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Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings
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By solving the exact master equation of open quantum systems, we formulate the quantum thermodynamics
from weak to strong couplings. The open quantum systems exchange matters, energies, and information with
their reservoirs through quantum particle tunnelings that are described by the generalized Fano-Anderson
Hamiltonians. We find that the exact solution of the reduced density matrix of these systems approaches a
Gibbs-type state in the steady-state limit for the systems in arbitrary initial states as well as for both the weak
and strong system-reservoir coupling strengths. When the couplings become strong, thermodynamic quantities
of the system must be renormalized. The renormalization effects are obtained nonperturbatively after exactly
tracing over all reservoir states through the coherent state path integrals. The renormalized system Hamiltonian
is characterized by the renormalized system energy levels and interactions, corresponding to the quantum work
done by the system. The renormalized temperature is introduced to characterize the entropy production counting
the heat transfer between the system and the reservoir. We further find that only with the renormalized system
Hamiltonian and other renormalized thermodynamic quantities can the exact steady state of the system be
expressed as the standard Gibbs state. Consequently, the corresponding exact steady-state particle occupations
in the renormalized system energy levels obey the Bose-Einstein and the Fermi-Dirac distributions for bosonic
and fermionic systems, respectively. In the very weak system-reservoir coupling limit, the renormalized system
Hamiltonian and the renormalized temperature are reduced to the original bare Hamiltonian of the system and
the initial temperature of the reservoir. Thus, the conventional statistical mechanics and thermodynamics are
thereby rigorously deduced from quantum dynamical evolution. In the last, this nonperturbative renormalization
method is also extended to general interacting open quantum systems.

DOI: 10.1103/PhysRevResearch.4.023141

I. INTRODUCTION

Understanding the physical process of thermalization
within the framework of quantum mechanical principle has
been a longstanding problem. Thermodynamics and statistical
mechanics are built with the hypothesis of equilibrium [1,2],
that is, over a sufficiently long time, a macroscopic system
which is very weakly coupled with a thermal reservoir can al-
ways reach thermal equilibrium, and its equilibrium statistical
distribution does not depend on the initial state of the system.
Over a century and a half, investigating the foundation of
statistical mechanics and thermodynamics has been focused
on two basic questions [3]: (i) How does macroscopic irre-
versibility emerge from microscopic reversibility? (ii) How
does the system relax to thermal equilibrium with its envi-
ronment from an arbitrary initial state? Rigorously solving
these problems from the dynamical evolution of quantum sys-
tems, namely, finding the underlie of disorder and fluctuations
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from the deterministic dynamical evolution, has been a big
challenge in physics [1–19]. Obviously, the foundation of
thermodynamics and statistical mechanics and the answers to
these questions rely on a deep understanding of the dynam-
ics of systems interacting with their environments, i.e., the
nonequilibrium evolution of open quantum systems.

In the 1980s, Caldeira and Leggett investigated the
problem of thermalization from the study of the quantum
Brownian motion, a Brownian particle coupled to a ther-
mal reservoir made by a continuous distribution of harmonic
oscillators [5]. They used the Feynman-Vernon influence
functional approach [4] to explore the dynamics of quantum
Brownian motion, and found the equilibrium thermal state
approximately [5]. Later, Zurek studied extensively this non-
trivial problem from the quantum-to-classical transition point
of view. Zurek revealed the fact that thermalization is realized
through decoherence dynamics as a consequence of entangle-
ment between the system and the reservoir [7]. Thermalization
in these investigations is demonstrated for quantum Brownian
motion for initial Gaussian wave packets at high-temperature
limit [5,7]. However, the thermalization with arbitrary initial
state of the system at arbitrary initial temperatures of one
or multiple reservoirs for arbitrary system-reservoir coupling
strengths has not been obtained.

On the other hand, in the last two decades, experimental in-
vestigations on nanoscale quantum heat engines have attracted
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tremendous attention on the realization of thermalization and
the formulation of quantum thermodynamics [20–34]. Aside
from searching new thermal phenomena arising from quantum
coherence and quantum entanglement, an interesting question
also appearing naturally is what happens when microscopic
systems couple strongly with reservoirs. Since then, many
effects have been devoted to the problems of how thermody-
namic laws emerge from quantum dynamics and how these
laws may be changed when the system-reservoir couplings
become strong [35–50]. In particular, how to properly define
the thermodynamic work and heat in the quantum mechanical
framework becomes an important issue when the system and
reservoirs are strongly coupled together [37,44,51–54]. Due to
various assumptions and approximations they inevitably take
in addressing the open quantum system dynamics, no consen-
sus has been reached in building quantum thermodynamics at
strong coupling.

In the last decade, we have derived the exact master
equation of open quantum systems [55–62] by extending the
Feynman-Vernon influence functional theory into the coherent
state representation [63]. The open quantum systems we have
studied are a large class of nanoscale open quantum systems
that exchange matters, energies, and information with their
reservoirs through the particle tunneling processes. We also
solved the exact master equation of these systems with arbi-
trary initial states at arbitrary initial reservoir temperatures.
Thus, a rather general picture of thermalization processes has
been obtained [10,12,18]. In this paper, we shall explore the
thermodynamic laws and statistical mechanics principles from
the dynamical evolution of open quantum systems for both
the weak and strong coupling strengths, based on the exact
solution of the exact master equation we obtained.

In fact, the difficulty for building the strong coupling
quantum thermodynamics is twofold [38–50]: (i) How to
systematically determine the internal energy from the system
Hamiltonian which must be modified by the strong coupling
with its reservoirs? (ii) How to correctly account the entropy
production when the system evolves from nonequilibrium
state to the steady state? We find that the nature of solv-
ing the above difficulty is the renormalization of both the
system Hamiltonian and the system density matrix during
the nonequilibrium evolution through the system-reservoir
couplings. The system-reservoir couplings also result in
the dissipation and fluctuation dynamics in open quantum
systems, which are indeed renormalization effects of the
system-reservoir interactions. The renormalization effects can
be obtained nonperturbatively after being exactly traced over
all reservoir states. They are manifested in the dynamical
evolution of the reduced density matrix with dissipation and
fluctuation, and accompanied by the renormalized system
Hamiltonian. We develop such a nonperturbative renormaliza-
tion theory of quantum thermodynamics from weak to strong
couplings in this paper.

The rest of the paper is organized as follows. In Sec. II, we
begin with the simple open quantum system of a nanophotonic
system coupled with a thermal reservoir. The renormalized
system Hamiltonian is obtained in the derivation of the exact
master equation for the reduced density matrix. The exact
solution of the reduced density matrix is also obtained an-
alytically from the exact master equation. Its steady state

approaches to a Gibbs state so that quantum thermodynamics
emerges naturally. However, we find that the exact solution
of the particle occupation in the system at strong coupling
does not agree to the Bose-Einstein distribution with the initial
reservoir temperature. This indicates that the corresponding
equilibrium temperature must also be renormalized when the
reduced density matrix is influenced by the system-reservoir
interaction through the dissipation and fluctuation dynamics
arisen from reservoirs. By introducing the renormalized tem-
perature as the derivative of the renormalized system energy
with respect to the von Neumann entropy in terms of the
reduced density matrix, we overcome the inconsistency. Thus,
the self-consistent renormalized quantum statistics and renor-
malized quantum thermodynamics are formulated for both the
weak and strong coupling strengths.

In Sec. III, we extend such study to more general open
quantum systems coupled to multireservoirs through parti-
cle exchange (tunneling) processes described by generalized
Fano-Anderson Hamiltonians. These open systems are typ-
ical nanoscale systems that have been studied for various
quantum transport in mesoscopic physics. Here both systems
and reservoirs are made of many bosons or many fermions,
not limiting to the prototypical open system of a harmonic
oscillator coupling to a oscillator reservoir introduced orig-
inally by Feynman [4] and by Caldeira and Leggett [5,64].
From the exact master equation and its exact solution in the
steady state for such class of open quantum systems [55–57],
we develop the renormalization theory of quantum thermo-
dynamics for both the weak and strong coupling strengths
in general. We further take an electronic junction system (a
single electronic channel coupled two reservoirs with differ-
ent initial temperatures and chemical potentials) as a specific
nontrivial application. It is a nontrivial example because other
approaches proposed for strong coupling quantum thermody-
namics in the last few years keep the reservoir temperature
unchanged [38–49] so that these approaches become invalid
for multiple reservoirs when the total system (the system plus
all reservoirs) reaches a final equilibrium state. We demon-
strate the consistency of the Fermi-Dirac statistics with our
renormalized quantum thermodynamic in this nontrivial ap-
plication.

In Sec. IV, we discuss further the generalization of this
nonperturbative renormalization theory for quantum thermo-
dynamics to more complicated interacting open quantum
systems. We take the nonrelativistic quantum electrodynamics
(QED) derived from the fundamental quantum field theory
as an example, and consider electrons as the open sys-
tem and all photonic modes (electromagnetic field) as the
reservoir. The system-reservoir interaction is the fundamental
electron-photon interaction. We perform the nonperturbative
renormalization by integrating out exactly the infinite number
of electromagnetic field degrees of freedom. We obtain the
reduced density matrix in terms of only the system degrees
of freedom in the same way as we derived the exact master
equation for the generalized Fano-Anderson Hamiltonian in
Sec. III. The resulting renormalization theory is given by the
reduced density matrix for electrons and the nonperturbative
renormalized Hamiltonian of many electrons, which can be
systemically computed in terms of two-electron propagating
Green functions in principle. Thus, we show that although our
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renormalized quantum thermodynamics theory is formulated
from the exact solvable open quantum systems, it can apply
to arbitrary open quantum systems even though the final exact
analytical solution is hardly found. In fact, a similar situation
also exists for the equilibrium statistical mechanics, namely,
one cannot solve exactly all equilibrium physical systems, in
particular, the strongly correlated systems such as the Hub-
bard model and the general quantum Heisenberg spin model
[65], even though the reservoir effect can be ignored there.
Therefore, approximations and numerical methods remain to
be developed further for the study of renormalized nonequilib-
rium dynamics of many-body systems within the framework
we developed in this paper. A conclusion is given in Sec. V.
In the Appendixes, we provide the necessary analytical deriva-
tions of the solutions used in the paper.

II. A SIMPLE EXAMPLE FOR STRONG COUPLING
QUANTUM THERMODYNAMICS

For simplicity, we begin with a single-mode bosonic open
system (such as a microwave cavity in quantum optics or
a vibrational phononic mode in solid-state and biological
systems) coupled to a thermal reservoir through the energy-
exchange interaction. The total Hamiltonian of the system, the
reservoir, and the coupling between them is considered to be
described by the Fano Hamiltonian [66]

Htot = HS + HE + HS E

= h̄ωsa
†a +

∑
k
h̄ωkb†

kbk +
∑

k
h̄(Vka†bk + V ∗

k b†
ka),

(1)

where a† and b†
k (a and bk) are the creation (annihilation)

operators of the bosonic modes in the system and in the
reservoir with energy quanta h̄ωs and h̄ωk , respectively. They
obey the standard bosonic commutation relations [a, a†] = 1
and [bk, b†

k′ ] = δkk′ , etc. The parameter Vk is the coupling
amplitude between the system and the reservoir and can be
experimentally tuned to strong coupling [67,68]. In fact, all
parameters in the Hamiltonian, including the couplings be-
tween the system and the reservoir, can be time dependently
controlled with the modern nanotechnologies and quantum
technologies. The universality of Fano resonance also makes
this simple system useful in nuclear, atomic, molecular, and
optical physics, as well as condensed matter systems [69].

A. The exact master equation of the system and its exact
nonequilibrium solution

To study the thermalization of open quantum systems, the
reservoir can be initially set in a thermal state

ρE (t0) = e−β0HE /ZE , (2)

where β0 = 1/kBT0 and T0 is the initial temperature of the
reservoir, ZE = TrE [e−β0HE ] is its partition function. The sys-
tem can be initially in arbitrary state ρS (t0) so that the initial
total density matrix of the system plus the reservoir is a direct
product state [4,5]

ρtot (t0) = ρS (t0) ⊗ e−β0HE

ZE

. (3)

After the initial time t0, both the system and the reservoir
evolve into an entangled nonequilibrium state ρtot (t ) which
obeys the Liouville–von Neumann equation in quantum me-
chanics [70]

d

dt
ρtot (t ) = 1

ih̄
[Htot, ρtot (t )]. (4)

Because the system and the reservoir together form a closed
system, the Liouville–von Neumann equation is the same as
the Schrödinger equation of quantum mechanics for the evolu-
tion of pure quantum states. But the Liouville–von Neumann
equation is more general because it is also valid for mixed
states.

Quantum states of the system are completely determined
by the reduced density matrix ρS (t ). It is defined by the partial
trace over all the reservoir states:

ρS (t ) = TrE [ρtot (t )]. (5)

The equation of motion for ρS (t ), which is called the master
equation, determines the quantum evolution of the system
at later time t (> t0). In the literature, one usually derives
the master equation using various approximations, such as
the memoryless dynamical maps, the Born-Markovian ap-
proximation, and secular approximation, etc. [71–76]. But,
these methods are invalid for strong coupling open quantum
systems with strong non-Markovian dynamics. In the past
decade, we have developed a very different approach to rig-
orously derive the exact master equation for a large class of
open quantum systems [55–62]. Explicitly, we have derived
the exact master equation for Eq. (1) by exactly tracing over
all the reservoir states from the solution of the Liouville–von
Neumann equation [57,77–79]. The trace over all the reser-
voir states is a nonperturbative renormalization to the reduced
density matrix of the system and to the system Hamiltonian
simultaneously. We complete this partial trace by integrating
out exactly all the reservoir degrees of freedom through the
coherent state path integrals [57,63]. The resulting exact mas-
ter equation for the reduced density matrix accompanied with
the renormalized system Hamiltonian is given by

d

dt
ρS (t ) = 1

ih̄

[
Hr

S
(t ), ρS (t )

]
+ γ (t, t0)

{
2aρS (t )a† − a†aρS (t ) − ρS (t )a†a

}
+ γ̃ (t, t0)

{
a†ρS (t )a + aρS (t )a† − a†aρS (t )

− ρS (t )aa†
}
. (6a)

In this exact master equation, the first term describes a unitary
evolution of the reduced density matrix with the renormalized
Hamiltonian

Hr
S

(t ) = h̄ωr
s (t, t0)a†a. (6b)

This renormalized Hamiltonian contains all the energy cor-
rections to the system arising from the system-reservoir
interaction through the nonequilibrium evolution. The sec-
ond and the third terms describe the nonunitary evolution of
the reduced density matrix, which contain all non-Markovian
dissipation and fluctuation dynamics induced also by the
back-reactions between the system and the reservoir through
the system-reservoir interaction [see Eqs. (7) and (8) given
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later]. Physically, the second and the third terms in the above
master equation also characterize the emergence of disorder
and fluctuations induced by the system-reservoir interaction.
This is because if the system is initially in a pure quantum
state, it contains zero disorder at the beginning (its initial
entropy is zero). The index r denotes renormalized physical
quantities hereafter.

The energy renormalization, the dissipation, and fluctua-
tion dynamics described in the exact master equation (6) are
characterized by the non-Markovian renormalized frequency
ωr

s (t, t0), the non-Markovian dissipation coefficient γ (t, t0),
and the non-Markovian fluctuation coefficient γ̃ (t, t0), respec-
tively. All these non-Markovian coefficients are nonpertur-
batively and exactly determined by the following relations
[57,77–79]:

ωr
s (t, t0) = −Im[u̇(t, t0)/u(t, t0)], (7a)

γ (t, t0) = −Re[u̇(t, t0)/u(t, t0)], (7b)

γ̃ (t, t0) = v̇(t, t ) − 2v(t, t )Re[u̇(t, t0)/u(t, t0)]. (7c)

Here u(t, t0) and v(τ, t ) are the two nonequilibrium Green
functions obeying the integrodifferential Dyson equations

d

dt
u(t, t0) + iωsu(t, t0) +

∫ t

t0

dτ g(t, τ )u(τ, t0) = 0,(8a)

v(τ, t ) =
∫ τ

t0

dτ1

∫ t

t0

dτ2u(τ, τ1 )̃g(τ1, τ2)u∗(t, τ2). (8b)

The non-Markovianity is manifested by the above time-
convolution equation of motion for these nonequilibrium
Green functions. The integral kernels in the above convolution
equations are given by

g(t, τ ) =
∫ ∞

0
dω J (ω)e−iω(t−τ ), (9a)

g̃(τ1, τ2) =
∫ ∞

0
dω J (ω)n(ω, T0)e−iω(τ1−τ2 ), (9b)

which characterize the time correlations between the system
and the reservoir through the system-reservoir interaction. The
frequency-dependent function

J (ω) ≡
∑

k

|Vk|2δ(ω − ωk ) (10)

is called as the spectral density, which fully encapsulates the
fundamental dissipation (relaxation) and fluctuation (noise or
dephasing) effects induced by the system-reservoir interac-
tion. Finally, the initial temperature-dependent function

n(ωk, T0) = TrE [b†
kbkρE (t0)] = 1/[eh̄ωk/kBT0 − 1] (11)

is the initial particle distribution in the reservoir.
An arbitrary initial state of the system can be expressed as

ρS (t0) =
∞∑

m,m′=0

ρmm′ |m〉〈m′|, (12)

where |m〉 = 1√
m!

(a†)m|0〉 is the bosonic Fock state. If ρmm′ =
cmc∗

m′ , then ρS (t0) is a pure state, otherwise it is a mixed state.
The exact solution of the exact master equation (6a) has found

[12,18]

ρexact
S

(t ) =
∞∑

m,m′=0

ρmm′

min{m,m′}∑
k=0

dk (t )A†
mk (t )̃ρ[v(t, t )]Am′k (t ),

(13)

where

ρ̃[v(t, t )] =
∞∑

n=0

[v(t, t )]n

[1 + v(t, t )]n+1
|n〉〈n|, (14a)

A†
mk (t ) =

√
m!

(m − k)!
√

k!

[
u(t, t0)

1 + v(t, t )
a†

]m−k

, (14b)

dk (t ) =
[

1 − |u(t, t0)|2
1 + v(t, t )

]k

. (14c)

As a self-consistent check of the above solution, we calculate
the average particle number in the system from the above
solution n(t ) ≡ TrS [a†aρS (t )], also using the Heisenberg
equation of motion directly n(t ) ≡ TrS+E [a†(t )a(t )ρtot (t0)].
Both calculations give the same result [56–58,61]:

n(t ) = TrS [a†aρS (t )] = TrS+E [a†(t )a(t )ρtot (t0)]

= u∗(t, t0)n(t0)u(t .t0) + v(t, t ), (15)

where u(t, t0) and v(t, t ) are determined by Eq. (8).
Based on the above exact formalism, for a given spectral

density J (ω), if no localized bound state exists [10,80], the
general solution of Eq. (8a) is

u(t, t0) =
∫ ∞

0
dω D(ω)eiω(t−t0 ) t→∞−−−→ 0, (16)

where D(ω) = J (ω)
[ω−ωs−�(ω)]2+π2J2(ω) shows the system spec-

trum broadening due to the coupling to the reservoir, and
�(ω) = P[

∫
dω′ J (ω′ )

ω−ω′ ] is the principal-value integral of the

self-energy correction to the system, 
(ω) = ∫ dω′ J (ω′ )
ω−ω′ =

�(ω) − iπJ (ω). In fact, �(ω) gives the system frequency (or
energy) shift. As a result, in the steady-state limit, we have

A†
mk (t )

t→∞−−−→ δmk and dk (t )
t→∞−−−→ 1. Then, the exact solution

of the particle distribution and the reduced density matrix is
reduced to

nexact (t → ∞) = lim
t→∞ v(t, t ) =

∫ ∞

0
dω D(ω)n(ω, T0), (17a)

ρexact
S

(t → ∞) = lim
t→∞

∞∑
n=0

[v(t, t )]n

[1 + v(t, t )]n+1
|n〉〈n| (17b)

= lim
t→∞

exp
{

ln
[

v(t,t )
1+v(t,t )

]
a†a
}

1 + v(t, t )
. (17c)

Equation (17) is the exact steady-state solution of the system
coupled to a thermal reservoir for all coupling strengths for
the open system (1). All the influences of the reservoir on
the system through the system-reservoir interaction have been
taken into account in this solution. Remarkably, the above
results show that the exact solution of the steady state is
independent of the initial state of the system and is determined
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by the particle distribution, as a consequence of thermalization
[12,18].

Note that the above exact master-equation formalism re-
mains the same for initial states involving initial correlations
between the system and the reservoir, with the only modifi-
cation of the correlation function v(τ, t ), as we have shown
in Refs. [58,62,81]. This exact master-equation formalism
has also been extended to open quantum systems including
external deriving fields [57,68].

B. Renormalization of quantum thermodynamics

Now we can study quantum thermodynamics for all the
coupling strengths from the above exact solution. First, the
master equation (6) shows that the Hamiltonian of the system
must be renormalized from HS to Hr

S
given by the energy (or

frequency) shift from h̄ωs to h̄ωr
s (t ) during the nonequilibrium

dynamical evolution. This is a nonperturbative renormaliza-
tion effect of the system-reservoir coupling on the system.
The renormalized frequency ωr

s (t ) and its steady-state value
ωr

s = ωr
s (t → ∞) can be exactly calculated from Eqs. (7a)

and (8a). Here we take the Ohmic spectral density J (ω) =
ηω exp(−ω/ωc) [82] in the practical calculation. The result
is presented in Figs. 1(a) and 1(b). It shows that different
system-reservoir coupling strengths η will cause different
renormalized system energies, resulting in different cavity
frequency shifts [see Fig. 1(a)]. In Fig. 1(b), we plot the
steady-state values of the renormalized cavity frequency as
a function of the system-reservoir coupling strength η/ηc,
where ηc = ωs/ωc is a critical coupling strength for the Ohmic
spectral density [10,12]. When η > ηc, the system-reservoir
coupling would generate a localized mode (localized bound
state) such that the cavity system cannot approach to the
equilibrium with the reservoir, as we will discuss later [12,18].

In Fig. 1(c), we plot the exact solution nexact (t → ∞)
of Eq. (17a) as a function of the coupling strength η/ηc

(the blue dashed line). We compare the result with the
Bose-Einstein distribution without the energy (frequency)
renormalization n(ωs, T0) = 1/[eh̄ωs/kBT0 − 1] (see the black
dotted line), also compare to Bose-Einstein distribution with
the energy renormalization n(ωr

s , T0) = 1/[eh̄ωr
s /kBT0 − 1] (see

the green dashed-dotted line). As one can see, the ex-
act solution nexact (t → ∞) derivates significantly from the
Bose-Einstein distribution without the energy renormaliza-
tion, i.e., n(ωs, T0), as η increases. This derivation shows how
the system-reservoir coupling strength changes the intrinsic
thermal property of the system. On the other hand, the Bose-
Einstein distribution with the renormalized energy, given by
n(ωr

s , T0), changes with the changes of η, similar to the ex-
act solution nexact (t → ∞). But there is still a quantitative
disagreement between the exact solution nexact (t → ∞) and
the Bose-Einstein distribution n(ωr

s , T0) with the renormalized
cavity photon energy h̄ωr

s .
To understand further the origin of the above difference, let

us recall that the exact solution ρexact
S

(t → ∞) of Eq. (17c) is
indeed a Gibbs-type state. This indicates that the exact par-
ticle distribution nexact (t → ∞) should obey a Bose-Einstein
distribution for all coupling strengths. To find such distribu-
tion that agrees with the exact solution (17a), one possibility
is to renormalize the temperature because no other thermal

0 2 4
ωst

0.5

1.0

ω
r s
(t

)/
ω

s

(a)
1

0.0

0.5

1.0

ω
r s
/ω

s

1

(b)

0.3 0.6 0.9
η/ηc

0

70

140

n

(c)

n(ωr
s, T0)

nexact(t → ∞)

n(ωs, T0)

FIG. 1. (a) The renormalized system energy (cavity frequency
shift) h̄ωr

s (t ) for three different system-reservoir coupling strengths
η = 0.01ηc, 0.5ηc, 0.9ηc. It is calculated from Eqs. (7a) and (8a)
for the Ohmic spectral density J (ω) = ηω exp(−ω/ωc ), where the
cutoff frequency ωc = 10ωs is taken, and ηc = ωs/ωc is a critical
coupling for the Ohmic spectral density [10,12]. (b) The steady-
state renormalized frequency shift ωr

s = ωr
s (t → ∞) as a function

of the system-reservoir coupling strength η/ηc. (c) The steady-state
particle distribution nexact (t → ∞) of Eq. (17a) (the blue dashed
line), the Bose-Einstein distribution without the energy (frequency)
renormalization n(ωs, T0 ) (the black dotted line) and with the energy
renormalization n(ωr

s , T0) (the green dashed-dotted line), respec-
tively. The system is initially set in a pure Fock state |n0〉 with n0 = 5,
and the reservoir initial temperature T0 = 10h̄ωs.

quantity can be modified in the Gibbs state for this photonic
system. In the literature, it is commonly believed that the
reservoir is large enough so that its temperature should keep
invariant [38,41]. However, the initial decoupled state (3) of
the system plus the reservoir is not an equilibrium state of
the total system. After the initial time t0, both the system and
reservoir evolve into a correlated (entangled) nonequilibrium
state ρtot (t ). When the system and the reservoir reach the
equilibrium state, there must be a fundamental way to show
whether the new equilibrium state is still characterized by the
initial reservoir temperature.

As a self-consistent check, let us denote the final steady-
state equilibrium temperature as Tf . Then, according to the
equilibrium statistical mechanics, the steady state of the total
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system (the system plus the reservoir) should be

ρtot (t → ∞) = 1

Ztot
e−β f Htot , (18)

where β f = 1/kBTf , and Htot is the total Hamiltonian of the
system plus the reservoir, including the coupling interaction
between them, i.e., Eq. (1). Taking a trace over the reservoir
states from the above steady state of the total density matrix,
we have rigorously proven [62] that (also see the detailed
derivation given in Appendix A)

ρS (t → ∞) = TrE

[
e−βr Htot

Ztot

]

=
exp
{

ln
[ n(t→∞)

1+n(t→∞)

]
a†a
}

1 + n(t → ∞)
. (19)

This result is the same as the solution of Eq. (17). The
latter is the steady state of the exact time-dependent solu-
tion (13) solved from the exact master equation (6a) for
arbitrary coupling. This shows that the equilibrium state
(18) which is originally proposed in statistical mechanics
is indeed valid for both the weak and strong couplings be-
tween the system and the reservoir. Furthermore, the exact
particle distribution can be obtained from the dynamical
evolution of exact master equation or from the Heisenberg
equation of motion directly, as shown by Eq. (15). Thus, we
have n(t → ∞) = TrS+E [a†aρtot (t → ∞)] = TrS [a†aρS (t →
∞)] = nexact (t → ∞). This gives a further self-consistent jus-
tification to the above conclusion.

The result presented in Fig. 1(c) shows that n(ωr
s , T0) �=

nexact (t → ∞) except for the weak coupling. This indicates
that in general Tf �= T0, namely, the final equilibrium tem-
perature of the total system cannot be the same as the initial
equilibrium temperature of the reservoir when the total system
reaches the new equilibrium state, except for the very weak
coupling strength. Now the question is how to determine this
steady-state equilibrium temperature Tf when the system and
the reservoir finally reach the equilibrium state. According
to the axiomatic description of thermodynamics [83], the
equilibrium temperature of a system is defined as the change
of its internal energy with respect to the change of its ther-
mal entropy. This temperature definition in thermodynamics
does not assume a weak coupling between the system and
the reservoir because no statistical mechanics is used in this
definition. It is the fundamental definition of the temperature
for arbitrary two coupled thermodynamic systems when they
reach the equilibrium each other, from which the zeroth law
of thermodynamics is derived [83].

Now, the average energy of the system at arbitrary time,
i.e., the nonequilibrium internal energy of the system, is given
by the renormalized Hamiltonian (6b) with the exact solution
of the reduced density matrix ρS (t ) of Eq. (13):

US (t ) ≡ TrS

[
Hr

S
(t )ρS (t )

]
. (20)

Also, we define the von Neumann entropy with the exact
reduced density matrix of Eq. (13) as the nonequilibrium
thermodynamic entropy of the system [50,70,83]:

SS (t ) = −kBTrS [ρS (t ) ln ρS (t )], (21)

0

5

10

E
(t

)/
h̄
ω

s

(a)

0.3 0.6 0.90.0

0.5

1.0
(d)

T r/T0

ωr
s/ωs

10 20 30 40 50

ωst
0

2

4

6

S
(t

)/
k

B

(b)

0.3 0.6 0.9
η/ηc

0

70

140
(e)

n(ωr
s, T0)

nexact(t → ∞)

n(ωr
s, T

r)

0 10 20 30 40 50
ωst

0

5

10

k
B
T

r /
h̄
w

s

(c)

FIG. 2. (a)–(c) The nonequilibrium dynamical evolution of the
internal energy, the entropy, and the corresponding renormalized
temperature, given respectively by Eqs. (20)–(22) for different
coupling strengths η/ηc = 0.3, 0.5, 0.8 (corresponding to the blue
dotted-dashed, green dashed, red dotted lines, respectively). (d) The
steady-state values of the renormalized frequency ωr

s and renormal-
ized temperature T r as a function of the coupling strength η. (e) The
steady-state particle distribution as a function of coupling strength η.
It shows that the exact solution nexact (t → ∞) of Eq. (17a) (the blue
dashed line) and the Bose-Einstein distribution n(ωr

s , T r ) with the
renormalized frequency and the renormalized temperature (the red
dotted line) agree perfectly to each other. The green dashed-dotted
line is n(ωr

s , T0 ) without the renormalized temperature, which cannot
describe the exact solution solved from the exact master equation.
Other parameters are taken as the same as that in Fig. 1.

where kB is the Boltzmann constant. Note that this entropy
is defined for the exact reduced density matrix obtained
after tracing over exactly all the reservoir states. It also
encapsulates all the renormalization effects of the system-
reservoir interaction to the system state distributions. Thus,
we introduce a renormalized nonequilibrium thermodynamic
temperature [84] which is defined as

T r (t ) ≡ ∂US (t )

∂SS (t )

∣∣∣∣
ωr

s

= TrS

[
Hr

S
(t )

dρS (t )

dSS (t )

]
. (22)

This is a direct generalization of the concept of the equilib-
rium temperature to nonequilibrium states in open quantum
systems. When the system and its reservoir reach the equilib-
rium steady state, no matter the system-reservoir coupling is
strong or weak, we can fundamentally obtain the final equilib-
rium temperature Tf ≡ T r = T r (t → ∞) from the dynamical
evolution of the open quantum system.

From the exact solution of the reduced density matrix
ρexact

S
(t ) of Eq. (13), we calculate the time dependence

of the internal energy US (t ), the entropy SS (t ), and the
dynamical renormalized temperature T r (t ) for different cou-
pling strengths. The corresponding results are presented in
Figs. 2(a)–2(c), respectively. It shows explicitly how the
nonequilibrium internal energy, entropy, and renormalized
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temperature evolve differently for different system-reservoir
coupling strengths. Their steady-state values also approach
different points for different coupling strengths. The different
steady-state internal energies and entropies associated with
different system-reservoir coupling strengths result in differ-
ent steady-state temperatures. This indicates that the reservoir
cannot remain unchanged from the initial reservoir tempera-
ture. This feature, to the best of our knowledge, has not been
discovered or noticed in all previous investigations of strong
coupling quantum thermodynamics [38–49].

In Fig. 2(d), we plot the steady-state renormalized temper-
ature T r = T r (t → ∞) as a function of the coupling strength
η/ηc. Using this renormalized temperature, we further
plot the Bose-Einstein distribution with both the renormal-
ized energy and the renormalized temperature: n(ωr

s , T r ) =
1/[eh̄ωr

s /kBT r − 1] [see the red dotted line in Fig. 2(e)]. Remark-
ably, it perfectly reproduces the exact solution of Eq. (17a), i.e.,

nexact (t → ∞) = n
(
ωr

s , T r
) = 1

eh̄ωr
s /kBT r − 1

. (23)

In other words, in the steady state, the exact solution of
the steady-state particle occupation solved from the exact
dynamics of the open quantum system obeys the standard
Bose-Einstein distribution only for the renormalized Hamil-
tonian (6b) with the renormalized temperature (22). This
provides a very strong proof that strong coupling quantum
thermodynamics must be renormalized for both the system
Hamiltonian and the temperature.

Furthermore, in terms of the renormalized Hamiltonian
(6b) and the renormalized temperature (22), the steady state
(17c) can be expressed as the standard Gibbs state

ρexact
S

(t → ∞) =
∞∑

n=0

[
n
(
ωr

s , T r
)]n[

1 + n
(
ωr

s , T r
)]n+1 |n〉〈n|

= 1

Zr
S

e−βr Hr
s , (24)

where Zr
S

= TrS [e−βr Hr
S ] is the renormalized partition func-

tion, and βr = 1/kBT r is the inverse renormalized temper-
ature in the steady state. This is a direct proof of how the
statistical mechanics, as a consequence of disorder or ran-
domness in the nature, emerges from the exact dynamical
evolution of quantum mechanics.

Moreover, one can check that in the very weak coupling
regime η � ηc, �(ω) → 0 and D(ω) → δ(ω − ωs) so that
the steady-state solution of Eq. [17a] is directly reduced to
n(ωs, T0) [12,18], and

ρexact
S

(t → ∞)
η�ηc−−−→

∞∑
n=0

[n(ωs, T0)]n

[1 + n(ωs, T0)]n+1
|n〉〈n|

= 1

ZS

e−β0HS . (25)

This reproduces the expected solution of the statistical me-
chanics in the weak coupling regime. Figures 1 and 2 also
show that h̄ωr

s → h̄ωs and T r → T0 at very weak coupling.
Thus, the equilibrium hypothesis of thermodynamics and sta-
tistical mechanics is deduced rigorously from the dynamics
of quantum systems. This solves the longstanding problem

of how thermodynamics and statistical mechanics emergence
from quantum dynamical evolution [3].

On the other hand, ηc = ωs/ωc is a critical coupling
strength for Ohmic spectral density that when η > ηc, the
system exists a dissipationless localized bound state (localized
mode) at frequency ωb = ωs + �(ωb) with J (ωb) = 0 [10].
Once such a localized mode exists, the spectral function D(ω)
of the system in Eq. (16) is modified as

D(ω) = Z (ωb)δ(ω − ωb) + J (ω)

[ω − ωs − �(ω)]2 + π2J2(ω)
,

(26)

where Z (ωb) = [1 − ∂
(ω)/∂ω]−1|ω=ωb
is the localized

bound-state wave function. Then, the asymptotic value of the
Green function u(t → ∞, t0) never vanishes. As a result, the
steady state of the reduced density matrix (13) cannot be
reduced to Eq. (17). It always depends on the initial-state dis-
tribution ρmm′ of Eq. (12). In other words, the system cannot
be thermalized with the reservoir [12,18,84].

In Fig. 3, we plot the nonequilibrium dynamical evolu-
tion of the internal energy, the entropy production, and the
renormalized temperature with different initial states for the
very weak coupling (η = 0.01ηc � ηc), the strong coupling
(η = 0.5ηc < ηc), and the ultrastrong coupling (η = 1.2ηc >

ηc) cases. The results show that when η > ηc, different initial
states of the system lead to different steady states. That is, the
equilibrium hypothesis of the classical thermodynamics and
statistical mechanics is broken down at ultrastrong coupling.
Also note that after we consider the renormalization of the
system Hamiltonian, the dynamics of the internal energy and
the renormalized temperature are significantly changed, in
particular in the strong coupling regime, in the comparison
with our previous study [84] where no renormalization of the
system Hamiltonian is taken into account. On the other hand,
regarding the system and the reservoir as a many-body system,
the existence of the localized bound state in the regime η > ηc

corresponds to a realization of the many-body localization
[13]. When the coupling strength η crosses the critical value
ηc, the transition from thermalization to many-body localiza-
tion occurs [13]. Our exact solution provides the foundation
of this transition between thermodynamics and many-body
localization.

C. Quantum work and quantum heat

Quantum mechanics does not introduce the concepts of
work and heat because it deals with closed systems. For open
quantum systems, the exchanges of matters, energies, and
information between the system and the reservoir cause the
energy change of the system in the nonequilibrium evolution.
This results in the work and chemical work (associated with
chemical potential) done on the system or by the system, and
the heat flowed into or out of the system. But, usually the
exchanges of matters, energies, and information are correlated
and interfere with each other. This makes it difficult to define
clearly the concepts of work, heat, and chemical work in quan-
tum thermodynamics. For the photons and phonons described
by Eq. (1), no matters exchange between the system and
the reservoir so that no chemical work is involved (chemical
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FIG. 3. The nonequilibrium dynamical evolution of the internal energy US (t ), the entropy SS (t ), and the renormalized nonequilibrium
temperature T r (t ) for different system initial states |n0〉 = |5〉, |10〉, and |15〉 (corresponding to the blue dashed-dotted line, the green dashed
line, and the red solid line, respectively). The left, the middle, and the right panels correspond to (a) the weak coupling (η � ηc), (b) the strong
coupling (η < ηc), and (c) the ultrastrong coupling (η > ηc). The initial bath temperature T0 = 30h̄ωs. Other parameters are taken the same as
those in Fig. 1.

potential is zero here). Thus, the energy change of the system
only involves work and heat. After integrating out exactly
the reservoir degrees of freedom, the reduced density ma-
trix (13) and the associated renormalized system Hamiltonian
(6b) can be used to properly define thermodynamic work and
heat within the quantum mechanics framework. The chemical
work will be considered when we study fermion systems, as
we will discuss in the next section.

As it is shown from Eq. (20), the nonequilibrium change
of the internal energy in time contains two parts. One is the
change (i.e., the renormalization) of the system Hamiltonian
Hr

S
(t ) [through the renormalization of the energy level h̄ωr

S
(t )]

which corresponds to the quantum work done on the system.
Note that in quantum mechanics, the concept of volume in
a physical system is mainly characterized by energy levels
through energy quantization. Thus, the change of volume
is naturally replaced by the change of energy levels, which
results in a proper definition of work in quantum mechanics
[85]. The other part is the change of the density state ρS (t )
which corresponds to quantum heat associated with the en-
tropy production. Consequently,

dUS (t )

dt
= TrS

[
ρS (t )

dHr
S

(t )

dt

]
+ TrS

[
Hr

S
(t )

dρS (t )

dt

]
= dWs(t )

dt
+ dQs(t )

dt
. (27)

This is the first law of nonequilibrium quantum thermody-
namics. Thus, the quantum work and quantum heat can be
naturally determined by

dWS (t )

dt
= TrS

[
ρS (t )

dHr
S

(t )

dt

]
= n(t )

d
(
h̄ωr

s (t )
)

dt
, (28a)

dQS (t )

dt
= TrS

[
Hr

S
(t )

dρS (t )

dt

]
= T r (t )

dSS (t )

dt
, (28b)

where n(t ) = TrS [a†aρS (t )] is given by Eq. (15). The second
equalities in the above equations have used explicitly the
renormalized system Hamiltonian given after Eq. (6a) and the
definition of the renormalized temperature (22), respectively.

In the literature, there are various definitions about work
and heat for strong coupling quantum thermodynamics, but
no consensus has been reached. The main concern is how to
correctly include the system-reservoir coupling energy into
the internal energy of the system [37,44,48,51–54]. The diffi-
culty comes from the fact that most of open quantum systems
cannot be solved exactly so that it is not clear how to properly
separate the contributions of the system-reservoir coupling
interaction into the system and into the reservoir, respectively.
However, this difficulty can be overcome in our exact master-
equation formalism. Because we obtain the renormalized
system Hamiltonian accompanied with the reduced density
matrix after integrating out exactly all the reservoir degrees of
freedom, namely, exactly solved the partial trace over all the
reservoir states. Thus, the renormalized system Hamiltonian
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FIG. 4. (a) The diagrammatic spectra of the Hamiltonians of the
system, the reservoir, and their interaction. (b) The diagrammatic
Dyson expansion of Eq. (8a) in the energy domain, where 
(ω) =∫

dω′ J (ω′ )
ω−ω′ is the self-energy arising from the coupling between

the system and the reservoir, and J (ω) ≡∑k |Vk |2δ(ω − ωk ). The
renormalized system energy h̄ωr

s and the dissipation coefficient γ

of Eqs. (7a) and (7b) are determined nonperturbatively from Eq. (8a)
with a Laplace transformation, which contains all order contributions
up to the infinite orders from the system-reservoir coupling Hamilto-
nian, as shown in this diagrammatic expansion.

contains all possible contributions of the system-reservoir
coupling interaction to the system energy.

Explicitly, let us rewrite the renormalized system Hamilto-
nian (6b) as

Hr
S

(t ) = h̄ωr
s (t, t0)a†a = h̄ωsa

†a + δωS (t, t0)a†a

= HS + δHS (t ). (29)

From Eqs. (7a) and (8a), we have

ωr
s (t, t0) = ωS + δωS (t, t0)

= ωS + 1

2
Im

[ ∫ t

t0

dτ g(t, τ )u(τ, t0)/u(t, t0)

]
. (30)

Here HS = h̄ωsa†a is the bare Hamiltonian of the system.
The second term in Eq. (30) contains all order contributions
of the system-reservoir coupling interaction to the system
energy, as shown in Fig. 4. Figure 4(a) is a diagrammatic
plot of the bare Hamiltonians of the system, the reservoir, and
the interaction between them, respectively. Figure 4(b) is the
diagrammatic expansion (up to infinite orders) of the retarded
Green function of Eq. (8a), from which all order renormaliza-
tion effects to the system energy change (the system frequency
shift) are reproduced. This diagrammatic expansion up to the
infinite orders illustrates the nonperturbative renormalized en-
ergy arising from the system-reservoir interaction in our exact
master-equation theory.
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FIG. 5. (a), (b) The nonequilibrium evolution of quantum work
and quantum heat changes with respect to the time, dWS (t )/dt and
dQS (t )/dt (in the unit of h̄ω2

s ), for different coupling strengths.
(c) The steady-state specific heat as a function of the renormalized
temperature calculated from the derivative of the internal energy with
respect to the renormalized temperature (34) (red lines) and from the
partition function given in the Gibbs state (24) for different initial
temperatures. The dashed dotted, dotted, and dashed lines correspond
to the different coupling strengths η/ηc = 0.3, 0.5, 0.8, respectively.
Other parameters are taken the same as those in Fig. 1.

On the other hand, it is interesting to see that if we
replace the full solution of the Green function u(τ, t0) approx-
imately with the free-particle (zeroth-order) Green function
u0(τ, t0) = e−iωS (τ−t0 ) [also for u(t, t0)] in Eq. (30), the re-
sult is just the second-order renormalized energy correction.
By applying this same approximation to the dissipation and
fluctuation coefficients in Eq. (7), it is straightforward to
obtain the time-dependent decay rate and noise in the Born-
Markovian master equation, as we have shown in our previous
work [78]. But, once we have the exact master equation with
the exact solution, such approximated master equation is no
longer needed.

In Figs. 5(a) and 5(b), we plot the nonequilibrium evolution
of dWS (t )/dt and dQS (t )/dt for different coupling strengths.
The negative values of dWS (t )/dt show quantum work done
by the system during the quantum mechanical time evolu-
tion, and more work is done by the system for the stronger
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system-reservoir coupling. While dQS (t )/dt is negative and
then becomes positive in time, it shows that quantum heat
flows into the reservoir in the beginning and then flows back
to the system in later time. This corresponds to the system
dissipating energy very quickly into the reservoir in the very
beginning, and then the thermal fluctuations arising from the
reservoir make the heat flow back slowly into the system. This
heat flowing process can indeed be explained clearly from
the exact master equation (6a) combined with Eq. (28b). It
directly results in

dQS (t )/dt = h̄ωr
s

[− 2γ (t, t0)n(t ) + γ̃ (t, t0)
]
, (31)

where the first term is the contribution from dissipation and
the second is the contribution of fluctuations in our exact
master equation. That is, the heating flow in open quantum
systems is a combination effect of dissipation and fluctuation
dynamics, which makes the system and the reservoir approach
eventually to the equilibrium. This is also a renormalization
effect.

Furthermore, the quantum Helmholtz free energy of the
system is defined by a Legendre transformation from the
internal energy US (t ) [50,83]:

FS (t ) = US (t ) − T r (t )SS (t )

t→∞−→ −(1/βr ) ln Zr
S
. (32)

From the above solution, we have

dFS (t ) = dWS (t ) − SS (t )dT r (t ), (33)

which naturally leads to the consistency that the quantum
thermodynamic work done on the system can be identified
with the change of the Helmholtz free energy of the system
in isothermal processes [83]. Moreover, the specific heats
calculated from the internal energy and from the Gibbs state
with the renormalized Hamiltonian and temperature are also
identical, as shown in Fig. 5(c),

C =dQS

dT r
= T r dSS

dT r
= ∂US

∂T r

∣∣∣∣
ωr

s

, (34)

where the third thermodynamic law is justified from the spe-
cific heat at arbitrary coupling strength: C ∼ (T r )3 as T r →
0. Thus, a consistent formalism of quantum thermodynamics
from the weak coupling to the strong coupling is obtained
from a simple open quantum system of Eq. (1).

III. MORE GENERAL FORMULATION OF QUANTUM
THERMODYNAMICS FOR ALL COUPLINGS

A. Multilevel open quantum system couples to multiple
reservoirs

The results from the exact solution of the single-mode
bosonic open system in the last section show that different
from the previous investigations [38–50], only by introduc-
ing the renormalized temperature and incorporating with the
renormalized system Hamiltonian can we obtain the consis-
tent quantum thermodynamics for all coupling strengths. Now
we extend this quantum thermodynamics formulation to the
more general situation: a multilevel system couples to multi-
ple reservoirs (including both bosonic and fermionic systems)
through the particle exchange (tunneling) processes.

In a quasiparticle picture, the Hamiltonian of a micro-
scopic system in the energy eigenbasis can be written as
HS =∑i εia

†
i ai. As a specific example, consider the system

be an individual system and the reservoir be a many-body
system. The system Hamiltonian can be generally expressed
as

HS = P2

2m
+ V (Q) =

∑
i

εi|ψi〉〈ψi| =
∑

i

εia
†
i ai. (35)

In Eq. (35), the second equality is the spectral decomposi-
tion of the system Hamiltonian HS |ψi〉 = εi|ψi〉, and the last
equality uses the second quantization language |ψi〉 = a†

i |0〉
and ai|0〉 = 0, and |0〉 is the vacuum state. The particle cre-
ation and annihilation operators a†

i and ai obey the standard
bosonic commutation and fermionic anticommutation rela-
tions: [ai, a†

j ]∓ = a ja
†
j ∓ a†

j ai = δi j when the system being
boson and fermion systems, respectively.

Similarly, the Hamiltonian of a reservoir can also be writ-
ten as HE =∑k εkb†

kbk , where εk is usually a continuous
spectrum and could have band structure for structured reser-
voir. For a many-body reservoir in which the particle-particle
interaction is not strong enough, the single-quasiparticle pic-
ture works [86]. Then the reservoir Hamiltonian can be
expressed approximately as

HE �
∑

j

[
p2

j

2mj
+ U (q j ) +

∑
j′

V (q j, q j′ )

]

=
∑

k

εk|ψk〉〈ψk| =
∑

k

εkb†
kbk, (36)

where
∑

j′ V (q j, q j′ ) represents the effective mean-field

potential of many-body interactions, and [
p2

j

2mj
+ U (q j ) +∑

j′ V (q j, q j′ ) ]|ψk〉 = εk|ψk〉 gives the quasiparticle contin-
uous spectrum of the reservoir. The reservoir particle creation
and annihilation operators b†

k and bk also obey the standard
bosonic commutation or fermionic anticommutation relations.
In fact, the system can also be either a simple system or such
a many-body system.

To dynamically address statistical mechanics and thermo-
dynamics from quantum mechanical principle, the fundamen-
tal system-reservoir interactions are required to contain at
least the basic physical processes of energy exchanges, matter
exchanges, and information exchanges between the system
and reservoirs. The simplest realization for such a minimum
requirement is the quantum tunneling Hamiltonian

HS E =
∑

ik

(Vika†
i bk + V ∗

ikb†
kai ), (37)

which is also the basic Hamiltonian in the study of quan-
tum transport in mesoscopic physics as well as in nuclear,
atomic, and condensed matter physics for various phenom-
ena [56,57,69,87]. The coupling strengths Vik are proportional
to the quasiparticle wave-function overlaps between the
system and reservoirs and therefore are tunable through nan-
otechnology manipulations [69,87]. They can be weak or
strong coupling. More discussions about fundamental system-
reservoir interactions will be given in the next section.

023141-10



NONPERTURBATIVE RENORMALIZATION OF QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023141 (2022)

Thus, a basic Hamiltonian with the minimum requirement
for solving the foundation of quantum thermodynamics and
statistical mechanics can be modeled as

Htot (t ) = HS (t ) +
∑

α

Hα

E
(t ) +

∑
α

Hα

S E
(t )

=
∑

i

εi(t )a†
i ai +

∑
αk

εαk (t )b†
αkbαk

+
∑
αik

[Vαik (t )a†
i bαk + V ∗

αik (t )b†
αkai], (38)

which describes the system coupled with multiple reservoirs.
This is a generalization of the Fano-Anderson Hamiltonian we
introduced [10,61]. The index α stands for different reservoirs.
All parameters in the Hamiltonian can be time dependently
controlled with the current nanotechnologies and quantum
technologies. This is an exact solvable Hamiltonian that in-
volves explicit exchanges of energies, matter, and information
between the system and reservoirs. It allows us to rigorously
solve quantum statistics and thermodynamics from the dy-
namical evolution of quantum systems. Also note that the
above open quantum systems are different from the one pro-
posed by Feynman and Vernon [4] as well as by Caldeira and
Leggett [64] in the previous investigations of dissipative quan-
tum dynamics in the sense that their environment is made only
by harmonic oscillators, and the system-environment coupling
is limited to the weak coupling.

We have derived the exact master equation of the open
systems with Eq. (38) for the reduced density matrix of the
system. The formal solution of the total density matrix of the
Liouville–von Neumann equation (4) can be expressed as

ρS (t ) = TrE

[
U (t, t0)

(
ρS (t0)

∏
α

⊗ ρα

E
(t0)

)
U†(t, t0)

]
, (39)

where U (t, t0) = T→ exp { − i
h̄

∫ t
t0

Htot (t ′)dt ′} is the time evo-
lution of the total system, and T→ is the time-ordering
operator. Here the system is initially in an arbitrary state
ρS (t0). All reservoirs can be initially in their own equilib-

rium thermal states ρα
E

(t0) = e−βα0(Hα

E
−μα0N̂α )

/Zα which can
have different initial temperature βα0 = 1/kBTα0 and different
chemical potentials μα0 for different reservoir α. Here N̂α is
the total particle number operator of reservoir α. After tracing
out all the environmental states through the coherent state
path integrals [63], the resulting exact master equation of the
system is indeed a generalization of Eq. (6a) to multilevel
open systems [55–59,61,62]:

d

dt
ρS (t ) = 1

ih̄

[
Hr

S
(t ), ρS (t )

]+
∑

i j
{γi j (t, t0)[2a jρS (t )a†

i

− a†
i a jρS (t ) − ρS (t )a†

i a j] + γ̃i j (t, t0)[a†
i ρS (t )a j

± a jρS (t )a†
i ∓ a†

i a jρS (t ) − ρS (t )a ja
†
i ]}, (40)

where the upper and lower signs of ± correspond, respec-
tively, to the bosonic and fermionic systems.

In the above exact master equation, all the renormalization
effects arisen from the system-reservoir interactions have been
taken into account when all the environmental degrees of
freedoms are integrated out nonperturbatively and exactly in
finding the reduced density matrix. These renormalization ef-

fects are manifested by the renormalized system Hamiltonian

Hr
S

(t ) =
∑

i j
εr

s,i j (t, t0)a†
i a j (41)

and the dissipation and fluctuations coefficients γi j (t, t0) and
γ̃i j (t, t0) in Eq. (40). These time-dependent coefficients are
determined nonperturbatively and exactly by the following
relations:

εr
i j (t, t0) = −h̄ Im[u̇(t, t0)u−1(t, t0)]i j, (42a)

γi j (t, t0) = −Re[u̇(t, t0)u−1(t, t0)]i j, (42b)

γ̃i j (t, t0) = v̇i j (t, t ) − [u̇(t, t0)u−1(t, t0)v(t, t )+H.c.]i j,

(42c)

where u(t, t0) and v(t, t ) are N × N nonequilibrium Green
function matrices and N is the total number of energy levels
in the system.

The nonequilibrium retarded Green functions ui j (t, t0) ≡
〈[ai(t ), a†

j (t0)]± which obey the equation of motion [10,55–
57]

d

dt
u(t, t0) − 1

ih̄
ε(t )u(t, t0) +

∫ t

t0

dt ′g(t, t ′)u(t ′, t0) = 0. (43a)

The nonequilibrium correlation Green function v(t, t ) obeys
the nonequilibrium fluctuation-dissipation relation [10]

v(τ, t ) =
∫ τ

t0

dt1

∫ t

t0

dt2u(τ, t1) g̃(t1, t2) u†(t, t2). (43b)

The integral memory kernels g(t, t ′) and g̃(t1, t2) are the
system-reservoir time correlations and are given by

gi j (t, t ′) =
∑
αk

1

h̄2 Vαik (t ′)V ∗
α jk (t ) exp

{
− i

h̄

∫ t ′

t
dτ εαk (τ )

}
,

(44a)

g̃i j (t1, t2) =
∑
αk

1

h̄2 Vαik (t2)V ∗
α jk (t1)〈b†

αk (t0)bαk (t0)〉E

× exp

{
− i

h̄

∫ t1

t2

dτ εαk (τ )

}
. (44b)

Here the initial reservoir correlation function

〈b†
αk (t0)bαk (t0)〉E = f (εαk, Tα0, μα0)

= 1

[e(ε−μα0 )/kBTα0∓1]
(45)

determines the initial particle distribution of the bosons or
fermions in the initial thermal reservoir α with the chem-
ical potential μα0 and the temperature Tα0 at initial time
t0. In the case the energy spectra of the reservoirs and the
system-reservoir couplings are time independent, the memory
kernels are simply reduced to gi j (t, t ′) = ∫ dε Ji j (ε)e−iε(t−t ′ ),
g̃i j (t1, t2) = ∫ dε Ji j (ε) f (ε, Tα, μα )e−iε(t1−t2 ), where

Ji j (ε) = 1

h̄2

∑
αk

VαikV
∗
α jkδ(ε − εαk ) =

∑
α
Jα,i j (ε), (46)

and Jαi j (ε) is the spectral density matrix of reservoir α.
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B. Theory of quantum thermodynamics from the weak
to the strong couplings

Again, if there exist no many-body localized bound states,
the exact solution of Eq. (40) has recently been solved [18]
and its exact steady state is (see a detailed derivation in
Appendix B)

ρexact
S

(t → ∞) =
exp
{∑

i j

(
ln n

I±n

)
i j

a†
i a j

}
[det(I ± n)]±1

(47)

which is a generalized Gibbs-type state. Here ni j =
limt→∞ ni j (t ) is the one-particle density matrix defined as
[56,88]

ni j (t ) ≡ TrS [a†
i a jρS (t )] = ρ

(1)
i j (t ). (48)

The solution (47) remains the same for initial system-reservoir
correlated states with a modification of g̃(t1, t2) in Eq. (43b)
to include the initial correlations between the system and
reservoirs [58,62]. Thus, the nonequilibrium internal energy,
entropy, and particle number can be defined by

US (t ) ≡ TrS

[
Hr

S
(t )ρS (t )

] =
∑

i j

εr
i j (t )ni j (t ), (49a)

SS (t ) ≡ −kBTrS [ρS (t ) ln ρS (t )], (49b)

NS (t ) ≡ TrS [a†
i aiρS (t )] =

∑
i

nii(t ). (49c)

They are related to each other and may form the fundamen-
tal equation for quantum thermodynamics [50,83]: US (t ) =
US (εr

s (t ), SS (t ), NS (t )). Here energy levels play a similar role
as the volume [85]. Thus,

dUS (t ) = dWS (t ) + T r (t )dSS (t ) + μr (t )dNS (t ), (50)

as the first law of nonequilibrium quantum thermodynamics.
Explicitly, the quantum work dWS (t ) done on the system

arises from the changes of energy levels,

dWS (t )

dt
= TrS

[
ρS (t )

dHr
S

(t )

dt

]
=
∑

i j
ni j (t )

dεr
s,i j (t )

dt
. (51)

The quantum heat dQS (t ) [also including the chemical work
dW c

S
(t )] comes from the changes of particle distributions and

transitions [the one-particle density matrix, see Eq. (48)]

dQS (t ) + dW c
S

(t ) =
∑

i j
εr

s,i j (t )dni j (t )

= T r (t )dSS (t ) + μr (t )dNS (t ). (52)

It shows that dni j (t ) characterizes both the state information
exchanges (entropy production) and the matter exchanges
(chemical process for massive particles) between the systems
and the reservoir. For photon or phonon systems, particle
number is the number of energy quanta h̄ω so that μr (t ) = 0.
From the above formulation, we can define the renormalized
temperature and renormalized chemical potential by

T r (t ) = ∂US (t )

∂SS (t )

∣∣∣∣
εr

s (t ),NS (t )

, μr (t ) = ∂US (t )

∂NS (t )

∣∣∣∣
εr

s (t ),SS (t )

. (53)

As a result, Eq. (47) can be also written as the standard Gibbs
state

ρexact
S

(t → ∞) = 1

Zr
exp
{− βr

(
Hr

S
− μrN̂

)}
, (54)

which is given in terms of the renormalized Hamiltonian
Hr

S
(t ), the renormalized temperature T r (t ), and the renormal-

ized chemical potential μr (t ) at steady state, and N̂ =∑i a†
i ai

is the particle number operator of the system. Because the
exact solution of the steady state is a Gibbs state, thermody-
namic laws are all preserved at steady state. This completes
our nonperturbative renormalization theory of quantum ther-
modynamics for all the coupling strengths.

C. An application to a nanoelectronic system with two reservoirs

As a practical and nontrivial application, we consider a
nanoelectronic system, the single-electron transistor made of
a quantum dot coupled to a source and a drain. Here the two
leads are treated as two reservoirs [55,56,87] [see Fig. 6(a)].
The total Hamiltonian is

Htot =
∑

σ

εσ a†
σ aσ +

∑
α,k,σ

εαkc†
αkσ

cαkσ

+
∑
α,k,σ

(Vαka†
σ cαkσ + V ∗

αkc†
αkσ

aσ ). (55)

The index σ =↑,↓ labels electron spin, α = L, R labels the
left and right leads. The two leads are set up initially in
thermal states with different initial temperatures TL,R and
chemical potentials μL.R. This is a prototype with nontrivial
feature in the sense that two reservoirs initially have different
temperatures and different chemical potentials. Thus, when
the system reaches the steady state, there exists only one
final temperature and one final chemical potential. That is,
one has to introduce the renormalized temperature T r and the
renormalized chemical potential μr to characterize this final
equilibrium state when the system and two reservoirs reach
equilibrium. Other approaches proposed for strong coupling
quantum thermodynamics in the last few years [38–49] keep
the reservoir temperature unchanged and therefore must be in-
correct for such simple but nontrivial open quantum systems.

To explicitly solve the renormalized thermodynamics of
the above system, let |0〉, | ↑〉, | ↓〉, |d〉 (the empty state, the
spin-up and -down states, and the double-occupied state, re-
spectively) be the basis of the four-dimensional dot Hilbert
space of this quantum dot system. Then, the reduced density
matrix has the form

ρ(t ) =

⎛⎜⎝ρ00(t ) 0 0 0
0 ρ↑↑(t ) ρ↑↓(t ) 0
0 ρ↓↑(t ) ρ↓↓(t ) 0
0 0 0 ρdd (t )

⎞⎟⎠. (56)

If the dot is initially empty, the 4 × 4 reduced density
matrix has been solved exactly from the exact master equa-
tion [89,90]:

ρ00(t ) = det[I − v(t, t )], ρdd = det[v(t )],

ρ↑↑(t ) = v↑↑(t ) − ρ33(t ), ρ↓↓(t ) = v↓↓(t ) − ρ33(t ),

ρ↑↓(t ) = v↑↓(t ) = ρ∗
↓↑(t ). (57)
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FIG. 6. (a) A schematic plot of the single-electron transistor
device. (b)–(g) The nonequilibrium evolution of the energy levels
εr

↑,↓(t ), the particle occupation in each level n↑,↓(t ), the internal
energy US (t ), the entropy SS (t ), the renormalized temperature T r (t ),
and chemical potential μr (t ) at different coupling strength � =
0.2ε↑, 0.8ε↑, respectively. (h) The steady-state value of the renor-
malized energy levels εr

↑,↓, the renormalized temperature T r , and
the renormalized chemical potential μr as a function of the coupling
strength, and (i) the comparison of the renormalized Fermi-Dirac dis-
tribution f (εr

↑,↓, T r, μr ) with the exact solution of the n↑,↓(t → ∞)
as a function of the coupling strength �. Other parameters: ε↓ = 3ε↑,
kBTL,R = (3, 0.1)ε↑, μL,R = (5, 2)ε↑, and d = 10ε↑.

Here the 2 × 2 matrix Green function v(t ) ≡ v(t, t ) is deter-
mined by the Green function u(t, t ′). We take reservoir spectra
as a Lorentzian form, then the spectral densities Jα (ε) can be
expressed as [55,91]

Jα,i j (ε) = �αd2

ε2 + d2
δi j (i, j =↑,↓), (58)

where �α is the tunneling rate (the coupling strength) between
the quantum dot and the lead α. For simplicity, we also ignore
the spin-flip tunneling. The exact solution of the reduced

density matrix is rather simple:

ρ(t ) = det[1 − v(t )] exp
{

a† ln
v(t )

1 − v(t )
a
}
. (59)

Here a† = (a†
↑, a†

↓), and

vii(t ) =
∫ t

t0

dt1

∫ t

t0

dt2 uii(t, t1) g̃(t1, t2) u∗
ii(t, t2), (60a)

v↑↓ = 0, (60b)

d

dt
uii(t, t0) + iεiuii(t, t0) +

∫ t

t0

dt ′
∫

dε
�d2e−ε(t−t ′ )

ε2 + d2
uii(t, t ′)

= 0, (60c)

for i =↑,↓, and � = �L + �R. As a result, the nonequilibrium
internal energy, the entropy, and the total average particle
number can be found analytically:

US (t ) = εr
↑(t )v↑↑(t ) + εr

↓(t )v↓↓(t ), (61a)

SS (t ) = −v↑↑(t ) ln v↑↑(t ) − v↓↓(t ) ln v↓↓(t )

−[1 − v↑↑(t )] ln[1 − v↑↑(t )]

−[1 − v↓↓(t )] ln[1 − v↓↓(t )], (61b)

NS (t ) = v↑↑(t ) + v↓↓(t ). (61c)

From the above solution, the corresponding renormalized en-
ergy, renormalized temperature, and renormalized chemical
potential can be calculated straightforwardly.

In Figs. 6(b)–6(g), we show the nonequilibrium evolu-
tion of the renormalized energy levels εr

↑,↓(t ), the particle
occupations in each level n↑,↓(t ), the internal energy US (t ),
the entropy SS (t ), the renormalized temperature T r (t ), and
the renormalized chemical potential μr (t ) for the coupling
strength �L = �R = �/2 for different coupling strengths. It
shows that in such a nanoscale device, all physical quanti-
ties quickly approach to the steady state. Then, in Fig. 6(h),
we plot the steady-state values of the renormalized energy
levels εr

↑,↓, the renormalized temperature T r , and the renor-
malized chemical potential μr as a function of the coupling
strength, respectively. These renormalized thermodynamical
quantities change as the change of the coupling strength.
Finally, in Fig. 6(i), we present the corresponding renormal-
ized Fermi-Dirac distributions (the Fermi-Dirac distribution
with renormalized energy, the renormalized temperature,
and the renormalized chemical potential): f (εr

↑,↓, T r, μr ) =
1/[e(εr

↑,↓−μr
α )/kBT r

α + 1]. We compare the renormalized Fermi-
Dirac distributions with the exact solution of the occupation
numbers n↑,↓(t → ∞) which are solved from the exact master
equation. The results show that they completely agree with
each other. This provides the proof to the consistency of the
renormalized strong coupling quantum thermodynamics for
fermionic systems.

To have a clearer physical picture about the renormalized
temperature and renormalized chemical potential when the
system is coupled to two reservoirs, we take various different
setups of the initial temperatures and initial chemical poten-
tials of the two reservoirs in Fig. 7. From these results, we can
see how the renormalized temperature and the renormalized
chemical potential change for the different setups, even in the
weak coupling regime. To understand these results, we first
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FIG. 7. The steady-state renormalized temperature and renor-
malized chemical potential of the single-electron transistor as a
function of the system-reservoir coupling strength � changing from
weak to strong for different setups of the initial temperatures and
initial chemical potentials of the two leads (reservoirs): (a) Two
reservoirs have the same initial temperature and chemical potential;
(b) the initial temperatures of the two reservoirs are the same but
their initial chemical potentials are different; (c) the initial chemical
potentials of the two reservoirs are the same but their initial temper-
atures are different; and (d) two reservoirs at the high-temperature
limit.

compare the exact solution with its weak coupling limit. Since
we also take the same spectral density for two reservoirs, we
find that in the very weak coupling limit (WCL),

NS (t → ∞) = n↑(μr, T r ) + n↓(μr, T r )

WCL→ 1
2 [n↑(μL, TL ) + n↑(μR, TR)]

+ 1
2 [n↓(μL, TL ) + n↓(μR, TR)]. (62)

The first equality is the exact solution from Eqs. (61c) and
the second equality is obtained with the help (60) in the
very weak coupling limit, where μL, TL and μR, TR are the
initial chemical potential and temperatures of the left and right
reservoirs, respectively. Figure 7(a) shows the results for the
two reservoirs that have the same initial temperature and the
same initial chemical potential. Because the two reservoirs
are set to have the same spectral density, the two reservoirs are
equivalent to one single reservoir in this case. Thus, the renor-
malized temperature and the chemical potential approach to
the initial temperature and the initial chemical potential in
the very weak coupling limit, as shown in Fig. 7(a), also
as we expected. Figure 7(b) shows the results for the two
reservoirs sharing the same initial temperature but having
different initial chemical potentials. Naively, one may think
that the renormalized temperature in the very weak coupling
limit should be the same as the same initial temperature of
the two reservoirs, and the renormalized chemical potential
should be μr = (μL + μR)/2. From Fig. 7(b), we see that
the renormalized chemical potential in the very weak cou-
pling limit is μr = (μL + μR)/2, as we expected from energy
conservation law. However, the renormalized temperature is a
bit larger than the initial temperature. This result can actually
be understood from Eq. (62). Because μr = (μL + μR)/2 �=

μL �= μR, Eq. (62) shows that TL �= T r �= TR in the very weak
coupling limit, even through TL = TR. Figure 7(c) shows fur-
ther the case μL = μR and TL �= TR. We have μr = μL = μR,
and from Eq. (62), we find that T r �= (TL + TR)/2 in the very
weak coupling limit, as shown in Fig. 7(c). Figure 7(d) shows
the high-temperature limit in which the chemical potentials
play a little role. Thus, we have T r � (TL + TR)/2 in the
very weak coupling limit, even if μL �= μR. This is shown
in Fig. 7(d). These results demonstrate that only at very high
temperature, the renormalized temperature T r = (TL + TR)/2.
In other words, in the quantum regime, the renormalized
temperature we introduced is necessary even at very weak
coupling limit for multireservoirs. This justifies further the
consistency of our renormalized theory for quantum thermo-
dynamics at any coupling, namely, theory of strong coupling
quantum thermodynamics cannot be correct without the renor-
malization of thermodynamic quantities.

IV. EXTENSION TO MORE ARBITRARY
SYSTEM-RESERVOIR COUPLINGS

The renormalized quantum thermodynamics for arbitrary
coupling strength presented in Sec. III, given by Eqs. (49)
to (54), is formulated from the exact master equation (40)
based on the system-reservoir coupling of Eq. (38). How-
ever, this formulation can be directly extended to general
open quantum systems with system-reservoir couplings not
limiting to the form of Eq. (38). This is because the renormal-
ized Hamiltonian Hr

S
(t ) is determined by the nonequilibrium

Green function u(t, t0) of Eq. (43a). It can be applied to
an arbitrary system interacting with arbitrary environments.
In Eq. (43a), g(t, t ′) is the self-energy correlation that can
be easily generalized to any interacting system using the
nonequilibrium Green function technique in many-body sys-
tems [92,93]. Meanwhile, the renormalized temperature T r (t )
[the renormalized chemical potential μr (t )] of Eq. (53) is
determined by the changes of internal energy of the system
with respect to the changes of the von Neumann entropy (the
average particle number of the system). These nonequilibrium
thermodynamic quantities are well defined by Eq. (49). They
rely neither on the exact master equation of Eq. (40) nor on the
system-environment coupling in the Hamiltonian of Eq. (38).
They are all determined by the reduced density matrix which
can be solved from the Liouville–von Neumann equation (4),
whose formal solution can be expressed as

ρS (t ) = TrE [U (t, t0)ρtot (t0)U†(t, t0)]. (63)

Here, U (t, t0) is the quantum evolution operator, the same as
the one given after Eq. (39), but the total Hamiltonian can
be extended to an arbitrary system interacting with arbitrary
reservoirs. In most of the cases, taking the trace over the envi-
ronmental states is the most difficult problem in open quantum
systems. Practically, one can use the perturbation expansion
method to calculate the trace over the environmental states
order by order approximately [73], or use the coherent state
path integrals to nonperturbatively trace over all the environ-
mental states as we did [55–58,61–63,94]. Here we focus on
the nonperturbation procedure. All the renormalization effects
of the system-reservoir interactions on the system can be
obtained from this procedure.
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To be specific, let us consider a general fermionic system
coupled to a general bosonic reservoir. Notice that Eq. (38)
describes the exchanges of energies and particles between the
system and the reservoir only for both the system and the
reservoir that are made of the same type of quasiparticles,
either bosons or fermions. When the system is a fermionic sys-
tem and the reservoir is a bosonic system, the system-reservoir
coupling Hamiltonian generally has the following interaction
form [10,61]:

HS E =
∑
i jk

[Vi j (k)c†
i c jb

†
k + V ∗

i j (k)c†
j cibk]. (64)

This system-reservoir interaction describes the energy ex-
change between the system and the reservoir through the
transition of a fermion (e.g., an electron) between two states
by emitting a boson (a quanta of energy, such as a photon or a
phonon) into the reservoir or absorbing a boson from the reser-
voir. The creation and annihilation operators c†

i , ci (b†
k, bk)

obey the standard fermionic anticommutation (bosonic com-
mutation) relationships. In fact, Eq. (64) is the general form
of the nonrelativistic electron-photon interaction that can be
derived from the fundamental field theory of quantum elec-
trodynamics (QED).

Explicitly, the QED Lagrangian determines the fundamen-
tal electron-photon interaction as follows [95]:

LQED = ψ (iγ μ∂μ − m)ψ − 1
4 FμνFμν − eψγ μAμψ, (65)

where ψ (x) is the fermionic field for electrons, Aμ(x) is the
covariant 4-vector of the electromagnetic (EM) field, γ μ is
the Dirac matrix, and Fμν (x) = ∂μAν (x) − ∂νAμ(x) is the EM
field strength tensor. The first two terms of Eq. (65) lead to the
free-electron and photon Hamiltonians. The last term gives the
fundamental electron-photon interaction in the nonrelativistic
limit (by ignoring positrons and choosing a proper gauge).
Thus, the nonrelativistic QED Hamiltonian is given by [96]

HQED = Helectron + Hphoton + He-p

=
∑

p

εpc†
pcp+

∑
p,p′,q

U (q)c†
p+qc†

p′−qcp′cp+
∑

k

h̄ωkb†
kbk

+ h̄
∑

pk

[V (k)c†
pcp−kbk + V ∗(k)c†

p−kcpb†
k], (66)

where c†
p, cp and b†

k, bk are creation and annihilation opera-
tors of electrons and photons with momentum p and k. The
summations over p and k should be replaced by the con-
tinuous integrals

∫ d3 p
(2π )3 and

∫
d3k

(2π )3 . Also, without loss of
generality, we have omitted the indices of electron spin and
photon polarization. The first term in the second equality in
Eq. (66) is the free-electron Hamiltonian. The second term
is the electron-electron Coulomb interaction arisen from the
choice of Coulomb gauge. The third term is the EM field

Hamiltonian, and the last two terms are the electron-photon
interaction. Note that the electron-phonon interaction in solid-
state physics has the same form. Equation (66) can describe
most of nonrelativistic physics in the current physics research,
unless one is also interested in the phenomena in the smaller
scale of nuclear arising from the weak and strong interactions
or the larger scale of universe from gravity.

In the following, we shall find all the nonperturbative
renormalization effects on electrons from the electron-photon
interaction by using the coherent state path integrals [63] to
nonperturbatively trace over all the environmental states. To
do so, we may express the exact reduced density ρS (t ) of
Eq. (63) as ρS (ξ†

f , ξ
′
f , t ) = 〈ξ f |ρS (t )|ξ′

f 〉 which is generally
given by

ρS (ξ†
f , ξ

′
f , t ) =

∫
dμ(ξ0)dμ(ξ′

0)ρS (ξ0, ξ
′
0, t0)

× JQED(ξ†
f , ξ

′
f , t ; ξ0, ξ

′†
0 , t0). (67)

Here we have utilized the unnormalized fermion coherent
states |ξ〉 ≡ exp(

∑
p ξpc†

p)|0〉. The integral measure dμ(ξ) =∏
p dξ ∗

p dξpe−|ξp|2 is defined by the Haar measure in Grass-
mannian space. The vector ξ ≡ (ξp1

, ξp2
, . . . ) is a one-column

matrix and ξ ∗
pi

is a Grassmannian variable. The propagating

function J (ξ†
f , ξ

′
f , t ; ξ0, ξ

′†
0, t0) in Eq. (67), which describes

the nonequilibrium evolution of the states of the electron
system from the initial state ρS (t0) to the state at any later time
ρS (t ), can be obtained analytically after completing exactly
the path integrals over all the photon modes. The result is

J (ξ†
t , ξ

′
t , t ; ξ0, ξ

′
0

†
, t0) =

∫
D[ξ; ξ′] exp

{ i

h̄

(
Ss[ξ

†, ξ]

− S∗
s [ξ′†, ξ′] + SQED

IF [ξ†, ξ; ξ′†, ξ′]
)}

,

(68)

where D[ξ; ξ′] =∏p,t<τ<t0
dξ ∗

p (τ )dξp(τ ), Se[ξ†, ξ] is the bare
electron action of the original free-electron Hamiltonian plus
the electron-electron Coulomb interaction in QED. In the
fermion coherent state representation, it is given by

Se[ξ†, ξ] = − ih̄

2

[
ξ†

t ξ(t ) + ξ†(t0)ξt0

]
+
∫ t

t0

dτ

{
ih̄

2

[
ξ̇

†
(τ )ξ(τ ) − ξ†(τ )ξ̇(τ )

]
− H(ξ†(τ ), ξ(τ ))

}
, (69)

where H(ξ†(τ ), ξ(τ )) =∑p εpξ
∗
p (τ )ξp(τ ) +∑

p,p′,q U (q)ξ ∗
p+q(τ )ξ ∗

p′−q(τ )ξp′ (τ )ξp(τ ). The additional

action SQED
IF [ξ†, ξ; ξ′†, ξ′] in Eq. (68) is an electron action

correction arising from electron-photon interaction after
exactly integrating out all the photon modes [94]:

SQED
IF [ξ†, ξ; ξ′†, ξ′] =

∫ t

t0

dτ

{
ih̄
∑
pp′k

[ ∫ τ

t0

dτ ′
{
σ+

p,k(τ )Gk(τ, τ ′)σ−
p′,k(τ ′) + σ ′−

p′,k(τ )G∗
k(τ, τ ′)σ ′+

p,k(τ ′)
}

−
∫ t

t0

dτ ′
{
σ ′+

p,k(τ )Gk(τ, τ ′)σ−
p′,k(τ ′) − [σ+

p,k(τ ) − σ ′+
p,k(τ )

]
G̃k(τ, τ ′)

[
σ−

p′,k(τ ′) − σ ′−
p′,k(τ ′)

]}]}
. (70)
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This is a generalization of the Feynman-Vernon influence
functional [4] to electron-photon interacting systems so that
we may also call the action of Eq. (70) as the influence
functional action. For simplicity, here we have introduced
the composite-particle variables σ+

p,k(τ ) ≡ ξ ∗
p (τ )ξp−k(τ ) and

σ−
p,k(τ ) ≡ ξ ∗

p−k(τ )ξp(τ ) = (σ+
p,k(τ ))†, which correspond to

the spinlike variables of the exciton operators a†
pap−k and

a†
p−kap, respectively. The nonlocal time correlations in

Eq. (70) are given by

Gk(τ, τ ′) = |V (k)|2e−iωk (τ−τ ′ ), (71a)

G̃k(τ, τ ′) = |V (k)|2n(ωk, T0)e−iωk (τ−τ ′ ) (71b)

which depict the time correlations between electrons and pho-
tons. The four terms in Eq. (70) come from the contributions
of the electron-photon interactions to the electron forward
propagation, the electron backward propagation, and to the
electrons mixed from the forward with backward propagations
at the end point time t and at the initial time t0, respectively,
through the path integrals over all the photon modes.

The above results show that the propagating function (68)
of the reduced density matrix for electrons in nonrelativis-
tic QED and the corresponding influence functional action
(70) have the same form as that for our generalized Fano-
Anderson Hamiltonian (38), as shown by Eqs. (B2) and (B4)
in Appendix B. The main difference is that the bare system
action (B3) and the influence functional action (B4) for the
generalized Fano-Anderson Hamiltonian are quadratic with
respect to the integrated variables in the path integrals of the
propagating function for the reduced density matrix. They
can be solved exactly and the resulting propagating function
is given by Eq. (B7) in Appendix B. Here the bare electron
action (69) and the influence functional action (70) for QED
Hamiltonian are highly nonlinear so that the path integrals of
the propagating function (68) cannot be carried out exactly.
However, the similarity between Eqs. (70) and (B4) allows us
to find the nonperturbative renormalized electron Hamiltonian
in nonrelativistic QED.

Note that the influence functional action (70) is a com-
plex function. Its real part contains all the corrections to the
electron Hamiltonian in nonrelativistic QED, which results
in the renormalization of both the single-electron energy and
the electron-electron interaction. The imaginary part contains
two decoherence sources. One contributes to the energy dissi-
pation into the environment induced by the electron-photon
interaction. The other contributes to the fluctuations aris-
ing from the initial states of the thermal photonic reservoirs
through the electron-photon interaction. The influence func-
tional action (B4) shares the same property. Furthermore,
it is not difficult to show that the last two terms in both
Eqs. (70) and (B4) are pure imaginary so that they only
contribute to the dissipation and fluctuation dynamics of the
electron system. The first two terms in both Eqs. (70) and
(B4) can combine with the forward and backward bare system
actions in Eqs. (69) and (B3), respectively, from which we can
systematically find the general nonperturbative renormalized
Hamiltonian of the system.

Explicitly, let us first examine the generalized Fano-
Anderson systems (38) in Sec. III. The renormalized system

Hamiltonian can also be determined by the bare system
Hamiltonian function in Eq. (B3) plus the first term in the
influence functional action (B4), i.e.,

Hr[α†,α] = H[α†,α] + δH[α†,α]

=
∑

i

εi(τ )α∗
i (τ )αi(τ )

− ih̄
∑

i j

∫ τ

t0

dτ ′α∗
i (τ )gi j (τ, τ

′)α j (τ
′). (72)

Note that the evolution of α j (τ ) along the forward path is
determined by [56–58,61]

α j (τ ) = u j j′ (τ, t0)α j (t0) + f j (τ ), (73)

where u j j′ (τ, t0) is the propagating Green function which
obeys the integrodifferential Dyson equation (43a). f j (τ ′) is
the noise source associated with the correlation Green func-
tion v(τ, t ) of Eq. (43b) that has no contribution to the system
Hamiltonian renormalization [58,61]. Thus, we can only take
the part of the evolution α j (τ ′) that has the contribution to
system Hamiltonian renormalization, i.e.,

α j (τ
′) ∝ u j j′ (τ

′, t0)α j (t0)

∝ [u(τ ′, t0)u−1(τ, t0)] j j′α j (τ ). (74)

The second line in the above expression also shows how the
memory effect is taken into account. Using this result, Eq. (72)
can be rewritten

Hr[α†,α] =
∑

i j

α∗
i (τ )εr

i j (τ, t0)αi j (τ ) (75)

and

εr
i j (τ, t0) = εi(τ )δi j

+ h̄ Im
∫ τ

t0

dτ ′[g(τ, τ ′)u(τ ′, t0)u−1(τ, t0)]i j

= −h̄ Im
[
u̇(τ, t0)u−1(τ, t0)

]
i j . (76)

This is the same solution for the renormalized system Hamil-
tonian given by Eqs. (41) and (42a) that we obtained after
completely solving the propagating function (B5) and derived
the exact master equation (40).

Thus, we can find the renormalized electron Hamiltonian
in nonrelativistic QED from the electron influence functional
action (70) in the same way. The result is

Hr (ξ†(τ ), ξ(τ )) =
∑

p

εpξ
∗
p (τ )ξp(τ )

+
∑
p,p′,q

U (q)ξ ∗
p+q(τ )ξ ∗

p′−q(τ )ξp′ (τ )ξp(τ )

− ih̄
∑
pp′k

∫ τ

t0

dτ ′ξ ∗
p (τ )ξp−k(τ )Gk(τ, τ ′)

× ξ ∗
p′−k(τ ′)ξp′ (τ ′). (77)

In Eq. (77), the first two terms are the bare electron Hamilto-
nian in Eq. (69), and the last term comes from the first term
in the electron influence functional action (70), as the renor-
malization effect arising from the electron-photon interaction
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after integrating out all the photonic modes. Moreover, we can
similarly introduce the two-electron propagating Green func-
tion W p,p′,k(t, t0) ≡ 〈[c†

p−k(t )cp(t ), c†
p′ (t0)cp′−k(t0)]〉. Conse-

quently, we have

ξ ∗
p−k(t )ξp(t ) ∝

∑
p′′

W p,p′,k(t, t0)ξ ∗
p′−k(t0)ξp′ (t0). (78)

Then, the renormalized electron Hamiltonian can be obtained
as

Hr
electron(t, t0) =

∑
p

εr
p(t, t0)c†

pcp

+
∑
p,p′,q

U r
p′ (q, t, t0)c†

p+qc†
p′−qcp′cp, (79a)

where

εr
p(t, t0) = εp +

∑
p′

δUp′ (q, t, t0), (79b)

U r
p′ (q, t, t0) = U (q) + δUp′ (q, t, t0), (79c)

and

δUp′ (q, t, t0) = h̄ Im
∑
q′q′′

∫ t

t0

dτ Gq(t, τ )W q′,q′′,q(τ, t0)

× W −1
q′′,p′,q(t, t0). (79d)

The correction to the single-electron energy in Eq. (79b)
comes from the operator normal ordering of the renormal-
ized electron-electron interaction in the last term of Eq. (77).
By calculating the two-electron propagating Green function
W (t, t0) from the total nonrelativistic QED Hamiltonian (66),
the renormalized electron Hamiltonian and the electron re-
duced density matrix can be obtained. From the renormalized
electron Hamiltonian (79) and the reduced density matrix
given by Eqs. (67)–(70), the renormalized quantum thermo-
dynamics, Eqs. (49) to (54) formulated in Sec. III, can be
directly extended to complicated interacting open quantum
system. Of course, in practice, the two-electron propagating
Green function W (t, t0) is very difficult to calculate, not like
the systems of Eq. (38) discussed in Sec. III where the general
solution of the single-particle Green function u(t, t0) has been
solved analytically in our previous work [10].

Nevertheless, Eqs. (67) to (70) provide a full nonequilib-
rium electron-electron interaction theory rigorously derived
from the nonrelativistic QED theory after we integrated
out exactly all the photonic modes. It can describe various
nonequilibrium physical phenomena in many-body electronic
systems based on the nonrelativistic QED theory, where all
the renormalization effects arising from electron-photon in-
teraction have been taken into account in the reduced density
matrix of electrons. In practice, the reduced density matrix
of Eq. (67) with Eqs. (68) to (70) is still hard to solve ex-
actly because the contributions from all the photon modes
have been included exactly and it goes far beyond the per-
turbation expansion one usually used in many-body systems
[86] and in quantum field theory [95]. In particular, when
the Coulomb interaction dominates the electron-electron in-
teraction, the system becomes a strongly correlated electronic
system. Then, further nonperturbative approximations and nu-

merical methods have to be introduced to find properly the
renormalized Hamiltonian and the reduced density matrix of
the open system for the strong coupling quantum thermody-
namics.

In fact, the same problem also exists in the equilibrium
physics, namely, one cannot solve all the equilibrium physical
problems exactly even though the Gibbs state is well defined
under the equilibrium hypothesis of statistical mechanics. The
typical example is the strongly correlated electron systems,
such as Hubbard model or quantum Heisenberg spin model,
which are the approximation of the above nonequilibrium
electron-electron interaction QED theory. But, so far one
is still unable to solve them exactly [65]. Therefore, how
to practically solve nonequilibrium quantum thermodynam-
ics for arbitrary system-environment interactions remains to
be a challenge problem. The closed time-path Green func-
tion technique with the loop expansion to quantum transport
phenomena developed by one of us a long time ago [97]
could be a possible method for solving nonperturbatively the
nonequilibrium quantum thermodynamics of strong interact-
ing many-body systems, and we leave this problem for further
investigation.

V. CONCLUSION AND PERSPECTIVE

In conclusion, we formulate the renormalization theory of
quantum thermodynamics and quantum statistical mechanics
based on the exact dynamic evolution of quantum mechanics
for both weak and strong coupling strengths. For a class of
generally solvable open quantum systems described by the
generalized Fano-Anderson Hamiltonians, we show that the
exact steady state of open quantum systems coupled to reser-
voirs through the particle exchange processes is a generalized
Gibbs state. The renormalized system Hamiltonian and the
reduced density matrix are obtained nonperturbatively when
we traced over exactly all the reservoir states through the
coherent state path integrals [63]. Using the renormalized
system Hamiltonian and introducing the renormalized tem-
perature, the exact steady state of the reduced density matrix
can be expressed as the standard Gibbs state. The correspond-
ing steady-state particle distributions obey the Bose-Einstein
and the Fermi-Dirac distributions for bosonic and fermionic
systems, respectively. In the very weak coupling limit, the
renormalized system Hamiltonian and the renormalized tem-
perature are reduced to the original bare Hamiltonian of the
system and the initial temperature of the reservoir if it cou-
ples to a single reservoir. Thus, classical thermodynamics
and statistical mechanics emerge naturally from the dynam-
ics of open quantum systems. Thermodynamic laws and the
statistical mechanics principle are thereby deduced from the
dynamical evolution of quantum dynamics. If open quan-
tum systems contain dissipationless localized bound states,
thermalization cannot be reached. This is the solution to
the longstanding problem in thermodynamics and statistical
mechanics that one has been trying to solve from quantum
mechanics for a century.

On the other hand, the renormalization theory presented in
this work is nonperturbative. The traditional renormalization
theory in quantum field theory and in many-body physics is
built on perturbation expansions with respect to the interaction
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Hamiltonian. As we have systematically shown, the system
Hamiltonian renormalization and the reduced density matrix
are finally expressed in terms of the nonequilibrium Green
functions. We have nonperturbatively derived the equation of
motion for these nonequilibrium Green functions and ob-
tained the general nonperturbation solution. We can easily
reproduce the traditional perturbation renormalization theory
by expanding order by order our solution with respect to the
system-reservoir interaction. Furthermore, this nonperturba-
tive renormalization theory also corresponds to the one-step
renormalization in the framework of Wilson renormalization
group framework. The renormalization group is built through
subsequent integrations of physical degrees of freedom from
the higher-energy scale to lower-energy scale. For open quan-
tum systems, instead of integrating out the higher-energy
degrees of freedom, the dynamics is fully determined by
nonperturbatively integrating out all the reservoir degrees of
freedom at once but including all energy levels from the
low-energy scale to the high-energy scale of the reservoirs.
Therefore, the underlying physical picture of our renormaliza-
tion roots on the different physical basis. If the open quantum
system interacts hierarchically with many reservoirs, then hi-
erarchically tracing over all the reservoirs’ states would lead
to a new renormalization group theory to open quantum sys-
tems that count all influences of hierarchical reservoirs on the
system.

As a consequence of the renormalized Hamiltonian and
renormalized temperature, we find that the system can be-
come colder or hotter, as the coupling increases. For fermion
systems, as the coupling increases, the renormalized energy
levels can be increased or decreased, depending on whether
the dot energy levels are greater than or less than the center
energy of the Lorentz-type spectral density, but the renor-
malized temperature is always increased (becomes hotter).
For boson systems with the Ohmic-type spectral density, both
the renormalized frequency and the renormalized temperature
always decrease (become colder) as the coupling increases,
while for a Lorentz-type spectral density, the renormalized
frequency and temperature will simultaneously decrease or
increase, which is quite different from fermion systems. This
reveals the very flexible controllability for energy and heat
transfers between systems and reservoirs, and provides poten-
tial applications in building quantum heat engines in strong
coupling quantum thermodynamics.
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APPENDIX A: DERIVATION OF EQ. (19) FROM EQ. (18)

In this Appendix, we shall derive rigorously the reduced
density matrix from the Gibbs state of the total system at the
steady state by trace over all reservoir states. The total system

is initially in a decoupled state between the system and the
reservoir, given by Eq. (3). After a long-time nonequilibrium
evolution, the total system approaches to the steady equilib-
rium state which is the Gibbs state with a final equilibrium
temperature denoted by β f = 1/kBTf , i.e., Eq. (18):

ρtot (t → ∞) = 1

Ztot
e−β f Htot , (A1)

where Htot is the total Hamiltonian of Eq. (1), and Ztot =
TrS+E [e−β f Htot ] is the corresponding partition function of the
total system. This is also a direct consequence of statistical
mechanics, namely, when the total system is in equilibrium, its
state is given by the Bolzertmann distribution, i.e., Eq. (A1).
Because Htot is a bilinear operator in terms of the bosonic
creation and annihilation operators, Eq. (A1) becomes a Gaus-
sian function in the coherent state representation. Explicitly,
Eq. (A1) can be expressed as [62]

〈z, z|ρtot|z′, z′〉 = 1

Ztot
exp

{
(z† z†)

(
�S S �S E

�E S �E E

)(
z′
z′

)}
,

(A2)

where(
�S S �S E

�E S �E E

)
= exp

[
− β f

(
h̄ωs h̄V
h̄V † h̄ω

)]
. (A3)

Here, we have used the combined bosonic coherent state of
the system plus the reservoir |z, z〉 = exp(za† +∑k zkb†

k )|0〉.
We also used boldface to denote matrices and vectors. As
an explicit example, the vector z ≡ (zk1, zk2 , . . . ) and zki is a
complex variable for reservoir boson mode ki.

Taking the trace over all the reservoir modes, we obtain the
reduced density matrix in the coherent state representation

〈z|ρS (t → ∞)|z′〉 =
∫

dμ(z)〈z, z|ρtot (t → ∞)|z′, z〉, (A4)

where dμ(z) =∏k
dz∗

k dzk

2π i e−|zk |2 . Using the Gaussian integral
to complete the integration of Eq. (A4), we have

〈z|ρS (t → ∞)|z′〉 = 1

ZS

ez∗�S z′
, (A5)

where ZS = [1 − �S ]−1 and �S = �S S + �S E [I −
�E E ]−1�E S . On the other hand, the average particle
number in the steady state is n = trS [a†aρS (t → ∞)] =∫

dμ(z)〈z|a†aρS (t → ∞)|z〉. The result is

n(t → ∞) = �S [1 − �S ]−1. (A6)

Thus, the reduced density matrix becomes

〈z|ρS (t → ∞)|z′〉 = 1

ZS

ez∗ n̄(t→∞)
1+n̄(t→∞) z′

. (A7)

Using the fact that 〈z|e f a†a|z′〉 = ez∗e f z′
, the above reduced

density matrix can be written as an operator

ρS (t → ∞) =
exp{ln[ n̄(t→∞)

1+n̄(t→∞) ]a
†a}

1 + n̄(t → ∞)
, (A8)

which is the solution of Eq. (19). This solution is obtained
directly from Eq. (A1). As we have found, the exact so-
lution of n̄(t → ∞) does not agree with the Bose-Einstein
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distribution if one takes the steady-state temperature as the ini-
tial reservoir temperature T0 at strong coupling, even though
the energy correction arisen from the strong coupling with
the reservoir is properly included. Therefore, Tf �= T0 and
temperature renormalization is necessary for strong coupling
quantum thermodynamics. Note that a similar proof claimed
in [36] without providing any details should be incorrect.

APPENDIX B: EXACT SOLUTION AND THE STEADY
STATE OF OPEN QUANTUM SYSTEMS WITH EQ. (38)

In this Appendix, we present the general solution of open
quantum systems with Eq. (38). Without loss of generality, the
initial state of reservoir α can be assumed to be in a thermal
state at temperature Tα0, and the system can be an arbitrary
state

ρtot (t0) = ρS (t0) ⊗ ρE (t0), ρE (t0) =
∏
α

1

Zα

e−βαHα

E .

Here Zα =∏k (1 ∓ e−βα0(εαk−μα0 ) )∓ is the partition function of
reservoir α. Different reservoir α could have differential initial
chemical potential μα0 and different initial temperature βα0 =
1/kBTα0. The up and down signs ∓ correspond to the reservoir
being bosonic and fermionic systems, respectively.

After the initial time t0, both the system and all reser-
voirs will evolve into a fully nonequilibrium state. For an
arbitrary initial state ρS (t0) of the system, the reduced den-
sity matrix at later time t is defined by ρS (t ) = TrE [ρtot (t )],
which can be solved from Eq. (39) in general. To find the
exact solution, we take the coherent state representation [63]
again. Then, the reduced density matrix ρS (t ) of Eq. (39)
can be expressed as ρS (αt ,α

′
t , t ) = 〈αt |ρS (t )|α′

t 〉. Here we
have used the unnormalized coherent state defined as |α〉 =
exp(

∑
i αia

†
i )|0〉, dμ(α) =∏i gidα∗

i dαie−|αi|2 , the vector α ≡
(α1, α2, . . . ) is one-column matrix, and αi are complex vari-
ables for bosons and Grassmannian variables for fermions
with gi = 1/2π i and 1 in the Haar measure, respectively.
Thus, the reduced density matrix in the coherent state repre-

sentation can be expressed as

ρS (αt ,α
′
t , t ) =

∫
dμ(α0)dμ(α′

0)ρS (α0,α
′
0, t0)

× J (αt ,α
′
t , t ; α0,α

′
0, t0). (B1)

The propagating function J (α†
t ,α

′
t , t ; α0,α

′
0

†
, t0) in

Eq. (B1) can be obtained analytically after integrating exactly
over all the environmental degrees of freedom using the
coherent state path integrals. The result is [55–57]

J (α†
t ,α

′
t , t ; α0,α

′
0

†
, t0) =

∫
D[α; α′] exp

{ i

h̄

(
Ss[α

†,α]

− S∗
s [α′†,α′] + SIF[α†,α; α′†,α′]

)}
,

(B2)

where D[α; α′] is the path integral measure over the parameter
space of the system coherent states |α〉. The bare system
action in the coherent state basis is given by

Ss[α
†,α] = − ih̄

2

[
α†

t α(t ) + α†(t0)αt0

]
+
∫ t

t0

dτ

{
ih̄

2

[
α̇†(τ )α(τ ) − α†(τ )α̇(τ )

]
− H(α†(τ ),α(τ ))

}
(B3)

with the Hamiltonian function H(α†(τ ),α(τ )) =∑
i εi(τ )α∗

i (τ )αi(τ ). The actions Ss[α†,α] and S∗
s [α′†,α′]

in Eq. (B2) describe the forward and backward evolutions of
the system. The influence functional action SIF[α†,α; α′†,α′]
represents all the influences of the reservoirs on the system
after integrating out exactly all the environmental degrees of
freedom. This procedure is called as the influence functional
approach, proposed originally by Feynman and Vernon
[4]. We extended the Feynman-Vernon influence functional
in terms of the coherent state path integrals so that the
influence functional theory can be applied to both bosonic
and fermionic environments [55–57]. The resulting influence
functional action for the open quantum system (38) is

SIF[α†,α; α′†,α′] =
∫ t

t0

dτ

{
ih̄
∑

i j

[∫ τ

t0

dτ ′
{
α∗

i (τ )gi j (τ, τ
′)α j (τ

′) + α′∗
i (τ )g∗

i j (τ, τ
′)α′

j (τ
′)

∓
∫ t

t0

dτ ′{α′∗
i (τ )gi j (τ, τ

′)α j (τ
′) − [α∗

i (τ ) ∓ α′∗
i (τ )]̃gi j (τ, τ

′)[α j (τ
′) ∓ α′

j (τ
′)]}
]}

, (B4)

where the up and down signs of ∓ correspond, respectively, to the system being bosonic and fermionic. The system-reservoir
correlation functions gi j (τ, τ ′) and g̃i j (τ, τ ′) are given by Eq. (44). As one can see, both the bare system action and the action
correction are quadratic with respect to the variables α∗

i , αi so that the path integrals of Eq. (B2) can be solved exactly. After a
tedious calculation, we obtain [55–57]

J (α†
t ,α

′
t , t ; α0,α

′
0

†
, t0) = (det[w(t )])±1 exp{α†

t J1(t, t0)α0 + α′†
0J†

1(t, t0)α′
t ± α′

0
†J3(t, t0)α0 ± α†

t J2(t )α′
t }, (B5)

where w(t ) = [1 ± v(t, t )]−1, J1(t, t0) = w(t )u(t, t0),
J2(t ) = 1 − w(t ), and J3(t, t0) = 1 − u†(t, t0)w(t )u(t, t0),
and the up and down signs of ± correspond to the system

being bosonic or fermionic systems again. The functions
u(t, t0) and v(t, t ) are the nonequilibrium dissipative
particle-propagating Green’s function and fluctuated
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particle-correlation Green’s function, respectively. They
are determined by Eq. (43). Equations (B1) and (B5) give the
exact solutions of the reduced density matrix in coherent state
representation for the open quantum systems by Eq. (38).
From Eqs. (B1)–(B5), we have derived rigorously the exact
master equation (40) [55–57].

Based on the general solution of the nonequilibrium Green
functions we obtained recently [10], if there are no localized
bound states (modes), the dissipative propagating Green func-
tion vanishes in the steady-state limit, namely,

u(t → ∞, t0) = 0. (B6)

This solution is valid for arbitrary continuous spectral density
matrix of multiple reservoirs Jαi j (ω) that cover every point
of the whole energy frequency domain. Then the coefficients
in the propagating function of the reduced density matrix,
Eq. (B5), are largely simplified: J1(t, t0) = 0, J2(t ) = 1 −
w(t ) = ±v(t, t )/[1 ± v(t, t )], and J3(t, t0) = 1. Thus, the
propagating function is simply reduced to

J (α†
t ,α

′
t ,t → ∞; α0,α

′
0

†
, t0) = lim

t→∞(det[w(t )])±1

× exp{±α′
0

†
α0 ± α†

t [1 − w(t )]α′
t }. (B7)

Substituting this result into Eq. (B1), we obtain the exact
steady-state reduced density matrix

ρS (αt ,α
′
t , t → ∞) = lim

t→∞

∫
dμ(α0)dμ(α′

0)ρS (α0,α
′
0, t0)

× (det[w(t )])±1

× exp{±α′
0

†
α0 ± α†

t [1 − w(t )]α′
t }.
(B8)

Notice the normalization condition∫
dμ(α0)dμ(α′

0)ρS (α0,α
′
0, t0) exp{±α′

0
†
α0} = 1, (B9)

we have

〈αt |ρS (t → ∞)|α′
t 〉

= lim
t→∞(det[w(t )])±1 exp{±α†

t [1 − w(t )]α′
t }

= lim
t→∞

(
det

[
1

1 ± v(t, t )

])±1〈
αt

∣∣∣∣ v(t, t )

1 ± v(t, t )
α′

t

〉
. (B10)

This shows that the steady-state reduced density matrix is
independent of its initial states, as a consequence of thermal-
ization. Equation (B10) directly results in the operator form
of the steady-state reduced density matrix

ρS (t → ∞) = lim
t→∞

(
1

det[1 ± v(t, t )]

)±1

× exp

{
a†

(
ln

v(t, t )

1 ± v(t, t )

)
a
}
, (B11)

where a ≡ (a1, a2, . . . , aN )T is a one-column matrix operator.
This is the exact steady-state solution of Eq. (47), which is
also recently derived from the general solution of the re-
duced density matrix [18]. As one can see, the solution of
Eq. (19) derived alternatively in Appendix A is a special case
of the above general solution. We should also point out that
the above solution remains the same for the initial coupled
system-reservoir state [58,62].
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