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Spin and valley degrees of freedom in a bilayer graphene quantum point contact:
Zeeman splitting and interaction effects
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We present a study on the lifting of degeneracy of the size-quantized energy levels in an electrostatically
defined quantum point contact in bilayer graphene by the application of in-plane magnetic fields. We observe a
Zeeman spin splitting of the first three subbands, characterized by effective Landé g factors that are enhanced
by confinement and interactions. In the gate-voltage dependence of the conductance, a shoulderlike feature
below the lowest subband appears, which we identify as a 0.7 anomaly stemming from the interaction-induced
lifting of the band degeneracy. We employ a phenomenological model of the 0.7 anomaly to the gate-defined
channel in bilayer graphene subject to in-plane magnetic field. Based on the qualitative theoretical predictions
for the conductance evolution with increasing magnetic field, we conclude that the assumption of an effective
spontaneous spin splitting is capable of describing our observations, while the valley degree of freedom remains
degenerate.
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I. INTRODUCTION

Exploiting the quantum degrees of freedom of charge carri-
ers offers a potential route for designing new types of quantum
electronic devices. While most studied systems involve the
electron’s spin degree of freedom aiming at spintronic ap-
plications [1,2], more recently the additional valley isospin
in a variety of materials has attracted a growing interest for
use in valleytronics [3]. However, irrespective of the system
of choice, the implementation of spin- or valley-based func-
tionalities into electronic devices requires a full control of the
quantum state itself. A quantum point contact that confines
charge carriers into one dimension [4] is one of the basic
building blocks for efficient injection, control, and readout
measures.

Recently, we have reported [5] on an electrostatically
induced quantum point contact (QPC) in bilayer graphene
(BLG) [6–14], i.e., a system with fourfold spin and valley
degeneracy, where the constriction is realized by local band-
gap engineering with a displacement field perpendicular to
the BLG plane. We observed confinement with well-resolved
conductance quantization in steps of 4 e2/h down to the lowest
one-dimensional (1D) subband, as well as a peculiar valley
subband splitting and merging of K and K ′ valleys from two

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

nonadjacent subbands in an out-of-plane magnetic field (see
also Ref. [10]).

In the present paper, we investigate the same system in an
in-plane magnetic field. In this context, we became aware of
the publication [11] that reported on conductance measure-
ments in a similar setup and found certain features additional
to the expected conductance quantization. These features were
attributed [11] to the substrate-induced Kane-Mele spin-orbit
coupling [15] below the lowest plateau. Since the reported
values of the spin-orbit coupling in monolayer graphene are
of the order of 40 μeV [16] (corresponding to temperatures of
the order of 0.5 K) and there is no clear mechanism that would
lead to an enhancement of spin-orbit coupling by hexagonal
boron nitride (hBN), we expect another mechanism behind
such features. Here, we explore alternative possibilities for
the explanation of the appearance of additional features in the
conductance.

A very natural guess is that the lifting of degeneracy is
due to interaction effects. While renormalization-group stud-
ies show that the Coulomb interaction in clean graphene
becomes marginally irrelevant [17], BLG behaves more like
a typical two-dimensional (2D) electron gas. Nonperturbative
approaches to the effects of long-range interactions show
that graphene may feature interaction-induced instabilities.
These effects are expected to be particularly important in very
clean samples, at very low densities, and in high magnetic
fields. Proposed theories include superconducting instabilities
[17–20], (anti)ferromagnetic instabilities [21–23], excitonic
instabilities [24–26], and whole lot of others [27–33]. For a
summary or comparison see, e.g., Refs. [34–40].

One rather notorious phenomenon, where interaction ef-
fects show up in transport measurements, is the appearance
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of an additional shoulder in the quantized conductance of
QPCs below the lowest plateau. It is commonly known as
the 0.7 conductance anomaly, since, in systems with spin
degeneracy, it is usually observed close to the value of the
conductance,

G ≈ 0.7 × 2
e2

h
.

This feature was first recognized in a GaAs QPC in Ref. [41]
and, while it is fair to say that there is still no com-
monly accepted theory explaining all aspects of the anomaly,
there are several microscopic theories that are capable of
capturing some salient features of the phenomenon. These
theories invoke various distinct physical mechanisms driven
by electron-electron correlations, such as variants of the
Kondo effect [42–47], Wigner crystallization [48–50], and
other interaction-based mechanisms [51–57]. In particular,
there are studies investigating the influence of the QPC barrier
on electron-electron interaction effects perturbatively. On a
very simplistic level, considering local interaction, only the
Hartree-type processes involving electrons with opposite spin
contribute, leading to an effective blocking of the channel for
one spin species for a certain amount of time and thus lowered
conductance. Since interaction effects are enhanced at low
densities, such type of effects would be strongest in the lowest
quantization subband.

In this work, we study the conductance of a BLG QPC for
in-plane magnetic field orientation. We start with presenting
our experimental results (Sec. II), which were obtained in
the same sample as in Ref. [5], but in another cooldown
for changing the sample orientation within the magnet. In
particular, we demonstrate the importance of interaction ef-
fects in the lowest size-quantized subbands by measuring the
renormalized Landé g factor governing the Zeeman splitting
of the subbands. This motivates us to employ the picture
based on the interaction-induced spontaneous polarization of
spin or valley degrees of freedom to describe the shoulder-
like features in the conductance. After a short reminder on
the band structure of BLG and, especially, the influence of
external gating on the gap and the densities (Sec. III), we
discuss the conductance of the BLG QPC. In Sec. IV we
detail an extension of a phenomenological model for the 0.7
anomaly proposed in Ref. [58] to BLG. Within this frame-
work, we investigate all possible scenarios in order to find
the one most likely to be present in this experiment. We do
not explicitly consider any microscopic model of the anomaly,
but, instead, assume that some sort of interaction-induced spin
and/or valley splitting is present at zero magnetic field and
investigate the consequences of possible types of splitting
on the conductance in increasing magnetic field. In fact, the
assumed polarization does not need to be static; it just needs
to fluctuate slowly compared to the traveling time through the
constriction, which according to Ref. [59] is indeed fulfilled.
By comparing our experimental results with these scenarios
(Sec. V), we conclude that our sample shows spontaneous
spin polarization but no valley splitting. Our findings are sum-
marized in Sec. VI, and technical details are described in the
Appendixes.

FIG. 1. (a) Schematic illustration of the setup with the QPC
formed in BLG subject to the in-plane magnetic field B. In exper-
iment, the magnetic field B is oriented in plane with an angle of
approximately 45◦ with regard to the black dashed line. (b) Cross
section of the setup along the dashed line in left panel. The QPC is
tunable by the split gates (SG), back gate (BG), and top gate (TG).

II. EXPERIMENTAL RESULTS

A. Fabrication and characterization

For this experiment, we have used the same BLG device
as presented in Ref. [5] (see Fig. 1). The chosen gate config-
uration is VBG = 10 V (back-gate voltage) and VSG = −12 V
(split-gate voltage). This setup differs from the one used in
Ref. [8] for the study of the supercurrent confinement in BLG
QPC by an addition of an overall top gate. The device consists
of a hBN-BLG-hBN heterostructure, which is edge contacted
with Ti/Al electrodes. The thickness of the top and bottom
hBN layers of the sandwich are 38 and 35 nm, respectively.
The sandwich is placed onto a prepatterned back gate, which
is designed on a sapphire substrate that is, in turn, covered by
an additional layer of the dielectric Al2O3. The magnetic field
was applied in the plane of the BLG layer. The measurements
were performed under the same experimental condition as in
Ref. [5], but in a different cooldown, with the magnetic field
oriented in the plane of the BLG (at approximately 45◦ from
the current direction).

The QPC in BLG is engineered electrostatically by means
of the split gate placed on top of the device and the whole
sample is covered in an extra layer of Al2O3 with 30-nm
thickness before adding the overall top gate made from Ti/Cu.
The measurements were performed at either 20 mK or 4 K
in a 3He/4He dilution refrigerator (BF-LD250 from Blue-
Fors). A two-terminal configuration was used employing the
standard low-frequency (≈13 Hz) lock-in technique, with an
AC excitation ranging from 1 to 20 μV. For further details
of the characterization of the sample the reader is referred
to the Supplemental Material in Ref. [5]. Figure 8 of the
Supplemental Material in Ref. [5] also shows the finite-bias
measurements used to extract the gate-coupling parameter.

To the best of our knowledge, there are two papers by
other groups that have investigated similar setups, namely,
Refs. [12,60]. While both these papers also studied transport
through a BLG QPC, the confinement conditions there were
different from those in our setup. This difference might be
crucial for observation of interaction effects, including the
0.7 anomaly. Specifically, in the present work, the QPC is
formed by split gates of a physical width w ≈ 65 nm. Because
of the additional layers of Al2O3, the distances between the
channel and the global back and top gates are 55 and 68 nm,
respectively. In Ref. [60], the physical width of the split gates
is 120 nm, while the distance to the back gate and split gate
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FIG. 2. Measured conductance of the QPC in BLG for VBG = 10 V and VSG = −12 V. (a) Differentiated differential conductance as a
function of the top-gate voltage VTG and in-plane magnetic field B for temperature 20 mK. Plateaus of the conductance correspond to bright
regions, steps correspond to dark regions. The map scale is cut at 0e2/(h V) and 8e2/(h V) to bring out the details. The black dashed line
corresponds to B = 0.2 T, the lines of blue tones to 2, 4, and 6 T. The dots of different shades of pink mark the development of the spin
subbands used to extract the Zeeman splitting and the effective Landé g factors. (b, c) Cubic spline fit of the differential conductance G as a
function of the VTG in elevating B for 20 mK and 4 K, respectively. The curves are shifted vertically with α = 2e2/(h T) and colored according
to their first derivative. (d) Differential conductance G as a function of VTG at 20 mK for B = 0.2 T (black curve) and B = 6 T (light blue). The
arrow marks the additional shoulder, which we identify as a 0.7 anomaly. (e) Differentiated differential conductance as a function of B and
conductance G for 20 mK. Plateaus of the conductance correspond to bright regions; slopes correspond to dark regions.

is not specified. Since Ref. [60] did specify that the BLG is
encapsulated in hBN, the distance to the back gate and the
split gate is likely of the order of 30 nm, with an additional
35 nm of Al2O3 between split gates and local top gate. Simi-
larly, Ref. [12] stated a width of 250 nm, a distance of 25 nm to
the back gate (and, probably, a similar one to the split gates),
and additionally 25 nm of Al2O3 between split gates and a
local top gate. This means that our channel is a lot narrower,
confinement a lot stronger, and, thus, the density of states way
larger, which enhances all interaction effects.

Moreover, interaction effects in Refs. [12,60] should be
more strongly suppressed by the top and bottom gates, which
are closer than the typical distance of interacting electrons
within the constriction. It is worth noting that Ref. [61] stated
that gates need to be closer than a few nanometers to fully sup-
press electron-electron interaction in graphene and BLG. At
this point, it should be mentioned that, depending on the exact
shape of the constriction, the 0.7 shoulder can appear at dif-
ferent conductance values (for example, at 0.5e2/h [55,56]),
which would fit with the alleged spin-orbit gap of Ref. [12].

The global back gate that covers also parts of the leads
in our device leads to a smoother coupling in the QPC re-
gion, while also modifying the band structure and gap in
the non-QPC regions. As has been shown, for example, in
Refs. [55,56], both the presence and shape of the 0.7 anomaly
depend rather strongly on the exact constriction profile, so
that a smoother constriction region might be necessary for its
appearance. This also applies to the larger parameter space
we explore by varying our split gate and back gate not only
along the direction of zero displacement field. Lastly, we want
to point out that most of our reported results are based on the
three lowest size-quantized levels, which are not even resolved
in Ref. [60], while Ref. [12] does not reach full pinch-off.

B. Conductance

We start by investigating the dependence of the conduc-
tance on the magnetic field and top-gate voltage. Figures 2(a)–
2(d) show the experimental data at temperature 20 mK. In
Fig. 2(d), the conductance is shown as a function of the
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FIG. 3. (a, b) Zoomed-in view for the lowest plateau of the differential conductance G at 20 mK and 4 K, respectively, as a function of VTG

with horizontal shifts for different values of magnetic field, α = 0.5 V/T. (c, d) Differentiated differential conductance as a function of VTG for
20 mK and 4 K, respectively. Curves for different magnetic field values are shifted vertically with α̃ = 4e2/(h V T). In all panels, the colored
curves correspond to the magnetic field values introduced in Fig. 2(a).

top-gate voltage VTG for two different values of in-plane mag-
netic fields B‖. The black curve corresponds to B‖ = 0.2 T and
the light blue one to B‖ = 6 T as marked in Fig. 2(a). The light
blue curve highlights the appearance of additional half-step
conductance plateaus in high in-plane magnetic fields. The
black curve contains a shoulder marked by the arrow, which
we will attribute to the 0.7 conductance anomaly. We note
that the valley degeneracy is apparently not affected by the
application of the in-plane magnetic field, and the Zeeman
spin-split subbands remain degenerate in the two valleys K
and K ′. Since the aluminum leads are superconducting at
20 mK, a finite magnetic field is needed to kill this effect
and curves below 0.2 T show influence of the superconducting
leads (cf. Appendix A).

Cubic spline fits of the conductance for all measured values
of magnetic field between 0.2 and 6 T are shown in Figs. 2(b)
and 2(c) for temperatures 20 mK and 4 K, respectively. Curves
in both figures are shifted vertically for clarity and colored
according to their first derivative. For both temperatures, there
are two regions of steep incline (orange-red) for high mag-
netic field, corresponding to the chemical potential crossing
through the spin-split bands. The splitting is both sharper and
higher for the lower temperature, and plateaus are flatter there
as well. The lower spin subband stays roughly at the same
value of VTG.

Figure 2(a) shows a grayscale map of the differentiated
differential conductance dG/dVTG as a function of top-gate
voltage VTG and in-plane magnetic field B‖ for T = 20 mK.
Transitions across 1D subband edges appear as dark lines,
while conductance plateaus are visible as light regions in

between. One clearly sees the four well-resolved conduc-
tance plateaus. These are separated by the three regions
corresponding to the 1D subbands, which are split roughly
symmetrically with the applied in-plane field for higher bands.
This corresponds to the evolution from the spin-degenerate
into spin-split energy levels. The lifting of the spin degeneracy
occurs for the lowest three subbands, where the confinement
and interactions are the strongest.

Figure 2(e) shows the same data as Fig. 2(a), but as a
function of B‖ and G. The bright horizontal lines at multi-
ples of 4e2/h correspond to the spin- and valley-degenerate
conductance quantization plateaus for zero magnetic field; the
additional half-integer multiples for higher magnetic fields
correspond to the spin-split plateaus due to the Zeeman effect.

C. Extra features of the conductance

Additionally, we note the presence of a shoulderlike feature
below the lowest conductance plateau at about G = 2.5e2/h,
similar to the 0.7 structure described in many other materials
[62], which develops into the lowest spin-split subband at
G = 2e2/h. This feature is well visible in the black curves in
Figs. 2(a) and 2(d). Since flatter parts of the conductance cor-
respond to brighter color in Figs. 2(c) and 2(f), it corresponds
to a bright region in between the zeroth and first plateau, i.e.,
within the darker region to the left of VTG = −12 V, making it
look like a spin splitting of the 1D subbands at zero magnetic
field.

This additional feature is also visible in Fig. 3, which
shows cadence plots of the conductance at 20 mK and 4 K
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in Figs. 3(a) and 3(b), respectively, and of the derivative of
the conductance at 20 mK and 4 K in Figs. 3(c) and 3(d),
respectively. In all cases, only the lowest band is shown.
The cadence plots for a larger range of conductance variation
are shown in Appendix A. The colored curves correspond
to the values of magnetic field marked in Fig. 2(a). In the
black curves in both Figs. 3(a) and 3(b) there is an additional
shoulder at around 2.5e2/h, which develops into the spin-split
plateau for higher magnetic fields. In the cadence plots of the
conductance, Figs. 3(c) and 3(d), this shoulder corresponds to
an additional peak, which clearly develops into the spin-split
peak for 4 K whereas this transition is somewhat obscured
by yet another feature at 20 mK. We identify this obscuring
feature as part of a larger oscillation pattern discussed later.
Similar plots are shown in Ref. [45] for GaAs, where the
observed behavior was attributed to the 0.7 structure.

The extra feature cannot be an effect caused by the finite
magnetic field needed to kill superconductivity, since it is not
located on the imaginary line extending the Zeeman splitting
down to small magnetic fields. Instead, a finite magnetic field
is needed to bring this feature down to the spin-split value.
Moreover, this feature is seen already at zero magnetic field
in Figs. 2(c), 3(b), and 3(d) at higher temperature, where the
contacts are not superconducting. At stronger magnetic fields,
B‖ � 4 T, this feature merges with the shoulder that, at the
lowest magnetic fields, splits off the lowest main conductance
quantization plateau at G = 4e2/h and goes down to form a
plateau slightly below G = 2e2/h. This behavior is clearly ob-
served as the evolution of the red region above VTG ≈ −12 V
in Fig. 2(b). The merging of the two shoulders is also evident
in Fig. 2(a) as an intersection of the two bright regions at
B‖ ≈ 4 T and VTG ≈ −12 V.

Finally, there are additional oscillations in the conductance
[of which the obscuring feature in Fig. 3(c) is one], which are
most visible close to conductance plateaus in Fig. 2(d). These
appear as vertical lines in Fig. 2(a) and are less visible for
the higher temperature in Fig. 3(b). Most notably, a maximum
of such an oscillation is seen to go straight through one of
the spin-split bands of the lowest 1D subband in Figs. 2(a)
and 2(b) and Fig. 3(c), starting at around −12 V and 0 T
in the lowest plateau, crossing one spin subband at around
3 T, and ending up in the 0.5e2/h plateau for higher magnetic
field. Similar oscillations appear at other voltages in a regular
fashion.

D. Effective Landé g factor

From the spin splitting of the 1D subbands marked in pink
in Fig. 2(a) we extract the Zeeman energy splitting �EZ by
converting the top-gate voltage VTG into energy, using the
splitting rate of the energy levels in source-drain bias mea-
surements [5], as described in Refs. [63–66]. The confinement
in this cooldown, VBG = 10 V and VSG = −12 V, does not
exactly correspond to the setup in the source-drain measure-
ment, where VSG = −11.6 V. We observed a good agreement
between the two measurements in Ref. [5], which had a bigger
difference in the confining potentials. Most importantly, the
extracted gate coupling is the same for all nine visible sub-
bands. Thus, we expect this value to be a very good fit here as

FIG. 4. (a) Zeeman energy splitting �EZ as a function of mag-
netic field B for various 1D subbands. Dashed lines show best linear
fits of high-field data points; dotted ones are linear fits going through
zero at zero magnetic field. (b) Extracted effective Landé g factors
|g∗| for the three quantization subbands [solid dots of the colors cor-
responding to legend in (a)], obtained for the in-plane magnetic field.
The gray line indicates the value of the bare 2D g factor g = 2 for
BLG. The error bars mark the 1σ intervals from the two performed
fits shown in (a). The dotted points correspond to the dotted lines
above, and the crosses to the dashed lines. All parameters are given
in Table I.

well and use

E = αTG e
(
VTG − V (0)

TG

)
, αTG = 3.8 × 10−3.

The obtained value of �EZ for each of the three lowest sub-
bands is plotted in Fig. 4(a) as a function of magnetic field,
revealing linearly increasing Zeeman energy splittings. Re-
markably, in case of the N = 0 subband, the Zeeman splitting
shows a linear behavior only for B‖ � 5 T, whereas at smaller
fields an almost constant splitting is observed.

This saturation effect can be linked to the observed ad-
ditional shoulder in the conductance curves in Figs. 2(b)
and 2(c) at not too strong magnetic fields. The plateau
in the Zeeman splitting corresponds to the magnetic fields

TABLE I. Parameters extracted from the fit of the splitting in
magnetic field. The uncertainty corresponds to the uncertainty of the
fit, i.e., a 1σ interval.

Subband 0 1 2

g∗ (no offset) 6.04(6) 4.22(4) 3.73(4)
g∗ (finite offset) 4.91(40) 4.14(17) 3.72(22)
offset in meV 0.438(154) 0.0288(546) 0.00506(755)
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below 4 T in Fig. 2(a), where the bright region to the left of
VTG = −12 V disappears. One can either fit the dependence
of �EZ on the magnetic field requiring a vanishing splitting
extrapolated to zero B or not (using then the best linear fit
at high magnetic field). In the latter case, a finite intercept at
�EZ ≈ 1.7 meV is observed for N = 0 subband at B‖ = 0,
unlike the cases N = 1 and N = 2, which extrapolate to close
to zero energy splitting. This suggests that a spontaneous spin
splitting occurs for the N = 0 subband, where the effects of
the interaction and confinement are expected to be the most
prominent. Fitting with a finite intercept, as was done, e.g., in
Ref. [45], establishes a bound on zero-field splitting without
interaction effects. One should note that this splitting is fully
obscured by the much larger, interaction-induced 0.7 anomaly
that produces a much larger value of the zero-B splitting.

From the slopes of the Zeeman splitting in Fig. 4(a), we
find the (independent of the magnetic field) values of effective
Landé g factors |g∗

N | for each of the subbands, shown in
Fig. 4(b) (see Table I). These values are obtained by taking
the linear fit to the splitting with and without a finite intercept.
For both fits we use the 1σ intervals to obtain error bars.
The obtained |g∗

N | values are increasingly enhanced for lower
subbands compared to the bare 2D g factor g = 2, with a
maximum enhancement by a factor of about 2–3 for N = 0.
This observation also supports the idea of an enhanced role of
interaction effects for the N = 0 subband. Independent of the
exact value of the gate coupling, this enhancement only relies
on a gate coupling that is the same for the three subbands.
This enhancement is seen both for a fit with finite intercept
or without. Since the reported Kane-Mele spin-orbit gap of
0.04–0.08 meV is in between the finite and the vanishing
intercept, it would also not change the resulting enhancement
of the Landé g factor by more than a few percent.

III. THEORETICAL MODEL

The quantization of conductance in a QPC is a well-known
experimental proof of the possibility of confining charge car-
riers and it clearly shows their quantum nature [67]. What
makes BLG an interesting platform for such measurements
is its additional valley degree of freedom and the high elec-
trostatic tunability of its band gap [6,68]. In this section, we
discuss the effects of the applied gate voltages on the band
structure and, thus, on the observed conductance within the
essentially noninteracting model (interaction here is taken into
account only through the self-consistent screening of the gate
potentials).

A. Effective Hamiltonian and dispersion of BLG

We describe the low-energy properties of BLG relevant
for the transport measurements in the QPC geometry by the
effective two-band Hamiltonian (see Ref. [69]). The details of
this approximation are given in Appendix C. The two-band
matrix Hamiltonian, acting in the space of the pseudospin de-
gree of freedom (Pauli matrices σ̂ ) combined with the Zeeman
interaction in the spin space (Pauli matrices ŝ), has the form

Ĥ = (Ĥ0 + ĤM
)⊗ ŝ0 + 1

2
�EZ σ̂0 ⊗ ŝz, (1)

Ĥ0 = − 1

2m

(
0 (π†)2

π2 0

)
− U

2

(
1 0
0 −1

)
, (2)

ĤM = Uv2

γ 2
1

(
π†π 0

0 −ππ†

)
. (3)

Here, π = ξ px + ipy is the kinetic momentum, with ξ = ±
referring to the K± valley. Here, we disregard possible spin-
orbit coupling, which is a small effect at the energy scales of
the experiment and not capable of explaining the zero-field
splitting or the magnetic field behavior we observe, as seen by
the obtained zero-field splitting of Fig. 4(a). We will return to
this issue again below.

In what follows, we disregard the Mexican-hat term ĤM

that develops for finite layer asymmetry U as discussed in
Ref. [70]. We also neglect the skew interlayer hopping, which
leads to trigonal warping [70,71]. The effect of these subtle
features of the BLG spectrum on the conductance of a QPC
in in-plane magnetic field will be discussed elsewhere. Here,
we adopt the simplest model that, as we demonstrate below, is
capable of describing the salient features of the conductance.

Clearly, we have to distinguish the two spatial regions in
our physical sample. Away from the split gates there is no
confinement and electrons feel an approximately constant top-
gate and back-gate voltage. Close to the split gate, the shape
of the confinement leads to a nontrivial, spatially dependent
effective top-gate voltage.

The dispersion of the spin σ =↑,↓ band for the low-
energy Hamiltonian (1) without the Mexican-hat feature (3)
is given by

Eσ = ±
√

U 2

4
+ h̄4k4

4m2
+ σ

2
�EZ . (4)

This corresponds to a 2D density for spin projection σ :

n2D
σ (μ) = 2

m

8π h̄2

√
4
(
μ − σ

2
�EZ

)2
− U 2, (5)

where the factor of 2 accounts for the valley degree of freedom
and the chemical potential μ is measured with respect to the
middle of the asymmetry gap. For a small Zeeman splitting,
�EZ 


√
4μ2 − U 2, one can use the expansion

n2D
σ (μ) ≈ m

4π h̄2

(√
4μ2 − U 2 − 2σμ�EZ√

4μ2 − U 2

)
. (6)

This expansion tells us that the effect of the Zeeman splitting
on the density is enhanced when the chemical potential is
close to the gap. The total density n2D =∑σ=± n2D

σ is, to first
order in �EZ , independent of magnetic field, and we get for
the chemical potential in weak fields

μ(n2D) =
√

m2U 2 + 4π2(n2D)2h̄4

2m

− m3U 2(�EZ )2

16π2(n2D)2h̄4
√

m2U 2 + 4π2(n2D)2h̄4
. (7)

B. Controlling BLG with gates

In the 2D regions away from the QPC, the effect of a
constant back-gate and top-gate voltage is described by the
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FIG. 5. (a, b) Band structure in the 2D regions (dark gray) and inside the constriction (light gray) for zero magnetic field, with and without
spontaneous splitting (s.s.), respectively. Here, the spontaneous splitting is between spin subbands shown as dashed or dotted lines. Since it
requires the proximity of the chemical potential, there is no s.s. in the valence band. Because of the split-gate stray fields, the asymmetry gap
inside the constriction is larger. Energies are measured with respect to the middle of the gap in the 2D region. (c) The magnetic field introduces
a spin splitting of the bands with respect to the B = 0 band bottom, which leaves the middle of the gap at the same value. The splitting inside
the constriction is larger, since the Landé g factor is enhanced. As observed experimentally, the Zeeman splitting inside the constriction is not
symmetric. To the lowest order in a weak magnetic field, the chemical potential for a fixed total 2D density is independent of magnetic field
[see Eq. (6)].

self-consistent gap equation [70,72]. The total density n =
n↑ + n↓ is electrostatically determined by the gates and given
by

n = ε0εBGVBG

eLBG
+ ε0εTGVTG

eLTG
. (8)

Here, ε0 is the vacuum permittivity, LBG (LTG) is the distance
from the BLG plane to the back gate (top gate), and εBG

and εTG are the relative dielectric constants of the material
between BLG and the back gate and top gate, respectively. In
the absence of screening, the interlayer asymmetry factor U is
given by

Uext = ec0

2εr

(
εBG

LBG
VBG − εTG

LTG
VTG

)
, (9)

where c0 is the distance between the two BLG planes and εr

is the relative permittivity between these sheets.
Since the two layers of BLG screen the effect of the closer

gate for the other BLG plane depending on their density and
thus the felt voltage, the actual asymmetry as a function of the
density is given by the self-consistent equation [70]

U (n) = Uext

1 − 	
2 ln

(
|n|

2n⊥
+ 1

2

√
n2

n2
⊥

+ U 2

4γ 2
1

)

≈ Uext

[
1 − 	

2
ln

( |n|
n⊥

)]−1

, (10)

n⊥ = γ 2
1

π h̄2v2
, 	 = c0e2n⊥

2γ1ε0εr
. (11)

Thus, changing the top-gate voltage tunes the density n ac-
cording to Eq. (8), which, in turn, influences the asymmetry
factor U according to Eq. (10) and hence the dispersion (4)
and the chemical potential according to Eq. (7). This chemical
potential remains constant over the whole sample, including
the QPC constriction, where the density is no longer given by
Eq. (5):

μ(VBG,VTG) �
√√√√( Uext

2 − 	 ln |n2D|
n⊥

)2

+
(

π h̄2n2D

m

)2

. (12)

Here, the chemical potential depends on VBG and VTG through
the corresponding dependence of the 2D density, Eq. (8), and
the dependence of Uext, Eq. (9).

In the experiment, the combination of back-gate and split-
gate voltages is used to open a gap U under the constricted
region and tune the chemical potential inside this gap, as
shown in Ref. [5], and thus form the QPC (see Fig. 5). The
overall top gate is used to tune into the low-density regime,
where the observation of conductance quantization is possible
[5]. Importantly, for fixed back-gate and split-gate voltages,
like in the experimental setup, the top-gate voltage tunes the
electronic density in the sample linearly [70].

As proposed in Ref. [73], we model the QPC by pro-
jecting the 2D problem onto a one-dimensional one. The
procedure for a standard Schrödinger equation is described
in Appendix E 1. A generalization of the method to BLG is
discussed in Appendix E 2. The quantization of conductance
is already visible in the simplest approximation of hard-wall
boundary conditions, as we will show now. In the case of a
channel of width W , the dispersion relation for the longitudi-
nal wave vector k resulting from Eq. (1) takes the form [5]

EN,σ (k) = ±
√

U 2

4
+ h̄4

4m2
q4

N (k) + σ

2
�EZ , (13)

q2
N (k) = k2 +

(Nπ

W

)2

, (14)

where N = 0, 1, 2, . . . labels the size-quantized bands. While
the case N = 0, strictly speaking, requires a different choice
of boundary condition, we still chose to investigate the effect
of the resulting k4 dispersion, which one would also get in
the 2D setup. It will turn out that the choice of any nonlinear
dispersion does not have qualitative consequences for the 0.7
effect. Note that U in Eq. (13) differs from the 2D expression
(10), since the screening in a 1D channel differs from that in
the unconfined regions of BLG. We also note that the channel
width is affected in a nontrivial way by VBG and VTG.

The lowest band is, to leading order, quartic in the mo-
mentum, so that the zero-temperature density resulting from
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Eq. (13) is given by

n1D
σ (μ) = 2

√
2m

π h̄

[
(μ − σ�EZ/2)2 − U 2

]1/4
, (15)

as opposed to the square-root dependence of the 2D density
(5). The total density in the constriction is again determined
electrostatically by the gates, but the stray fields of the split
gates make the evaluation of the dependence of the density on
the gate voltages harder. Since the split-gate voltage is applied
additionally in the constricted region, the gap there is larger
and the density inside the QPC is lower than away from the
barrier (Fig. 5), enabling the observation of the very lowest
size-quantized bands.

C. Conductance quantization

We describe the conductance of the system by means of the
Landauer-Büttiker formula,

G = e2

h

∑
σ,ξ

∫ ∞

−∞
dεTσ,ξ (ε)[− f ′(ε − μ)], (16)

where Tσ,ξ (ε) is the transmission of a subband with spin
σ and valley ξ and f ′(x) is the derivative of the Fermi
function f (x) = [1 + exp(x/kBT )]−1. Assuming an idealized
step-function transmission coefficient, where a band con-
tributes to G as soon as it is starting to get filled, the
Landauer-Büttiker conductance is given by

G(T, B) = 2
e2

h

∑
N,σ

f

(
E0

N + 1

2
σg∗μBB − μ

)
, (17)

where the factor of 2 accounts for the valley degeneracy,

E0
N =

√
U 2

4
+
(

h̄2

2m

)2(Nπ

W

)4

(18)

is the lower band edge of band N at zero magnetic field, and
the Zeeman interaction is written explicitly.

Every time the chemical potential crosses another lower
band edge at finite magnetic field, the conductance makes a
step of �G = 2 e2/h and, for zero magnetic field, a step of
�G = 4 e2/h. Each step has the shape of the Fermi function.
The steps are separated by conductance plateaus, thus giving
rise to a staircase structure seen in Figs. 2 and 3. This is the
conventional conductance quantization for a QPC, with an
appropriate degeneracy of the bands. In contrast to the case of
an out-of-plane magnetic field [5,71], the in-plane magnetic
field does not couple to the valley degree of freedom. As
discussed in Ref. [74], the direct effect on the band structure
is also negligible at experimentally accessible magnetic fields.
Therefore, at arbitrary fields, the steps of noninteracting con-
ductance have a factor of 2 corresponding to the two valleys
of BLG.

D. Screening and electron-electron correlations

Electrons in the device are subject to Coulomb interaction,
which is screened by the electrons themselves, by the metallic
gates, and by the dielectric material. Let us first discuss the
screening effect of the gates. There are three relevant length
scales in the system. The first one is the physical distance

between the split-gate fingers, w ≈ 65 nm, and the electrostat-
ically induced channel is smaller than that. The width of the
split-gate fingers is of the order of L ≈ 300 nm, so that we can
distinguish two ranges of length scales relevant to electrostatic
screening in our device.

On scales smaller than or of the order of w, the system
is truly 2D; only for larger distances it crosses over to one
dimension. Another relevant scale is the distance to the back
gate and top gate, which are both of the order of d ≈ 55 nm.
Here, we also take into account the dielectric screening by
further assuming, for simplicity, that the insulating layers in
between have the same dielectric constant εr (the vacuum
dielectric constant is denoted below by ε0). The bare, only
dielectrically screened Coulomb interaction is given by its
Fourier component at wave vector q (different in 1D and 2D
cases):

V (q) =
{

e2

2ε0εr

1
q , 2D

e2

2πε0εr
ln 1

qw
, 1D.

(19)

The gate-screened interaction can be found by summing up
the infinite series of mirror charges. In the 2D case, this leads
to

V (q) = e2

2ε0εr

∞∑
k=−∞

(
e−2l|k|q

q
− e−2|l ′−kl|q

q

)
(20)

= e2

2ε0εr

2

q

sinh(ql − ql ′) sinh(ql ′)
sinh(ql )

(21)

= e2

2ε0εr

tanh(qd )

q
, (22)

where l = LTG + LBG, l ′ = LBG, and in the last line we as-
sumed LTG = LBG = d . This means that screening strongly
alters the interaction if qd 
 1. But in the 2D case we require
r < w, i.e., q > 1/w, and thus qd � d/w � 1, so that the
interactions are not strongly altered by the screening of the
gates.

A closer look, including the screening effects on the inter-
action for monolayer graphene, is discussed in Ref. [61] and
reveals that gates need to be closer than a few nanometers
to really alter the interaction, which is not experimentally
accessible and certainly not the case here. There, it has also
been stressed that for BLG distances need to be even closer. In
the 1D case the presence of the gates is relevant only on scales
x > d and q < 1/d . In this case, we get a constant interaction
strength, which is in agreement with our phenomenological
model.

One effect of electron-electron interaction is an enhance-
ment of both the Landé g factor and spin-orbit coupling,
as discussed in Refs. [75–77]. By introducing the Fermi-
liquid constants F0, F1 we can express the Landé g-factor
enhancement as g̃ = g/(1 − |F0|). Spin-orbit coupling has an
additional linear momentum dependence, which means that
|F1| enters instead of |F0|. Since |F0| > |F1|, this means that
the g factor will always be more strongly enhanced than the
spin-orbit coupling. The enhancement is largest for large den-
sity of states, so that a strong confinement further enhances
this effect.
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IV. 0.7 ANOMALY IN BLG QPC

As mentioned in the Introduction, the 0.7 feature in the
QPC conductance is seen as an additional kink below the
lowest plateau sitting at around 0.7 × 2e2/h [41] for sys-
tems without additional degeneracies of the spectrum. It has
been observed and extensively studied in quantum point con-
tacts in GaAs/AlGaAs heterostructures for both electrons
[41,43,47,55,57,78–88] and holes [89–95]; signatures of the
anomaly were also observed in Si/SiGe heterostructures [96].

This phenomenon cannot be explained within a single-
particle picture [62,97], and it is commonly admitted that it is
directly linked to spin [41,78]. In addition, this effect appears
to be thermally activated and therefore not a ground-state
property [79]. Moreover, experiments show that the confine-
ment potential seems to play a crucial role in the strength
and the position of this conductance feature [87,88]. Re-
cently, various explanations have been suggested to capture
the physical origin of the 0.7 anomaly, such as dynamical
spin polarization or spin gap models due to electron-electron
interaction [58,79,80,95,98,99], Kondo effect [42–44,94,100–
103], Wigner crystallization [104–106], or charge density
waves [49] To our knowledge, no comprehensive study of
the interaction-induced 0.7 anomaly in systems where both
spin and valley degrees of freedom are degenerate has been
reported so far.

In contrast to the conductance quantization, the shoulder-
like feature appearing in the conductance cannot be explained
by the noninteracting theory presented in Sec. III. In this
section, we explore the possibility of explaining this spe-
cial feature in the context of the interaction-induced 0.7
conductance anomaly. As already discussed above, several
microscopic theories were used to describe the 0.7 anomaly.
Here, we do not specify any microscopic mechanism behind
the anomaly, but, instead, just assume that there is some that
effectively leads to spin and/or valley polarization. Based on
this assumption, we extend the phenomenological model of
Ref. [58] to four bands and the BLG band structure. The
required polarization does not have to be static; it can fluc-
tuate slowly compared to the typical traveling time through
the constriction. For simplicity we nevertheless describe the
model for a static situation. The “classic” 0.7 effect is only
seen in the lowest conductance step, Fig. 2, so that below we
restrict our consideration to the lowest size-quantized band
shown in Fig. 3.

A. Phenomenological model

Following the general idea of Ref. [58], we again use
the Landauer-Büttiker formula (16) for the conductance, here
for the quantized band N = 0 from Eq. (13). The 0.7 effect
requires a finite temperature. Assuming that the energy scale
for the variation of the transmission probability is smaller than
that of the thermal distribution function, we approximate the
former as a step function. A spin-valley subband contributes
to the conductance as soon as the chemical potential reaches
its lower band edge ε0

σ,ξ within the temperature window.
In this section, we develop a phenomenological model to

describe how interaction effects may influence these lower
band edges beyond the self-consistent screening. There are

two ways in which these can differ from the noninteracting
single-particle ones. The first one is the spontaneous polariza-
tion mentioned above, which is assumed to be arbitrary in the
space of spin and valleys. Already when the chemical poten-
tial is way below any of the relevant subbands, these subbands
may be spontaneously split to different values of energy. The
arrangement of these values, which are acquired for very low
chemical potential and zero magnetic field, is referred to as
the initial subband configuration. All subbands that are above
the lowest subband are called minority bands; those that are
characterized by the lowest band edge are majority bands.

The second effect is the dependence of the subbands on the
chemical potential when it is close to the band edge. A par-
ticular type of this dependence—pinning of the band edge to
the chemical potential—gives rise to additional plateaus in the
conductance. It is this interaction-induced dependence of the
lower band edge of minority bands on the chemical potential
that our phenomenological model describes for any assumed
initial configuration. We then consider the corresponding evo-
lution of the conductance with increasing in-plane magnetic
field and, by comparing the resulting behavior with the ex-
perimentally observed one (Sec. II), infer the initial splitting
configuration.

1. General four-band model

For a system with four degrees of freedom, like BLG, we
label the subbands by their spin and valley index, i.e., ε0

σ,ξ .
Moreover, we assume that the lower band edges of minority
bands start to depend on the chemical potential once it reaches
a certain value μσ,ξ , i.e., ε0

σ,ξ = ε0
σ,ξ (μ).

All possible initial spontaneously polarized configurations
of the band edges are shown in Fig. 6(a). For the analysis of
the dependence of the band edges on μ, we look at the local
spin-valley energy-density functional in the form

F = E[{nσ,ξ }] − μ
∑
σ,ξ

nσ,ξ . (23)

Here, F is the free energy of the system and E is its internal
energy. A diagrammatic approach to obtaining such a free
energy and a corresponding analysis of possible instabilities
in models with multiple species of quasiparticles is discussed,
e.g., in Refs. [107,108].

The lowest bands in Fig. 6 are majority bands with a fixed
lower band edge and we decompose their density into n =
n0 + δn. All changes with the chemical potential are included
in δn. For minority bands, we do not make this decomposition,
but assume that n = 0 for μ < μσ,ξ . We approximate the free
energy functional F as bilinear in all partial majority density
contributions δn and minority densities n, i.e.,

F =
∑

i=σ,ξ

[
(αi − μ)ni + βi

2
n2

i +
∑

j=σ ′,ξ ′
γ nin j

]
, (24)

where ασ,ξ , βσ,ξ , and γ are phenomenological constants to
be determined experimentally and nσ,ξ is understood as δnσ,ξ

for majority bands. The minimum of the energy functional is
achieved when

∂F
∂nσ,ξ

= ασ,ξ − μ + βσ,ξ nσ,ξ + γ
∑
σ ′,ξ ′

nσ ′,ξ ′ = 0, (25)
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which leads to solutions of the form

nσ,ξ ∝ (μ − μσ,ξ ) (26)

for minority bands, where μσ,ξ is the critical chemical poten-
tial of the minority subband that depends on the parameters of
the free energy, Eq. (24).

2. Application to BLG

At this point, we have to specify the band structure in
order to get access to the single-particle densities entering the
energy functional (24). For this purpose, we use the results
of Sec. III B for the noninteracting 1D dispersion in the BLG
QPC, and modify them to include the interaction effects at the
phenomenological level.

Without a magnetic field, we consider a quartic dispersion
relation of the form

εσ,ξ (k) = ak4 + ε0
σ,ξ (μ), (27)

where a is a constant. This form of the effective—modified
by interactions—form of single-particle energies in BLG QPC
is based on the fourth-order expansion of dispersion relation
(13) for N = 0, namely,

EN=0,σ (k) ≈
(

h̄2

2m

)2
k4

U
+ U

2
. (28)

As shown above, the gap magnitude U depends on the
chemical potential through the self-consistent electrostatic
screening. Specifically, U = U (n), according to Eq. (10) with
additional effects of the split gates, and n = n(μ) according
to Eq. (15). The chemical potential is set by the 2D density
according to Eqs. (5) and (8). Within the lowest band, these
dependencies are very smooth and do not lead to any addi-
tional features. The main role in our consideration is played
by the interaction-induced band gap that determines the band
edge ε0

σ,ξ (μ). For this reason, we neglect all electrostatic
contributions [effectively fixing U = U (μσ,ξ )] and introduce
a new band gap instead of U/2. One could just as well assume
that this band gap is applied on top of the fixed gap U (μσ,ξ )/2,

since this would only lead to an overall shift and a redefinition
of the origin.

For the dispersion (27), we get a one-dimensional density
in the form

nσ,ξ (μ) = 2

π

{
1

a

[
ε0
σ,ξ (μ) − μ

]}1/4

. (29)

By combining this with Eq. (26), we thus get the dependence

ε0
σ,ξ (μ) =

{
μ − Cσ,ξ (μ − μσ,ξ )4, μ > μσ,ξ

μσ,ξ , μ < μσ,ξ ,
(30)

where Cσ,ξ is a phenomenological constant depending on the
parameter a as well as the parameters of the free energy
functional F . This means that once the chemical potential
reaches the lower band edge of a minority band they become
pinned together over a certain energy range. For continuity
reasons we require ε0

σ,ξ = μσ,ξ ; i.e., the initial configuration
determines the critical chemical potentials. It is worth empha-
sizing that the enhanced density of states at the bottom of the
almost flat (quartic in momentum) band in BLG QPC (27) is
expected to enhance the role of interactions compared to the
case of conventional parabolic bands.

3. Resulting conductance

With the step-function transmission probabilities, the con-
ductance reads

G(T ) = e2

h

∑
σ,ξ

f
(
ε0
σ,ξ (μ) − μ

)
. (31)

At this point, one should note that the Fermi function f (x)
is close to 1/2 for |x| 
 kBT . For fixed lower band edges,
this corresponds to a very small region and does not lead to
conductance anomalies, but for the pinned band edges and
finite temperature considered here it does. If we tune the
chemical potential through all band edges, the crossing of a
fixed majority band corresponds to a plateau of 1e2/h, while
for every minority band we get an additional less sharp one
at 0.5e2/h. Any additional plateau from a majority band at
1e2/h can be smeared by temperature. If we have several

FIG. 6. (a) Cases a through h show every possible initial subband structure. The x axis labels spin and valley degree of freedom and the
y axis shows the position of the lower band edges in energy space with the values used for all plots. The assignment of spin σ and valley ξ

to the x axis is not unique, yet. In case a there is no initial splitting; all lower band edges are equivalent. In case b, three bands are fixed and
there is one minority band. Whether the single minority band is spin up or down or valley K or K ′ can only be distinguished once we include
a magnetic field. In cases c and d and cases e through h there are two and three split subbands, respectively. (b) Exemplary conductance for
the initial configuration shown in (a) for zero magnetic field. The parameters are chosen to suppress the plateaus at multiples of 1e2/h, where
the majority band is filled and minority bands are not yet populated. The majority bands are fixed at 0.1 meV; the next levels correspond to
ε0

1 = 0.2 meV, ε0
2 = 0.6 meV, and ε0

3 = 1 meV. The temperature is T = 0.7 K and C = 6 meV−3 for all minority bands [see Eq. (30)].
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TABLE II. Values of conductance shoulders for initial configu-
rations shown in Fig. 6.

Case Conductance shoulders (e2/h)

a none
b 3.5
c 3
d 2.5 and 3.5
e 2.5
f 1.5 and 3
g 2 and 3.5
h 1.5 and 2.5 and 3.5

minority band edges at different initial energies, the distance
between the bands compared to the temperature determines
whether lower minority bands already contribute fully or not
(cf. Ref. [58]).

The conductance corresponding to the initial splitting con-
figurations from Fig. 6(a) is shown in Fig. 6(b). The values
of the additional shoulders are summarized in Table II. In
experimental conductance curves in Fig. 2(d), there is one
additional shoulder at around 2.5e2/h and another one around
3.5e2/h for zero magnetic field. Thus we can rule out case a,
because it does not have any additional shoulder, and cases f,
g, and h, which have a too low first shoulder from the very
beginning. Only cases c, c, d, and e from Fig. 6 are relevant
here.

TABLE III. Different spin configurations for the arrangements
shown in Fig. 6; parentheses “(· · · )” denote all possible
permutations. The order corresponds to the subband ordering
shown in Fig. 6. For each permutation we can assign the valley
indices in four different ways, which does not lead to different
behavior in this model and is thus not distinguishable. For
example, the last arrangement in case g corresponds to the
eight valley-resolved cases: ↑ (↑↓) ↓ = {↑1↑2↓1↓2, ↑1↑2↓2↓1,

↑2↑1↓1↓2, ↑2↑1↓2↓1, ↑1↓1↑2↓2, ↑1↓2↑2↓1, ↑2↓1↑1↓2, ↑2↓2↑1↓1},
where the indices 1 and 2 correspond to the K and K ′ valleys,
respectively.

Case Spin configurations

a (↑↑↓↓)
b (↑↑↓) ↓, (↑↓↓) ↑
c ↑↑↓↓, (↑↓)(↓↑), ↓↓↑↑
d ↑↑↓↓, (↑↓) ↓↑, (↑↓) ↑↓, ↓↓↑↑
e ↓ (↓↑↑), ↑ (↑↓↓)
f ↑↑↓↓, ↓↑ (↑↓), ↑↓ (↑↓), ↓↓↑↑
g ↑↓↓↑, ↓↑↑↓, ↓ (↑↓) ↑, ↑ (↑↓) ↓
h ↑↑↓↓, ↑↓↓↑, ↑↓↑↓, ↓↓↑↑, ↓↑↑↓, ↓↑↓↑

B. Behavior of conductance in magnetic field

In order to distinguish between the cases of spin, valley, or
spin-valley splitting, we consider the behavior of the conduc-
tance in parallel magnetic field B. This is incorporated by the
following replacement:

ε0
↑,ξ → ε0

↑,ξ − 1

2
gμB|B|, (32)

FIG. 7. Behavior of the four different initial splitting cases a, b, c, and e from Fig. 6 in an in-plane magnetic field. Conductance curves for
magnetic fields between 0 and 8 T are shown with a horizontal shift parametrized by α = 1.5 meV/T. The thick black curve corresponding to
B = 0 T is nonshifted. The blue lines correspond to 2, 4, and 6 T, as in Fig. 3. Without any initial splitting, there is no continuous development
of a shoulder in case a; the additional plateau appears, as soon as it can be resolved. The particular assignment of spin to the subbands is
irrelevant: all six possibilities are indistinguishable. In case c, three different scenarios are possible. Each case happens for all four possible
valley assignments. For cases b and e, there are two distinguishable spin configurations; for case d there are four. Same parameters as in Fig. 6;
according to the measured Landé g factor, g = 4 was chosen.
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FIG. 8. Zoom into the evolution of the lowest conductance step with increasing magnetic fields (without shifts). The colored curves
correspond to those marked in Fig. 2(a). (a) Experimental data for 20 mK. Curves for higher magnetic fields show lower conductance at a
fixed value of the top-gate voltage. (b) Theoretical curve for case c1 in Fig. 7 with the nonsymmetric splitting (sp.) introduced in Eqs. (34) and
(35). Same parameters as in Fig. 6; according to the measured Landé g factor, g = 4 was chosen. The behavior of (a) is qualitatively replicated.
(c) Same as in (b), but with a symmetric Zeeman splitting introduced in Eqs. (32) and (33). There is a fixed (crossing) point clearly absent in
the experimental data. As is apparent by comparing the distance of the blue plateaus in chemical-potential space in (b) and (c) a symmetric
splitting enhances the g factor even more.

ε0
↓,ξ → ε0

↓,ξ + 1

2
gμB|B|. (33)

There are in total six possibilities of assigning 2 × 2 spins
to four subbands. Since one cannot distinguish different valley
indices this way, after this assigning, the spins are still four-
fold degenerate in their valley index. We only know that each
valley has two opposite spins. The permutation of spins within
subbands with the same lower band edge does not change the
outcome. From this we get in total 26 different arrangements
with distinct development with magnetic field for the eight
initial cases shown in Fig. 6. These are shown in Table III.

The magnetic field behavior of the relevant cases b, c,
d, and e is shown in Fig. 7 in analogy to Fig. 3(a). Here
one should note that the initial spontaneous splitting is a
spontaneous symmetry breaking and if the magnetic field is
tuned adiabatically, it will always favor the initial splitting
in the direction of the magnetic field. Behavior like case
c2, where the initial spontaneous splitting is opposite to the
Zeeman splitting, will only be observed if the magnetic field
is switched on very fast.

A comparison of the experimental data and theoretical ones
for symmetric splitting, Eqs. (32) and (33), and a phenomeno-
logical asymmetric one, where we use

ε0
↑,ξ → ε0

↑,ξ − gμB|B|, (34)

ε0
↓,ξ → ε0

↓,ξ , (35)

assuming that the spin-up band is energetically higher, is
shown in Fig. 8. From this we see that an asymmetric split-
ting, Eqs. (34) and (35), yields a better agreement with the
experimental observations in this particular case; that will
turn out to be the most relevant one. However, owing to the
special dependence of minority bands on the chemical poten-
tial, this asymmetric replacement rule may lead to unphysical
half-integer plateaus in high magnetic fields for some initial
configurations. Therefore, we have used the symmetrical split-
ting introduced in Eqs. (32) and (33) to produce Fig. 7.

V. DISCUSSION

Let us now compare the results of our phenomenological
model with the experimental results reported in Sec. II. Many,
but not all, features in Fig. 2, e.g., conventional conductance
quantization, can be explained without considering interaction
effects. Other features, e.g., additional shoulders in the con-
ductance curves and behavior of the g factor, are compatible
with the phenomenological model presented in Sec. IV.

A. Conductance plateaus

Every time the chemical potential, tuned by the top-gate
voltage, reaches a new lower band edge, the conductance
makes a step of 1e2/h per spin and valley. For zero magnetic
field, the plateaus are at multiples of 4e2/h, which can be
clearly seen in the cadence plots in Fig. 3. This is in contrast to
Ref. [13], where the valley splitting was observed in a similar
setup with changing the split-gate voltage, but at much higher
back-gate voltage. The Zeeman coupling of the spin to the
in-plane magnetic field leads to the appearance of steps at
multiples of 2e2/h for higher magnetic field. The additional
plateaus become visible when the Zeeman-split bands have a
spacing that can be experimentally resolved, which occurs in
our case above 2 T.

B. Effective g factor

The Zeeman splitting in the first three subbands shown in
Fig. 4(a) for 20 mK is very close to linear at sufficiently high
magnetic fields. For the lowest subband, a nearly constant
splitting is observed up to nearly 4 T. The extracted g factors
show a strong enhancement compared to the bare value of
g = 2 for BLG. We attribute this enhancement to the strong
confinement and interaction effects, similar to those discussed
in Ref. [109].

These effects are strongest for the lowest subbands because
of lower densities in the almost flat (quartic) band, which is
consistent with the increase of the enhancement with lower-
ing the band index. This effect should only be present for
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electrons going through the constriction. Electrons that
bounce back and stay in the 2D region are at too high densities
for the interaction-induced enhancement to be visible. This
effect combined with the peculiar low-field behavior of the
lowest subband strongly hints at the importance of interaction
effects in this experiment.

C. Additional features

There are two additional features below the conventional
conductance quantization step at G = 4e2/h, which thus only
involve the lowest quantized subband. The first one starts at
around 3e2/h at zero magnetic field, and the second one at
around 2.5e2/h.

1. 0.7 anomaly

One might try to identify both these features with case d
in Fig. 6, where there are two additional shoulders at zero
magnetic field. However, considering the conductance behav-
ior in magnetic field shown in Fig. 7, one sees that when these
two additional shoulders move down with magnetic field, as
in case d4, the additional plateau at 3e2/h persists for higher
magnetic fields. We do not see such a plateau in the experi-
mental data. The feature starting around 2.5e2/h in Fig. 3(a)
moving down into the 2e2/h plateau is visible in Fig. 2(a) as
a splitting of the spin-valley subbands at vanishing magnetic
field, which makes it a strong contender for the 0.7 effect. It
also leads to the nonlinear behavior of the Zeeman splitting in
the first subband in Fig. 4.

Since we have ruled out case d, only the cases b, c, and e in
Table II are still possible. Upon comparing the magnetic field
behavior with Fig. 7, we conclude that we are in either case c1
or e1. While one might not be convinced by the value of the
theoretical shoulder of case c, that is, 3e2/h compared to the
experimental one at 2.5e2/h, which is exactly the value in case
e, as shown in Fig. 6, this would require the spin-up state of
one valley split to the same energy as the non-spin-split bands
of the other valley, which implies an accidental fine-tuning.
Instead, if only one valley was spin split, cases d, f, and g
would be way more probable, but these were already ruled
out. Thus, we identify the experimentally observed behavior
as case c1, which assumes an initial spin splitting, but no
valley splitting.

It is also clear that, in contrast to Ref. [12], we do not
see any crossing of Zeeman-split bands. A shoulder similar
to ours but at 2e2/h was attributed to the substrate-enhanced
Kane-Mele spin-orbit coupling in Ref. [12]. We note that such
effects of the weak spin-orbit coupling can be observed only at
very low temperatures, but we still see a similar effect at 4 K.
Finally, the proposed Kane-Mele spin-orbit splitting would
lead to opposite spin splitting in the two valleys, so that there
is no net spin splitting, as detailed in Appendix C. However,
the observed Zeeman splitting at low magnetic fields suggests
the presence of spontaneous net spin splitting in our case,
while the enhancement of the effective g factor points towards
rather strong interaction effects. We thus identify this feature
in the conductance as an interaction-induced 0.7 anomaly. As
mentioned in Ref. [56], the exact value of the shoulder may
depend on the exact QPC geometry, so that it may also appear
very close to the value of 0.5 × 4e2/h.

2. Fabry-Pérot resonances

We identify the upper feature in the lowest subband con-
ductance at low magnetic field, corresponding to an additional
peak in the low-temperature plot in Fig. 3(c) at around
−11.8 V that goes vertically through the right spin-split band,
as a Fabry-Pérot resonance [110–116]. In Fig. 2(e), this addi-
tional feature is seen as a faint bright curve moving down from
the 4e2/h plateau (at weak fields) and merging with the 0.7
feature to form the spin-split 2e2/h plateau at magnetic field
around 4 T. Note that at this same value of magnetic field,
the Zeeman splitting of the lowest subband starts growing
linearly with magnetic field [see Fig. 4(a)]. With increasing
temperature, this feature disappears, in contrast to the 0.7
anomaly [see Fig. 3(d)].

The Fabry-Pérot resonances in our geometry emerge from
interferences of electronic waves in the 2D region, which are
backscattered from the interface with the contact on one hand,
and the barrier created by the split gates (see Ref. [5]). In
a parallel magnetic field, there are two Fermi wave vectors,
one for each spin, so that the minima and maxima of these
oscillations disperse with the magnetic field. Since Fabry-
Pérot resonances correspond to electrons bouncing back and
forth between the contacts and the split gate, these electrons
are inherently two dimensional and are not affected by the
enhancement of the g factor in the QPC region. A closer look
reveals additional Fabry-Pérot peaks at other values of the
top-gate voltage, which do not move to different plateaus in
the considered range of magnetic fields. For a discussion of
this effect, see Appendix B.

VI. CONCLUSIONS

In conclusion, we have studied an electrostatically defined
QPC in BLG which shows a zero field quantized conductance
in steps of 4e2/h owing to the spin and valley degeneracy.
In an in-plane magnetic field, a splitting of the first three
subbands at 20 mK is observed that results from the Zeeman
spin splitting, while the valley degeneracy is not affected.
Additionally, a 0.7-like structure is located below the lowest
size-quantized energy level which develops into the lowest
spin-split subband at 2e2/h. This additional feature is also
observed in the 4 K data, where only the splitting of the lowest
band is clearly resolved. On top of the quantized conductance
we observe Fabry-Pérot resonances. Because of the higher
densities in the 2D region and the relatively small bare Zee-
man splitting in BLG, these stay at fixed top-gate values with
increasing magnetic field.

From the Zeeman energy splitting, the effective 1D g fac-
tors in an in-plane magnetic field are found to be increasingly
enhanced for lower subbands compared to the bare 2D Landé
g factor g = 2 in BLG. Moreover, the fact that the linear fitting
of the Zeeman energy splitting for N = 0 does not extrapolate
to zero at B = 0 further indicates the spontaneous spin polar-
ization of the lowest subband. The behavior of the Zeeman
spitting is a clear sign of the importance of interaction effects
and confinement in this experiment. Based on this, we also
attribute the observed shoulder below the lowest subband to
the 0.7 anomaly stemming from the interaction-induced lifting
of the band degeneracy.
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We employ a phenomenological model to qualitatively
describe the behavior of this feature in the applied in-plane
magnetic field. In this model we assume that each spin-valley
subband can be spontaneously split by the electron-electron
correlations. By comparing the development of resulting
features in a magnetic field, Fig. 7, with the experimental
conductance curves in Fig. 3, we conclude that the observed
behavior can be explained by the assumption of an effective
spontaneous spin splitting, while the valley degree of freedom
is not affected. This is in full agreement with the picture
of spontaneous spin polarization inferred from the measured
Zeeman splitting.

Our experimental findings, supported by phenomenolog-
ical calculations and combined with those of Ref. [5] for
out-of-plane magnetic field, establish the exquisite tunability
of spin and valley degree of freedom by the application of
gates or external magnetic fields. Furthermore, our results
also demonstrate relevance of electron-electron correlations
in BLG QPC geometry, as well as a possibility to control
the effective strength of interactions by means of electrostatic
spatial confinement by a combination of external gates.

Apart from developing the microscopic theory of the 0.7
anomaly in BLG QPC, several questions regarding the phe-
nomenological model still remain. While it is straightforward
to obtain a free energy of the form of Eq. (24) for a 2D
model with quadratic band structure (cf. Ref. [107]), the
corresponding calculation for a hybrid 2D-1D geometry is
much more involved. Within such a derivation, it would be
especially interesting to show the microscopic origin of the
parameters of the phenomenological description. In particular,
such a calculation would yield their explicit dependence on
the applied magnetic field.

There are several additional ingredients that could be com-
bined with this sort of setup. In particular, in Ref. [117] it
was observed that, at least if there is a substantial gap and the
trigonal warping is relevant, electrons might predominately
orient along the lattice directions and not take the shortest
path, which is expected to affect the conductance of the QPC
in the corresponding regime of gate voltages. Further, while
the intrinsic spin-orbit coupling in BLG is very weak, using an
additional layer with strong spin-orbit coupling, e.g., a layer
of a transition metal dichalcogenide, should induce noticeable
proximity spin-orbit-related effects [118,119] and may lead
to topologically nontrivial states. In addition, the introduction
of a finite twist between the layers may also lead, at certain
fillings and twist angles, to topological states [119,120]. In
order to open a gap in such a system, spin-orbit coupling
has to be added as well. To what extent these states can be
manipulated with gates and external magnetic fields and what
role interaction effects play in such engineered sample are
questions worth exploring. The analysis of the present paper
serves as the starting point for further studies in this direction.

ACKNOWLEDGMENTS

We thank Alexander Dmitriev, Angelika Knothe, Ralph
Krupke, Alex Levchenko, Christoph Stampfer, and Xavier
Waintal for discussions and comments. This work was partly
supported by the Helmholtz Society through program STN
and by the DFG via the projects DA 1280/3-1 and GO

FIG. 9. (a, b) Differential conductance G as a function of the
top-gate voltage VTG for different values of magnetic field B and for
20 mK and 4 K, respectively. The curves are shifted with α = 2 V/T.
Figures 3(a) and 3(d) are a zoom into the lowest plateau shown here.

1405/5 within FLAGERA Joint Transnational Call 2017
(Project GRANSPORT). We acknowledge support by the
KIT-Publication Fund of the Karlsruhe Institute of Technol-
ogy.

APPENDIX A: ADDITIONAL PLOTS

The 0.7 anomaly discussed in the main text is only vis-
ible in the lowest conductance plateau. The other discussed
features, including the Fabry-Pérot resonances, are visible in
other plateaus as well. In this Appendix, we show cadence
plots of the measured conductance for larger ranges of con-
ductances and top-gate voltages than in Figs. 3(a) and 3(b).
Figures 9(a) and 9(b) show the differential conductance as a
function of the applied top-gate voltage with horizontal shift
linear in the applied in-plane magnetic field. The additional
0.7 shoulder is seen in the lowest step for both temperatures.
The main difference between the two temperatures is the
smoother and flatter behavior for higher temperatures. More-
over, there are two additional features that are only visible
in the 20 mK case [Fig. 9(a)]. For magnetic fields below
0.2 T, the aluminum leads are still superconducting, so that the
conductance is affected by superconducting fluctuations. Ad-
ditionally, one sees Fabry-Pérot resonances, which are most
clear on top of plateaus.

Since the aluminum leads are superconducting at 20 mK,
a finite magnetic field is needed to kill this effect and curves
below 0.2 T show a higher conductance than the quantized
values. This should be contrasted with the data shown in
Fig. 3(b) for 4 K, where there are no superconducting ef-
fects even at vanishing magnetic field. The superconducting
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FIG. 10. Cubic spline fit of the differential conductance G of
the same sample in a different cooldown for VBG = 10 V and a
perpendicular magnetic field of 20 mT as a function of the VTG

in elevating VSG for 20 mK. The curves are shifted vertically with
α = 10e2/(h V) and colored according to their first derivative. The
onset of the conductance plateau (black solid lines serving as guides
for the eye) shows a clear dependence on the exact gate configuration.
The black dotted line shows the dispersion of a feature that we
identify as a 0.7 shoulder, with a dispersion parallel to the onset
of the plateau, in agreement with its quasi-1D nature. Fabry-Pérot
oscillations are marked by black dashed lines and show a different
(weaker) split-gate voltage dependence, since they are generated by
the 2D lead modes.

proximity effect for the QPC in BLG is out of scope of the
present paper; the analysis of conductance curves affected by
superconducting fluctuations is an interesting task from both
the experimental and theoretical points of view (for a related
analysis of the supercurrent in this geometry, see Ref. [8]).

Since it is well known that the 0.7 anomaly is very sensitive
to the exact shape of the constriction, we include data of the
same sample in a different cooldown at T = 20 mK and with a
perpendicular magnetic field of 20 mT. The back-gate voltage
is again VBG = 10 V and the split-gate voltage ranges between
−12 and −11.5 V. Figure 10 shows a cubic spline fit of the
obtained conductance data in a form similar to Figs. 2(b) and
2(c) but the vertical shifts correspond to different split-gate
voltages, starting at VSG = −12 V for the lowest curve and
ending with VSG = −11.5 V as a function of VTG. The curves
are colored according to their derivative. The thick solid
lines mark the onset of the conductance plateaus, showing
their dependence on the exact confinement condition, i.e., the
split-gate voltage. The lowest curve corresponds to the same
split-gate and back-gate configuration as the data in the main

text, where we have identified the 0.7 anomaly by its magnetic
field dependence [see Figs. 2(b) and 2(e)].

In this cooldown, we see a similar feature, marked by
the arrow. When following the split-gate dependence of this
feature (black dotted line), one observes that it stays parallel
to the onset of the lowest plateau, which verifies that it is a
feature of the QPC modes. Additionally, we again see Fabry-
Pérot oscillation on top of the 4e2/h and 8e2/h plateaus (black
dashed lines). Since they are generated by the lead modes,
they show a different dispersion with the split-gate voltage.
They always appear at the same electronic 2D density, which
is only slightly tuned by the split-gate voltage. The onset of
the conductance steps (and the 0.7 anomaly) is much more
strongly dependent on the exact gate configuration, which
makes the two effects clearly distinct.

APPENDIX B: FABRY-PÉROT RESONANCES

In our experiment (Fig. 2), the 0.7 shoulder in the con-
ductance of the lowest subband merged at magnetic field of
about 4 T merges with an additional conductance feature,
which was identified with the Fabry-Pérot resonances in the
main text. Here, we present additional details supporting this
identification. The transmission coefficient accounting for the
Fabry-Pérot resonance can be described by

T = 1

1 + F sin2 [Lk cos(θ )]
, (B1)

where F is the finesse and θ is the angle of incidence of the
electron wave. At very low temperatures, the contribution of
the resonance to the conductance is given by

G = e2

h

1

1 + F sin2 (LkF )
. (B2)

One should note that, according to Ref. [121], the Zeeman
splitting in BLG is around 1.1 meV for 10 T. Using the
conversion formula for top-gate voltages to energies from
the Supplemental Material of Ref. [5] for the same device
at slightly different voltages, the distance between VTG =
−12 V and VTG = −8 V corresponds to the band splitting of
15.2 meV. Moreover, the density in the 2D region is not as
low as in the constriction, since the split gates do not cover
this region. Therefore, the total spin polarization of these 2D
bands cannot be achieved and, since we only observe faint
oscillations on top of the plateaus, the finesse F is small. As a
result, this dependence of the conductance on the magnetic
field is not experimentally resolved. These Fabry-Pérot os-
cillations are clearly visible in the differentiated differential
conductance in Fig. 11, where they appear as small oscilla-
tions over the full top-gate and magnetic field range.

An experimental example of the dependence of this con-
ductance contribution on VTG and magnetic field is shown in
Fig. 12(a) for the case of vanishing back-gate and split-gate
voltage and a theoretical plot based on Eq. (B2) in Fig. 12(b).
The Fabry-Pérot resonances are seen for all magnetic field val-
ues and over the whole top-gate voltage range. These peaks,
in contrast to the Zeeman-split subbands, only weakly depend
on magnetic field, since the Zeeman splitting in the 2D bulk is
smaller than in the QPC region.
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FIG. 11. Differentiated differential conductance at 20 mK for
different magnetic fields with a vertical shift with α = 4e2/(h V T).
Only magnetic fields with magnitudes of multiples of 0.2 T are
shown for clarity. The blue curves correspond to the magnetic field
values given in Fig. 2(a). For all magnetic field values and over
the full plotted voltage range repetitive behavior corresponding to
Fabry-Pérot oscillations is visible.

While the plots in Fig. 12 agree qualitatively, there are
two points to keep in mind. The theoretical plot was obtained
using no residual density, which is certainly not the case in
the experiment, and does not account for the peculiarity of the
screening in the experimental setup in the presence of the split
gates. Even if the split-gate voltage is zero, the split gates af-
fect the electrostatics of the setup by locally screening the top
gate and developing mirror charges for carriers in this region.
In addition, the dielectric layer in the split-gate region is no-
ticeably thinner. This introduces inhomogeneity in the middle
of the sample, and the length scale corresponding to the dis-
tance between the leads and the split gates naturally appears.

In order to fully reproduce the experimentally observed
pattern one would need a full electrostatic simulation. One
very apparent difference is the fact that the period stays nearly
constant in the experiment but not in the theory. While we did
take into account the influence of the top-gate voltage on the
density and the gap, the voltage also changes the boundary
condition at the contacts and close to the split-gate fingers.
Moreover, we neglected any present residual density, which
might change the position within the spectrum and thus the
top-gate dependence. Finally, the presence of the split gates
will naturally induce a breaking of translational symmetry, as
the side boundaries do, which were not taken into account. For
additional Fabry-Pérot interference data in the same sample,
the reader is referred to the Supplemental Material of Ref. [5].
A more thorough study of Fabry-Pérot interferences in BLG
can be found in Ref. [115].

APPENDIX C: EFFECTIVE LOW-ENERGY THEORY

In order to derive the conductance of the system considered
in the main text, we start with the effective two-band model
for BLG, Eq. (1). In this Appendix, we discuss how to obtain
this low-energy approximation and how it is affected by the

FIG. 12. (a) Oscillations of conductance δG = G − Ḡ for VBG =
VSG = 0. The smooth background conductance Ḡ is obtained by
means of a Savitzky-Golay filter of the measured data. (b) Fabry-
Pérot oscillations given by Eq. (B2) in a magnetic field. The Fermi
vectors in magnetic field were obtained by calculating the gap from
Eq. (10) and the chemical potential, Eq. (7), for the given voltage
and n = c(V − V0). The value c = 0.8 × 3.9 × 1015 was determined
in quantum Hall measurements and V0 = −1.2 V is the position
of the Dirac point for VBG = VSG = 0. The chosen length L = 230
nm corresponds to the distance between the leads and the split-gate
fingers. The maxima and minima of oscillations stay nearly parallel
over a large range of magnetic field.

magnetic field, as well as by possible terms describing spin-
orbit interaction.

Close to the K point, the full four-band Hamiltonian is
given by

H0 =

⎛
⎜⎜⎝

εA1 vπ† −v4π
† v3π,

vπ εB1 γ1 −v4π
†,

−v4π γ1 εA2 vπ†,

v3π
† −v4π vπ εB2

⎞
⎟⎟⎠, (C1)

where

εA1 = 1

2
(−U + δAB), (C2)

εB1 = 1

2
(−U + 2�′ − δAB), (C3)

εA2 = 1

2
(−U + 2�′ + δAB), (C4)

εB2 = 1

2
(U − δAB). (C5)
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It acts on the four-component wave function according to

H

⎛
⎜⎝

ψA1

ψB1

ψA2

ψB2

⎞
⎟⎠ = E

⎛
⎜⎝

ψA1

ψB1

ψA2

ψB2

⎞
⎟⎠. (C6)

The spin degree of freedom is included through

Hi = H0 ⊗ ŝ0 (C7)

in the spin-degenerate sector, and the Zeeman splitting is
introduced via

HZ = �EZ μ̂0 ⊗ σ̂0 ⊗ ŝz, (C8)

where μ, σ , and s are the Pauli matrices in layer, sublattice,
and spin space, respectively. According to Ref. [122], the
two types of intrinsic spin-orbit interaction allowed by the
symmetry of the problem are

Hso
1 = ξλ1μ̂0 ⊗ σ̂z ⊗ ŝz, (C9)

Hso
2 = ξλ2μ̂z ⊗ σ̂0 ⊗ ŝz, (C10)

where ξ = ± corresponds to valley K (K ′). Following
Ref. [12], we additionally introduce an extrinsic spin-orbit
interaction of the form

Hso
3 = ξ diag(λu,−λu, λd ,−λd ) ⊗ ŝz. (C11)

For the effective low-energy theory, |E | 
 γ1, we follow
the derivation of Ref. [69]. The basis states are reordered
to (ψA1, ψB2, ψA2, ψB1) ⊗ (↑,↓), where the first half corre-
sponds to the low-energy, nondimer states and the second half
to the dimer states, which are coupled by the large energy γ1.
From now on, all terms in the Hamiltonian are reordered ac-
cording to this basis. Then, we can define the Green’s function
of the total Hamiltonian H = Hi + HZ + Hso

i as follows:

H =
(

H11 H12

H21 H22

)
, (C12)

G =
(

G11 G12

G21 G22

)
= (H − E )−1

=
(

G(0)−1
11 H12

H21 G(0)−1
22

)−1

, (C13)

G(0)
αα = (Hαα − E )−1. (C14)

The goal is to find a closed expression for G11 which is
then used to define the new Hamiltonian H2 according to

G11 = (H2 − E )−1 ⇔ H2 = G−1
11 + E . (C15)

We find

G11 = (1 − G(0)
11 H12G(0)

22 H21
)−1

G(0)
11 (C16)

and, thus,

H2 = G−1
11 + E = H11 − H12G(0)

22 H21. (C17)

We now expand G(0)
22 = (H22 − E )−1 in E/γ1 
 1. Applying

this procedure to the reordered full Hamiltonian produces, to
linear order in U , �′, δAB, v4, v3, λ, and �EZ , the effective

two-band Hamiltonian:

H2 = h0 + hU + h3 + hAB + h4 + h�′ + hZ + hso, (C18)

where

h0 = −v2

γ1

(
0 (π†)2

π2 0

)
⊗ ŝ0, (C19)

hU = −U

2

[(
1 0
0 −1

)
− v2

γ 2
1

(
π†π 0

0 −ππ†

)]
⊗ ŝ0,

(C20)

h3 = v3

(
0 π

π† 0

)
⊗ ŝ0, (C21)

hAB = δAB

2

(
1 0
0 −1

)
⊗ ŝ0, (C22)

h�′ = 2�′ v
2

γ 2
1

(
π†π 0

0 ππ†

)
⊗ ŝ0, (C23)

h4 = 2v4
v2

γ 2
1

(
π†π 0

0 ππ†

)
⊗ ŝ0, (C24)

hZ = �EZ

2

(
1 0
0 1

)
⊗ ŝz, (C25)

hso = ξ

(
λ1 + λ2 + λu 0

0 −λ1 − λ2 − λd

)
⊗ ŝz. (C26)

In the main text, we restrict ourselves to the terms h0, hU ,
and hZ . This is exactly Eqs. (1) and (3). For all calculations,
we furthermore neglect the second term of hU that describes
the Mexican-hat feature of the spectrum. The only terms ca-
pable of lifting spin degeneracy are hZ and the spin-orbit term

ξ

(
λu 0
0 −λd

)
⊗ ŝz (C27)

for asymmetry between the layers λu �= λd , which can be
caused by the lack of mirror symmetry of the whole stack
[123]. Because of the valley index ξ in this expression, the
splitting is opposite in the two valleys, so that there is no net
spin splitting due to spin-orbit interaction at all. If such a term
is present in the Hamiltonian, it would lead to full spin-valley
splitting in an applied magnetic field, i.e., four steps of 1e2/h.
This is, however, not seen in the experiment. This type of
effect of spin-orbit coupling on the first conductance plateau
in in-plane magnetic fields for the parameters specified in
Ref. [12] is shown in Fig. 13.

APPENDIX D: EFFECT OF TILTED MAGNETIC FIELD

We have investigated the effect of a perpendicular magnetic
field on the quantized conductance in the same device in
Ref. [5]. Large out-of-plane magnetic fields lead to a valley
splitting, similar to the Zeeman spin splitting, with character-
istic braiding behavior. Since we see neither a lifting of the
valley degree of freedom, which would lead to a full resolu-
tion of conductance steps of 1e2/h for large magnetic fields,
nor any hint at a nonlinear splitting, we can exclude a large
out-of-plane component of the magnetic field. The presence
of an appreciable out-of-plane component of the magnetic
field would also show up in a curving of the Fabry-Pérot
oscillations, which is also not observed here.
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FIG. 13. Influence of a finite Kane-Mele spin-orbit coupling on
the first conductance plateau in in-plane magnetic field, including the
effect of layer asymmetry encoded in λu �= λd . In all plots we chose
g = 2 and α = 0.1 meV/T; thus the rightmost curve corresponds to
B = 8 T and the temperature is 20 mK. (a) No spin-orbit coupling;
there is no splitting at zero magnetic field. (b, d) Different spin-orbit
couplings in the two layers, finite splitting at zero magnetic field,
and full lifting of spin and valley degeneracy at higher magnetic
field. (c) Same spin-orbit coupling in both layers; no splitting at zero
magnetic field.

For small out-of-plane components the valley splitting is
roughly linear [71] and can be easily included into our model
by adding a term τgvB to the energy spectrum, where τ = ±1
corresponds to the valleys K and K ′, respectively, and gv

contains both the angular dependence on the tilt angle and
the magnetic moment due to the nontrivial Berry curvature.
The expected effect of the tilt on the conductance traces is
shown in Fig. 14. We see that a very small tilt does not lead
to any noticeable difference, while a bigger one leads to a full
lifting of all degeneracies at strong magnetic fields. This is in
contrast to quantum dots in BLG (see, e.g., Ref. [124]), where
all four single-particle energies can be extracted at all values
of magnetic field due to their additional charging energies and
one can construct an effective g factor by combining spin and
valley splitting in a specific way, that would get enhanced
over the bare spin Landé g factor for one combination while
reducing it for the other combination. Since we do not observe
a valley splitting, this effect would exactly average out in our
case.

APPENDIX E: QPCs IN BLG

In the experiment, we electrostatically induce a constric-
tion in the shape of a QPC. While the full self-consistent
treatment of this electrostatic problem is very involved, the
main features can be described by the inclusion of a local
potential in the corresponding Schrödinger equation, thus
neglecting the coupling between the Schrödinger and the
Poisson equations. There are two slightly different ways to
include this potential profile. We start by summarizing the
most common one for a normal two-dimensional Schrödinger
equation, and proceed with an alternative method for BLG.

FIG. 14. Influence of finite tilt angle on the conductance traces
for cases a and c1. In all plots, we chose gs = 4 and α = 1.3 meV/T;
thus the rightmost curve corresponds to B = 8 T and the temperature
is 20 mK. The configurations corresponding those in Fig. 6 are
marked inside the panels; the indices 1 and 2 correspond to the K
and K ′ valleys, respectively. (a, b) No finite tilt and thus no valley
splitting. (c, d) Finite tilt angle resulting in gv = 0.04. No change
compared to gv = 0 is visible. (e, f) Finite tilt angle resulting in
gv = 0.4. At a certain magnetic field this would lead to the appear-
ance of additional conductance steps at 1e2/h and 3e2/h, which are
not observed in our experiment.

The obtained energy spectrum would extend dispersion (13)
in the main text and thus also the density (15).

1. Projection procedure for the Schrödinger equation

In this section, we briefly recapitulate the projection proce-
dure for a QPC in a conventional 2D electron gas, as discussed
in Ref. [73]. The Hamiltonian is given by

H = − h̄2

2m

(
∂2

x + ∂2
y

)+ V (x, y), (E1)

V (x, y) = VQPC(x, y) + Vlead(x), (E2)

VQPC(x, y) = V0

cosh(x/a)2
+ mω2

y

2
y2, (E3)

Vlead(x) = Vl [�(x − d ) + �(−d − x)], (E4)

where one models the QPC as a harmonic potential in the
transverse direction and Vl corresponds to the potential differ-
ence at the leads. We expand the wave function in transverse
modes χnx(y) according to

�(x, y) =
∑

n

φn(x)χnx(y), (E5)
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where the complete orthonormal basis χnx(y) satisfies

[
− h̄2

2m
∂2

y + V (x, y)

]
χnx(y) = εn(x)χnx(y). (E6)

For the given potential, these eigenvalues are given by

εn(x) = h̄ωy

(
n + 1

2

)
+ V0

cosh(x/a)2

+Vl [�(x − d ) + �(−d − x)]

and from this we get the projected 1D problem

[
− h̄2

2m
∂2

x + εn(x)

]
φn(x) = Eφn(x). (E7)

At low energies, only the lowest transverse modes con-
tribute, and we can approximate the full solution as �(x, y) =
φ0(x)χ0x(y). The exact form of the top of the effective 1D
potential εn(x) determines at what position the additional 0.7
shoulder appears; for the usual parabolic barrier top it appears
very close to 0.7 × 2e2/h [56].

2. Procedure for BLG

In the present case of BLG it is easier to include the
constriction by means of boundary conditions than a real local
potential. The Hamiltonian (1) acts as

Ĥ

⎛
⎜⎝

ψA1↑
ψA1↓
ψB2↑
ψB2↓

⎞
⎟⎠ = E

⎛
⎜⎝

ψA1↑
ψA1↓
ψB2↑
ψB2↓

⎞
⎟⎠ (E8)

on the four-component wave function in the spin and sublat-
tice space. These four coupled second-order equations can be
decoupled into a fourth-order one and we get for the first two

components[(
U

2
− U

v2

γ 2
1

π†π

)2

+ (π†π )2

(2m)2

]
ψA1σ

=
(

E − σ
�EZ

2

)2

ψA1σ . (E9)

Here, we have used that, without a magnetic field, the momen-
tum operators commute.

We expand the wave function ψA1σ in transverse modes
χnxσ (y) as

ψA1σ (x, y) =
∑

n

φnσ (x)χnxσ (y), (E10)

which leads to a new differential equation, where the x
and y components are still coupled. We already assume that
χnxσ (y) ∝ sin(knxσ y) [cos(knxσ y)] if the solution is antisym-
metric (symmetric) when describing the QPC by imposing
hard-wall boundary conditions along the y direction. The
width of the channel, W (x), depends smoothly on x and we
get standing waves with wave vector

kn(x) = nπ

W (x)
.

We decouple the components by neglecting all x derivatives
of χnxσ (y), which leads to the effective 1D equation:[(

U

2
+ h̄2U

v2

γ 2
1

[
∂2

x − k2
n (x)

])2

+ h̄4
[
∂2

x − k2
n (x)

]2
(2m)2

]
φnσ (x)

=
(

E − σ
�EZ

2

)2

φnσ (x), (E11)

where the constriction W (x) acts as an effective 1D potential
En(x) = h̄2n2π2

2mW (x)2 . At low energies, only the lowest transverse
mode contributes and we can approximate the full solution
as ψA1σ = φ1σ (x)χ1xσ (y). Choosing, for example, W (x) =
cosh(x/L) we get a very realistic 1D potential containing
terms of the form 1/ cosh(x/L)2.
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