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From Cooper pair splitting to nonlocal spectroscopy of a Shiba state
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Cooper pair splitting (CPS) is a way to create spatially separated, entangled electron pairs. To this day, CPS
is often identified in experiments as a spatial current correlation. However, such correlations can arise even in
the absence of CPS, when a quantum dot is strongly coupled to the superconductor, and a subgap Shiba state
is formed. Here, we present a detailed experimental characterization of those spatial current correlations, as the
tunnel barrier strength between the quantum dot and the neighboring normal electrode is tuned. The correlation
of the nonlocal signal and the barrier strength reveals a competition between CPS and the nonlocal probing of
the Shiba state. We describe our experiment with a simple transport model and obtain the tunnel couplings of
our device by fitting the model’s prediction to the measured conductance correlation curve. Furthermore, we use
our theory to extract the contribution of CPS to the nonlocal signal.
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I. INTRODUCTION

Cooper pair splitter devices were extensively studied both
experimentally [1–8] and theoretically [9–19] in recent years.
They are proposed to serve as the source of spatially separated
entangled electron pairs. The standard Cooper pair splitter
[see Fig. 1(a)] consists of a central superconducting electrode,
which serves as the source of Cooper pairs, two normal leads,
to which the split electron pair is transferred, and two quantum
dots in between. The gate voltages of the quantum dots serve
as the experimental knobs to tune the currents in the two
different arms, utilizing the discrete energy spectrum of the
dots.

Theoretically, several ways were proposed to test the per-
formance of a Cooper pair splitter device, starting from
current or noise correlations [20–22], through spin selec-
tive measurements [23–26] to proving the entanglement by
demonstrating the violation of the Bell inequality [19,27–
33] or using more complex spin-qubit or circuit quantum
electrodynamics architectures [18,34,35] or even time domain
measurements [36].
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The experiments primarily focused on spatial current cor-
relations [1–8]. In general, the currents flowing in the two
arms are attributed to two different processes. The first pro-
cess is the local pair tunneling (LPT), when both electrons
of a Cooper pair are transferred to the same normal lead
[see the black and green arrow on Fig. 1(a)]. This process
involves only one arm of the device, and correspondingly it
is independent of control parameters of the other arm. The
second process is the Cooper pair splitting (CPS), when the
two electrons end up in different normal electrodes [see the
black and red arrows on Fig. 1(a)]. As both arms of the
device are involved, the CPS process depends on the control
parameters of both arms. Hence it results in a nonlocal signal,
i.e., the current in one arm of the device is tuned by the control
parameters (on-site energy (plunger gate voltage) and tunnel
amplitude (barrier gate voltage)) of the other arm via tuning
the CPS contribution.

In Ref. [37], we have shown that a nonlocal signal can be
also present when the conductance of one of the arms of the
Cooper pair splitter is quenched. It is achieved by isolating the
quantum dot from its normal lead by a strong tunnel barrier.
Since in this situation the CPS is forbidden, there must be
another transport process that produces a nonlocal signal. This
process emerges if the tunnel coupling between the super-
conductor and the isolated quantum dot is sufficiently strong,
which gives rise to the formation of the Yu-Shiba-Rusinov
(Shiba) state [38–41].

The subgap Shiba state is the result of the hybridiza-
tion of the dot states and quasiparticle states of the
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FIG. 1. (a) Schematics of a Cooper pair splitter. Cooper pairs
are extracted from a central superconducting electrode (SC) to two
normal leads (NL and NR), through quantum dots (QDs). The cur-
rents are built up of two contributions, the Cooper pair splitting
(CPS, black and red arrows ) and the local pair tunneling (LPT,
black and green arrows ). In the presence of a Shiba state at zero
energy —if the SC and the QD are strongly coupled—a third process,
the Shiba-assisted local pair tunneling (SPT, black and blue arrows
) emerges. This produces a CPS-like nonlocal signal but does not
create spatially separated electron pairs. The left QD is drawn with a
dashed line, because it is not tuned throughout this work, but fixed as
it only weakly transmits. [(b), (c)] Cross section and false color SEM
image of the device. The InAs nanowire (NW) is placed on an array
of bottom gate electrodes and contacted by the two normal and one
superconducting electrode. The QD is formed in the NW, and tuned
by the voltage on the plunger gate, gP. The tunnel coupling to the NR

lead is tuned by the barrier gate, gB.

superconductor and was extensively studied in a variety of
hybrid nano devices [42–67]. They inherited their name from
the subgap states in an analogous system, namely magnetic
adatoms on a superconducting surface, which are widely stud-
ied by scanning tunneling microscope experiments [68–84].
We will call the transport mechanism responsible for the non-
local signal in Ref. [37] Shiba-assisted local pair tunneling
(SPT), since it is enabled by the Shiba state, and it involves
subsequent transitions of two electrons (elements of a Cooper
pair) into the same normal lead.

The experimental evidence of the SPT process, provided
in Ref. [37], implies that a nonlocal signal in a Cooper pair
splitter with strong superconductor-dot coupling is induced
together by CPS and SPT. In turn, this implies that in general
it is unjustified to interpret the entire nonlocal signal as CPS,
and extra efforts are required to distinguish the contributions
of CPS and SPT to the nonlocal signal. Here, we exemplify
and illustrate this challenge by extending the analysis of the
experimental data presented in Ref. [37], establish a theoreti-
cal framework allowing us to separate the two contributions,
and show that the framework can indeed be successfully ap-
plied to our experiment, i.e., it separates the CPS and SPT
contributions.

In the experiment [see Fig. 1(a) for the experimental setup,
to be detailed below], we carried out transport measurements
while the tunnel coupling between the quantum dot and the NR

lead was varied. Our transport model is based on the so-called
zero bandwidth approximation (ZBA) for the superconductor
[55,85–87]. Through our analysis, we find that close to the
quenched regions (i.e., when the tunnel barrier toward NR is

strong), a significant contribution of the nonlocal signal comes
from the SPT process. Hence, in this parameter range, it is
necessary to use our framework for a sound analysis. Since
following earlier approaches, e.g., Refs. [1,2,5–7], attributing
all of the nonlocal signal to CPS would overestimate the
real CPS contribution in our case. We also show that in the
case when the quantum dot of the Cooper pair splitter is
well coupled to the NR lead, the nonlocal signal dominantly
comes from the splitting of Cooper pairs, and correspondingly
the earlier approaches gives a reasonable result for the CPS
contribution in that parameter range.

Our paper is structured as follows. In Sec. II, the de-
vice geometry and measurement techniques are introduced.
In Sec. III, the experimental results are presented. We demon-
strate the presence of a nonlocal signal for a wide range of
parameters, we show a correlation between the local and the
nonlocal signal, and we relate them to the Shiba state. In
Sec. IV, the theoretical model and the transport calculation
are introduced, and are used to fit the experimental data. In
Sec. V, we discuss our findings, namely, the origin of the
nonlocal signal and the correlation between the local and the
nonlocal signal, we calculate the contributions of the CPS and
SPT processes, and we discuss the validity of earlier splitting
efficiency definitions. Finally, in Sec. VI, we conclude our
findings.

II. DEVICE GEOMETRY

The Cooper pair splitter device is illustrated in Fig. 1. The
schematics of the cross-section and a false-color SEM image
of the device are shown in Figs. 1(b) and 1(c), respectively.
The basis of the circuit is an InAs nanowire (NW), with a
diameter of 70 nm, grown by gold catalyst assisted molecular
beam epitaxy [88,89], using a two-step growth method to
suppress the stacking faults [90]. First, an array of bottom gate
electrodes (made of 4/18 nm Ti/Pt in brown) was defined
by e-beam lithography and evaporation. The two outermost
electrodes of the 9 are 1.3 μm wide and placed below the nor-
mal contacts. The middle electrode is 250 nm wide and placed
below the superconductor. The remaining 3+3 electrodes are
30 nm wide with 100-nm period and serve to tune the electron
density in the nanowire. The gate electrodes are covered by
a 25 nm thick SiNx layer (green), grown by plasma-enhanced
chemical vapor deposition to electrically isolate the gates from
the rest of the device. The SiNx was removed by reactive ion
etching with CHF3/O2 at the end of the gate electrodes to con-
tact them [91]. The nanowire is contacted by two 4.5/100 nm
thick Ti/Au normal electrodes (NL and NR in yellow) and a
4.5/110/20 nm thick Pd/Pb/In superconducting contact (SC
in red) [92]. The nanowire was cut by focused ion beam
prior to the deposition of the superconducting contact [see
Fig. 1(b)] to suppress the direct tunnel coupling between the
two arms of the device [93,94].

The differential conductance of the two arms were mea-
sured simultaneously with lock-in technique, using 10 μV
AC signal on the superconducting contact at 237 Hz, on
the two normal contacts by home-built current-voltage (I/V)
converter. The measurements were carried out in a Leiden
Cryogenics CF-400 top-loading cryo-free dilution refrigerator
at a bath temperature of 35 mK. Prior to cooldown, the sample

023143-2



FROM COOPER PAIR SPLITTING TO NONLOCAL … PHYSICAL REVIEW RESEARCH 4, 023143 (2022)

(a)

(d)

(c)

(e)

(b)

FIG. 2. [(a), (b)] Simultaneously measured zero-bias differential conductances of the two arms of the device, as the functions of the VB

(barrier) and VP (plunger) gate voltages [37]. The quantum dot-like resonances of the right arm [marked with black square and red triangle
in panel (b)] also appear in the conductance of the left arm (a). This nonlocal signal persists even when the conductance of the right arm is
quenched. (c) Color-coded line cuts from panels (a) and (b) illustrating the correlation between the nonlocal signal in the left arm and the
local conductance of the right arm. A gate-dependent background conductance is subtracted from each GL curve. The conductance maxima
values are extracted from each line cut along the resonances, as illustrated on panel (c) by the marks. These value pairs are plotted as a
scatter plot in panel (d) to further demonstrate the correlation of the two conductances. The three particular example pairs of panel (c) are
highlighted by color-coded circles. The nonlocal signal in the left arm increases with an increasing conductance of the right arm. (e) Finite-bias
characterization of the quantum dot with open barrier, measured along the white dashed line on panel (b), at VB = −0.83 V. The eye-shaped
crossing is the signature of a Shiba state, which highlights the strong coupling between the superconductor and the quantum dot. The black
dashed lines are used to estimate the charging energy to U ≈ 0.4 meV [37].

was pumped overnight to remove the absorbed water from the
surface of the nanowire.

III. EXPERIMENTAL RESULTS

The experimental results are summarized in Fig. 2.
Figures 2(a) and 2(b) show the simultaneously measured zero-
bias differential conductance (in units of G0 = 2e2/h) of the
two arms of the Cooper pair splitter device, GL and GR, as
the function of the gate voltages, VB and VP, which are applied
on gate gB and gP, respectively. Note that both gate electrodes
are placed under the same arm of the device [see Fig. 1(b)],
and the left arm is not tuned, but fixed as it weakly transmits.
Hence, contrary to usual Cooper pair splitters, instead of a
quantum dot and a normal lead, the left arm can be considered
as a tunnel coupled normal electrode. The barrier gate voltage,
VB, dominantly tunes the tunnel coupling to the NR electrode,
while VP, the plunger gate voltage, tunes the level position of
the quantum dot. The conductance GR through the right arm
[see Fig. 2(b)] is completely quenched for VB < −1.2 V, while
for more positive barrier gate voltages it starts to conduct
along two parallel resonance lines (marked by a square and a
triangle). This conduction pattern indicates a quantum dot-like
behavior.

Remarkably, the two GR resonances of the quantum dot
also appear in the conductance GL of the left arm [see

Fig. 2(a)] as a conductance enhancement on top of a smooth
background. We will denote this conductance enhancement by
�GL, and call it the nonlocal signal. When the conductance
of the right arm is finite (VB > −1.1 V), the presence of this
nonlocal signal is in agreement with previous measurements
on Cooper pair splitters [1,2,5–7]. That is, when the quantum
dot in the right arm is tuned to resonance, an additional trans-
port channel opens, Cooper pairs are not only transferred to
the left normal electrode by LPT processes, but they can be
split between the two arms, and correspondingly increase the
conductance of both arms. This VB > −1.1 V regime of the
data is qualitatively consistent with the picture of CPS.

However, the VB < −1.2 V range of the data in Figs. 2(a)
and 2(b) excludes the scenario that CPS is the only transport
process inducing the nonlocal signal. There, the conductance
GR of the right arm is suppressed, but the nonlocal signal, i.e.,
the peaks in GL, persists throughout the whole map. When
GR is quenched, the presence of the nonlocal signal cannot be
attributed to the CPS anymore, since no electron can flow to
the NR electrode. Both electrons of the Cooper pairs have to
leave to the left normal lead.

Furthermore, our data reveal that the amplitude of the
nonlocal signal �GL is controlled via the local conductance
GR. In other words, by tuning the rightmost barrier more
transparent, the current moving in the left arm is also in-
creased. This is illustrated in Fig. 2(c), by line cuts from 2(a)
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and 2(b) along the color coded lines. The smooth background
conductance is subtracted from each line cut of GL and only
the nonlocal signal, �GL, is plotted. When GR is quenched,
the nonlocal signal goes up to about �GL ≈ 0.005 G0 [see
the orange curves on Fig. 2(c), measured at VB = −1.281 V].
As the local conductance increases, the amplitude of the non-
local signal also increases (see the purple and blue curves,
measured at VB = −1.098 and −1.119 V, respectively). Note
that GR, and correspondingly the nonlocal signal also, varies
in a nonmonotonic fashion as the barrier gate voltage is tuned;
we attribute this to disorder in the sample.

The above-mentioned systematic relation of the local con-
ductance GR and the nonlocal signal �GL is reinforced by
the data shown in Fig. 2(d). Let us exemplify how we derive
this data from the previous panels, using the line cuts in
Fig. 2(c), focusing on the right maxima of the blue curves
(marked by black squares). The maximum value of the non-
local signal (left panel) is about �Gmax

L ≈ 0.017 G0, while
the maximum value of the local conductance (right panel) is
Gmax

R = 0.08 G0. These values give the vertical and horizon-
tal coordinates of the corresponding data point in Fig. 2(d),
respectively (see the black square highlighted by the blue
circle). The other points of Fig. 2(d) were obtained similarly
by reading the maxima of all vertical line cuts on Figs. 2(a)
and 2(b). As Fig. 2(d) shows, even when the conductance of
the right arm is quenched, i.e., Gmax

R = 0, the amplitude of
the nonlocal signal is finite, residing between 0.002 G0 and
0.01 G0. As GR is increased by lowering the barrier to the
NR lead, the nonlocal signal also increases in a monotonous,
saturating fashion. Only data points with Gmax

R < 0.1 G0 are
shown in the figure. We choose this requirement to ensure the
weak coupling to the right lead, which will be assumed in the
modeling.

Using finite-bias measurements, we establish that the
tunnel coupling between the superconducting lead and the
quantum dot is strong, and hence a Shiba state is formed in
the device. The finite-bias differential conductance measured
along the white dashed line on Fig. 2(b) at VB = −0.83 V
is shown in Fig. 2(e). The eye-shaped crossing conductance
lines are the usual signature of a Shiba state, formed in a
strongly coupled superconductor–quantum dot hybrid (see,
e.g., Ref. [54]). Correspondingly, the resonances Figs. 2(a)
and 2(b) are the signatures of the zero-energy Shiba states
rather than charge degeneracies of a quantum dot. These ob-
servations suggest that in our model of the device (see next
section) we have to incorporate a strong, coherent hybridiza-
tion between the superconductor and the quantum dot. Based
on the finite-bias measurement shown in Fig. 2(e) the charging
energy of the quantum dot can also be estimated, following the
dashed lines, yielding U ≈ 0.4 meV.

Our conclusion from this analysis is that when the con-
ductance GR of the right arm is quenched, the conductance
enhancement �GL of the left arm originates from the (zero-
energy) Shiba state, i.e., the SPT mechanism, rather than the
splitting of Cooper pairs. Hence, the conductance enhance-
ment can be viewed as the nonlocal probing of the Shiba state.
We analyzed this region in detail in Ref. [37].

In the following, we will use a simple model to explain the
experimental findings, namely (i) the presence of the nonlocal
signal when the right arm is quenched and (ii) the correlation

between the conductances when GR is finite. We will model
the Shiba state using the zero bandwidth approximation for
the superconductor. This model will enable us to identify and
separate contributions of the SPT and CPS processes [see
Fig. 1(a)] to the nonlocal signal �GL.

IV. MODEL

A. Zero-bandwidth approximation of the Shiba state

The Shiba state is formed by the hybridization of the quasi-
particles of the superconductor and the quantum dot degrees
of freedom induced by the strong tunnel coupling between
the dot and the superconductor. A simple way to describe the
Shiba state is by treating the superconductor using the zero
bandwidth approximation (ZBA) [55,85–87]. In this approxi-
mation, the quasiparticles of the superconductor are restricted
only to a discrete energy level at energy �, which can host 0,
1, or 2 quasiparticles. The corresponding Hamiltonian is

HZBA
SC = �c†

↑c†
↓ + �c↓c↑ = �

∑

σ

γ †
σ γσ , (1)

where � is the superconducting gap, c(†)
σ is the electron anni-

hilation (creation) operator in the superconductor, and γ (†)
σ is

the annihilation (creation) operator of the quasiparticles, de-
fined by the usual Bogoliubov transformation, cσ = 1√

2
(γσ −

σγ
†
σ̄ ).
The quantum dot is described by the single-impurity An-

derson Hamiltonian,

HQD =
∑

σ

εnσ + Un↑n↓, (2)

where ε is the level position of the dot, U is the charging en-
ergy, and nσ = d†

σ dσ is the number of the electrons with spin σ

on the dot, with d (†)
σ being the annihilation (creation) operator

of electrons with spin σ on the dot. Note that compared to
the usual Cooper pair splitter geometry, where quantum dots
are placed on both side of the superconductor [as illustrated in
Fig. 1(a)], in this model we only consider the dot of the right
arm. Since in the experiment the left arm of the device was not
tuned but fixed in a weakly transmitting region, the left normal
electrode and the left dot is modeled as a tunnel coupled
normal lead for simplicity [see Fig. 3(a) and Sec. IV B].

The tunnel coupling between the superconductor and the
dot is described by

HTS = tS
∑

σ

(d†
σ cσ + c†

σ dσ ). (3)

Using the Bogoliubov transformation above, this translates to

HTS = 1√
2

∑

σ

tS[d†
σ (γσ − σγ

†
σ̄ ) + (γ †

σ − σγσ̄ )dσ ]. (4)

The composite system of the superconductor and the
quantum dot is hence modeled by HZBA

SC + HQD + HTS.
A natural basis of the corresponding 16-dimensional
Fock space is the product basis of the electron Fock
space of the QD and the quasiparticle Fock space of
the superconductor, that is, the basis |i, j〉 = |i〉QD ⊗
| j〉SC. Here, {|0〉QD, |↑〉QD, |↓〉QD, |↑↓〉QD} is the canoni-
cal basis of the electron Fock space of the QD and
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FIG. 3. (a) Schematics (top) and energy diagram (bottom) of our model. The tunnel coupling tS between the superconductor (SC) and
quantum dot (QD) creates a Shiba state (in blue). The normal leads, NL and NR, probe the Shiba state with coupling strength tL and tR,
respectively. For simplicity, the SC is treated within the zero bandwidth approximation, in which the quasiparticles are restricted to a discrete
energy level at � energy. (b) Illustrative energy spectrum of the QD–SC hybrid as the function of the dot’s level position ε. Gray dashed
lines are the energies of the uncoupled system, while the black continuous lines are the possible ground states of the coupled system, the
singlet (S) and the doublets, (↑, ↓). The ground-state transitions are marked with red triangle and the black square in accordance with Fig. 2.
(c) Illustration of the dynamics induced by the coupling to the normal leads. The tunneling induces transitions between the different ground
states of the dot-superconductor system, the singlet and the doublets. The highlighted, colored arrows illustrate the tunnel processes shown on
Fig. 1(a). (d) Fitting the experimental data with the ZBA model. Purple line is the fit with tS = 0.145 meV, �L = 1 μeV, and �R = 0–3.6 μeV.
(e) Contribution of the CPS (red) and the SPT (blue) processes to the nonlocal signal of the left arm and the relative ratio of the CPS processes
(black). In the shaded blue region, the nonlocal signal is not a good measure of the CPS, since the SPT contribution is not negligible.

{|0〉SC, |↑〉SC, |↓〉SC, |↑↓〉SC} is the canonical basis of the
quasiparticle Fock space of the superconductor. The basis
states are eigenstates of the uncoupled QD-superconductor
system, i.e., of HZBA

SC + HQD. The energy spectrum of the
uncoupled system is illustrated on Fig. 3(b) with gray dashed
lines as the function of the dot’s level position, ε. The three
different slopes correspond to the different fillings of the dot,
while from the parallel lines the bottom one corresponds to
zero, the middle one to one, and the top one to two quasi-
particles in the superconductor. The product basis can be
partitioned to states with even fermion-number parity and
odd fermion-number parity, the two subset of basis states
spanning the even-parity and odd-parity sectors (subspaces),
respectively.

The tunnel coupling HTS hybridizes the states within each
parity sector in two ways. First, it converts a quasiparticle
from the superconductor to an electron on the dot (or the other
way around), and second, it splits a Cooper pair to an electron
on the dot and to a quasiparticle in the superconductor (or the
other way around). Note that although the latter process does
preserve the fermion-number parity, it does not preserve the
fermion number.

The eigenstates of the coupled superconductor–quantum
dot system can be grouped into six invariant sub-
spaces, which can be labeled by the total spin of
the electrons and the quasiparticles. The five-dimensional
spinless, singlet (S) sector is spanned by the states
{|0, 0〉, |↑↓, 0〉, |0,↑↓〉, |↑↓,↑↓〉}, and the state 1√

2
(|↑,↓〉 −

|↓,↑〉). In the absence of magnetic field, the eight
states with odd number of fermions can be grouped into
two subspaces. The states {|↑, 0〉, |0,↑〉, |↑↓,↑〉, |↑,↑↓〉}
({|↓, 0〉, |0,↓〉, |↑↓,↓〉, |↓,↑↓〉}) form the twofold degener-

ate doublet (D) subspaces. These states have +1/2 (−1/2)
spin z component. The remaining three triplet states are un-
coupled from the other states and from each other.

To model our Shiba-related transport measurement results,
only the lowest energy singlet and doublet states are required.
The former one (latter ones) will be denoted by |S〉 (|σ 〉, with
σ ∈ {↑,↓}). These states are illustrated on Fig. 3(b) as black
lines.

B. Transport calculation

In the experiment, the system is simultaneously probed
by two tunnel-coupled normal electrodes, as illustrated in
Fig. 3(a). The tunnel coupling to the normal leads are de-
scribed by

HTL = tL
∑

σ

(c†
Lσ cσ + c†

σ cLσ )

= tL√
2

∑

σ

[c†
Lσ (γσ − σγ

†
σ̄ ) + (γ †

σ − σγσ̄ )cLσ ],

HTR = tR
∑

σ

(c†
Rσ dσ + d†

σ cRσ ), (5)

where c(†)
L/Rσ are the annihilation (creation) operators of the

electrons in the left-right normal leads. The left lead couples
only to the superconductor, while the right one couples only
to the quantum dot.

As stated above, the Hamiltonian of the superconductor–
quantum dot system, HZBA

SC + HQD + HTS, preserves the parity
of the system, while the tunnel coupling to the normal leads
induces transitions between eigenstates with different parity
while transferring individual electrons to the normal leads.
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These transitions are illustrated in Fig. 3(c) and described in
the following.

For simplicity, we assume zero temperature, a gate-voltage
configuration enabling resonant tunneling, i.e., that ES = Eσ

for the energy eigenvalues of the singlet and double ground
states and that a small negative bias voltage is applied on
the superconducting lead, to ensure that electrons flow only
toward the normal leads. Note that the resonant-tunneling
condition is satisfied for two different on-site energies, in
the vicinities of ε = 0 and ε = −U , respectively, and our
approach described here is valid for both configurations.

Since the tunnel couplings to the normal leads were kept
weak in the experiment, we treated the electron transport to
the normal leads perturbatively, using Fermi’s golden rule.
The nonzero transition rates are

W L
Sσ = �L

h̄

∣∣∣∣〈S|γσ − σγ
†
σ̄√

2
|σ 〉

∣∣∣∣
2

,

W L
σS = �L

h̄

∣∣∣∣〈σ |γσ̄ − σγ †
σ√

2
|S〉

∣∣∣∣
2

,

W R
Sσ = �R

h̄
|〈S|dσ |σ 〉|2,

W R
σS = �R

h̄
|〈σ |dσ̄ |S〉|2, (6)

where �L/R = πρL/Rt2
L/R is the coupling to the left-right nor-

mal lead with ρL/R being the density of state of lead NL/R.
The f/i indices of W L/R

f i denote the final/initial states of the
given transition. The transition matrix elements are calculated
at the ε values, where the singlet and doublet ground states are
degenerate as in the measurement, outlined in Sec. III.

The tunnel coupling to the normal leads induces par-
ity changing transitions between the different states of the
superconductor–quantum dot hybrid as illustrated in Fig. 3(c).
For example, the black arrow denotes the tunneling event,
which brings the system from the |S〉 state to the |↓〉 state,
while an electron is transferred to the NL lead. The time
evolution of the occupation probabilities of the |S/σ 〉 states,
PS/σ is described by a classical master equation,

dPS

dt
=

∑

σ

[(
W L

Sσ + W R
Sσ

)
Pσ − (

W L
σS + W R

σS

)
PS

]
,

(7)
dPσ

dt
= (

W L
σS + W R

σS

)
PS − (

W L
Sσ + W R

Sσ

)
Pσ ,

together with the normalization condition PS + ∑
σ Pσ = 1.

After determining the stationary solution (dPi/dt = 0) of
the master equation, the current in lead NL/R is given by

IL/R = e
∑

σ

(
W L/R

σS PS + W L/R
Sσ Pσ

)
. (8)

C. Comparison of the experiment and the theory

To compare the experimentally measured differential con-
ductances to the calculated currents, one should find a relation
connecting them. A naive way would be assuming a linear
relation and simply using the 10 μV amplitude of the AC
bias voltage for the conversion, i.e., IAC

L/R = GL/R × 10 μV.
However, while the calculation results in a zero-width con-

ductance peak, in the experiment the peak is broadened, and
therefore the naive way strongly underestimates the saturation
DC current at high bias. We estimate the saturation current
using the zero-bias data in the following way. We estimate
the broadening of the peaks by converting the width of the
gate-dependent resonance curves measured at zero bias [see,
e.g., Fig. 2(c)] using the lever arm, determined from the finite
bias measurement on Fig. 2(e). This yields about 50 μeV
width, barely varying with VB. Assuming a Lorentzian shape
for the resonance with this width the ratio of the saturation DC
current and the zero-bias AC current is

Isat
L/R

IAC
L/R

=
∫ ∞

0 GL/R(V )dV

GL/R(V = 0)VAC
≈ 4. (9)

In the following, we use this relation to convert the measured
zero-bias differential conductances to saturated currents.

We used the framework detailed above to fit our experi-
mental data. The charging energy and the superconducting
gap is fixed to the experimental value of U = 0.4 meV and
� = 0.25 meV, respectively. As ε is fixed by the degeneracy
condition, only tS remains a free parameter in the model of
the coupled superconductor and QD. In the following, we will
focus first on the degeneracy point near ε = 0, i.e., the 0-1
transition of the dot. Our results can be directly translated
to the other degeneracy point, using symmetry arguments.
Besides tS, which determines the transition matrix elements,
the couplings to the normal leads, �L and �R, are also fitting
parameters of the model. Note that �R is tuned in the experi-
ment, and therefore the fitting does not give a single value but
a range starting from zero. Therefore, the fitting parameter is
not �R itself, but its maximal value �max

R .
The fitted curve is shown in Fig. 3(d) with the purple line,

using tS = 0.145 meV, �L = 1 μeV, and �R = 0 − 3.6 μeV.
The fit captures well the main features of the experiment.
First, the model reproduces the finite current in the left lead
even when the conductance of the right arm is quenched. Sec-
ond, GL also increases as GR is enhanced by the increasing �R.
Third, the model gives a saturating tendency for the nonlocal
signal as the barrier to the right lead is opened up. Note that
the precise values of the fitted parameters may slightly vary
when one or the other assumption used during the evaluation
is relaxed, but the qualitative behavior remains unchanged.

V. DISCUSSION

Previously we demonstrated that the ZBA model of the
Shiba state well reproduces our experimental findings: (i) the
presence of the nonlocal signal, even when GR is quenched,
and (ii) the correlation between the height of the local
and the nonlocal conductance peaks. The model allows for
the detailed understanding of the experimental features, and
furthermore, it can distinguish between the SPT and CPS
contribution of the currents.

First, we have to discuss why the Shiba language (i.e.,
treating the superconductor–quantum dot hybrid as a coher-
ently coupled unit) is necessary to describe our measurements.
Often in Cooper pair splitters the electron transition between
the superconductor and quantum dots is also described by
tunnel rates, derived in a perturbative model, which assumes
weak tunnel couplings [1,2,6]. In our measurements, the
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presence of the eye-shaped subgap resonances in Fig. 2(e)
implies that the tunnel coupling tS between the supercon-
ductor and the quantum dot is comparable to the value of
the gap (which we also verified by the fit, tS = 0.145 meV).
Therefore, it cannot be treated perturbatively, but the co-
herent hybridization of the superconductor and the dot has
to be taken into account. Considering the usual perturbative
description of the Cooper pair splitters, the presence of the
nonlocal signal in the region, where GR is zero, is surprising,
since the process, which can generate a nonlocal signal—the
CPS—is forbidden. However, in the Shiba description, this
nonlocal signal is naturally present, as we will see below.

Second, we observed that the amplitude of the nonlocal
signal increases as GR is increased by enhancing the tunnel
coupling to the NR lead. This correlation is a result of a
bottleneck effect. When the right lead is isolated from the rest
of the device, all electrons have to leave to the NL lead. This
means that both the singlet→doublet and the doublet→singlet
transitions must occur, involving a tunneling to the left lead. If
the transition rates are much different, the slower one creates
a bottleneck. Indeed, using the model parameters obtained by
the fit, one finds that h̄W L

Sσ ≈ 0.036 μeV [the blue and the
top left gray arrow on Fig. 3(c)] and h̄W L

σS ≈ 0.191 μeV [the
black and the bottom left gray arrow on Fig. 3(c)]. The former
rate is more than five times smaller than the latter one, i.e.,
the left current is limited by the doublet→singlet transition.
However, opening up the barrier to the right lead opens up
another transport channel for the slower process. As the W R

Sσ

rate becomes larger than W L
Sσ , the doublet→singlet process

happens more favorably by transferring an electron to the right
lead, and the bottleneck starts to be resolved. Although the
presence of the new transport channel first means that not
all the electrons are transferred to the left lead (which would
mean the decrease of the nonlocal signal), but the whole
transport sequence speeds up so much that altogether the left
current increases.

The presence of nonlocal signals was reported previ-
ously in Cooper pair splitters hosting superconducting subgap
states [53,57]. The authors used the infinite superconduct-
ing gap limit description—frequently referred as Andreev
bound states—to model their experimental results. Using this
approximation, all transition matrix elements contain the d-
operators’ matrix elements, and therefore the ratio of the
left rates and the right rates are the same, i.e., W L

σS/W L
Sσ =

W R
σS/W R

Sσ . With a simple derivation it can be shown that in-
creasing �R cannot resolve the bottleneck effect, since it drops
out of the formula of IL.Here, first we introduce how these
processes are defined based on single tunneling events, and
then we calculate their contribution.

The whole transport consists of a sequence of
singlet→doublet and doublet→singlet transitions. Assuming
that one starts from the singlet ground state, the transport
can be grouped into a random sequence of SPT and
CPS processes. Let us illustrate this using Fig. 3(c). The
highlighted arrows indicate a CPS and a SPT process.
Starting from the singlet ground state, let us assume that first
an electron (with up spin) is transferred to the left lead. This
is indicated by the black arrow. At the end of the tunneling
event, the superconductor–quantum dot hybrid system stays
in the |↓〉 state. To return to the singlet state, there are two

possibilities. First, a second electron (with down spin) leaves
to the left lead also (indicated by the blue arrow), and second,
this electron is transferred to the right lead (red arrow). In the
first process, two electrons with opposite spins are transferred
to the same lead, and therefore a SPT event occurred, while in
the second process the two electrons end up in different leads,
corresponding to a CPS process. As the system returned to
the singlet state, the transport cycle starts again.

The contribution of the CPS and SPT processes can be
calculated within the framework of our model. Substituting
the stationary solution of the master equation (7) to the ex-
pression of the currents, Eq. (8), one finds that the currents
can be partitioned as

IL/R = ISPT,L/R + ICPS (10)

where

ISPT,L/R = A
∑

σ

2W L/R
Sσ W L/R

σS (11)

is the SPT contribution and

ICPS = A
∑

σ

(
W L

SσW R
σS + W R

SσW L
σS

)
(12)

is the CPS one. In ISPT,L/R the factor of 2 indicates that both
electrons are transferred to the same lead, and the normal-
ization factor is A = 4e[

∑
σ (W L

Sσ + W R
Sσ + 2W L

σS + 2W R
σS )]−1.

Note that to obtain these formulas, the spin rotational sym-
metry was used, which implies the spin independence of the
transition rates, e.g., W L

S↑ = W L
S↓. We should remind the reader

that the presented model does not account for the LPT process,
as it is independent of the Shiba state, consisting only of
Cooper pairs tunneling from the superconductor directly to
the normal lead.

This separation of IL using the obtained fit parameters
is plotted in Fig. 3(e). The CPS and SPT contributions are
plotted in red and blue, respectively [the total current is shown
in Fig. 3(c) in purple], and furthermore the CPS efficiency
is plotted in black, which depends only on the �R/�L ratio
for fixed tS, not on their values. When GR = 0 the split-
ting of Cooper pairs is forbidden, since no electrons can be
transferred to the right lead. Accordingly, the CPS contribu-
tion is zero. The total current in the left lead comes only
from the SPT process. This limit corresponds to the nonlo-
cal spectroscopy of the Shiba state [VB < −1.2 V region on
Fig. 2(a)]. As the conductance of the right arm is increased,
the amplitude of the SPT processes decreases while the CPS
one strongly increases. When the barrier to the right lead is
transparent, about 95% of the nonlocal signal comes from
CPS processes. This is the usual Cooper pair splitter limit
[VB > −1.1 V region on Figs. 2(a) and 2(b)].

In between the two limits, there is a region where a sig-
nificant contribution of the nonlocal signal comes from SPT
processes, and this is indicated by the blue shaded region. In
this region, the usual splitting efficiencies, which assume that
the nonlocal signal comes only from the splitting of Cooper
pairs, overestimate the real contribution of CPS processes.

Our results can be generalized to the conventional Cooper
pair splitter geometry, i.e., the N–QD–SC–QD–N setup, in a
straightforward way. The strongly coupled QD–SC–QD sys-
tem hosting Andreev or Shiba molecular states was recently
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studied in Refs. [95] and [96]. Similarly to the presented
model, in these systems the ground state can be either a
unique singlet or a twofold degenerate doublet and currents
can flow to the normal leads when all of these three states
are degenerate. Therefore, the transport processes illustrated
in Fig. 3(c) and the partitioning of the currents, presented
in Eqs. (10)–(12), also applies to the conventional splitter
setup. The transport data measured in such a setup can be
evaluated analogously to obtain the microscopic parameters
and to partition the currents, and only the transition matrix
elements have to derived from the N–QD–SC–QD–N setup’s
Hamiltonian.

In conclusion, close to the quenched regime a significant
contribution of the nonlocal signal comes from the SPT pro-
cesses, but in the transparent barrier limit the nonlocal signal
provides a good measure of the CPS processes.

VI. CONCLUSIONS

We have investigated the nonlocal signal of a Cooper pair
splitter as the tunnel coupling to one of the normal leads was
varied. It was shown that the nonlocal signal persists even
upon quenching the conductance in the opposite arm of the
splitter, contradicting the expectations since in this limit the
CPS process is forbidden. We resolved the contradiction by
considering the Shiba state, originating from the hybridization
of the quantum dot and the superconductor states. In the
quenched limit, the nonlocal signal is attributed to the largely
extended zero-energy Shiba state, which we studied in detail
in Ref. [37].

The unexpected nonlocal signal we observed implied that
figures of merit for Cooper pair splitting efficiencies used
in previous experimental works could not be applied for our
device. Therefore, we constructed a transport model using the
ZBA for the superconductor to reproduce our experimental
findings and to separate the Shiba related nonlocal signal from
the CPS. Despite of its simplicity, the model captures well the
main features of the experiments. Utilizing the model and the

obtained microscopic parameters we showed that closed to the
quenched region, the nonlocal signal mostly consists of the
SPT process, and therefore, the previously applied efficiency
indicators overestimate the real CPS contribution. However,
when the tuned barrier is transparent, the nonlocal signal is
dominated by the CPS process, and accordingly, our results
are consistent with those based on the standard CPS efficiency
indicators.

The data that underlie the plots within this paper and other
findings of this study are available in Ref. [97].
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