
write a set of evolution equations at the population level for
the probability 〈X 〉t that a generic node in the network belongs
to a given compartment X at time t . Following the transition
diagram in Fig. 1, we can write the master equations (also
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known as rate equations) of the system as

〈S〉t+1 = 〈S〉t − �S→E ,

〈E〉t+1 = 〈E〉t + �S→E − �E→A,

〈A〉t+1 = 〈A〉t + �E→A − �A→I − �A→R, (6)

〈I〉t+1 = 〈I〉t + �A→I − �I→R,

〈R〉t+1 = 〈R〉t + �I→R + �A→R,

where the term �X→Y denotes the probability that at a generic
node there is a transition from state X at time t to state Y at
time t + 1.

As we have seen, in the epidemic process defined by the
kinetic equations (2), we identify two classes of transitions.
On the one hand, we have the class of two-body nonlinear
processes, for which the transition of a given node from one
compartment to another needs to be mediated by the interac-
tions with other nodes, as the node can only be infected by
one of its neighbors. On the other hand, we have the class
of one-body linear processes, for which the transitions of an
individual from a state to another does not depend on the
state of its contacts. Consistently, we distinguish two kinds
of transition probabilities, with the one-body processes being
described by linear probability terms, whereas the two-body
processes give rise to nonlinear terms.

Let us first consider an example of linear transition. The
probability of moving from state I to state R, which corre-
sponds to the recovery process of a symptomatic individual,
can be written as

�I→R = 〈I〉tμI , (7)

where μI represents the recovery probability for the symp-
tomatic individuals. As the recovery of a symptomatic
individual does not depend on the state of the other indi-
viduals, the transition probability is only determined by the
probability of being in state I at time t , i.e., the term is linear
in 〈I〉t . Similarly, we can write the remaining linear transition
probabilities as

�E→A = 〈E〉tαEA,

�A→I = 〈A〉tαAI , (8)

�A→R = 〈A〉tμA,

where αEA, αAI , and μA represent the probability that an indi-
vidual becomes infectious, develops symptoms and recovers
while asymptomatic, respectively.

As an example of nonlinear term, let us now consider the
transition probability regulating the infection of a susceptible
individual, i.e., the probability �S→E . At variance with the
recovery processes, an infection can only occur if a suscepti-
ble individual interacts with an infectious one. In other words,
the transition probability of a node from state S to state E
depends on the state of its nearest neighbors. Therefore, in
order to express this term at a population level, we should first
develop a node-level description, and thereafter introduce the
homogeneous mixing hypothesis. To do this, let us denote the
probability that a node i moves from state S to state E at time t
as �Si→Ei . If we consider the simple case of a node i of degree
ki = 1, i.e., connected to only one other node, say j, we can

S

I
A

I

A

U

U

FIG. 2. Graphical representation of a node i with its k neighbors.
Here, nA indicates the number of neighbors of i in state A, and,
similarly, nI those in state I.

write the transition probability as

�Si→Ei = 〈SiIj〉tβI + 〈SiA j〉tβA. (9)

In the case where ki = 2, we have instead

�Si→Ei = 〈SiIj1Uj2〉t [1 − (1 − βI )]

+ 〈SiUj1 I j2〉t [1 − (1 − βI )]

+ 〈SiIj1 I j2〉t [1 − (1 − βI )2]

+ 〈SiA j1Uj2〉t [1 − (1 − βA)]

+ 〈SiUj1 Aj2〉t [1 − (1 − βA)] (10)

+ 〈SiA j1 Aj2〉t [1 − (1 − βA)2]

+ 〈SiIj1 Aj2〉t [1 − (1 − βI )(1 − βA)]

+ 〈SiA j1 I j2〉t [1 − (1 − βI )(1 − βA)].

In the general case when node i is connected to k other
nodes, i.e., ki = k, as shown in Fig. 2, we can write the
transition probability as

�Si→Ei =〈SiIj1Uj2 . . .Ujk 〉t [1 − (1 − βI )]

+ 〈SiUj1 I j2 . . .Ujk 〉t [1 − (1 − βI )]

+ . . .

+ 〈SiUj1Uj2 . . . I jk 〉t [1 − (1 − βI )]

+ 〈SiA j1Uj2 . . .Ujk 〉t [1 − (1 − βA)]

+ . . .

+ 〈SiUj1Uj2 . . . Ajk 〉t [1 − (1 − βA)] (11)

+ 〈SiIj1 I j2 . . .Ujk 〉t [1 − (1 − βI )2]

+ . . .

+ 〈SiIj1Uj2 . . . I jk 〉t [1 − (1 − βI )2]

+ 〈SiIj1 Aj2 . . .Ujk 〉t [1 − (1 − βI )(1 − βA)]

+ . . .

+ 〈SiA j1 Aj2 . . . Ajk 〉t [1 − (1 − βA)k],

023145-6



INDIVIDUAL- AND PAIR-BASED MODELS OF EPIDEMIC … PHYSICAL REVIEW RESEARCH 4, 023145 (2022)

where βA and βI are the infection probabilities for the asymp-
tomatic and symptomatic, respectively. Each term on the
right-hand side is the product of two terms, namely, the joint
probability that node i belongs to the state S and its neigh-
borhood is in a certain state, multiplied by the conditional
probability that i gets infected over the next time step, given
that particular state of its neighborhood.

Now, going back to Eqs. (6), we note that they are exact
but not closed, because Eq. (11) involves the joint probability
of the (k + 1)-uple formed by the node and its k neigh-
bors. Indeed, the evolution of such joint probability, in turn,
would depend on the joint probability of larger set of nodes,
giving rise to a hierarchy of coupled equations of increasing
complexity. As mentioned in the Introduction, this type of
hierarchies are very common in statistical physics. Examples
are the BBGKY hierarchy in kinetic theory [22], and the
moment hierarchy in extended thermodynamics [23]. As it
would be unpractical or even impossible to deal with the full
hierarchy of evolution equations, it is common to close the
system by expressing the higher-order joint probabilities in
terms of lower-order ones. In the context of epidemic models,
various closure methods have been adopted to develop indi-
vidual and pair based models of continuous-time stochastic
systems, both in the homogeneous and heterogeneous mean
field approximation [11,24,29].

In this section, we close the system of equations (6) at the
level of individual nodes by assuming statistical independence
of their states. Under this hypothesis, we can approximate the
(k + 1)-body joint probabilities as

〈SiXj1Yj2 . . . Zjk 〉t ≈ 〈Si〉t 〈Xj1〉t 〈Yj2〉t . . . 〈Zjk 〉t . (12)

Given the expressions in Eq. (12) we can rewrite the joint
probability terms appearing in Eq. (11). Then, by considering
the individuals within the populations to be homogeneously
mixed and by assuming that the number of contacts of each
node is fixed and equal to k (i.e., ki = k ∀i), after some algebra
(see Appendix A for details), we can express the population-
level transition probability from state S to state E as

�S→E ≈ 〈S〉t [1 − (1 − βA〈A〉t − βI〈I〉t )
k]. (13)

To summarize, a closed-form, individual-based population-
level SEAIR model is obtained by replacing in Eq. (6) the
transition term �S→E as in Eq. (13), and the linear transition
probabilities given by Eqs. (7) and (8).

To conclude, hereafter we report the value of the basic
reproduction number, i.e., R0, which permits to determine
whether the infectious disease is able to spread across the pop-
ulation. We compute it by using the next-generation matrix
(NGM) approach [40,63], developed for discrete-time epi-
demic models [64] (more details on the method are reported
in Appendix D). We have

R0 = k(αAIβI + μIβA)

μI (αAI + μA)
. (14)

B. Pair-based SEAIR model

At variance with the individual-based model of Sec. III A,
for which we have obtained the master equations for the
individual probabilities 〈X 〉t , in order to derive a pair-based
(or pairwise) population-level SEAIR model, we need to write

down a closed set of equations describing the temporal evolu-
tion of the pair probabilities 〈XY 〉t . To do so, we first need
to list all the possible transitions that may occur among the
pair states. This conceptual step is not straightforward, as the
number of ways in which a pair can move from one state to
another according to Eqs. (2) is considerably larger than in
the case of individual transitions. For instance, a pair in state
(S, S) can progress either to one of the states (S, E ) or (E , S),
when only one node of the pair is infected, or to the state
(E , E ), when both nodes are infected at the same time. Let
us come back for a moment to the diagram of the individual
transitions shown in Fig. 1. We can interpret the flow diagram
as a directed graph and associate to it an adjacency matrix AI .
If we label the model compartments such that S is indexed
by 1, E by 2, and so on, then we have that (AI )nm = 1 (with
n, m = 1, . . . , 5) if there is a transition from compartment m
to compartment n, and (AI )nm = 0 otherwise. Note that, for
any n, (AI )nn = 1, as an individual in state n can remain
in it, although, for the sake of clarity, the self-loops are not
represented in Fig. 1. Therefore the adjacency matrix AI cor-
responding to the diagram in Fig. 1 is given by

AI =

⎛
⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎠.

Analogously, the flow diagram at the level of pair transitions
can be represented by an adjacency matrix AP. Remarkably,
since the transition of a pair from a state to another is deter-
mined by the progress of an individual from a compartment to
another, we can evaluate the matrix AP from the matrix AI as

AP = AI ⊗ AI ,

FIG. 3. Graphical representation of the twenty-five different pair
states (i.e., states of pairs of node) of the pairwise SEAIR model, and
of all the possible transitions from one state to another described by
a directed flow graph with an associated adjacency matrix AP. Edges
in black represent linear transitions between states, while edges in
red refer to nonlinear ones.
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where the symbol ⊗ denotes the matrix direct product (also
known as Kronecker product). In components, matrix AP is
given as

(AP )(i,	),( j,m) = (AI )i, j (AI )	,m

which means that there is a link from pair (i, 	) to pair ( j, m)
in the pairwise graph if and only if there exist both edges (i, j)

and (	, m) in the individual graph. The set of all the possi-
ble (twenty-five) different pair states in the pairwise SEAIR
model is shown in Fig. 3, together with the flow diagram
associated to the adjacency matrix AP. Again, as in Fig. 1,
self-loops are not displayed. Finally, from this diagram, we
can write the master equations for the pairwise SEAIR model
as

〈SS〉t+1 = 〈SS〉t − 2�SS→SE − �SS→EE ,

〈SE〉t+1 = 〈SE〉t + �SS→SE − �SE→SA − �SE→EA − �SE→EE ,

〈SA〉t+1 = 〈SA〉t + �SE→SA − �SA→EA − �SA→ER − �SA→SR − �SA→EI − �SA→SI ,

〈SI〉t+1 = 〈SI〉t + �SA→SI − �SI→SR − �SI→EI − �SI→ER,

〈SR〉t+1 = 〈SR〉t + �SA→SR + �SI→SR − �SR→ER,

〈EE〉t+1 = 〈EE〉t + �SS→EE + 2�SE→EE − 2�EE→EA − �EE→AA,

〈EA〉t+1 = 〈EA〉t + �SE→EA + �EE→EA + �SA→EA − �EA→AA − �EA→AI − �EA→AR − �EA→ER − �EA→EI , (15)

〈EI〉t+1 = 〈EI〉t + �SA→EI + �SI→EI + �EA→EI − �EI→AI − �EI→ER − �EI→AR,

〈ER〉t+1 = 〈ER〉t + �SI→ER + �EA→ER + �SA→ER + �SR→ER + �EI→ER − �ER→AR,

〈AA〉t+1 = 〈AA〉t + 2�EA→AA + �EE→AA − �AA→II − 2�AA→IR − 2�AA→AI − 2�AA→AR − �AA→RR,

〈AI〉t+1 = 〈AI〉t + �AA→AI + �EA→AI + �EI→AI − �AI→IR − �AI→RR − �AI→AR − �AI→II ,

〈AR〉t+1 = 〈AR〉t + �AI→AR + �ER→AR + �EA→AR + �AA→AR + �EI→AR − �AR→IR − �AR→RR,

〈II〉t+1 = 〈II〉t + �AA→II + 2�AI→II − 2�II→IR − �II→RR,

〈IR〉t+1 = 〈IR〉t + �II→IR + �AA→IR + �AR→IR + �AI→IR − �IR→RR,

〈RR〉t+1 = 〈RR〉t + �II→RR + 2�IR→RR + �AA→RR + 2�AI→RR + 2�AR→RR,

where the term �XY →X ′Y ′ represents the transition probability
from the pair state (X,Y ) to the pair state (X ′,Y ′). Note that,
as 〈XY 〉t = 〈Y X 〉t , we have that �XY →X ′Y ′ = �Y X→Y ′X ′ . Due
to the symmetries in the pair states, the equations for the
states (X ′,Y ′) and (Y ′, X ′) are equivalent. For this reason,
we have only reported here the system of fifteen distinct
equations (over the total of twenty-five) needed to fully char-
acterize the system.

As for the individual-based model, we distinguish two
classes of transition probabilities, i.e., linear and nonlinear
ones. In particular, the class of nonlinear transition probabil-
ities consists of all the terms involving at least one node in
state S, as the probability of being infected (and consequently
the probability of remaining susceptible) depends on the state
of the nearest neighbors of the node.

Again, let us first consider the linear transition probabili-
ties. As an example we focus on the case of two symptomatic
infected individuals, one of which recovers while the other
remains infectious, i.e., on the transition from state (I, I ) to
state (I, R). The probability of such transition can be written
as

�II→IR = 〈II〉t (1 − μI )μI = �II→RI , (16)

where the term (1 − μI )μI considers the two independent pro-
cesses taking place in the pair transition, namely, the recovery
of the first node of the pair, occurring with probability μI , and

the persistence of the infection in the second, occurring with
probability (1 − μI ).

As an example of nonlinear transition probability, let us
consider the transition from state (S, E ) to state (E , A), i.e.,
the case of a susceptible node connected to an exposed one,
with the former that gets infected, while the latter becomes
asymptomatic infectious. Similarly to the individual-based
model formulation, as the infection of a susceptible node
depends on the state of its neighbors, we first need to develop
a node-level description of the process. Hence, let us denote
the susceptible node as i, the exposed node as j, and derive the
expression for the probability, �SiE j→EiA j , that the pair (i, j)
moves from state (Si, Ej ) to state (Ei, Aj ) at time t . We assume
that the nodes i and j are connected on the contact graph G,
i.e., according to the adjacency matrix G = {gi j}, and we con-
sider the subgraph induced by the pair (i, j). Such subgraph
consists of nodes i and j and of all their L neighbours. An
example in which node i is in state S, node j is in state E and
ki = k j = k is shown in Fig. 4.

The transition probability can be written as

�SiE j→EiA j

= 〈
SiE jIh1Uh2 . . .UhL

〉
t [1 − (1 − gih1βI )]αEA

+ 〈
SiE jUh1 Ih2 . . .UhL

〉
t [1 − (1 − gih2βI )]αEA

+ . . .
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FIG. 4. Graphical representation of the subgraph induced by a
link (i, j). Note that we are considering a configuration where each
of the two nodes has k neighbors and there are no triangular loops,
so that L = 2k − 2. Here, node i is in state S, node j is in state E ,
nA (mA) indicates the number of neighbors of i (of j) in state A, and,
similarly, nI (mI ) those in state I.

+ 〈
SiE jUh1Uh2 . . . IhL

〉
t [1 − (1 − gihL βI )]αEA

+ 〈
SiE jAh1Uh2 . . .UhL

〉
t [1 − (1 − gih1βA)]αEA

+ . . .

+ 〈
SiE jUh1Uh2 . . . AhL

〉
t [1 − (1 − gihL βA)]αEA (17)

+ 〈
SiE jIh1 Ih2 . . .UhL

〉
t [1 − (1 − gih1βI )(1 − gih2βI )]αEA

+ . . .

+ 〈
SiE jIh1Uh2 . . . IhL

〉
t [1 − (1 − gih1βI )(1 − gihL βI )]αEA

+ 〈
SiE jIh1 Ah2 . . .UhL

〉
t [1 − (1 − gih1βI )(1 − gih2βA)]αEA

+ . . .

+ 〈
SiE jAh1 Ah2 . . . AhL

〉
t

[
1 −

L∏
n=1

(1 − gihnβA)

]
αEA,

where h1, h2,..., hL label the L nodes in the neighborhood of
link (i, j).

Each term on the right-hand side of Eq. (17) is given
by the probability that the subgraph induced by (i, j) is in
a certain configuration, conditional to (i, j) being in state
(Si, Ej ), times a term which, in turn, is given by the product
of the probability that node i gets infected and the probability
that node j becomes infectious over the next time step. The
different terms in Eq. (17) take into account all the possible
different states of the neighbourhood of link (i, j). Similarly
to what observed in the individual-based model, given the
current form of the transition probability, also Eqs. (15) are
exact but not closed. This time, however, we close the system
equations at the level of links by assuming statistical inde-
pendence in the states of node pairs. In other words, to close
the system we need to find an approximating function F that
allows to write the higher-order joint probability as〈

SiE jXh1 . . .YhL−1 ZhL

〉
t ≈ F

(〈SiE j〉t , . . . ,
〈
YhL−1 ZhL

〉
t

)
. (18)

At variance with the individual-based model, for which the
expression of F is straightforward, several moment closures
exist for the pairwise model, whose quality depends on the
topology of the underlying contact network [65]. Here we
consider a closure which is accurate under the assumption
that the network contains no cycles of any order. Though this
assumption does not hold in real finite systems, the closure
above provides a valuable approximation for the analysis of
dynamical processes in large sparse networks (such as sparse
random regular graphs and Erdös-Rényi random graphs), in
which the number of cycles is negligibly small.

Taking into account these considerations, we now provide
an expression for F that holds when the subgraph Gi j =
(Vi j, Ei j ) induced by (i, j) is in the form shown in Fig. 4.
According to Ref. [30], for a configuration of two stars around
the link (i, j), the approximating function F can be written as

F
(〈SiE j〉t , . . . ,

〈
YhL−1 ZhL

〉
t

) =
∏

(n,m)∈Ei j
〈NnMm〉t

〈Si〉ki−1
t 〈Ej〉k j−1

t

, (19)

Note that the numerator consists in the product of the state
probabilities of each link in Ei j . Note also that 〈Si〉t and 〈Ej〉t

are the marginals probabilities evaluated from Eq. (5) and
that the closure in Eq. (19) is consistent with the marginal
probabilities it is constructed from, namely∑

Xh1 ,Yh2 ,...ZhL ∈� F
(〈SiE j〉t , . . . ,

〈
YhL−1 ZhL

〉
t

) = 〈SiE j〉t (20)

The joint probabilities in Eq. (17) can then be rewritten using
the expression of the approximating function in Eq. (19). We
can finally introduce the homogeneous mixing hypothesis to
formulate the master equations at the level of population,
which permits to drop the node indices in the probability
terms. Assuming each node to be connected to k neighbors,
after some manipulations (detailed in Appendix B), we can
write the transition probability �SE→EA as

�SE→EA ≈ 〈SE〉t

k−1∑
p=1

p∑
n=0

〈SA〉n
t 〈SI〉p−n

t 〈SU 〉k−1−p
t

〈S〉k−1
t

×
(

k − 1

p

)(
p

n

)
[1 − (1 − βA)n(1 − βI )p−n] (21)

×
k−1∑
q=0

q∑
m=0

〈EA〉m
t 〈EI〉q−m

t 〈EU 〉k−1−q
t

〈E〉k−1
t

(
k − 1

q

)(
q

m

)
αEA.

We note that in Eq. (21) one has to consider all the possible
configurations of the subgraph induced by the connected pair
in state (S, E ). Due to the presence of two types of infec-
tious populations, the probability of finding the subgraph in
a given configuration is characterized by two multinomial
distributions of the state probabilities 〈SX 〉t and 〈EY 〉t . This
is different from the simpler case with a single type of in-
fectious individuals only [30], in which the neighborhood
configuration is given by binomial probability distributions
(see Appendix B for further details).

Equation (21) can be further simplified, so to
write an expression which is similar to the one
obtained for the individual-based model, i.e., Eq. (13).
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We have

�SE→EA ≈ 〈SE〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]
× αEA. (22)

Note that as the transition of an individual from state E to state
A is independent on the state of the neighbors, the transition
probability does not depend on the state probabilities 〈EY 〉t

but on αEA only.
The other transition terms appearing in Eq. (15) are in

the form of Eq. (16), if linear, or of Eq. (22), if nonlinear,
and are derived following similar arguments. They are fully
reported in Appendix C. Equation (15) along with Eqs. (16)
and (C1)–(C10) represent a closed set of equations for the
pairwise population-level SEAIR model.

To conclude the section, as done for the individual-based
model, here we report the expression of the basic reproduction
number for the pairwise SEAIR model, evaluated through the
NGM approach (see Appendix D). In this case we have

R0 = (k − 1){αAIβI (1 − βA) + βA[1 − (1 − βI )(1 − μI )]}
[1 − (1 − βA)(1 − αAI − μA)][1 − (1 − βI )(1 − μI )]

.

(23)

IV. REPRODUCING THE EVOLUTION OF AN EPIDEMIC

The individual-based and the pairwise model provide an
approximate description of a disease spreading over a net-
work. Our goal is now to study to which extent, and under
which conditions, these approximate descriptions can capture
the time evolution of an epidemic outbreak. We will do this by
performing different types of test. In this section, we will first
concentrate on the simpler case in which the parameters that
regulate the disease spreading are known, while in the next
section we will consider the case in which such parameters
need to be extracted from the data.

Under the assumption that the model parameters are given,
we follow the time course of the disease using the different
models, starting from the same initial conditions, and com-
pare their capacity in predicting different aspects of a disease
outbreak, such as the time of the epidemic peak, its height,
and the final number of infected individuals. To illustrate the
results of our analysis, we study several synthetic networks.
In particular, we have taken into account three topologies,
namely, a random r-regular graph [14], an Erdös-Rényi (ER)
graph [66] and, lastly, a Barabási-Albert (BA) graph [67]
(the models and their relevant parameters are summarized in
Appendix E).

We start with random regular graphs that, for their char-
acteristics, are the network topologies that best match the
hypothesis under the derivation of the closure (19). Indeed,
in a random r-regular graph each node has the same degree,
equal to r, and the degree distribution is a Kronecker delta,
i.e., P(k) = δr,k . In addition, the expected number of triangles
is asymptotically equal to (r − 1)3/6 [68], therefore, their
effect is negligible in large networks.

To simulate the epidemic process on a network, we con-
sider, for each time step, the kinetic equations at the level
of single nodes. At each iteration we inspect all the nodes
in states E, A, and I. For each of them, we run a Bernoulli

process to determine whether the node transits to another state
or not. Additionally, for each of the nodes in states A or I we
consider each of their susceptible neighbors to determine if it
gets infected or not, with probability βA or βI , respectively.
These stochastic simulations are performed on networks with
N = 500 nodes and r = 5. The initialization of the stochastic
process is done by uniformly sampling 2% of the nodes and
assuming them to be infected. Half of these infectious nodes
were initialized as asymptomatic infectious individuals, while
the other half as symptomatic ones. All the remaining nodes
were set in the susceptible state. For each case study inves-
tigated, a number M of runs of the stochastic simulations is
considered, each time re-initializing the network by randomly
choosing the nodes to set in the A or I state.

To measure the difference between the model evolution and
the numerical simulation, we consider the following error:

Eh =
√√√√ 1

|�|T
∑
X∈�

T∑
t=1

(〈X 〉t − X t )2, (24)

where 〈X 〉t represents the time-series of compartment X , as
produced by the deterministic models, while X t is the corre-
sponding average obtained from the microscopic simulations
(we recall that � = {S, E , A, I, R} denotes the set of possible
compartments of the SEAIR model). h = {ind, pair} indicates
which model the error is evaluated for. The length of the
simulation, indicated with T , is chosen such that the system
has reached a stationary state, i.e., the epidemic outbreak has
ended, as every infected individual has eventually recovered.

As an example, the evolution of the disease obtained for a
given set of parameters, namely, βI = 0.4, βA = 0.6, αEA =
0.3, αAI = 0.2, μA = 0.15, μI = 0.3, S(0) = 0.98, E (0) = 0,
A(0) = 0.01, I (0) = 0.01, and R(0) = 0, is shown in Fig. 5.
Each of the five dynamical variables of the SEAIR model,
namely, the percentage of nodes respectively in the S, E, A, I,
and R state, are reported. The results of M = 1000 stochastic
simulations are represented as grey lines, while the average
is plotted as a dashed black line. Notice that the trajectory
X t is obtained by taking an average over M = 1000 simula-
tions, therefore the fluctuation of the average trajectory X t is
about 32 times thinner than the gray region around it, so it
is well within the thickness of the lines used to represent it.
The evolution predicted by the individual- and the pair-based
model are also reported as orange and blue solid lines, respec-
tively, with the blue solid line, which appears to be almost
superimposed to the dashed black line. We observe that the
individual-based model substantially overestimates the num-
ber of infections (Eind = 7.5 × 10−3), whereas the dynamics
predicted by the pairwise model well reproduces the average
behavior of the stochastic simulations (Epair = 4.1 × 10−6).
These findings are in agreement with the results obtained
for the SIR model in Ref. [30], supporting the conclusion
that pairwise models are very good approximations of the
dynamics of an epidemic on random regular graphs indepen-
dently from the specific type of epidemic process considered.

In order to show how the two models perform on a network
that deviates from the assumptions underlying the derivation
of the models, we here consider ER random graphs. In this
case, the degree distribution is notably binomial peaked at
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FIG. 5. Comparison between stochastic simulations, individual-
based model (orange solid line) and pair-based model (blue solid
line) for a random r-regular graph with N = 500 nodes and r = 5.
Both the numerical simulations and the models dynamics are eval-
uated with βI = 0.4, βA = 0.6, αEA = 0.3, αAI = 0.2, μA = 0.15,
μI = 0.3, S(0) = 0.98, E (0) = 0, A(0) = 0.01, I (0) = 0.01, and
R(0) = 0. The stochastic simulations are represented as solid gray
lines, while the average is plotted as a dashed black line.

〈k〉 = N p, where p is the probability that a link between two
nodes exists. Notice that, while for random r-regular graphs
the degree distribution is a Kronecker delta, for ER graphs the
variance on the node degrees is nonzero, i.e., σ 2 = N p(1 −
p). Similarly to the case of random regular graphs, triangles
can also be neglected in ER random graphs, as their expected
number is asymptotically equal to 〈k〉3/6 [14]. Again, we
fix the set of parameters (e.g. the same as in the previous
example) and we compare the time evolution of the epidemics
obtained for the individual-based and pairwise models to the
results of M = 1000 runs of the stochastic process on ER
random networks with N = 500 nodes and p = 0.01. Figure 6
shows that, despite being less accurate than in the previous
example (Epair = 3.4 × 10−4), the dynamics of the pairwise
model is still in good agreement with the average behavior
of the stochastic simulations, whereas the individual-based
model fails to reproduce the time evolution of the epidemic
outbreak (Epair = 5.1 × 10−3).

Lastly, we study how the two models perform on a network
that largely deviates from the assumptions behind the model
derivations, considering a BA graph with a power-law degree
distribution P(k) ∼ k−3. In this case, the average degree is
〈k〉 = 2m, where m is the number of links arriving with ev-
ery new vertex, while the variance of the degree distribution
diverges as N → ∞ [14]. Additionally, the average number
of triangles depends on the size of the network, as this fol-
lows �(N ) ∼ (ln N )3 [69]. We again compare the temporal
evolution of the epidemics obtained for the individual-based
and the pairwise models to the results of M = 1000 runs of

FIG. 6. Comparison between stochastic simulations, individual-
based model (orange solid line) and pair-based model (blue solid
line) for an Erdös-Rényi graph with N = 500 nodes and p = 0.01.
The numerical simulations and the model dynamics are evaluated
using the same settings of Fig. 5. The stochastic simulations are
represented as solid gray lines, while the average is plotted as a
dashed black line.

the stochastic process on BA networks with N = 500 nodes
and m = 2, which gives an average degree 〈k〉 ≈ 4. Again,
the initialization of the stochastic process is done by assuming
that randomly chosen 2% of the network nodes are infected.
Fig. 7 shows that both models are unable to reproduce the
dynamics of the epidemic on the network, with the individual-
based model apparently providing a better prediction (Epair =
7.8 × 10−3 and Eind = 1.2 × 10−3). This can be explained by
the fact that, due to the hubs, in the BA network the epidemic
outbreak is faster than the one occurring on a network with
homogeneous degree distribution [70]. Therefore the homo-
geneous individual-based model, which tends to overestimate
the number of infections at each time step, seems to follow
the stochastic simulations more closely. As expected, both the
individual- and the pair-based homogeneous models are un-
able to adequately characterize the evolution of the epidemic.
To provide a proper comparison between the two approxi-
mations in the case of heterogeneous networks, one should
derive a set of heterogeneous mean-field, discrete-time master
equations. However, such a study is beyond the purpose of this
paper. Overall, in all topologies investigated, the individual-
based model overestimates the total number of carriers of the
disease, and underestimates the peak time and the duration of
the epidemic process. This is consistent with the results of a
more systematic analysis that we have carried out by varying
the model parameters. Figs. 8 and 9 illustrate some of the
results of this analysis for the case of random r-regular graphs,
where, in particular, we have varied the infection probability
for the asymptomatic individuals in the range βA ∈ [0, 1] for
different values of βI , and monitored several macroscopic
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FIG. 7. Comparison between stochastic simulations, individual-
based model (orange solid line) and pair-based model (blue solid
line) for a Barabási-Albert graph with N = 500 nodes and m = 2.
The mean degree of the resulting power-law distribution is 〈k〉 ≈ 4.
The numerical simulations and the model dynamics are evaluated
using the same settings of Figs. 5 and 6. The stochastic simulations
are represented as solid gray lines, while the average is plotted as a
dashed black line.

quantities of interest, such as the final size of the recovered
population, and the value and time of the peak in the number
of symptomatic infected individuals. Note that, in this case,
we have considered a larger network, i.e., N = 2000, and a
smaller fraction of initial infected individuals, i.e., 10−3, so to
better analyze the behavior of the system at an early stage of
the epidemic outbreak.

Let us first study the behavior of the final size of re-
covered population, i.e., R∞ (Fig. 8). Coherently with the
previous results, as the individual-based model overestimates
the number of infections occurring at each time step, the
final size of recovered individuals is close to one even for
relatively small values of βA (see for instance the case in
which βI = 0.9), failing to predict the exact value R∞. At
the same time, the pairwise model provides a good prediction
of R∞ for different values of βI and in the entire range of
βA considered. Similarly, concerning the size and the time of
the peak of symptomatic individuals, (Fig. 9), we observe that
pairwise model is able to give better predictions compared to
the individual-based one. Again, the individual-based model
overestimates the size of the peak and anticipates its actual
time, while the pairwise model is in good agreement with the
numerical simulations. The differences between the peak time
observed in the stochastic simulations and that predicted by
the pairwise model around βA ≈ 0.32 are mainly due the phe-
nomenon of stochastic fade-out [71] that is more pronounced
for R0 slightly greater than one.

A further remarkable aspect of the pairwise model is that it
provides a more precise estimation of the critical values of

βA and βI at which the epidemic outbreak occurs. In both
figures and for both deterministic models, we also display
the value of βA for which, given the value of the other pa-
rameters, the basic reproduction number R0 goes to one.
We observe that the pairwise model seems to correctly pre-
dict the threshold value of βA, for different βI . Contrarily,
the individual-based model predicts smaller threshold values,
meaning that there is a range of βA for which the model
wrongly forecasts the onset of an epidemic outbreak. In par-
ticular, as shown in Fig. 8, for βI > 0.4, the individual-based
model does not admit a stable disease-free equilibrium, i.e.,
the infection always spreads for any value of βA, while the
pairwise model correctly predicts the epidemic threshold.

Altogether, the results presented in this section clearly
show that taking into account the correlations in the network
of contacts is a fundamental step for an accurate description
of the spreading of an epidemic in a population. Indeed, the
pairwise model outperforms the individual-based one, espe-
cially in reproducing the real evolution of the disease. Still,
it is worth noting that the analysis presented above has been
carried out under the ideal condition that all parameters and
variables are known. In practice, however, this can be an over-
simplifying and unrealistic hypothesis. For instance, some
epidemiological parameters, such as the infection probabil-
ities, may be hard to measure directly, and thus need to be
estimated from empirical data on the disease spreading. Fur-
thermore, some of the system variables can be unmeasurable.
For example, it may not be possible to trace infected individ-
uals during the incubation period, as the carriers themselves
may be unaware of having been exposed to the disease. These
considerations motivate the analysis that will be presented in
the next section, where we will compare the deterministic
models adopting a different perspective. Instead of assessing
the discrepancies in the dynamics given the epidemiological
parameters, we will fit the models to data from numerical
simulations and analyze the differences in the predictions of
both the parameters of the model and the evolution of the state
variables. This analytical framework will allow us to obtain a
much more comprehensive understanding of the differences
between the two approximations. In particular, beyond what
has been pointed out in previous research [25,29,30], it will
crucially reveal that the pair-based approximation, in absence
of proper data, can produce less accurate predictions.

V. DEALING WITH INCOMPLETE INFORMATION

In this section, we concentrate on the case in which the
epidemiological parameters are not known a priori, but need
to be extracted from data. We will consider three separate
cases in increasing order of complexity. We first start with
the hypothesis that all the variables are known and they are
so in the whole time interval considered. Then, we examine
the case in which all the variables are known, but only up to
a certain time. Finally, we assume that only a subset of the
system variables is effectively available for fitting. For each
of the three cases, we consider the problem of determining
the parameters by fitting the available data and, whenever
appropriate, that of predicting the temporal evolution of the
system variables. The main focus would be again to compare
the results of the individual-based and of the pairwise model.
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FIG. 8. Final size of the recovered population R∞ as a function of βA, for different of βI . The numerical simulations are performed on a
random r-regular graphs with N = 2000 nodes and r = 3, with αEA = 0.3, αAI = 0.2, μA = 0.4, and μI = 0.5. The solid lines represent the
value of R∞ as predicted by the individual-based (orange) and by the pairwise model (blue), while the black dashed line represents the average
value of R∞ over M = 1000 stochastic simulations. The vertical dashed lines represent the value of βA at which the value of R0 is equal to one
for both the individual-based (orange) and pairwise models (blue).

A. Identifying the epidemiological parameters

We first study the problem of evaluating the epidemiologi-
cal parameters when all the state variables are known for the
entire course of the outbreak. As epidemic spreading models
are often applied to the study of novel infectious diseases, they
can be crucial for the determination of the more elusive epi-
demiological parameters, such as the infection probabilities
or the incubation period, for which direct measurements can
be difficult to perform. For this reason it is fundamental to
assess the reliability of the estimation of the epidemiological
parameters when using a model to fit the data. Here, we per-
form a series of numerical experiments aimed at comparing
the individual-based and the pairwise deterministic SEAIR
model in performing this task. We proceed in the follow-
ing way. We fix a set of epidemiological parameters p =
(βA, βI , αEA, αAI , μA, μI ), which are assumed to be unknown
to the deterministic models and need to be determined through
the fit (note that, instead, the initial conditions are assumed
to be known quantities). The synthetic data are obtained by
running a series of microscopic simulations on a given contact
network and averaging the results over M different realiza-
tions of the stochastic process. The time-series obtained in this
way play the role of the empirical data that the deterministic
models have to reproduce at their best. Note that, since real

FIG. 9. Size (left) and time (right) of the peak in the number
of symptomatic individuals, as a function of βA, for βI = 0.3. The
numerical simulations are performed with the same settings of Fig. 8.
The solid colored lines refers to the individual-based (orange) and
the pairwise model (blue), while the black dashed line represents the
stochastic simulations. The vertical dashed lines represent the value
of βA at which R0 = 1 for both the individual-based (orange) and
pairwise models (blue).

data usually consists in the daily/weekly number of individu-
als in a given state [62], as synthetic time-series we consider
the temporal evolution of the fractions of individuals in each
compartment, which we will denote with X t . Therefore, to
determine the epidemiological parameters, we have to fit the
corresponding quantities 〈X 〉t to the synthetic data X t . It is
important to remark that for the individual-based model these
correspond to the state variables of the system, whereas for
the pairwise model they are a function of the state variables
(the pair probabilities), through relation (5). For each of the
two models we perform an optimization procedure to derive
the set of parameters p̂ that yield the smallest fitting error. The
model parameters are estimated by minimizing the root mean
squared error (RMSE)

Efit =
√√√√ 1

|�′|T
∑
X∈�′

T∑
t=1

(〈X 〉t − X t )2 (25)

between the time series produced by the deterministic model,
generically represented as 〈X 〉t , and the corresponding aver-
age X t of the microscopic simulations. We denote with �′
the set of compartments to which we fit the models, which
in general can differ from �. In this first example, we will
consider �′ = �, so that |�′| = 5. The length of the simula-
tion, T , is chosen such that the system has reached a stationary
state, i.e., the epidemic outbreak has ended, as every infected
individual has eventually recovered. Finally, as a measure of
the discrepancy between the model estimation and the actual
parameters we evaluate the quantity D(p) = ‖p − p̂‖/√6,
where ‖v‖ denotes the Euclidean norm and 6 is the number
of components in vector p.2

An example of the results is shown in Fig. 10, where
the model predictions are reported together with the numer-
ical simulations in the case of random r-regular graphs with
N = 500 nodes and r = 3 and of the set of parameters listed
in the figure caption. Averages over M = 1000 runs of the
stochastic microscopic simulation have been considered. The

2Note that all parameters are of the same order of magnitude and
homogeneous, thus there is no need to use a weighted average in the
computation of the error.
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FIG. 10. Comparison between stochastic simulations, individual-based model (orange solid line) and pair-based model (blue solid line)
when all the state variables are fitted over the entire course of the epidemic. The stochastic simulations are run on a random r-regular graph,
with the same settings of Fig. 5. The stochastic simulations are represented as solid gray lines, while the average is plotted as a dashed black
line.

system is initialized by picking a number of randomly se-
lected nodes corresponding to the 2% of the total population
and setting their initial state, either as asymptomatic (A) or
infected (I) with equal probability. Fig. 10 shows that the dy-
namical evolution of the state variables generated by both the
individual-based and the pairwise model are in good agree-
ment with the stochastic simulation, with the pairwise model
still providing better results. Indeed, for the individual-based
model, we obtain E ind

fit = 9.0 × 10−5, while for the pairwise
model we have Epair

fit = 3.7 × 10−7. In addition, the parame-
ters extracted with the individual-based model significantly
deviate from the “real ones” used to generate the data to
fit. Conversely the trajectories of the pairwise model that
best fit the data are obtained with parameters close to those
used in the microscopic simulation. If we consider, for in-
stance, the infection probabilities, which have been set to
βA = 0.6 and βI = 0.4, we find that the parameters evaluated
through the pairwise model (β̂A = 0.59, β̂I = 0.35) are in a
good agreement with the epidemiological ones, whereas the
estimates of the individual-based model (β̂A = 4.32 × 10−6,
β̂I = 0.63) substantially differ from them. Now, if we consider
the value of D(p), for the pairwise model we find Dpair (p) =

9.3 × 10−4, whereas for the individual-based model we ob-
tain Dind(p) = 0.17. Hence, both the fitting error Efit and the
discrepancy in the estimation of the parameters D(p) ob-
tained by adopting the pairwise model are about two orders
of magnitude smaller than the corresponding ones deduced by
the individual-based model, so we conclude that the pairwise
approximation provides a more reliable “prediction” of the
epidemiological parameters.

These results are consistent with the conclusions of the
previous section. In fact, when the deterministic models are
informed of the epidemiological parameters, then the dynam-
ics of the pairwise model closely matches the microscopic
simulations, whereas the individual-based model largely over-
estimates the number of infections occurring at each time
step. In the case considered in this section in which the epi-
demiological parameters are assumed to be unknown, both
models are able to generate time-series that are close to the
real time evolution of the epidemics. But in order to do so,
the individual-based model has to use a set of parameters that
significantly differs from that of the stochastic simulations.
Still, the individual-based model has a higher fitting error. In
the pairwise case, instead, when the parameters are known, the
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FIG. 11. Error D(p) in the estimation of the epidemiological parameters as a function of βA and βI for the individual-based (left) and the
pairwise (right) SEAIR models. The deterministic models are fitted to stochastic simulations performed on a r-regular graphs with N = 500
and r = 3, with αEA = 0.3, αAI = 0.2, μA = 0.15, and μI = 0.3.

model behavior is close to that of the microscopic simulations,
such that, when the parameters are obtained through fitting,
their estimates slightly differ from those used to generate the
data.

Figure 10 provides an illustrative example obtained for a
single set of the epidemiological parameters. As the error
in the parameter estimation does depend, in general, on the
vector p itself, we have repeated the previous analysis on
the same contact network represented by a random r-regular
graph with N = 500 and r = 3, but considering different sets
of epidemiological parameters. Note that we have here as-
sumed the value of r to be a known quantity, i.e., it does
not have to be evaluated from the fit. In particular, we have
systematically varied two parameters of the system, βA and βI ,
which are the ones ruling the disease transmission. For each
pair (βA, βI ) we have calculated the average over M = 1000
runs of the stochastic epidemic process, applied the fitting
procedure for the two deterministic models, and computed the
error D(p).

Figure 11 displays D(p) as a function of βA and βI . Two
things are worth noticing. Firstly, the estimation error for the
pairwise model (on the right) is generally lower compared
to that of the individual-based model (on the left). Second,
the value of D(p) for the individual-based model depends
smoothly on p, whereas, for the pairwise model, such a depen-
dence appears to be strongly affected by random fluctuations,
because of its much smaller value.

Overall, the previous results show that the pairwise approx-
imation provides a more reliable estimation in the entire space
of parameters. This suggests that the use of a pairwise model
is preferable even when the epidemiological parameters of an
infectious diseases are not known.

B. Forecasting the epidemic evolution

So far, we have seen how to extract the epidemiological
parameters when data on the entire course of the epidemic

spreading are available. However, mathematical models are
also useful to forecast the evolution of a disease spreading
[7,32,72]. For instance, they play a crucial role in policy mak-
ing, as their predictive power allows to estimate in advance
the possible effects of different containment measures. On
the grounds of this, here we compare the capability of the
individual-based and of the pairwise models in forecasting
the progress of an epidemic when empirical data is only
available for a limited time interval. Similarly to the pre-
vious case, we assume all the epidemiological parameters
p = (βA, βI , αEA, αAI , μA, μI ) are unknown quantities to be
determined by fitting the deterministic models to the numer-
ical simulations. This time, however, instead of considering
the time-series St , Et , At , It , and Rt , over the entire time
range T = 55, we fit the models over a limited time interval
[0, Tfit]. Then, we compare how the SEAIR models predict
the evolution of the state variables in the remaining time
interval [Tfit, T ]. Again, the fit is performed by minimizing
the mean squared error (RMSE) between the predicted and
the simulated time-series, where the average of M = 1000
microscopic simulations on a random r-regular graph with
r = 3 and N = 500 nodes is used as the ground truth. Again,
r is assumed to be known. We initialize the process by setting
1% of the network nodes in the A state, and another 1% of
them in the I state. As a first example, we fit the SEAIR
models up to Tfit = 10, and illustrate in Fig. 12 the evolution of
the state variables. Both the individual-based and the pairwise
model reproduce quite well the temporal evolution of St , Et ,
At , and Rt . However, as concerns the fraction symptomatic
infectious It , the individual-based model forecasting appears
less reliable, while the pairwise model correctly predicts the
time course of the variable. Moreover, if we consider the value
of D(p), we can see that, in order to reproduce the system
dynamics, the individual-based model has to rely on a set
of epidemiological parameters that are substantially different
from the one used to run the stochastic simulations. On the
contrary, the pairwise model remains able to predict the cor-
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FIG. 12. Comparison between stochastic simulations,
individual-based model (orange solid line) and pair-based model
(blue solid line) when all the state variables are fitted up to Tfit = 10
(red dotted line). The stochastic simulations are run on a random
r-regular graph, with the same settings of Fig. 5. The stochastic
simulations are represented as solid gray lines, while the average is
plotted as a dashed black line.

rect set of parameters. Indeed, for the individual-based model
we find Dind(p) = 7.9 × 10−2, while we obtain Dpair (p) =
1.0 × 10−3 for the pairwise model. In the previous example,
we have compared the predictions of the deterministic models
to the numerical simulations of the epidemic process by taking
a single value of Tfit only. However, as the performance of the
models may depend on the particular value of Tfit considered,
a more systematic analysis is required. We do this by varying
the value of the fitting time interval in the range Tfit ∈ [2, 50],
and monitoring the prediction error on the state variables in
the time interval [Tfit, T = 55]. As a measure of the model
performance we consider the mean squared error between the
predicted and the simulated time series relative to all the state
probabilities, namely,

Epred =
√√√√ 1

|�|(T − Tfit )

∑
X∈�

T∑
t=Tfit+1

(〈X 〉t − X t )2. (26)

Note that, since we consider a mean squared error, the value
of Epred should not depend on the length of the time interval
itself.

Figure 13 shows the results. Two aspects are worth re-
marking. First, the value of Epred relative to the pairwise
model is generally lower compared to that of the individual-
based model, meaning that the former provides more reliable
predictions on the temporal evolution on the state variables.
Second, the performance of the individual-based model is
heavily influenced by the value of Tfit, with the prediction error
that decreases as the fitting time interval increases. Instead,
the pairwise model provides a good prediction on the system

FIG. 13. Value of the prediction error Epred as a function of the
fitting range Tfit, for both the individual-based (orange) and the pair-
wise (blue) models.

dynamics even when it has at disposal only a limited amount
of data, as one can see from the value of Epred, which remains
stable in the entire range of values of Tfit.

In conclusion, the pairwise model provides a more reliable
forecasting of the temporal evolution of the state variables
than the individual-based model. Furthermore, in those cases
where the performances of the two models are comparable,
the pairwise model yields a better prediction of the epidemi-
ological parameters, consistently with the results obtained in
the previous subsection.

C. Estimating the unmeasurable variables

Finally, we work under the worst condition (among those
investigated), in which some of the dynamical variables are
not measurable. At variance with the previous case study,
where we have evaluated the epidemiological parameters as-
suming to be able to measure each compartment X ∈ �, here
we suppose to be able to measure only a subset of them,
fitting the deterministic models to the corresponding time se-
ries only. Understanding how the models perform under these
circumstances is of crucial practical relevance in the context
of outbreaks such as that of COVID-19, where the disease is
also spread by asymptomatic carriers that are difficult to trace.

In the analysis of the SEAIR models, we assume to be
able to detect those individuals who are either symptomatic
infectious (I) or recovered (R), considering unmeasurable the
other states. We can consider two cases, which represent
different degrees of data availability. In the first case, since
empirical data are usually provided at an individual level, we
assume the fractions of symptomatic and recovered individ-
uals (It , and Rt ) to be available data, while the fractions of
susceptible, exposed and asymptomatic individuals (St , Et ,
and At ) are unknown. Notice that we are here assuming to be
able to trace the asymptomatic individuals once they recover.
This corresponds to the ideal case in which serological tests
are systematically performed on the population, allowing to
detect those individuals who have recovered without having
been diagnosed with the disease. Accordingly, to evaluate the
epidemiological parameters, we fit the variables 〈I〉t and 〈R〉t

to the corresponding time series. As discussed in Sec. V A,
there is a fundamental difference in the way in which the
individual-based and the pairwise models are fitted. Indeed,
while in the individual-based model the probabilities 〈X 〉t are
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the state variables, in the pairwise model these quantities are
derived from the pair probabilities through relation (5). This
means that, at variance with the individual-based model, for
the pairwise model a function of the state variables is used in
the data fitting.

In the second case, in addition to It and Rt , we assume
to have a larger set of measured time series, including, in
particular, some of the pair variables. Indeed, when we have
information on the contact network structure, if we are able
to detect those individuals that are either in state I or in state
R, we can also measure the pairs formed by individuals in
one of these two states. To account for this scenario, we have
considered the fraction of pairs composed either by symp-
tomatic or recovered individuals as measurable variables, i.e.,
IIt , IRt , and RRt , while the remaining fractions are consid-
ered unknown (as implicitly assumed before). Under these
hypotheses, for the pairwise model these data do not have to
be fitted as a function of the state variables, since they can
be directly associated to the corresponding (measurable) pair
variables 〈II〉t , 〈IR〉t , and 〈RR〉t . Summing up, in this second
case, we fit the individual-based model to It and Rt , and the
pairwise model to It , Rt , IIt , IRt , and RRt .

We begin our analysis from this latter case, which relies on
the assumption that the contact network structure is known.
Then we discuss the implications of fitting the pairwise model
when such data are not available.

The dynamics of the SEAIR models is ultimately deter-
mined by two sets of quantities, namely, the epidemiological
parameters p and the initial condition of the state variables.
Since, in the previous sections, we have assumed all the
dynamical variables to be known at any time, we have con-
sidered the initial conditions as known quantities, fitting the
SEAIR models to empirical data only to evaluate p. Now,
as some of the variables are unknown, also their initial con-
ditions need to be estimated from the fit. It is worth noting
that the pairwise model has a larger number of unknown
initial conditions compared to the individual-based model.
This means that, at variance with the cases in Secs. V A
and V B, where the number of unknown parameters was
equal for both models, in the present scenario one needs
to determine a larger set of parameters for the pairwise
model.

We start by considering Figs. 14 and 15, in which we com-
pare the prediction of the individual-based and of the pairwise
model to the stochastic simulations, for two different values of
Tfit. As in the previous case, the numerical data are generated
performing M = 1000 microscopic simulations on a random
r-regular graph with N = 500 and r = 3, and taking the aver-
age dynamics as the ground truth. Also in this case, we assume
r to be known. First, we discuss the case Tfit = T , that repre-
sents an important case study occurring in the analysis of past
epidemic outbreaks. In this scenario, we assume we know the
dynamics of the measurable variables It and Rt over the entire
time course of the epidemic, while the other variables remain
unknown. In other words, we here analyze the capability of the
models to determine the temporal evolution of the unmeasur-
able variables once the epidemic outbreak is over. As shown in
Fig. 14, the pairwise model is in a much better agreement with
the stochastic simulations compared to the individual-based
one.

FIG. 14. Comparison between stochastic simulations,
individual-based model (orange solid line) and pair-based model
(blue solid line) when the measurable state variables are fitted over
the entire time course of the epidemic process (i.e., Tfit = T ). The
stochastic simulations are run on a random r-regular graph, with the
same settings of Fig. 5, and their results are represented as solid gray
lines, while the average is plotted as a dashed black line.

FIG. 15. Comparison between stochastic simulations,
individual-based model (orange solid line) and pair-based model
(blue solid line) when the measurable state variables are fitted up
to Tfit = 10 (red dotted line). The stochastic simulations are run
on a random r-regular graph, with the same settings of Fig. 5, and
their results are represented as solid gray lines, while the average is
plotted as a dashed black line.
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FIG. 16. Value of the prediction error Eunm as a function of the
fitting range Tfit, for both the individual-based (orange) and the pair-
wise (blue) models.

Conversely, to illustrate an example in which data is only
available for a limited time interval, we consider the case
Tfit = 10. The results for this case study are displayed in
Fig. 15. First, we note that, compared to the individual-
based model, the pairwise model better forecasts the temporal
evolution of the measurable variables It and Rt . Second,
the pairwise model provides a good prediction of the time
course of the unknown variables. In particular, we remark
that the pairwise model prediction of both At and St is in
good agreement with the numerical simulations. Overall, the
pairwise model provides a reliable prediction of the dynamics
of both measured and unmeasured variables, outperforming
the individual-based model.

Then, we study the predictive capability of the determinis-
tic models as a function of Tfit. Figure 16 displays, for both the
individual-based and the pairwise models, the prediction error
Eunm on the unmeasured individual-level time series, namely,

Eunm =
√√√√ 1

|�|(T + 1)

∑
X∈�

T∑
t=0

(〈X 〉t − X t )2, (27)

where � = � \ �′ = {S, E , A} represents the set of unmea-
sured compartments. Note that, since we are interested in the
prediction over the entire course of the epidemic, we consid-
ered the range [0, T ].

Consistently with the previous results, we note that, for
different values of Tfit, the pairwise model generally provides
a lower value of Eunm compared to individual-based model,
meaning that the former furnishes a more reliable prediction
of the temporal evolution of the unknown variables.

The results discussed so far indicate that the pairwise
model outperforms the individual-based model in predicting
the dynamics of the fractions of individuals in the unmeasured
compartments. However, in order to obtain a more reliable
prediction on quantities that are difficult or even impossible
to measure, e.g., the asymptomatic infectious population, it is
necessary to gather more and different data about the quanti-
ties that are accessible. In particular, here we assumed we are
able to measure not only the fraction of individuals that are
symptomatic infectious or recovered, but also the fraction of
couples formed by individuals in one of those states.

To conclude, we discuss how important these data are for
the prediction, by showing what happens when they are not

FIG. 17. Comparison between stochastic simulations (dashed
black), individual-based model (solid orange) and pairwise model
for the prediction of the asymptomatic state of Fig. 15. The pairwise
model has been fitted both including (solid blue) and excluding
(dashed-dotted blue) the time series IIt , IRt , and RRt from the set
of measurable variables. Note that the solid blue line is almost
superimposed to the dashed black one.

available. Figure 17 displays the prediction of the fraction of
asymptomatic infectious At (which we assumed to be unmea-
surable) by the individual-based and pairwise model. While
the individual-based model is fitted only to It and Rt , the
pairwise model is fitted either using or not the fractions of
pairs IRt , IRt , and RRt . As it can be noticed, when only the
individual probabilities are fitted, the pairwise model is not
able to provide a good prediction for At , performing worse
than the individual-based model.

This result suggests that a better performance of the
pairwise model, which in general has a larger number of
parameters to fit, is not to be expected a priori. Indeed, our
analysis shows that a pairwise model can be a more reliable
tool to predict the evolution of nonmeasurable variable, only
if data at level of pairs are provided.

Overall, the results of this section suggest that using a
model that accounts for the dynamical correlations existing
within the contact network can ensure a more accurate evalu-
ation of the unknown quantities of the system. However, this
approach demands to gather more refined data on how the
disease spreads through the network itself, using, for instance,
more detailed contact tracing techniques [73].

VI. CONCLUSIONS

In this work, we have developed two discrete-time
population-level SEAIR models, providing a coarse grained
description of the spreading of an infectious disease through
a network of contacts. First, under the hypothesis of statis-
tical independence at the level of nodes, we have derived
the master equations for an individual-based model. Second,
we have considered a more complex pairwise approximation,
describing the system at the level of node pairs. This allowed
us to account for the dynamical correlations existing within
the contact network.

Note that, while in a Poisson process, i.e., in a continuous
time framework, state transitions can occur at any time with
a given rate, in the discrete-time case, multiple events can
simultaneously (i.e., in the same discrete time interval) occur
with a given probability. Hence, the master equations gov-
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erning the system dynamics are expressed in terms of joint
probabilities, whose order depends on the node degrees. For
this reason, a more general approach, consisting in describing
the system evolution as a reaction network [32,38] can be
easily adopted in the case of continuous-time models, but it
is not straightforwardly extendable to discrete-time models.

Assuming we know the epidemiological parameters char-
acterizing the disease spreading, we have compared the
deterministic models to numerical simulations of the epidemic
dynamics. We have analyzed to which degree the predictions
of the SEAIR models agreed with the results of stochastic
simulations carried out over three different network topolo-
gies, namely, the random r-regular, the Erdös-Renyi, and the
Barabási-Albert graphs. Consistently with previous research
[30], we found that the pairwise model is able to reproduce,
for both the random r-regular and the ER graphs, the temporal
evolution of the state variables, whereas the individual-based
model overestimates the number of new infections occurring
at each time step. This result was consistently observed when
important parameters of the model, such as the symptomatic
and asymptomatic transmission probabilities, were varied. As
concerns the BA network, due to the heterogeneity of the
degree distribution, both models are unable to reproduce the
dynamical behavior of the epidemics. Therefore it would be
interesting to develop a set of heterogeneous mean-field mas-
ter equations for the two approximations.

In our study, we have then considered the more realistic
case in which the epidemiological parameters are unknown
and need to be estimated by fitting the SEAIR models to
empirical data. We have examined three case studies of in-
creasing complexity. First, we have assumed to know the
time-course of all the state variables for the entire duration of
the epidemic outbreak, analyzing the capability of the deter-
ministic models to estimate the epidemiological parameters.
Compared to the individual-based model, the pairwise model
performed better, as the error on the parameters resulted gen-
erally lower and independent on their specific value chosen
for the numerical simulations. This aspect is crucial in those
practical situations where one needs to know the exact value
of the parameters, for instance to evaluate the possible effects
of issuing/lifting a containment policy, which can be assumed
to have an impact only on specific parameters (for instance,
the obligation to wear a face mask likely affects only the
transmission probabilities βA and βI ).

Second, we have assumed to know the dynamics of the
state variables for a limited time interval only, analyzing the
capability of both the individual and the pairwise model to
forecast the evolution of the pandemic. Our results show that
the individual-based model is not able to correctly forecast the
dynamics of all the state variables, while the prediction of the
pairwise model is in good agreement with the numerical simu-
lations. Furthermore, the pairwise model still provides a better
estimate of the epidemiological parameters even under these
conditions. This higher reliability of the pairwise approach
can play a fundamental role in the policy-making process,
where accurately forecasting the evolution of the epidemic is
crucial.

Third, we considered a more realistic scenario, assuming
we are able to measure only a subset of the model compart-
ments. In particular, we have assumed to know the fractions

of symptomatic infected and recovered nodes, i.e., It and Rt .
Additionally, we have considered to be able to measure the
pairs in which the nodes are either in the infectious symp-
tomatic or in the recovered states, i.e., IIt , IRt , and RRt . With
this information available, the fractions of individuals in the
unmeasured compartments, i.e., St , Et , and At , as predicted
by the pairwise model were found in good agreement with the
numerical simulations. On the contrary, the individual-based
model was not able to estimate their temporal evolution. Since
the asymptomatic individuals can constitute a public-health
risk, as they are able to spread the virus without knowing it,
and since they can be difficult to trace, assessing their number
within the population becomes crucial, and the pairwise ap-
proach can provide an important instrument to cope with their
presence.

Overall, the results presented in this paper show that the
pairwise modeling paradigm is a reliable tool for estimating
the epidemiological parameters and forecasting the evolution
of the epidemics. In particular, we showed that a pairwise
approach, altogether with additional information regarding the
contacts of the infectious individuals, provides a much better
prediction of the unmeasurable variables of the system com-
pared to an individual-based one. Moreover, such a modeling
approach allows one to evaluate the size of the asymptomatic
population, which, in the context of the COVID-19 pandemic,
represents a critical issue. To fulfill this objective, the pairwise
model requires to refine the data collection procedures so as to
include information on the network structure. For this reason,
extending the use of contact tracing techniques can play a
crucial role in informing mathematical modeling, thus leading
to more reliable predictions on the course of epidemics. A
fundamental step in this direction is also to take into account
contact patterns reconstructed from real-world data. In this
work, since the aim was to understand the validity of the
different mathematical models proposed, we have restricted
the analysis to synthetic network topologies with reproducible
characteristics.

Finally, we note that the generality of the approach here
discussed paves the way to applications to other classes of
epidemic models, for instance, the inclusion of other com-
partments, the extension to graphs with arbitrary degree
distribution (heterogeneous mean-field) and temporal contact
networks. In particular, it would be interesting to evaluate the
accuracy of the two approximations in epidemic processes
that, at variance with the model here considered, are recurrent,
e.g., the SIS model. In fact, in such model an agent that
recovered from an infection tends to have infected neighbors
with an higher probability than an individual that has never got
the infection. This would lead to a not uniform distribution of
the SI pairs, possibly impacting on the model accuracy.
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APPENDIX A: DERIVATION OF EQ. (13)

Here we show how to obtain the expression for the non-
linear transition probability �SE→EA of the pairwise SEAIR
model, i.e., Eq. (13). To start with, we introduce the homo-
geneous mixing hypothesis to write Eq. (11) at the level of
population, thus dropping the indices in the probability terms.
This yields

�S→E ≈ 〈SIU . . .U 〉t [1 − (1 − βI )]

+〈SUI . . .U 〉t [1 − (1 − βI )]

+ . . .

+〈SUU . . . I〉t [1 − (1 − βI )]

+〈SAU . . .U 〉t [1 − (1 − βA)]

+ . . .

+〈SUU . . . A〉t [1 − (1 − βA)]

+〈SII . . .U 〉t [1 − (1 − βI )2]

+ . . .

+〈SIU . . . I〉t [1 − (1 − βI )2]

+〈SIA . . .U 〉t [1 − (1 − βI )(1 − βA)]

+ . . .

+〈SAA . . . A〉t [1 − (1 − βA)k]. (A1)

As explained in Sec. III A, given the expression in
Eq. (A1), the system (6) is not closed. To close it at the level of
individuals, we consider the approximation in Eq. (12), which
can be also rewritten at a population-level by dropping the
node indices. By substituting this expression in Eq. (A1), we
get

�S→E ≈ 〈S〉t 〈I〉t 〈U 〉t . . . 〈U 〉t [1 − (1 − βI )]

+〈S〉t 〈U 〉t 〈I〉t . . . 〈U 〉t [1 − (1 − βI )]

+ . . .

+〈S〉t 〈U 〉t 〈U 〉t . . . 〈I〉t [1 − (1 − βI )]

+〈S〉t 〈A〉t 〈U 〉t . . . 〈U 〉t [1 − (1 − βA)]

+ . . .

+〈S〉t 〈U 〉t 〈U 〉t . . . 〈A〉t [1 − (1 − βA)] (A2)

+〈S〉t 〈I〉t 〈I〉t . . . 〈U 〉t [1 − (1 − βI )2]

+ . . .

+〈S〉t 〈I〉t 〈U 〉t . . . 〈I〉t [1 − (1 − βI )2]

+〈S〉t 〈I〉t 〈A〉t . . . 〈U 〉t [1 − (1 − βI )(1 − βA)]

+ . . .

+〈S〉t 〈A〉t 〈A〉t . . . 〈A〉t [1 − (1 − βA)k],

which can be rewritten as

�S→E ≈
(

k

1

)(
1

0

)
〈S〉t 〈I〉t 〈U 〉k−1

t [1 − (1 − βI )]

+
(

k

1

)(
1

1

)
〈S〉t 〈A〉t 〈U 〉k−1

t [1 − (1 − βA)]

+
(

k

2

)(
2

0

)
〈S〉t 〈I〉2

t 〈U 〉k−2
t [1 − (1 − βI )2]

+
(

k

2

)(
2

1

)
〈S〉t 〈I〉t 〈A〉t 〈U 〉k−2

t [1−(1 − βI )(1−βA)]

+ . . .

+
(

k

k

)(
k

k

)
〈S〉t 〈A〉k

t [1 − (1 − βA)k]. (A3)

Note that each term is characterized by the product of two bi-
nomial factors, i.e.,

(k
p

)(p
n

)
. The first one indicates the number

of ways p infected nodes can be chosen among the k neighbors
of a node, while the second corresponds to the number of ways
n asymptomatic infectious nodes can be chosen among the p
infected neighbors. More compactly, we can write

�S→E ≈ 〈S〉t

k∑
p=1

p∑
n=0

(
k

p

)(
p

n

)
〈A〉n

t 〈I〉p−n
t 〈U 〉k−p

t

× [1 − (1 − βA)n(1 − βI )p−n]. (A4)

Given that 〈U 〉t = 1 − 〈A〉t − 〈I〉t , it is worth noting that
the term

(k
p

)(p
n

)〈A〉n
t 〈I〉p−n

t 〈U 〉k−p
t corresponds to the prob-

ability mass function of the multinomial distribution (see
Ref. [74], Chap. 6). With this in mind, we can manipulate
Eq. (A4) so to have

�S→E ≈ 〈S〉t

[
1 −

k∑
p=0

p∑
n=0

(
k

p

)(
p

n

)
〈A〉n

t 〈I〉p−n
t 〈U 〉k−p

t

× (1 − βA)n(1 − βI )p−n

]

= 〈S〉t

{
1 −

k∑
p=0

p∑
n=0

(
k

p

)(
p

n

)
〈U 〉k−p

t

× [〈A〉t (1 − βA)]n[〈I〉t (1 − βI )]p−n

}

= 〈S〉t

[
1 −

k∑
p=0

p∑
n=0

k!

n!(p − n)!(k − p)!
xk−p

1 xn
2xp−n

3

]
,

(A5)

where we have defined x1 = 〈U 〉t , x2 = 〈A〉t (1 − βA) and
x3 = 〈I〉t (1 − βI ). Note also that we added to the summation
the term relative to p = 0, since this is equal to zero, and
that we have considered that summing the probability mass
function over all the possible values of p and n gives one. By
recalling the multinomial theorem

(x1 + x2 + x3)k =
∑

n1+n2+n3=k

k!

n1!n2!n3!

3∏
i=1

xni
i , (A6)

we can simplify Eq. (A5), obtaining

�S→E ≈ 〈S〉t [1 − (x1 + x2 + x3)k]. (A7)

Finally, by substituting x1 + x2 + x3 = 1 − βA〈A〉t − βI〈I〉t

(note again that 〈U 〉t = 1 − 〈A〉t − 〈I〉t ), we obtain for �S→E

the expression in Eq. (13).
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APPENDIX B: DERIVATION OF EQ. (22)

Here we derive the expression for the nonlinear transi-
tion probability �SE→EA of the pairwise SEAIR model, i.e.,
Eq. (22). We begin by considering Eq. (17), introducing the
assumption that no triangular loops exist within the network
and that the population is homogeneously mixed. In this case,
all nodes have the same number of neighbors, k, so that the
number of neighbors of a pair of nodes is L = 2k − 2. A
graphical representation of the subgraph induced by the pair
in state (S, E ) under these hypotheses is provided in Fig. 4.
Equation (17) can written as

�SE→EA ≈ 〈SEIU . . .U 〉t [1 − (1 − βI )]αEA

+〈SEUI . . .U 〉t [1 − (1 − βI )]αEA

+ . . .

+〈SE U . . .UI︸ ︷︷ ︸
k−1

U . . .U︸ ︷︷ ︸
k−1

〉t [1 − (1 − βI )]αEA

+〈SEA . . .U 〉t [1 − (1 − βA)]αEA

+ . . .

+〈SEU . . .UAU . . .U 〉t [1 − (1 − βA)]αEA

+〈SEII . . .U 〉t [1 − (1 − βI )2]αEA

+ . . .

+〈SEIU . . . I〉t [1 − (1 − βI )]αEA

+〈SEIA . . .U 〉t [1 − (1 − βI )(1 − βA)]αEA

+ . . .

+〈SEAA . . . A〉t [1 − (1 − βA)k−1]αEA. (B1)

Each term 〈SE . . . Z〉t counts L + 2 = 2k elements. The first
two, i.e., S and E, represent the state of the pair of nodes
inducing the subgraph, the following k − 1 indicate the state
of the neighborhood of the first node (the one in state S), while
the remaining k − 1 denote the state of the neighborhood of
the second node (in state E). Equation (B1) can be simplified
taking into account the property of symmetry of the joint
probabilities. Indeed, since under the homogeneous mixing
hypothesis the nodes of the neighborhood are statistically
equivalent to one another, the probability terms only depend
on the number of infected nodes in each neighborhood, while
they do not depend on which particular node is infected.
For example, when only one symptomatic infectious node is
present in the subgraph, assuming it to be connected to the
node in state S, we have k − 1 equivalent terms, namely

〈SEIUU . . .U 〉t = 〈SEUIU . . .U 〉t = . . .

. . . = 〈SE UU . . .UI︸ ︷︷ ︸
k−1

U . . .U 〉t . (B2)

Therefore we can rewrite Eq. (B1) as

�SE→EA ≈ 〈SEIUU . . .U 〉t

(
k − 1

1

)(
1

0

)(
k − 1

0

)(
0

0

)
[1 − (1 − βI )]αEA

+〈SEAU . . .U 〉t

(
k − 1

1

)(
1

0

)(
k − 1

0

)(
0

0

)
[1 − (1 − βA)]αEA

+〈SEII . . .U 〉t

(
k − 1

2

)(
2

0

)(
k − 1

0

)(
0

0

)
[1 − (1 − βI )2]αEA

+〈SEIU . . . I〉t

(
k − 1

1

)(
1

0

)(
k − 1

1

)(
1

0

)
[1 − (1 − βI )]αEA

+〈SEIA . . .U 〉t

(
k − 1

2

)(
2

1

)(
k − 1

0

)(
0

0

)
× [1 − (1 − βI )(1 − βA)]αEA

+ . . .

+〈SEAA . . . A〉t

(
k − 1

k − 1

)(
k − 1

k − 1

)(
k − 1

k − 1

)(
k − 1

k − 1

)
× [1 − (1 − βA)k]αEA. (B3)

We note that each term is characterized by the product of
four binomial factors, i.e.,

(k−1
p

)(p
n

)(k−1
q

)(q
m

)
, representing the

number of possible combinations of the neighboring nodes.
The first two binomial coefficients are relative to the neigh-
borhood of the node in state S, while the others concern the
neighbors of the node in state E. For each of them, the first
binomial factor indicates the number of ways p (or q) infected
nodes can be chosen among the k − 1 neighbors of a node,
while the second corresponds to the number of ways n (or m)

asymptomatic infectious nodes can be chosen among the p (or
q) infected neighbors.

As explained in Sec. III B, given the expression in Eq. (B1),
the system (15) is not closed. To close it at the level of
pairs, we consider the approximation in Eq. (19), which can
be also rewritten at a population-level by dropping the node
indices. With reference to the configuration of Fig. 4, we can
approximate the probability that the node S is connected to
nI neighbors in state I, to nA neighbors in state A, and to
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k − 1 − nI − nA neighbors in state U , while the node in state
E is connected to mI neighbors in state I, to mA neighbors
in state A, and to k − 1 − mI − mA neighbors in state U , as
follows:

F (〈SE〉t , . . . , 〈EA〉t )

= 〈SE〉t
〈SA〉nA

t 〈SI〉nI
t 〈SU 〉k−1−nA−nI

t

〈S〉k−1
t

× 〈EA〉mA
t 〈EI〉mI

t 〈EU 〉k−1−mA−mI
t

〈E〉k−1
t

. (B4)

By substituting the closure (B4) in Eq. (B3), we obtain the
expression for the transition probability in Eq. (21). As the
transition of an individual from state E to state A is indepen-
dent on the state of the neighbors, we expect the transition
probability �SE→EA to be independent of the state proba-
bilities 〈EX 〉. Consistently, we note that the second double
summation term, which accounts for all the possible config-
urations of the neighborhood of the node in state E, sums to
one. To show this, we first define the quantities

εA = 〈EA〉t

〈E〉t
, εI = 〈EI〉t

〈E〉t
, εU = 〈EU 〉t

〈E〉t
, (B5)

which represent the probability that a node in state E is
connected either to a node in state A, I, or U, respectively,
divided by the probability of being in state E. With this new
notation, the relation on the marginal probabilities 〈E〉t =
〈EA〉t + 〈EI〉t + 〈EU 〉t now reads

εA + εI + εU = 1. (B6)

Note that, despite it is not explicitly indicated, the terms εA, εI

and εU clearly depend on time.
Each term of the second double summation in Eq. (21) can

now be rewritten as

〈EA〉m
t 〈EI〉q−m

t 〈EU 〉k−1−q
t

〈E〉k−1
t

(
k − 1

q

)(
q

m

)

= εm
A ε

q−m
I ε

k−1−q
U

(k − 1)!

m!(q − m)!(k − 1 − q)!
, (B7)

which corresponds to the probability mass function associated
to the multinomial distribution. Since we sum over all the pos-
sible values of q and m, the second summation in Eq. (21), as
we expect, is equal to one. We can thus rewrite the equation as

�SE→EA ≈ 〈SE〉t

k−1∑
p=1

p∑
n=0

〈SA〉n
t 〈SI〉p−n

t 〈SU 〉k−1−p
t

〈S〉k−1
t

×
(

k − 1

p

)(
p

n

)
[1 − (1 − βA)n(1 − βI )p−n]αEA.

(B8)

This expression can be further simplified. First, similarly to
what we have done for the state probabilities 〈EX 〉, we intro-
duce the notation

σA = 〈SA〉t

〈S〉t
, σI = 〈SI〉t

〈S〉t
, σU = 〈SU 〉t

〈S〉t
. (B9)

Then, we can manipulate Eq. (B8) so to have

�SE→EA ≈ 〈SE〉t [1 −
k−1∑
p=0

p∑
n=0

σ n
Aσ

p−n
I σ

k−1−p
U × (k − 1)!

n!(p − n)!
(1 − βA)n(1 − βI )p−n]αEA

= 〈SE〉t {1 −
k−1∑
p=0

p∑
n=0

(k − 1)!

n!(p − n)!(k − 1 − p)!
σ

k−1−p
U [σA(1 − βA)]n[σI (1 − βI )]p−n}αEA

= 〈SE〉t

[
1 −

k−1∑
p=0

p∑
n=0

(k − 1)!

n!(p − n)!(k − 1 − p)!
xk−1−p

1 xn
2xp−n

3

]
αEA, (B10)

where we have defined x1 = σU , x2 = σA(1 − βA), and x3 = σI (1 − βI ). Note also that we added to the summation the term
relative to p = 0, since this is equal to zero. By using the multinomial theorem (A6) of power k − 1, we can greatly simplify the
expression of the transition probability as

�SE→EA ≈ 〈SE〉t [1 − (x1 + x2 + x3)k−1]αEA. (B11)

Finally, by substituting x1 + x2 + x3 = 1 − βAσA − βIσI

(note that σU = 1 − σA − σI ), and by returning to the usual
notation for the state probabilities, we obtain for �SE→EA the
expression in Eq. (22).

APPENDIX C: PAIRWISE POPULATION-LEVEL
TRANSITION TERMS

Here we present the complete list of the transition probabil-
ity terms of the SEAIR pairwise model at the population level.
These terms can be derived in a way analogous to Eq. (22),

following the algebraic passages detailed in Appendix B. We
begin by considering the nonlinear terms, and in particular the
probability that a link in state (S, S) transits to another state.
i.e., (E , E ) or (S, E ). Let us first write an expression for the
term �SS→EE in the form of Eq. (21). We have

�SS→EE ≈ 〈SS〉t

k−1∑
p=1

p∑
n=0

〈SA〉n
t 〈SI〉p−n

t 〈SU 〉k−1−p
t

〈S〉k−1
t

×
(

k − 1

p

)(
p

n

)
[1 − (1 − βA)n(1 − βI )p−n]
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×
k−1∑
q=1

q∑
m=0

〈SA〉m
t 〈SI〉q−m

t 〈SU 〉k−1−q
t

〈S〉k−1
t

×
(

k − 1

q

)(
q

m

)
[1 − (1 − βA)m(1 − βI )q−m],

(C1)

where we note that the two double summation are equal.
Similarly to what we have done for the expression of �SE→EA,
we can rewrite the previous equation as

�SS→EE ≈ 〈SS〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]2

,

(C2)
where the second power comes from the fact that both nodes
undergo the same transition, i.e., S → E . The term in the
square bracket represents the probability that a node in state
S is infected by at least one of its neighbors, which can be
either in state A or in state I. Therefore, to write the expres-
sion of �SS→SE , we have to consider the probability of the
complementary event, namely, the probability that none of
the infected neighbors transmits the disease to the susceptible
node. We thus have

�SS→SE = 〈SS〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]

×
(

1 − βA
〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

. (C3)

Then, we account for all the possible transitions of links
in state (S, E ). Starting from the expression for �SE→EA in
Eq. (22), we can write the remaining terms by considering the
probability of the complementary events, obtaining

�SE→EE

≈ 〈SE〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]
(1 − αEA),

�SE→SA

≈ 〈SE〉t

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

αEA. (C4)

We now consider the possible transitions from state (S, A).
Let us take into account the probability term �SA→EI and let
us come back for a moment to the expression with the double
summation. This reads

�SA→EI ≈ 〈SA〉t

k−1∑
p=0

p∑
n=0

(
k − 1

p

)(
p

n

) 〈SI〉p−n
t 〈SA〉n

t 〈SI〉k−1−n
t

〈S〉k−1
t

× [1 − (1 − βA)n+1(1 − βI )p−n]αAI , (C5)

where we have already written the probability that the node in
state A transits to state I as αAI (see Appendix B for more
details). It is worth pointing out that, differently from the
previous cases, the previous expression has a term (1 − βA)
raised to (n + 1)th power, which comes from the fact that, as
we are considering the links in state (S, A), the node in state S
will always have an infectious neighbor. Following the same
algebraic steps described in Appendix B, it is easy to verify

that this expression can be simplified as

�SA→EI

≈ 〈SA〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1−βA)

]
αAI .

(C6)

Once again, by considering the probability of the complemen-
tary events, we can write the remaining transition probabilities
for the state (S, A). Note that, since a node in state A can
transit to two different states, i.e., to state I with probability
αAI and state R with probability μA, the probability that the
node remains in state A is given by (1 − αAI − μA). We have

�SA→ER

≈ 〈SA〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1−βA)

]
μA,

�SA→EA

≈ 〈SA〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βA)

]
× (1 − αAI − μA),

�SA→SI

≈ 〈SA〉t

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βA)αAI ,

�SA→SR

≈ 〈SA〉t

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βA)μA. (C7)

Analogously to the previous case, it is easy to write the tran-
sition probability terms from the state (S, I ). We have

�SI→ER

≈ 〈SI〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βI )

]
μI ,

�SI→EI

≈ 〈SI〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βI )

]
× (1 − μI ),

�SI→SR

≈ 〈SI〉t

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βI )μI . (C8)

As concerns the state (S, R), as R is an absorbing state, i.e.,
the node remains in R with probability equal to 1, the only
possible transition is determined by the probability that the
node in state S transits to state E, namely,

�SR→ER ≈ 〈SR〉t

[
1 −

(
1 − βA

〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]
.

(C9)

Finally, we report the linear transition probability terms
appearing in Eqs. (15). All these terms can be expressed in
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the form of Eq. (16), so that they read

�EE→AA = 〈EE〉tα
2
EA,

�EE→EA = 〈EE〉t (1 − αEA)αEA,

�EA→AI = 〈EA〉tαEAαAI ,

�EA→AR = 〈EA〉tαEAμA,

�EA→AA = 〈EA〉tαEA(1 − μA − αAI ),

�EA→EI = 〈EA〉t (1 − αEA)αAI ,

�EA→ER = 〈EA〉t (1 − αEA)μA,

�EI→AR = 〈EI〉tαEAμI ,

�EI→AI = 〈EI〉tαEA(1 − μI ),

�EI→ER = 〈EI〉t (1 − αEA)μI ,

�ER→AR = 〈ER〉tαEA,

�AA→II = 〈AA〉tα
2
AI ,

�AA→IR = 〈AA〉tαAIμA,

�AA→RR = 〈AA〉tμ
2
A,

�AA→AI = 〈AA〉t (1 − μA − αAI )αAI ,

�AA→AR = 〈AA〉t (1 − μA − αAI )μA,

�AI→IR = 〈AI〉t [αAIμI + μA(1 − μI )],

�AI→RR = 〈AI〉tμAμI ,

�AI→II = 〈AI〉tαAI (1 − μI ),

�AI→AR = 〈AI〉t (1 − μA − αAI )μI ,

�AR→IR = 〈AR〉tαAI ,

�AR→RR = 〈AR〉tμA,

�II→RR = 〈II〉tμ
2
I ,

�II→IR = 〈II〉t (1 − μI )μI ,

�IR→RR = 〈IR〉tμI . (C10)

Note that the probability �AI→IR consists of two terms as
there are two possible ways in which a link in state (A, I ) can
transits to state (I, R). First, the node in state A can transits
in state I (the asymptomatic infectious individual develops the
symptoms) while the node in state I transits to state R (the
symptomatic infectious individual recovers). Second, the node
in state A can transits to state R (the asymptomatic infectious
individual recovers) while the node in state I remains in it. In
other words, a link in state (A, I ) can transits either to state
(I, R) or to state (R, I ), according to different probabilities.
Coherently, a link can transit to the state (I, R) coming from
two different states, namely, (A, I ) and (I, A), according to the
same probabilities, which justifies the use of a single transition
probability term �AI→IR in Eqs. (15).

APPENDIX D: DERIVATION OF R0

In this Appendix, we show how to derive the expression
of R0 for both the individual-based and the pairwise SEAIR
models. To do so, we use the next-generation matrix (NGM)
approach [40], developed for discrete-time epidemic models
[64]. To begin with, we briefly discuss the method, and then

we apply it to the deterministic models introduced in our
work.

To to calculate the basic reproduction number, rather than
the full system of master equations, the subsystem describing
the evolution of the infected states may be considered. Here,
we follow the terminology used in Ref. [40] and indicate with
the term “infected states” those compartments that are infec-
tious (A and I) or have been exposed to the disease (E). As a
vanishing fraction of individuals in an infected state indicates
that the infection dies out, R0 can be derived studying the
condition under which the disease-free equilibrium (DFE),
i.e., the equilibrium at which the fraction of individuals in
an infected compartment is zero, becomes unstable. Note that
this equilibrium always exists. Hence, in the context of the
SEAIR models, instead of considering all the states, we will
only focus on the variables involving the E, A, and I compart-
ments. Hereafter, we will generally denote with X(t ) ∈ Rd

the vector containing the value of the subsystem dynamical
variables at time t . To study the stability of the DFE, one
can linearize the infected subsystem around it, writing the
corresponding master equations as

X(t + 1) = (T + �)X(t ), (D1)

where T is called the transmission matrix, as it accounts for
the nonlinear probability terms, i.e., the disease transmission,
while � is the transition one, which accounts for the linear
transitions within the system. From the matrices T and �,
the so-called next-generation matrix (NGM) [40] can be com-
puted as

K = T (1d − �)−1, (D2)

where 1d is the identity matrix of size d . The basic reproduc-
tion number can be calculated as the spectral radius of this
matrix

R0 = ρ(T (1d − �)−1) = ρ(K). (D3)

In fact, it is possible to prove that if R0 < 1 the DFE is asymp-
totically stable, whereas it is unstable if R0 > 1 [40,63,64,75].

1. Individual-based model

Here we show how to construct the NGM for the
individual-based SEAIR model. In this case, to calculate the
value of R0, we can focus on the dynamics of 〈E〉t , 〈A〉t ,
and 〈I〉t , which are the variables representing the fraction of
infected individuals within the population. Thus, we define
X(t ) = (〈E〉t , 〈A〉t , 〈I〉t )T . Linearizing around the DFE the
equations relative to the infected subsystem in Eqs. (6), we
obtain the following transmission and transition matrices:

T =
⎡
⎣0 βAk βI k

0 0 0
0 0 0

⎤
⎦ (D4)

and

� =
⎡
⎣1 − αEA 0 0

αEA 1 − αAI − μA 0
0 αAI 1 − μI

⎤
⎦. (D5)
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Considering (D2), we finally derive that the NGM is given by

K =
⎡
⎣ k(αAI βI +μI βA )

μI (αAI +μA )
k(αAI βI +μI βA )
μI (αAI +μA )

βI k
μI

0 0 0
0 0 0

⎤
⎦, (D6)

whose spectral radius ρ(K) gives the value of R0 reported in
Eq. (14).

2. Pairwise model

Here, we calculate the NGM for the pairwise SEAIR
model. As mentioned above, we have to focus on all variables
involving the E, A, and I compartments, which in the pairwise
model are the pair probabilities 〈EX 〉t , 〈AX 〉t , and 〈IX 〉t , with
X ∈ �. However, the subsystem of interest consists of a set of
twelve master equations of Eqs. (15), which can be unfeasible
to deal with. To reduce the number of equations, we can do the
following consideration. Given the relation on the marginal
probabilities (5), when the pair probabilities approach zero,
the individual probabilities go to zero as well. In other words,
if no link in the network has one infected node at one of its
end, then no node in the network will be infected. Therefore,
considering Eq. (5) and the expression of the transition prob-
abilities, i.e., Eqs. (16), (22), and (C1)–(C10), we can rewrite
the system (15) as

〈S〉t+1 = 〈S〉t − 〈S〉tπS,

〈E〉t+1 = 〈E〉t + 〈S〉tπS − 〈E〉tαEA,

〈A〉t+1 = 〈A〉t + 〈E〉tαEA − 〈A〉tαAI − 〈A〉tμA,

〈I〉t+1 = 〈I〉t + 〈A〉tαAI − 〈I〉tμI ,

〈R〉t+1 = 〈R〉t + 〈A〉tμA + 〈I〉tμI ,

〈SS〉t+1 = 〈SS〉t − 2〈SS〉tπSS (1 − πSS ) − 〈SS〉tπ
2
SS,

〈SE〉t+1 = 〈SE〉t + 〈SS〉tπSS (1 − πSS ) − 〈SE〉tαEA (D7)

− 〈SE〉tπSS (1 − αEA),

〈SA〉t+1 = 〈SA〉t + 〈SE〉t (1 − πSS )αEA − 〈SA〉tπSA

− 〈SA〉t (1 − πSA)(αAI + μA),

〈SI〉t+1 = 〈SI〉t + 〈SA〉t (1 − πSA)αAI − 〈SI〉tπSI

− 〈SI〉t (1 − πSI )μI ,

where, for the purpose of simplification, we have used the
notation

πS =
[

1 −
(

1 − βA
〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k]
,

πSS =
[

1 −
(

1 − βA
〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1]
,

πSA =
[

1 −
(

1 − βA
〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βA)

]
, (D8)

πSI =
[

1 −
(

1 − βA
〈SA〉t

〈S〉t
− βI

〈SI〉t

〈S〉t

)k−1

(1 − βI )

]
.

Note that Eqs. (D7) represent a closed set of equations.
As we are interested in analyzing the early stage of the
epidemic, we can linearize the infected subsystem, which con-
sists in the equations describing the dynamics of 〈E〉t , 〈A〉t ,
〈I〉t , 〈SE〉t , 〈SA〉t , 〈SI〉t , around the DFE, characterized by
〈S〉t+1 ≈ 〈SS〉t+1 ≈ 1, while all the other variables approach
zero. We find

〈E〉t+1 ≈ 〈E〉t (1 − αEA)

+ (k − 1)(βA〈SA〉t + βI〈SI〉t ),

〈A〉t+1 ≈ 〈E〉tαEA + 〈A〉t (1 − αAI − μA),

〈I〉t+1 ≈ 〈A〉tαAI + 〈I〉t (1 − μI ),

〈SE〉t+1 ≈ 〈SE〉t (1 − αEA) (D9)

+ (k − 1)(βA〈SA〉t + βI〈SI〉t ),

〈SA〉t+1 ≈ 〈SA〉t (1 − βA)(1 − αAI − μA) + 〈SE〉tαEA,

〈SI〉t+1 ≈ 〈SI〉t (1 − βI )(1 − μI ) + 〈SA〉t (1 − βA)αAI ,

from which we can compute the transmission and transition
matrices as

T =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 βAk βI k
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 βA(k − 1) βI (k − 1)
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (D10)

and

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − αEA 0 0 0 0 0

αEA 1 − αAI − μA 0 0 0 0

0 αAI 1 − μI 0 0 0

0 0 0 1 − αEA 0 0

0 0 0 αEA (1 − βA)(1 − αAI − μA) 0

0 0 0 0 αAI (1 − βA) (1 − βI )(1 − μI )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D11)
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Finally, given the matrices T and �, we calculate the NGM matrix through (D2), obtaining

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 k{αAI βI (1−βA )+βA[1−(1−βI )(1−μI )]}
[1−(1−βA )(1−αAI −μA )][1−(1−βI )(1−μI )]

k{αAI βI (1−βA )+βA[1−(1−βI )(1−μI )]}
[1−(1−βA )(1−αAI −μA )][1−(1−βI )(1−μI )]

βI k
1−(1−βI )(1−μI )

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 (k−1){αAI βI (1−βA )+βA[1−(1−βI )(1−μI )]}

[1−(1−βA )(1−αAI −μA )][1−(1−βI )(1−μI )]
(k−1){αAI βI (1−βA )+βA[1−(1−βI )(1−μI )]}
[1−(1−βA )(1−αAI −μA )][1−(1−βI )(1−μI )]

βI (k−1)
1−(1−βI )(1−μI )

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠. (D12)

The last step is to compute the spectral radius ρ(K ) that gives the expression of the basic reproduction number R0 for the
pairwise SEAIR model reported in Eq. (23).

APPENDIX E: NETWORK MODELS

Here we briefly illustrate how the network models we used
for our numerical simulations have been generated. All the
algorithms are described in Ref. [14].

Random r-regular graph. In this graph, each node is con-
nected to r other, randomly selected, nodes. The graph is
constructed by using a refinement version of the configuration
model [76,77], according to which a degree sequence for the
N nodes is first fixed (in the case of a random r-regular graph
the degree is equal to r for all nodes) and, then, links are
assigned to match this degree sequence, so that no loops or du-
plicated edges are present. In practice, to each node i a number
of half-edges, called stubs, equal to the degree ki is assigned,
and then the half-edges are paired together (selecting them at
random with uniform probability) until all the edges of the
graph are built.

Erdös-Rényi (ER) graph. This graph is built starting from
N nodes and considering a positive parameter p ∈ (0, 1)

representing the probability that a pair (i, j) of nodes
is connected. In the algorithm for the network genera-
tion, each pair (i, j) of nodes is sequentially inspected
and a link between i and j is set with probability p,
while the two nodes remain disconnected with probability
1 − p.

Barabási-Albert (BA) graph. The graph is built starting
from an initial configuration given by a complete graph with
N0 nodes. Then, a number of N − N0 steps is sequentially per-
formed, with N � N0, at each step t (with t = 1, . . . , N − N0)
adding a new node to the network obtained at the previous step
At each step t , the new node is connected to m � N0 different
existing nodes with a preferential attachment rule. Indicating
with kt−1

i the degree of node i (with i = 1, . . . , t + N0 − 1)
in the network at step t − 1, then, at step t the new node
(labeled t + N0) is connected to node i with probability �i =
kt−1

i /(
∑t+N0−1

j=1 kt−1
j ). In particular, in our case we used m = 2

and N0 = m + 1.
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