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Multipartite entanglement of the topologically ordered state in a perturbed toric code
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We demonstrate that multipartite entanglement, witnessed by the quantum Fisher information, can characterize
topological quantum phase transitions in the spin- 1

2 toric code model (TCM) on a square lattice with external
fields. We show that the quantum Fisher information density of the ground state can be written in terms of the
expectation values of gauge-invariant Wilson loops for different sizes of square regions and identify Z2 topo-
logical order by its scaling behavior. Furthermore, we use this multipartite entanglement witness to investigate
thermalization and disorder-assisted stabilization of topological order after a quantum quench. Moreover, with
an upper bound of the quantum Fisher information, we demonstrate the absence of finite-temperature topological
order in the two-dimensional TCM in the thermodynamic limit. Our results provide insights to topological
phases, which are robust against external disturbances and are candidates for topologically protected quantum
computation.
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I. INTRODUCTION

Recent developments of quantum information theory have
provided novel angles and tools for modern condensed
matter physics [1]. The quantum-information features of
quantum matter help to study quantum phase transitions
(QPTs) [2–7], out-of-equilibrium quantum many-body sys-
tems [8–10], and non-Hermitian physics [11–16]. One pivotal
concept introduced by quantum information science into
condensed matter physics is quantum entanglement [17],
which quantifies nonlocal quantum correlations. Beyond Lan-
dau’s symmetry-breaking theory [3], topological order [18] in
strongly correlated many-body systems, e.g., quantum spin
liquids [19] and the fractional quantum Hall states [20], can
be described by the long-range entanglement encoded in the
ground states of the system [1]. Topological order is promis-
ing for applications in fault-tolerant quantum computation
[21,22] because of properties such as ground-state degeneracy
and the non-Abelian geometric phase of degenerate ground
states. As a simple example of a stabilizer code, the toric
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code model (TCM), with fourfold topological degeneracy on a
torus, is the widest studied model of topological order, allow-
ing for encoding two robust qubits against local perturbations
[21].

Bipartite entanglement witnesses, including topological
entanglement entropy [23,24], entanglement spectrum [25],
topological Rényi entropy [26,27], and entanglement nega-
tivity [28,29], have achieved great success in characterizing
topological order. However, the measurement of bipartite en-
tanglement requires quantum state tomography or a statistical
protocol via randomized measurements [30], which are al-
most impossible even for a modest system size. Multipartite
entanglement, witnessed by the quantum Fisher informa-
tion (QFI) [31–33], is believed to represent richer properties
of complex structures of topological states than bipartite
entanglement, which is experimentally measurable in large
many-body systems using mature techniques [34–38]. Re-
cent studies [39,40] have shown that the scaling behavior of
the QFI with respect to nonlocal operators is sensitive when
detecting one-dimensional (1D) symmetry-protected topolog-
ical (SPT) order [41,42] and topological order in the Kitaev
honeycomb model [43]. Moreover, the QFI is an effective
entanglement witness for a mixed state [33] and is useful for
characterizing topological phases at finite temperatures.

In this paper, we demonstrate the characterization of topo-
logical QPTs in a two-dimensional (2D) spin- 1

2 TCM with
external fields by using multipartite entanglement, witnessed
by the QFI. With a dual transformation [40], the QFI density
of the ground state can be expressed in terms of the re-
duced Wilson loops [44] for different sizes of square regions,
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FIG. 1. (a) An N × N square lattice with periodic boundary conditions and spins- 1
2 on the bonds. A star (s) on the lattice corresponds to a

plaquette (p) on the dual lattice and vice versa. Fields in the z (x) direction with a magnitude of λz (λx) are located on the horizontal (vertical)
edges. (b) An illustration of sites (i, j), where the effective spins are located, and links b〈 j−1, j〉

i . (c) An illustration of the magnetic Wilson loop
for a square region R∗, with D = 3. The region R∗ contains D × D stars (dark blue crosses), and the boundary ∂R∗ (light blue dashed line)
threads 4D spins.

whose scaling behavior signals the topological QPTs. Fur-
thermore, we show that thermalization and disorder-assisted
stabilization of topological order after a quantum quench can
be identified via multipartite entanglement. Using an upper
bound of the QFI, we investigate the 2D TCM at finite temper-
atures and show that topological order cannot survive against
thermal fluctuations in the thermodynamic limit.

Due to rapid developments of quantum techniques, re-
cently two quantum simulation platforms [45,46] have
generated topological order of the toric code type with several
tens and several hundreds of qubits. Then, a practical witness
of the long-range entanglement of the topologically ordered
state is needed, which is relevant to the interests of experi-
mentalists working on different quantum simulators. Here we
propose an entanglement witness for the 2D TCM with the
QFI in terms of averages of closed string operators, which
are experimentally measurable [46]. Our work, based on the
experimentally extractable QFI, will contribute to a deeper un-
derstanding of topological QPTs in condensed matter physics
and has promising applications in both fault-tolerant quantum
computation and robust quantum metrology [47].

II. TORIC CODE MODEL ON A TORUS
WITH EXTERNAL FIELDS

The toric code model (TCM) has a resonating valence-
bond phase [48] (aka a quantum spin liquid phase [1,3])
capturing all elements of topological order: Z2 excitations
with anyonic particle statistics, a fourfold degenerate ground
state on a torus, robustness against local perturbations, and no
local-order parameter. Similar to the quantum dimer model on
the Kagome lattice [49] and the Wen-plaquette model [50], the

2D TCM is a significant toy model for studying Z2 topological
order. The Hamiltonian of the spin- 1

2 TCM on a N × N square
lattice reads [21,51]

Ĥtc = −JA
∑

s

Âs − JB
∑

p

B̂p, (1)

where the stabilizer operators Âs ≡ ∏
i�s σ̂ x

i and B̂p ≡∏
i∈p σ̂ z

i both contain four spins belonging to a star s and a
plaquette p, respectively [see Fig. 1(a)].

This model is exactly solvable, because all the star and pla-
quette operators commute with each other, i.e., [Âs, B̂p] = 0
for ∀s, p. We have two constraints,

∏
s Âs = ∏

p B̂p = I, with
periodic boundary conditions, and thus the ground state is
fourfold degenerate, allowing for encoding two qubits. Any
state in the ground-state manifold L can be written as

|G〉 =
1∑

i, j=0

ai j |ξi j〉, (2)

in terms of four bases

|ξi j〉 = (
Ŵ m

1

)i(
Ŵ m

2

) j |ξ00〉, (3)

where we have
∑1

i, j=0 |ai j |2 = 1, the string operators

Ŵ m
1,2 ≡

∏
i∈γ x

1,2

σ̂ x
i , (4)

and

|ξ00〉 ∝
∏

s

(I + Âs)|⇑〉, (5)
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with |⇑〉 being the all spin-up state in the σ̂ z basis. The exci-
tations of the TCM are in two categories: The electric charges
(e) and the magnetic vortices (m) of a Z2 lattice gauge theory,
which have nontrivial mutual statistics and follow fusion rules
[21].

Then we consider the system (1) subsequently subject to
the fields in the z and x directions on the horizontal and
vertical edges, respectively [see Fig. 1(a)],

V̂ = −
∑
i∈h

λz
i σ̂

z
i −

∑
j∈v

λx
j σ̂

x
j . (6)

The Hamiltonian of the TCM with external fields can be
expressed as uncoupled Ising chains on different lines [52,53],

Ĥfield
tc = Ĥtc + V̂ =

2N∑
i=1

Ĥi, (7)

where the transverse-field Ising Hamiltonian is

Ĥi ≡ −
N∑

j=1

[
J (i)τ̂ x

i, j τ̂
x
i, j+1 + λ

(i)
j τ̂ z

i, j

]
, (8)

with λ
(i)
j = λz

j (λx
j) and J (i) = JA (JB) for i being odd (even),

[Ĥi, Ĥl ] = 0, and τ̂ x,z
i, j being Pauli operators after applying the

dual transformation (see Appendix A), on the site (i, j) of the
original and dual lattice at the ith row and jth column [see
Fig. 1(b) for the original lattice].

III. GAUGE-INVARIANT WILSON LOOP

A Z2 lattice gauge theory [54] has confined and decon-
fined phases and is equivalent to the classical Ising model.
The TCM [44] can be mapped into the Hamiltonian of a Z2

lattice gauge theory [55], and the Z2 topological order (in the
deconfined phase) can be probed via the expectation value of
the gauge-invariant Wilson loop [54,56]. For a square region
R∗ on the dual lattice with D × D stars [see Fig. 1(c)], the
Wilson loop is defined as the average of a magnetic closed
string operator Wm

R∗ ≡ 〈Ŵ m
R∗ 〉 [44] with

Ŵ m
R∗ =

∏
i∈∂R∗

σ̂ x
i =

∏
s∈R∗

Âs, (9)

where ∂R∗ denotes the boundary of R∗. Similarly, the Wilson
loop for a square region R on the original lattice, with D ×
D plaquettes, can be defined as We

R = 〈Ŵ e
R 〉 with an electric

closed string operator

Ŵ e
R =

∏
i∈∂R

σ̂ z
i =

∏
p∈R

B̂p. (10)

For simplicity, we consider the reduced Wilson loop, defined
as

w
e,m
D ≡ (

We,m
D

)1/D
. (11)

For a large square region with D 
 1, the Wilson loops on
both original and dual lattices follow a perimeter law

We,m ∝ exp(−βD), (12)

i.e., w
e,m
D → const = 0, for the existence of topological order,

and either or both follow an area law

We ∝ exp(−βD2) or/and Wm ∝ exp(−βD2), (13)

i.e., we
D → 0 or/and wm

D → 0, when topological order is ab-
sent [44].

For the TCM with external fields, the reduced Wilson loop
can be written as a spin-spin correlator for the ground state,

w
e,m
D = 〈

τ̂ x
i, j τ̂

x
i, j+D

〉
G, (14)

for i being even and odd, respectively. For simplicity, we con-
sider uniform external fields λx,z

j = λx,z and set JA = JB = 1.
For the topologically trivial phase (λx or λz > 1), we have
we

D or wm
D → 0; for the topologically nontrivial phase with

topological order (λx,z < 1), we have w
e,m
D → const > 0 [see

Fig. 2(a)].

IV. PROBING TOPOLOGICAL ORDER IN THE TCM
BY THE QFI DENSITY

Recent studies [39,40] show that multipartite entangle-
ment, witnessed by the QFI with nonlocal operators, can
characterize 1D SPT order and topological order in the Kitaev
honeycomb model. For a pure state |ψ〉, the QFI, with respect
to a generator Ô, can be simply calculated as [31]

FQ = 4(
ψÔ)2, (15)

where (
ψÔ)2 ≡ 〈Ô2〉ψ − 〈Ô〉2
ψ . For an m-partite system,

the QFI density, defined as

fQ ≡ FQ/m, (16)

gives an entanglement criterion; the violation of the inequality
fQ � κ signals (κ + 1)-partite entanglement (1 � κ � m −
1) [57].

For the TCM with uniform external fields in the x, z direc-
tions, we consider the square regions with L × L spins on the
original and dual lattices, respectively. The generators for the
QFI are chosen as

Ôe =
L∑

k, j=1

τ̂ x
2k, j/2, Ôm =

L∑
k, j=1

τ̂ x
2k−1, j/2 (17)

for the regions on the original and dual lattices, respectively.
We obtain two QFI densities:

fQ[Ôe,m, |G〉] ≡ FQ[Ôe,m, |G〉]/L2 = 1 +
L−1∑
D=1

w
e,m
D , (18)

which are expressed in terms of the reduced Wilson loops (14)
for increasing sizes of the square regions on the original and
dual lattices, respectively. As discussed in Refs. [34,39,40],
the QFI densities, as a function of L, follow an asymptotic
power-law scaling in the thermodynamic limit:

fQ[Ôe,m, |G〉] = 1 + αe,mLβe,m
, (19)

where the scaling coefficients αe,m and βe,m depend on the
parameters of the TCM with external fields. When βe,m → 1,
multipartite entanglement, witnessed via the QFI densities, in-
crease linearly with the side length L of the region, indicating
the presence of long-range quantum correlations.
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FIG. 2. (a) The reduced Wilson loop wD as a function of the side length D of the square region on the lattice of the TCM for different
strengths, λ = 0.5, 1, 1.5, of the external fields. (b) The reduced Wilson loop wD in the vicinity of a quantum critical point λ = 1. (c) The
scaling topological index I ≡ βeβm obtained from the QFI densities fQ[Oe,m, |G〉] of a chosen square region with a side length L = 2000 for
different strengths λx,z of external fields. The size of the square lattice of the TCM is N × N with N = 5L = 10,000.

Then, we can define a topological index as

I ≡ βe × βm, (20)

combining the scaling behaviors of the QFI densities with
respect to the generators (17) for the original and dual lattices,
respectively. According to the scaling behavior of the Wilson
loop, this topological index approximates 1 in the topological
phase (0 < λx,z < 1) and vanishes in the topologically triv-
ial phase (λx > 1 or λz > 1). Here the absence of nonlocal
entanglement in the regions on the original lattice βe � 0
(dual lattice βm � 0) indicates the existence of many anyonic
electric (magnetic) excitations characterized by the Wilson
loop according to the Z2 lattice gauge theory. Thus I → 1,
signaling multipartite entanglement with respect to the gen-
erators defined in both original and dual lattices, indicates
the existence of topological order in the TCM with external
fields, and I → 0 implies the absence of topological order. As
shown in Fig. 2(c), the topological QPTs in the 2D TCM with
external fields can be effectively characterized via multipartite
entanglement.

V. OBSERVING THERMALIZATION OF THE
TOPOLOGICAL STATE AFTER A QUANTUM QUENCH

VIA MULTIPARTITE ENTANGLEMENT

Topological order, promising for topological quantum
memories [58] and topological quantum computation [22],
is believed to be robust against perturbations, which cannot
change the topological nature of the ground state. However,
topological order in the 2D TCM is not stable when kicked out
of equilibrium [51,59] or at finite temperatures [60]. First, we
use multipartite entanglement to study thermalization of the
topological ground state of the TCM after a quantum quench
with external fields. The system before the sudden quench
(t < 0) is supposed to be in the topologically ordered ground
state, |0〉 = |Gtc〉, of the TCM with Ĥtc in Eq. (1). At t =
0, the Hamiltonian is suddenly changed to Ĥfield

tc = Ĥtc + V̂ ,
with V̂ in Eq. (6) being the uniform external fields in the x, z

directions (λx,z
j = λx,z). The system evolves as

|(t )〉 = exp
( − it Ĥfield

tc

)|Gtc〉, (21)

and we focus on the stable state of the system at an infinite-
long time (t → ∞). In the thermodynamic limit N → ∞, for
a large chosen region of the original (dual) lattice D 
 1,
the long-time reduced Wilson loop can be calculated as (see
Appendix B and Ref. [61])

w
e,m
D =

{
[(1 + √

1 − λ2)/2]D, for 0 < λx,z � 1,

1/2D, for λx,z > 1,

(22)
which decays to zero for D → ∞, except for the case without
quenched external fields λx = λz = 0. Thus for any nonzero
quenched external field, λx or λz = 0, we can derive that the
QFI density

fQ[Ôe, |(∞)〉] = const or fQ[Ôm, |(∞)〉] = const, (23)

leading to thermalization of topological order with a zero
topological index I � 0 (see also Appendix B). Therefore
thermalization of the topologically ordered state witnessed
via multiparite entanglement implies that the quench of any
transverse field is a source of fluctuations for destroying topo-
logical order in the TCM at zero temperature.

VI. DYNAMICAL LOCALIZATION OF THE
TOPOLOGICALLY ORDERED STATE WITH DISORDER

We now investigate how to stabilize the topologically or-
dered state in the TCM using the multipartite entanglement
witness. By introducing disorder in the coupling strengths of
stabilizer operators [62–64], topological order can be pro-
tected from a quantum quench with external fields at zero
temperature [65]. The Hamiltonian of the TCM with disor-
dered coupling strengths reads

ĤD/O
tc = −

∑
s

JA
s Âs −

∑
p

JB
p B̂p, (24)
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FIG. 3. Dynamical localization of topological order in the 2D TCM after a quantum quench. (a) Time evolutions of the average reduced
Wilson loops w̄D for δJ = 0, 0.25, 0.5 with a length D of the square region up to L = 200. (b) The average reduced Wilson loops w̄D versus
the length D of the square region for δJ = 0, 0.25, 0.5 at t = 103. (c) The average QFI densities f̄Q versus the length D of the square region
for δJ = 0, 0.125, 0.25, 0.5 at t = 103. The side length of the square lattice is N = 5L = 1000, and the number of realizations of disordered
coupling strengths is 1000.

where the random coupling strengths JA
s = JA + δJA

s and
JB

p = JB + δJB
p are applied, with δJA

s ∈ [−δJA, δJA] and
δJB

p ∈ [−δJB, δJB]. Given JA,B > 0 and 0 < δJA,B < 1, the
system is stable in the same ground-state |Gtc〉 of the TCM
(1) at zero temperature. At time t = 0, the sudden quench
dynamics occurs by adding external fields V̂ (6) at t = 0. It
has been demonstrated in Ref. [65] that in the presence of
disorder in the coupling strengths of stabilizer operators, the
quantum quench is equivalent to a quasiadiabatic evolution
with a family of local Hamiltonians, and the quenched state

|(t )〉 = exp
[ − i

(
ĤD/O

tc + V̂
)
t
]|Gtc〉 (25)

and the initial ground-state |Gtc〉 belong to the same topo-
logical phase [66–69]. Therefore after a quantum quench,
dynamical localization, induced by disorder, can preserve the
ground-state degeneracy, energy gap, and topological order
robustness [65].

We now numerically investigate the dynamical localization
of topological order by considering multipartite entanglement
of the time-evolved state (see Appendix C). Without loss
of generality, we set JA,B = 1, consider the same disorder
strength δJA,B = δJ , and choose the strengths of the quenched
fields in Eq. (6) as λz

i = λx
j = 0.5. In Fig. 3(a), we plot the

time evolutions of the average reduced Wilson loops w̄D over
1000 realizations of disorder coupling strengths with a length
of the square region up to L = 200 and a length of the square

lattice being N = 5L = 1000. For long-time evolutions, the
average reduced Wilson loops converge to a finite value (with
disorder), or exponentially decay (without disorder). For long
times (e.g., t = 103), the average Wilson loops of the stable
states follow a perimeter law (with disorder) or an area law
(without disorder) [see Fig. 3(b)]. Thus the average QFI densi-
ties f̄Q ∝ L (with disorder) or f̄Q → const (without disorder)
[see Fig. 3(c)].

In addition to the numerical results using topological en-
tanglement entropy [65], we show that the stable states have
the same scaling behaviors of multipartite entanglement as the
topological ground states of the TCM. These results manifest
that these two kinds of states belong to the same topological
phase, and topological order can be protected from a quantum
quench by introducing disorder.

VII. ABSENCE OF TOPOLOGICAL ORDER
IN THE THERMODYNAMIC LIMIT AT

ANY FINITE TEMPERATURE

Since the topological entanglement entropy cannot distin-
guish quantum correlations from classical ones for a mixed
thermal state, it has attracted growing interest to search for
an order parameter, based on a mixed-state entanglement de-
tection, for finite-temperature topological order [70–72]. Here
using the QFI as an effective entanglement witness for a mixed
state [33,73], we investigate whether topological order can
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survive in the 2D TCM against thermal fluctuations at finite
temperatures.

For a mixed state ρ with all possible pure-state ensembles
{pl , |φl〉}, the QFI is given by the convex roof of the averaged
variance of the generator Ô [74], i.e.,

FQ[Ô, ρ] = 4 min
{pl ,|φl 〉}

∑
l

pl (
φl Ô)2. (26)

To better approximate the QFI of a thermal state of the TCM
at finite temperatures, we use the minimally entangled typical
quantum states (METTS) [75] to decompose the thermal state
as [34,76]

ρT = exp(−Ĥtc/T )/Z =
∑

i

pl |φl〉〈φl |, (27)

where Z ≡ Tr[exp(−Ĥtc/T )] and pl = 〈l|ρT |l〉. Here

|φl〉 = exp[−Ĥtc/(2T )]|l〉/√pl (28)

is the METTS by taking |l〉 as a product state. The central idea
of METTS is to break a thermal state with inverse temperature
1/T into two copies of the thermal state with 1/(2T ) [75].

For the square region R∗ on the dual lattice, we choose |l〉
as a product state in the σ̂ z basis and have

|φl〉 ∝ exp

[
JA

∑
s

Âs/(2T )

]
|l〉. (29)

The QFI density is upper bounded as (see Appendix D)

fQ[Ôm, ρT ] � 1 +
L−1∑
D=1

tanh(JA/T )D, (30)

which converges to a constant for any nonzero temperature
T > 0 in the thermodynamic limit L → ∞. Similarly, for
the region R on the original lattice, we choose |l ′〉 to be the
product state in the σ̂ x axis, and the QFI density is upper
bounded as

fQ[Ôe, ρT ] � 1 +
L−1∑
D=1

tanh(JB/T )D, (31)

which converges to a constant for T > 0 and L → ∞. More-
over, with these upper bounds, we can simply deduce that the
scaling coefficients of the QFI densities, defined in Eq. (19),
are both equal to zero, βe,m = 0, with a zero topological index,
I = 0, at any finite temperature. Therefore we conclude that
multipartite entanglement, witnessed via the QFI, can detect
the absence of finite-temperature topological order in the 2D
TCM in the thermodynamic limit, which agrees with the result
obtained using negativity [72].

VIII. CONCLUSIONS

We demonstrated that the QFI, as a witness of multipar-
tite entanglement, can characterize topological QPTs in the
TCM on a square lattice with external fields. The QFI density
of the ground state is expressed in terms of the expecta-
tion values of reduced Wilson loops for different sizes of
square regions, of which the scaling behavior identifies the
Z2 topological order. Moreover, the QFI can be used to study

thermalization and disorder-assisted stabilization of topolog-
ical order after a quantum quench. Last, the convex roof of
the QFI is applied to investigate the TCM at finite temper-
atures, showing that topological order cannot survive at any
nonzero temperature in the thermodynamic limit. Using the
experimentally extractable QFI, our results will help to study
topological QPTs in condensed matter physics with promis-
ing applications in fault-tolerant quantum computation and
robust quantum metrology. In addition, it was recently shown
in Ref. [77] that regardless of a specific type of quantum
resource, the QFI identifies every resourceful quantum state
in general quantum resource theories [78]. Our results would
also inspire further investigations of the quantum resources
of topological quantum states for additional applications with
quantum advantages.
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APPENDIX A: TRANSFORMING THE TCM TO
UNCOUPLED TRANSVERSE ISING CHAINS VIA DUAL

TRANSFORMATIONS

The Hamiltonian of the TCM with external fields can be
divided into two mutually commutative parts,

Ĥfield
tc ≡ Ĥtc + V̂ = ĤA + ĤB, (A1)

with [ĤA, ĤB] = 0, where

ĤA = −JA
∑

s

Âs − λz

∑
i∈h

σ̂ z
i , (A2)

ĤB = −JB
∑

p

B̂p − λx

∑
i∈v

σ̂ x
i . (A3)
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For clarity, (i, j) denotes the site of the original lattice and the
dual lattice at row i and column j; b〈 j, j+1〉

i denotes the bond
connecting two sites (i, j) and (i, j + 1). For an odd row i =
2k − 1, (2k − 1, j) belongs to the original lattice, while for
an even row i = 2k, (2k − 1, j) is located on the dual lattice
[see Fig. 1(b)]. By introducing the effective spins with Pauli
operators via the dual transformations,

τ̂ x
2k−1, j =

∏
l� j

Â2k−1,l , τ̂ z
2k−1, j = σ̂ z

b〈 j, j+1〉
2k−1

, (A4)

on the lattice site (2k − 1, j), ĤA becomes [51]

ĤA =
N∑

k=1

Ĥ2k−1, (A5)

with

Ĥ2k−1 = −
N∑

j=1

(
JAτ̂ x

2k−1, j τ̂
x
2k−1, j+1 + λz

j τ̂
z
2k−1, j

)
. (A6)

Similarly, we can introduce effective spins on the dual lattice
with Pauli operators via the dual transformations:

τ̂ x
2k, j =

∏
l� j

B̂2k,l , τ̂ z
2k, j = σ̂ x

b〈 j, j+1〉
2k

, (A7)

with which ĤB is expressed as

ĤB =
N∑

k=1

Ĥ2k, (A8)

where

Ĥ2k = −
N∑

j=1

(
JBτ̂ x

2k, j τ̂
x
2k, j+1 + λx

j τ̂
z
2k, j

)
. (A9)

APPENDIX B: WILSON LOOP IN THE TCM AFTER
A QUANTUM QUENCH

In the previous section, we show that using the dual trans-
formations, the Hamiltonian of the TCM with external fields
can be expressed as uncoupled transverse-field Ising chains
on different lines. Therefore the out-of-equilibrium dynam-
ics of the TCM can be investigated using the results of the
transverse-field Ising chain.

We consider a quantum quench of a transverse-field Ising
chain at its ground state with a Hamiltonian:

ĤIsing = −
N∑

j=1

[
τ̂ x

j τ̂
x
j+1 + λ(t )τ̂ z

j

]
, (B1)

where the transverse field is changed from λ0 to λ abruptly at
time t = 0

λ(t ) =
{

λ0, for t � 0
λ, for t > 0 . (B2)

It can be rewritten in terms of the Jordan-Wigner transforma-
tion

τ̂ z
j = (2ĉ†

j ĉ j − 1), τ̂+
j = ĉ†

j

j−1∏
l=1

(1 − 2ĉ†
l ĉl ), τ̂+

1 = ĉ†
1,

as

ĤIsing =
∑

j

[(ĉ j − ĉ†
j )(ĉ

†
j+1 + ĉ j+1) − λ(ĉ†

j ĉ j − ĉ j ĉ
†
j )].

(B3)
In the thermodynamic limit N 
 1, we use the Fourier trans-
formation (with q being the wave vector),

ĉ j =
∑

q

e−iq j ĉq/
√

N, (B4)

to obtain the Bogoliubov-de Gennes Hamiltonian of a
transverse-field Ising chain,

ĤIsing =
∑

q

C†
qHqCq, (B5)

with C†
q ≡ (ĉ†

q, ĉ−q ), yq ≡ − sin q, zq ≡ −λ − cos q,
tan �q ≡ yq/zq, and

Hq =
( −λ − cos q i sin q

−i sin q λ + cos q

)
= yqσ̂

y + zqσ̂
z. (B6)

The Hamiltonian can be diagonalized by using the Bogoli-
ubov transformation as

ĤIsing =
∑

q

ωqE
†
qσ̂

zEq, (B7)

with Cq = RqEq, ωq = (y2
q + z2

q )
1
2 , E†

q ≡ (η̂†
q, η̂−q ),

Rq =
(

uq −ivq

−ivq uq

)
, (B8)

uq ≡ cos �q

2 , and vq ≡ sin �q

2 .
The Heisenberg equation of Cq(t ) can be expressed as

i∂tCq(t ) = 2HqCq(t ). (B9)

We then define the time-propagation transformation of Cq(t )
in terms of Eq(0) as Cq(t ) = Sq(t )Eq(0), where

Sq(t ) =
(

Uq(t ) −V ∗
q (t )

Vq(t ) U ∗
q (t )

)
. (B10)

Substituting it into the Heisenberg equation (B9), we can
obtain

i∂tSq(t ) = 2Hq(g)Sq(t ). (B11)

With the initial constraints Uq(0) = uq(0) ≡ u0 and Vq(0) =
−ivq(0) ≡ −iv0, the solutions of Eq. (B11) can be obtained
as (

Uq(t )
Vq(t )

)
=

(
u0 cos 2ωt + i sin 2ωt (zu0+yv0 )

ω

−iv0 cos 2ωt + sin 2ωt (yu0+zv0 )
ω

)
, (B12)

where ω ≡ ωq(g), y ≡ yq(g), and z ≡ zq(g).
To calculate the reduced Wilson loop, written as an x-

directional spin-correlation function [Eq. (5)], we need to
consider two kinds of operators, Â j (t ) = â†

j (t ) + â j (t ) and

B̂ j (t ) = b̂†
j (t ) − b̂ j (t ), where

â j (t ) =
∑

q

eiq j[Uq(t ) + Vq(t )]η̂q(0)/
√

N, (B13)

b̂ j (t ) =
∑

q

eiq j[Uq(t ) − Vq(t )]η̂q(0)/
√

N . (B14)
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According to Wick’s theorem, we only need to consider three
types of contraction [51],

Gr (t ) ≡ 〈G(0)|B̂ j (t )Â j+r (t )|G(0)〉

=
∑

q

e−iqr

N

[
z0z + y0y

(iy − z)ω0
+ i

z0y − zy0

(iy − z)ω0
cos 4ωt

]
,

(B15)

GA
r (t ) ≡ 〈G(0)|Â j (t )Â j+r (t )|G(0)〉

= δr,0 +
∑

q

e−iqr

N

z0y − zy0

ωω0
sin 4ωt, (B16)

GB
r (t ) ≡ 〈G(0)|B̂ j (t )B̂ j+r (t )|G(0)〉

= −δr,0 +
∑

q

e−iqr

N

z0y − zy0

ωω0
sin 4ωt . (B17)

The x-directional spin-correlation function, expressed as a
Pfaffian, can be calculated. Details of the calculation can be
found in Refs. [61,79].

We consider the quench from the ground state of the toric
code λ0 = 0 to the case with λ f = λ. In the long-time limit
(t → ∞) and thermodynamic limit ( 1

N

∑
q → 1

2π

∫
dq), the

time-dependent oscillating terms vanish, and therefore we can
obtain that GA

r = δr,0, GB
r = −δr,0, for λ < 1

Gr (∞) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − λ2)λr−1/2, for r � 2
1 − λ2/2, for r = 1
−λ/2, for r = 0
0, for r � −1

, (B18)

and for λ > 1

Gr (∞) =

⎧⎪⎪⎨
⎪⎪⎩

0, for r � 2
1/2, for r = 1
−1/(2λ), for r = 0
(λ2 − 1)λr−1/2, for r � −1

, (B19)

by using the residue theorem. Furthermore, the x-directional
spin-correlation function Cx

d (∞) ≡ 〈σ x
j (∞)σ x

j+d (∞)〉G (with-
out loss of generality, we assume that d � 0) reduces to a
determinant

Cx
d (∞) =

∣∣∣∣∣∣∣∣
G1(∞) G0(∞) · · · G−d+2(∞)
G2(∞) G1(∞) · · · G−d+3(∞)

...
...

. . .
...

Gd (∞) Gd−1(∞) · · · G1(∞)

∣∣∣∣∣∣∣∣
. (B20)

For λ > 1, we can obtain that Cx
d (∞) = 1/2d , which decays

exponentially with respect to the distance d . For 0 < λ < 1,
the result becomes [80]

Cx
d (∞) = λd+1

2d
cosh

[
(d + 1) log

1 + √
1 − λ2

λ

]
, (B21)

which for d → ∞ becomes

Cx
d (∞) →

(
1 + √

1 − λ2

2

)d+1

. (B22)

APPENDIX C: NUMERICAL EVIDENCE FOR
DYNAMICAL LOCALIZATION OF TOPOLOGICAL

ORDER IN A DISORDERED TCM

Here we consider a disordered Ising chain with the Hamil-
tonian:

ĤD/O = −
∑

j

(
Jj τ̂

x
j τ̂

x
j+1 + λ j τ̂

z
j

)
. (C1)

It can be rewritten in terms of the Jordan-Wigner transforma-
tion

τ̂ z
j = (2ĉ†

j ĉ j − 1), τ̂+
j = ĉ†

j

j−1∏
l=1

(1 − 2ĉ†
l ĉl ), τ̂+

1 = ĉ†
1,

as

ĤD/O =
∑

j

[Jj (ĉ j − ĉ†
j )(ĉ

†
j+1 + ĉ j+1) − λ j (ĉ

†
j ĉ j − ĉ j ĉ

†
j )]

= 1

2
C†MC, (C2)

where

C† = (ĉ†
1, · · · , ĉ†

N , ĉ1, · · · , ĉN ),

and

M =
(
A B
BT −A

)
,

with A and B being N × N matrices of elements: A j, j =
2λ j , A j, j+1 = A j+1, j = −Jj , B j, j+1 = −B j+1, j = −Jj , and
boundary conditions AN,1 = A1,N = JN , BN,1 = −B1,N = JN

for even parity. By diagonalizing the matrix RMRT = V , the
Hamiltonian can be diagonalized as

ĤD/O = 1

2
E†VE =

∑
j

ω j (η̂
†
j η̂ j − 1/2), (C3)

where C = RTE with the orthogonal matrix

R =
(

G H
H G

)
,

E† = (η̂†
1, · · · , η̂

†
L, η̂1, · · · , η̂L ),

and

V =
(

W
−W

)
,

with the diagonal matrix W = diag(ω1, · · · , ωN ).
Similarly, the Heisenberg equation of η̂ j (t ) is expressed as

i∂t η̂ j (t ) = i[ĤD/O, η̂ j (t )] = −iω j η̂ j, (C4)

of which the solution can be expressed as

E(t ) =
(

e−iW t

eiW t

)
E = exp(−iV t )E. (C5)

Considering that an initial Hamiltonian ĤD/O
0 is quenched to

the new Hamiltonian ĤD/O, we have

C(t ) = RT exp(−iV t )RC0, (C6)

023144-8



MULTIPARTITE ENTANGLEMENT OF THE … PHYSICAL REVIEW RESEARCH 4, 023144 (2022)

where R and V are for the quenched Hamiltonian ĤD/O, C0

is for the initial Hamiltonian ĤD/O
0 , and 〈· · · 〉G denotes the

average with the ground state of the initial Hamiltonian ĤD/O
0 .

Then, the x-directional spin-correlation function Cx
d (t ) ≡

〈σ x
j (t )σ x

j+d (t )〉G (without loss of generality, we assume that
d � 0) can be expressed as

Cx
d (t ) = 〈B̂ j (t )Â j+1(t )B̂ j+1(t ) · · · B̂ j+d−1(t )Â j+d (t )〉G,

(C7)

where Â j ≡ ĉ†
j + ĉ j and B̂ j ≡ ĉ†

j − ĉ j . Using Wick’s theo-
rem, the spin-correlation function can be written as a Pfaffian
of a skew-symmetric matrix T

Cx
d (t ) = pf[T ( j, j + d, t )]. (C8)

The skew-symmetric matrix T (i, j, t ) is defined as

T (i, j, t ) ≡
(

P (i, j, t ) M(i, j, t )
−M(i, j, t )T Q(i, j, t )

)
, (C9)

of which the elements of the submatrices are

Pmn(i, j, t ) = δmn + 〈B̂ j+m−1(t )B̂ j+n−1(t )〉G, (C10)

Qmn(i, j, t ) = −δmn + 〈Â j+m(t )Â j+n(t )〉G, (C11)

Mmn(i, j, t ) = 〈B̂ j+m−1(t )Â j+n(t )〉G . (C12)

By expanding Â j (t ) and B̂ j (t ) with Eq. (C6), we have

〈Âm(t )Ân(t )〉G = [�̃(t )�̃(t )†]mn, (C13)

〈B̂m(t )B̂n(t )〉G = −[̃(t )̃(t )†]mn, (C14)

〈Âm(t )B̂n(t )〉G = [�̃(t )̃(t )†]mn, (C15)

〈B̂m(t )Ân(t )〉G = −[̃(t )�̃(t )†]mn, (C16)

with

�̃(t ) = �T cos(W t )��T
0 − i�T sin(W t )T

0 , (C17)

̃(t ) = T cos(W t )T
0 − iT sin(W t )��T

0 , (C18)

where

� = G + H,  = G − H

are for the quenched Hamiltonian ĤD/O, and

�0 = G0 + H0, 0 = G0 − H0

are for the initial Hamiltonian ĤD/O
0 . Therefore the evolution

of the reduced Wilson loop [Eq. (5) in the main text] can be
numerically simulated by calculating the Pfaffian (C8) of a
matrix (C9) with elements (C10)–(C12) using (C13)–(C16)
with equations of evolutions (C17),(C18) (see also Ref. [65]).

APPENDIX D: UPPER BOUND OF THE QFI
OF THE THERMAL STATE OF THE TCM

The thermal state of the TCM at temperature T with a
Hamiltonian in Eq. (1) in the main text can be factorized

as

ρT = e−Ĥtc/T

Z (D1)

∼
∏

s

[1 + tanh(JA/T )Âs]
∏

p

[1 + tanh(JB/T )B̂p], (D2)

with the partition function being Z = Tr[exp(−Ĥtc/T )].
To obtain the upper bound of the QFI [Eq. (11) in the main

text] with respect to the generator Ôm [Eq. (6) in the main
text], we first choose the state |l〉 as a product state in the σ̂ z

basis, and the METTS is expressed as

|φl〉 = ρ
1/2
T |l〉/√pl ∼

∏
s

{1 + tanh[JA/(2T )]Âs}|l〉, (D3)

with pl = 〈l|ρT |l〉. Then, we calculate the average variance of
the generator Ôm [Eq. (6) in the main text] for the METTSs
{|φl〉} as

FQ[Ôm, ρT ] �
∑

l

pl (
φl Ôm)2 (D4)

= L2
∑

l

pl

(
1 +

L−1∑
D=1

〈φl |τ̂ x
1 τ̂ x

1+D|φl〉
)

= L2

(
1 +

L−1∑
D=1

∑
l

pl〈φl |τ̂ x
1 τ̂ x

1+D|φl〉
)

= L2

(
1 +

L−1∑
D=1

∑
l

〈l|ρ1/2τ̂ x
1 τ̂ x

1+Dρ1/2|l〉
)

= L2

[
1 +

L−1∑
D=1

〈l|τ̂ x
1 τ̂ x

1+D

×
∑
t=0,1

∏
i

[
tanh(JA/T )τ̂ x

i τ̂ x
i+1

]t |l〉
]

= L2

[
1 +

L−1∑
D=1

tanh(JA/T )D

]
, (D5)

where the first index (2k − 1) of the dual Pauli operators
τ̂2k−1, j for the original lattice have been omitted, and we have
used the fact that 〈l|τ̂ x

2k−1, j |l〉 = 0 and 〈φl |Ôm|φl〉 = 0.
Similarly, we consider the QFI with respect to the generator

Ôe. We choose the state |l ′〉 as a product state in the σ̂ x basis,
and the METTS is written as

|φl ′ 〉 = ρ
1/2
T |l ′〉/√pl ′ ∼

∏
p

{1 + tanh[JB/(2T )]B̂p}|l ′〉,

(D6)

with pl ′ = 〈l ′|ρT |l ′〉. The upper bound of the QFI with respect
to the generator Ôm [Eq. (6) in the main text] for the METTSs
{|φl ′ 〉} can be calculated as

FQ[Ôe, ρT ] �
∑

l ′
pl ′ (
φl′ Ô

e)2 (D7)

= L2

[
1 +

L−1∑
D=1

tanh(JB/T )D

]
. (D8)
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