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Relativistic dynamical inversion in manifestly covariant form
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The relativistic dynamical inversion technique, a novel tool for finding analytical solutions to the Dirac
equation, is written in explicitly covariant form. It is then shown how the technique can be used to make a
change from Cartesian to spherical coordinates of a given Dirac spinor. Moreover, the most remarkable feature
of the method presented here, which is the ease of performing a nontrivial change of reference frames, is
demonstrated. Such a feature constitutes a potentially powerful tool for finding novel solutions to the Dirac
equation. Furthermore, a whole family of normalizable analytic solutions to the Dirac equation is constructed.
More specifically, we find exact solutions for the case of a Dirac electron in the presence of a magnetic field
as well as a solution comprising a combination of a spherically symmetric electric field and magnetic fields.
These solutions shed light on the possibility of separating the positive- and negative-energy parts of localized
Dirac spinors in the presence as well as in the absence of magnetic fields. The presented solutions provide
an illustration of the connection between the geometrical properties of the spinor and spin-orbit coupling for
normalizable spinorial wave functions.
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I. INTRODUCTION

The relativistic dynamical inversion technique (or RDI
for short), first proposed in Ref. [1], was designed to solve
the following problem: Given an arbitrary (desired) spinorial
space-time wave packet ψ , find an electromagnetic vector
potential Aμ such that the Dirac equation is satisfied. Sev-
eral examples demonstrating the ability of RDI to find novel
nontrivial analytical solutions to the Dirac equation were dis-
cussed in Refs. [1–3]. The most appealing feature of RDI is
the clear geometrical meaning bestowed upon the spinor by
the Hestenes formalism on which it is based, whose main
advantage is that a clear classical interpretation can be given
to the elements of the theory; this in turn provides an intu-
ition into how the electron in the quasiclassical approximation
is expected to move in the desired field configuration for
which the solutions to the Dirac equation are sought, with
the information about such “motion” being encapsulated in
the geometrical interpretation of ψ . However, in its current
form, RDI is formulated in Cartesian coordinates, which
severely hinders the feasibility of the technique to tackle prob-
lems possessing certain symmetries, for instance, spherical or
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cylindrical symmetry, which generally leads to a great deal of
simplification in the equations one needs to solve. A general
way to address this issue is to rewrite the equations of RDI
in manifestly covariant form. Another advantage in making
RDI explicitly covariant is that only then can gravity also be
included.

Before proceeding, it is noteworthy that Hestenes (see
Ref. [4] and references therein) already put forward a covari-
ant version of his technique, which should be equivalent to
the one developed here. However, while Hestenes’ formula-
tion relies heavily on his so-called geometric algebra, with a
plethora of new symbols and calculation rules, the formalism
developed here relies only on basic matrix algebra and tensor
calculus and consequently is accessible to a wider audience.
Moreover, Hestenes focused mainly on gravitational effects,
which might mislead the reader into thinking that these are all
his formalism is about; in contrast, our main focus is on the co-
variance of the formulation, which applies not only to curved
space-time, but also to curvilinear coordinates and noninertial
frames in flat space-time. In addition, our technique can also
deal with space-times endowed with torsion.

In this paper we put forward the manifestly covariant rel-
ativistic dynamical inversion (CRDI) technique, a formalism
which is the offspring of the marriage between the Hestenes
formulation and the formalism of polar spinors (see, for in-
stance, Refs. [5,6]). In order to illustrate the usefulness of
CRDI, we start with a general form of the spinorial space-time
wave packet ψ constituting a general solution to the Dirac
equation in Cartesian coordinates and show that a particular
case of such a solution is the ground state of the hydrogen
atom. Then we make a change from Cartesian to spherical
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coordinates and demonstrate a feature of CRDI—the ease
of performing a nontrivial change of reference frames—that
can potentially be a powerful tool in the quest for novel
analytical solutions to the Dirac equation. In addition, we
construct a whole family of normalizable analytic solutions
to the Dirac equation. More specifically, we find exact so-
lutions for the case of a Dirac electron in the presence of a
magnetic field as well as a solution consisting of the combi-
nation of a spherically symmetric electric field and magnetic
fields. These solutions give some clues as to the relationship
between magnetic fields, spin-orbit coupling, and the geomet-
rical properties of the Dirac spinor.

This paper is organized as follows. In Sec. II an overview
of the steps needed to write the Dirac equation in explicitly
covariant form is given. In Sec. III we summarize both the
Hestenes formalism and the RDI technique. Then we present
a step-by-step derivation of CRDI in Sec. IV. In Sec. V we
first show how the chosen general ψ reproduces the solutions
presented in Ref. [3] and then proceed to describe two families
of analytical solutions of the Dirac equation constructed with
the help of the technique developed in this paper. In Sec. VI
we analyze these solutions in light of the geometrical interpre-
tation of CRDI. Finally, in Sec. VII we draw some conclusions
and highlight some of the potential applications of CRDI.

II. GENERAL COVARIANCE AND DIRAC SPINORS

In this section we describe the steps needed to write the
Dirac equation in manifestly covariant form. This discussion
is based on the procedure introduced in Ref. [7].

Hereinafter, Greek indices label the space-time manifold,
while Latin indices label the tangent space to the manifold.
Since in Secs. III A and III C there is no distinction between
Greek and Latin indices (everything is written in Cartesian
coordinates), we use Greek indices throughout both sections.

The general procedure to write the Dirac equation in ex-
plicitly covariant form is as follows: Choose a single point on
a curved manifold. There the manifold is exactly equal to the
tangent space at the chosen point. Since we are considering
the Lorentzian curved metric tensor, the tangent space at every
point will be Minkowski space. One can then define a field at
each point that transforms as a scalar under coordinate trans-
formations in the curved manifold, and as a spinor under the
Lorentz group in the tangent space. Given that at the chosen
point the curved manifold and the tangent space are identical,
one has just constructed a Lorentz spinor at one point on a
curved manifold. One may then construct such an object at
every other point.

Each point on the curved manifold has its own inde-
pendent tangent space in which it can transform under an
arbitrary Lorentz transformation. Thus, to simultaneously de-
fine a Lorentz spinor at all points on a curved manifold, one
must let it transform under local Lorentz transformation in
each independent tangent space at each point. Therefore the
first step to write the Dirac equation in covariant form is to
construct the complexification of the SO(1, 3) gauge theory
for spinors.

To identify the space of SO(1, 3) gauge transformations
with the space tangent to the manifold at each point, one
must do the following: First, as stated at the beginning of this

section, one must identify the SO(1, 3) indices (Latin indices)
with the tangent space Lorentz indices. Second, one must find
a way to define an independent set of gamma matrices at
each point on the curved manifold which act at the tangent
space at that point. Third, one must find a way to relate the
spin connection to the geometry of the curved manifold such
that a tangent space Lorentz transformation under which the
theory must be invariant simply translates to a SO(1, 3) gauge
transformation on the spinor field.

The first task can be straightforwardly taken care of by
simply identifying the Latin indices with flat Lorentz indices.
The other two are more involved. It turns out that the first
step towards simultaneously tackling both of them is to intro-
duce a new field that relates the curved metric to the tangent
space metric. It is called the tetrads, commonly denoted in the
literature by the symbols eμ

a and ea
μ, obeying the following

relations:

ηabea
μeb

ν = gμν, (1)

where ηab is the Minkowski metric on the flat tangent space
while gμν is the curved metric tensor on the manifold. The
geometrical meaning of the tetrads is that they constitute a
set of four orthonormal vectors (in terms of the Minkowski
metric) at each point on the tangent space to the manifold. The
definition of the gamma matrices as matrix-valued functions
of the coordinates on the manifold is done by imposing that
they must obey the following curved Clifford algebra:

{γ μ, γ ν} = 2gμν1, (2)

where 1 is the 4 × 4 identity matrix and {·, ·} is the anticom-
mutator. The tetrad is relevant here because the solution to the
above anticommutation relation can simply be written in terms
of the standard flat gamma matrices using the tetrad, that is,

ea
νγa = γν. (3)

Finally, the third and final task is to write the spin connec-
tion in terms of the geometry of the curved manifold so that
tangent space Lorentz transformations under which the theory
must be invariant simply translate to SO(1, 3) gauge trans-
formation, under which the theory is already invariant. This
can be done, it turns out, by using the so-called “metronilic”
property, ∇μγν = 0. This task is more involved and will be
addressed in Sec. IV A.

III. AN INTRODUCTION TO RDI

In this section we give a brief review of both the Hestenes
formalism and the RDI technique.

A. A review of the Hestenes formalism

This section is a reinterpretation of the work of Hestenes
[8] in terms of the quaternion formalism developed in Ref. [9].
The point of view described here consists in interpreting γμ as
vectors of a space-time reference frame instead of matrices.
By definition the scalar product of these vectors is just the
components ημν of the metric tensor

1
2 (γμγν + γνγμ) = γμ · γν = ημν (4)
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generating an associative algebra over the real numbers, which
has been called the space-time algebra by Hestenes. It pro-
vides a direct and complete algebraic characterization of the
geometric properties of Minkowski space-time in Cartesian
coordinates. In the standard representation the Dirac equa-
tion for an electron with charge e and mass m in an external
electromagnetic field Aμ reads

γ μ(ih̄∂μ − eAμ)ψ = mcψ. (5)

The Dirac spinor ψ ∈ C4 obeying (5) is a column vector with
four complex components,

ψ =

⎛
⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r0 − ir3

r2 − ir1

s3 + is0

s1 + is2

⎞
⎟⎟⎟⎠, (6)

where the sμ and rμ are real functions of space-time. The
representation (6) in terms of the components ψ1, ψ2, ψ3, ψ4

presumes a specific representation of the Dirac matrices, the
standard (Dirac) representation,

γ0 =
(

I 0

0 −I

)
, γk =

(
0 −σk

σk 0

)
, (7)

subject to γ 0(γ μ)†γ 0 = γ μ as well as γ 2(γ μ)∗γ 2 = γ μ,
where I is the 2 × 2 identity and σk are the Pauli matrices.

The matrices αk = γkγ0 are to be interpreted as unit quater-
nions. The αk generates an algebra over the real numbers
which is isomorphic to the Pauli algebra. This fact is empha-
sized by writing

α1α2α3 = γ0γ1γ2γ3 = i, i2 = −1. (8)

Thus i plays a role similar to that played by i = √−1 in the
Pauli algebra. In quaternion theory, it is an additional operator
which commutes with the αk and squares to −1. From the
standard representation (7) it follows that

αk =
(

0 σk

σk 0

)
, i =

(
0 iI

iI 0

)
,

iαk =
(

iσk 0

0 iσk

)
, γ 5 = iγ 0γ 1γ 2γ 3 =

(
0 I

I 0

)
. (9)

By introducing the canonical basis in the spinor space

u1 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠, u2 =

⎛
⎜⎜⎜⎝

0

1

0

0

⎞
⎟⎟⎟⎠, u3 =

⎛
⎜⎜⎜⎝

0

0

1

0

⎞
⎟⎟⎟⎠, u4 =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠,

(10)

γ0u1 = u1, iα3u1 = γ2γ1u1 = iu1, (11)

u2 = −iα2u1, u3 = α3u1, u4 = α1u1, (12)

we have that the Dirac spinor ψ given in (6) in this represen-
tation can be written as

ψ = ψ1u1 + ψ2u2 + ψ3u3 + ψ4u4

= [r01 + (s1α1 + s2α2 + s3α3)

− i(r1α1 + r2α2 + r3α3) + is0]u1, (13)

where relations (11) and (12) have been used. Thus any Dirac
spinor ψ can be written as

ψ = 	u1, (14)

where 	 can be written down directly from the column matrix
form (6) by using

	 = r01 + (s1α1 + s2α2 + s3α3)

− i(r1α1 + r2α2 + r3α3) + is0

=

⎛
⎜⎜⎜⎜⎝

ψ1 −ψ∗
2 ψ3 ψ∗

4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ∗

2

ψ4 −ψ∗
3 ψ2 ψ∗

1

⎞
⎟⎟⎟⎟⎠. (15)

The matrix spinor 	 is then a general complex quaternion.
The most general form of the spinor 	 can be translated

into the polar form

	 = √
ρ exp (iβ/2)R, (16)

where R = BU [10]. The matrices U and B are unitary and
Hermitian, respectively, with U encoding the rotations and B
performing the boosts. From Eq. (16) we have, noting that
Uγ0 = γ0U ,

	γ0	̃ = ρv/ = ρBγ0B−1 = ρB2γ0 (17)

since B−1 = B̃ = γ0B†γ0 = γ0Bγ0. Then

	γ3	̃ = ρs/ = ρBUγ3U
†B−1 = ρBUα3U

†Bγ0 (18)

for the spin. Before proceeding, we would like to address
the issue of why the vector spin density in (18) is calculated
with γ3 and does not involve γ5. The reason is that it is a
feature of the Hestenes formalism; in such a formalism the
γ5 is somewhat hidden in the definition of the matrix spinor,
while the γ3 appears because the spin is aligned along the
third axis. However, these are only “incidents” of the choice
of formalism. Of course, when written in the usual formalism,
the γ3 leaves its place to the γ5γ3, and all the usual definitions
are recovered. Finally, we would like to call attention to the
following definitions:

	−1 = 	̃

		̃
, 	̃ = γ0	

†γ0, 		̃ = ρeiβ, R−1 = R̃.

(19)
The general matrix spinor (16) satisfies the Hestenes-Dirac

equation

(h̄c∂/	γ2γ1 − cqA/	 ) = mc2	γ0, (20)

where A/ = Aμγμ and ∂/ = γ μ∂μ. The factorization (16) im-
plies

∂/	 = 1
2 (∂/ ln ρ + ∂/βi − 2γ μR∂μR−1)	. (21)

Substituting (21) into (20) leads to

h̄(∂/ ln
√

ρ + ∂/βi
2

− γ μR∂μR−1)	γ2γ1 − qA/	 = mc	γ0.

(22)
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B. Summary of the relativistic dynamical inversion technique

Once the matrix spinor is given, the next step is to find the
electromagnetic fields that induce the motion of the electron
encoded in 	. Formally, the vector potential can be written in
terms of 	 by inverting (22) as

eA/ = h̄∂/	γ 2γ 1	−1 − mc	γ 0	−1. (23)

The vector potential equation can also be rewritten in a more
illuminating form:

eA/ = h̄∂/	γ 2γ 1	−1 − p/e−iβ, p/ = mcv/, (24)

which allows us to identify p/ with the kinetic momentum.
The vector potential given by (23) is required to obey the

following constraints:

Tr [eA/�1]/4 = 0,

Tr [eA/�n]/4 = 0, for 6 � n � 16,

where

�1 = 1, �2 = γ 0, �3 = γ 1, �4 = γ 2,

�5 = γ 3, �6 = α1, �7 = α2, �8 = α3,

�9 = γ 2γ 3, �10 = γ 3γ 1, �11 = γ 1γ 2,

�12 = γ 1γ 2γ 3, �13 = γ 0γ 2γ 3, �14 = γ 0γ 3γ 1,

�15 = γ 0γ 1γ 2, �16 = γ 5.

The above conditions imply

∂μ(ρvμ) = 0,

∂μ(ρsμ) + 2mc

h̄
ρ sin β = 0. (25)

Thus, after taking into account the constraints (25), the
components of the vector potential such that the Hestenes-
Dirac equation is satisfied by the given matrix spinor 	 are

eA0 = h̄

2

(
− 1

v2
0

[s + v × (s × v)] · �∇β − e2 · ∂0e1

+ �∇ · (ρs × v)

ρ

)
− mcv0 cos β, (26)

eAk = h̄

2

(
−vksμ∂μβ + skvμ∂μβ − e2 · ∂ke1

+ 1

ρ

[
εklm

∂

∂xl

(
ρ

{
1

v2
0

[s + v × (s × v)]m

})

− εklm
∂

c∂t
(ρslvm)

])
− mcvk cos β, (27)

where e j = 	γ j	̃/ρ, j = 1, 2, e2 · ∂0e1 = Tr [e2∂0e1]/4, and
e2 · ∂ke1 = Tr [e2∂ke1]/4.

C. From Hestenes to Baylis: Anatomy of the matrix spinor

The first step towards gaining more physical insight is the
equivalence between the Baylis formulation known as the
algebra of physical space (APS) [11,12] and the Hestenes

formalism introduced in Sec. III A; this equivalence was pre-
viously discussed by Gürsey in Ref. [9].

In the Baylis formalism the state ψ can be represented by
the following matrix �:

ψ =

⎛
⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎟⎟⎠ ⇐⇒ � =

(
ψ1 + ψ3 −ψ∗

2 + ψ∗
4

ψ2 + ψ4 ψ∗
1 − ψ∗

3

)
. (28)

Moreover, one should note the following:

�̄ = ��T �† =
(

ψ∗
1 − ψ∗

3 ψ∗
2 − ψ∗

4

−ψ2 − ψ4 ψ1 + ψ3

)
, (29)

where the superscript T is transposition and � = −iσ2 is the
quaternion operator equivalent to a complex conjugation, in
terms of which we can write

� =
(

� 0

0 �̄†

)
(30)

as a full 4 × 4 matrix. One should notice the following:

U	U † = �, (31)

showing that the complete 4 × 4 Baylis form is just the
Hestenes matrix form up to a unitary transformation. The
specific unitary transformation is nothing else but the trans-
formation that performs the passage to the chiral (Weyl)
representation, that is, U = 1√

2
(1 + γ 5γ0).

The matrix spinor (31) can be written in the following
general form:

� =
(

Q 0

0 σ2(Q†)T σ2

)
,

Q = r0 − is0 − i(rk − isk )σk . (32)

The determinant of 	 is

Det [	] = (rμrμ − sμs
μ − 2irμsμ)

× (rμrμ − sμs
μ + 2irμsμ) (33)

and is nonsingular for rμrμ − sμs
μ and rμsμ not being simul-

taneously zero. We need these conditions to ensure that 	 is
invertible, as needed for the CRDI procedure.

Calling Q = SV , with S = √
rμrμ − sμs

μ − 2irμsμ and
Det [V ] = 1, we have that the function S can also be expressed
as S = √

ρeiβ/2, where
√

ρ = [
(rμrμ − sμs

μ)2 + 4(rμsμ)2
]1/2

, (34)

β = ± arctan

(
2rμsμ

rμrμ − sμs
μ

)
. (35)

The minus (plus) sign is for Q [σ2(Q†)T σ2]. Finally, we have

� = √
ρ

(
e−iβ/2V 0

0 eiβ/2σ2(V †)T σ2

)
. (36)

By construction, V is a unimodular 2 × 2 complex ma-
trix forming the group SL(2,C), which is the complex
three-dimensional manifold having six degrees of freedom
associated with the parameters of boosts and rotations.
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It is instructive to check how this unitary transformation
affects Eq. (14):

Uψ = �u1, Uu1 = 1√
2

⎛
⎜⎜⎜⎝

1

0

1

0

⎞
⎟⎟⎟⎠. (37)

Given that U is the unitary transformation connecting the
standard representation to the chiral representation, 	 is the
4 × 4 double cover of the Lorentz group. It then follows that
the matrix spinor 	 is writable as

	 = √
ρ exp (iβ/2)R, (38)

R = U †

(
V 0

0 σ2(V †)T σ2

)
U, (39)

with R being a unimodular 4 × 4 complex matrix correspond-
ing to the general Lorentz transformations. It is noteworthy
that the scalar function β (known as Yvon-Takabayashi (YT)
angle [13,14]) is believed to be directly related to antiparticles
(see, for instance, Ref. [15]): Specifically, its being zero cor-
responds to a pure particle state, and its being π corresponds
to a pure antiparticle state, with any value in between corre-
sponding to mixed states [5]. The mathematical meaning of
β is, however, very straightforward. It simply describes the
dynamics of the internal degrees of freedom of the electron,
for instance, the spin-orbit coupling. This point will become
clear in the examples presented below.

IV. THE MANIFESTLY COVARIANT RELATIVISTIC
DYNAMICAL INVERSION

Having presented the Hestenes form of the Dirac equation,
we are now ready to move on to making this formalism
manifestly covariant [5]. The ensuing relativistic dynamical
inversion technique will therefore be made into the manifestly
covariant relativistic dynamical inversion technique.

A. General treatment: Manifestly covariant Hestenes formalism

In the previous two sections, we have introduced the
Hestenes formalism in standard representation and showed
that in the chiral representation it is equivalent to the Baylis
formalism; chiral representations are important because they
keep the irreducible parts separated. Nevertheless, at least in
four dimensions, all representations are unitarily equivalent.
The same could be said for all possible systems of coordinates
used to write the Dirac spinor and the Dirac equation. Just
the same, it would be important to have a formalism that is
covariant in a manifest way for two reasons: The first is that
the passage from Cartesian to any other system of coordinates
can be done straightforwardly; the second, and most impor-
tant, is that only in a clearly covariant form can gravity be
included. In the following we are then going to consider only
the generally covariant form of the Dirac spinor field theory,
employing it with the Hestenes formalism so as to keep the
advantages of RDI.

In the most general form, complex Lorentz transformations
are given in terms of Clifford matrices γa such that (2) holds.

Then we can define

1
4 [γa,γb] = σab, (40)

where σab also verify

2iσab = εabcdγ
5σ cd (41)

implicitly defining the γ 5 matrix in terms of the completely
antisymmetric pseudotensor. We can see that

γiγ jγk = γiη jk − γ jηik + γkηi j + iεi jkqγ
5γ q, (42)

from which it is possible to get that

{γa, σbc} = iεabcdγ
5γ d , (43)

[γa, σbc] = ηabγc−ηacγb (44)

and

{σab, σcd} = 1
2 [(ηadηbc−ηacηbd )1 + iεabcdγ

5], (45)

[σab, σcd ] = ηadσbc−ηacσbd + ηbcσad −ηbdσac (46)

are all valid as geometric identities. This last relationship, in
particular, tells us that the σab matrices are the generators of
the Lorentz algebra, so that with parameters θi j = −θ ji we can
write

� = e
1
2 θabσ

ab
(47)

as Lorentz transformations. To make them explicit, we define
the following quantities:

a = − 1
8θi jθ

i j, (48)

b = 1
16θi jθabε

i jab (49)

and then

2x2 = a +
√

a2 + b2, (50)

2y2 = −a +
√

a2 + b2 (51)

so as to introduce the parameters

cos y cosh x = X, (52)

sin y sinh x = Y, (53)(
x sinh x cos y + y sin y cosh x

x2 + y2

)
θab

+
(

x cosh x sin y − y cos y sinh x

x2 + y2

)
1

2
θi jε

i jab = Zab, (54)

which verify

X 2 − Y 2 + 1
8 ZabZab = 1, (55)

2XY − 1
16 Zi jZabεi jab = 0 (56)

in general. Using (45), one can prove that

� = X1 + Yiγ 5 + 1
2 Zabσab (57)

in the most compact way. One might also be convinced of this
result by considering single rotations or boosts and verify by
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direct inspection that (57) reduces to the known forms. The
inverse is

�−1 = e− 1
2 θabσ

ab
, (58)

written explicitly as

�−1 = X1 + Yiγ 5 − 1
2 Zabσab, (59)

as is clear after using relations (55) and (56) given above.
With this transformation we can define spinor fields as what
transforms according to

ψ → �ψ (60)

in the most general case. Notice that we have

(�)a
b�γ b�−1 = γ a, (61)

where (�)a
b such that (�)a

k (�)b
jη

k j = ηab is a transforma-
tion that belongs to the SO(1, 3) group and that is the real
representation of the Lorentz transformation. For future con-
venience, let us introduce

(∂μXZab − X∂μZab) + 1
2 (∂μY Zi j − Y ∂μZi j )ε

i jab

+∂μZakZb
k = −∂μζ ab, (62)

in terms of which we can write

�−1∂μ� = 1
2∂μζabσ

ab (63)

with (55) and (56) used throughout the computations.
Given that the Lorentz transformations can have param-

eters that are local, we must expect some form of gauge
potential and a spinor covariant derivative. By defining the
gauge potential as the spinorial connection �μ transforming
as

�μ → �(�μ − �−1∂μ�)�−1, (64)

it is easy to prove that the object

∇μψ = ∂μψ + �μψ (65)

transforms as a covariant derivative of the spinor. Hence the
conditions ∇μγν = 0 can be expanded into

�μ = 1
2�i jμσ i j, (66)

where

�i
jμ = eν

j e
i
σ

(
�σ

νμ − eσ
a ∂μea

ν

)
,

�σ
αν = gσρ

2
(∂αgρν + ∂νgαρ − ∂ρgαν ),

as the most general (non-conformally-invariant) decomposi-
tion of the spinor connection. With this the final task described
in Sec. II is taken care of. The above discussion is a general
introduction to spinor fields and their covariant derivatives.
We will now try to see how Hestenes matrix spinors fit into
this scheme.

To begin our analysis, let us consider the Hestenes matrix
spinor given in (15). The first column is of course the spinor ψ

itself. The third column is γ 5ψ in the standard representation
(9). As for the second and fourth columns, their meaning may
look more cumbersome, but in fact they are merely γ 5iγ 2ψ∗
and iγ 2ψ∗ still in the standard representation. That is, any

column is obtained from the first after applying the discrete
transformations

ψ → γ 5ψ, (67)

ψ → iγ 2ψ∗ (68)

or combinations thereof. There is a straightforward physical
meaning for this: Starting from the first column describing a
matter state of defined eigenspin, the third column is just the
corresponding antimatter state of same eigenspin. The second
and fourth columns are then the matter and antimatter states of
inverted eigen-spin. It is rather important to notice two things:
First, despite having deduced everything from the Hestenes
formalism given in standard representation, if we were to
write the spinor (15) in the form (note that each entrance
separated by a “|” corresponds to a column matrix)

	 = (ψ | γ 5iγ 2ψ∗ | γ 5ψ | iγ 2ψ∗), (69)

this way of writing the spinor would be representation in-
dependent. Second, because we have γ 2(γ μ)∗γ 2 = γ μ and
[γ 5, σi j] = 0, it is easy to prove the following:

γ 5ψ → �γ 5ψ, (70)

iγ 2ψ∗ → �iγ 2ψ∗, (71)

from which one can conclude that

	 → �	 (72)

in general. In polar form (16), because ρ and β are real scalars,
the transformation law is inherited entirely by R in the form
R → �R showing that this is just what we have for Lorentz
transformations. Therefore the covariant derivative of 	 is the
same as ψ and

∇μ	 = ∂μ	 + �μ	 (73)

in the most general situation. From the polar form we have

∇μ	 = [
1
2 (∂μ ln ρ + i∂μβ ) + (�μ − R∂μR−1)

]
	, (74)

where the first set of parentheses contains the covariant
derivatives of the two real scalars and we have an additional
expression in parentheses whose meaning is still not obvious.
However, we can prove that it is perfectly covariant. To see
this, consider that as mentioned above, R → �R, and com-
bine it with (64); putting things together yields

�μ−R∂μR−1 → �(�μ − �−1∂μ�)�−1 − �R∂μ(R−1�−1)

= ��μ�−1 − ∂μ��−1 − �R∂μR−1�−1

−�RR−1∂μ�−1 = ��μ�−1

−�R∂μR−1�−1 = �(�μ − R∂μR−1)�−1 (75)

as the transformation law of the �μ − R∂μR−1 object, there-
fore demonstrating its manifest covariance. Hence we may
define

�μ − R∂μR−1 = −Rμ, (76)

in terms of which

∇μ	 = [
1
2 (∇μ ln ρ + i∇μβ ) − Rμ

]
	, (77)

now clearly manifestly covariant in each term separately.

023140-6



RELATIVISTIC DYNAMICAL INVERSION IN … PHYSICAL REVIEW RESEARCH 4, 023140 (2022)

As a further step, we will see how Rμ decomposes in terms
of simpler expressions. Because in general we have

R∂μR−1 = 1
2∂μξ abσab (78)

for some ξ ab, and given (66), we can define

∂μξi j − �i jμ ≡Ri jμ (79)

so that

Rμ = 1
2 Ri jμσ i j (80)

with Ri jμ real tensorial quantities. In fact, as

1
2 Ri jμσ i j → �

(
1
2 Ri jμσ i j

)
�−1, (81)

the linear independence of the sigmas and (61) give

Rabμ → Ri jμ(�−1)i
a(�−1) j

b, (82)

showing that Ri jμ has the transformation law of a real tensor.
Moreover, the velocity and spin vectors, (17) and (18), satisfy
the following geometrical identities:

∇μvi = Ri jμv j, ∇μsi = Ri jμs j . (83)

The spinorial covariant derivative is then

∇μ	 = (∇μ ln
√

ρ + iγ 5∇μβ/2 − 1
2 Ri jμσ i j

)
	 (84)

in the most general circumstance. In fact, (84) is valid in any
coordinate system, including curved space-times.

B. Introduction of torsion

Because we are dealing with generic space-times in which
gravity can be present, it may be instructive, for the sake of
completeness, to also allow torsion. The Dirac matter field
equations in this case are [16]

iγ μ∇μψ − XWμγ μγ 5ψ − mψ = 0 (85)

with Wμ being the torsion and X being the torsion-spin cou-
pling constant. These equations can be written in the Hestenes
formalism by employing the polar form and keeping track of
the transformation of the spinor under ψ → γ 5ψ and ψ →
iγ 2ψ∗; eventually, it is easy to verify that

iγ μ(∇μ ln
√

ρ + iγ 5∇μβ/2)	 − i

2
Ri jμγ μσ i j	

− XWμγ μγ 5	 − m	γ 3γ 5 = 0 (86)

as the Dirac equation for the Hestenes spinor. Equation (86) is
manifestly covariant as is straightforward to see.

C. Electromagnetic interaction and inversion
of the gauge potential

Having written the Dirac equation in curvilinear coordi-
nates for curved space-times in the presence of torsion, the
only missing interaction for single-particle systems is elec-
trodynamics. In order to add it, we will employ the concept
of gauge covariance. When gauge covariance is present, it
simply means that complex objects transform according to
an additional phase eiqξ . One may then wonder, What is the
effect of such a phase shift on the Hestenes spinor? In order

to answer this question, we have to consider that the discrete
transformations ψ → γ 5ψ and ψ → iγ 2ψ∗ lead to

γ 5ψ → eiqξ γ 5ψ, (87)

iγ 2ψ∗ → e−iqξ iγ 2ψ∗, (88)

where now the phase is no longer the same for the second and
fourth columns. As a consequence, the full transformation for
the gauge phase would be

	 → 	 exp (−qξγ 1γ 2), (89)

which can be easily checked. We notice that the phase ulti-
mately acts as if it were a rotation around the third axis.

The covariant derivatives have to be updated with the gauge
potential, which transforms as

Aμ → Aμ − ∂μξ, (90)

ensuring that

∇μ	 = ∂μ	 − qAμ	γ 1γ 2 (91)

is the gauge covariant derivative of the matrix spinor. Thence
the matrix spinor in polar form now reads

	 = √
ρ exp (iβ/2)R exp (qξγ 1γ 2), (92)

so that upon introduction of the object

q(∂μξ − Aμ)≡Pμ (93)

proven to be a real vector, one can write

∇μ	 = (∇μ ln
√

ρ + iγ 5∇μβ/2 − 1
2 Ri jμσ i j

)
	 + Pμ	γ 1γ 2

(94)

as can be easily checked.
Finally, the Dirac equations are

iγ μ(∇μ ln
√

ρ + iγ 5∇μβ/2)	 − i

2
Ri jμγ μσ i j	

+ iPμγ μ	γ 1γ 2 − XWμγ μγ 5	 − m	γ 3γ 5 = 0, (95)

which are the most general equations, despite the explicit
appearance of γa in them, which are determined only within
a proper Lorentz transformation. So it cannot be overempha-
sized that the vectors γa need not be associated a priori with
any coordinate systems, but are simply a set of arbitrarily cho-
sen orthonormal vectors, much in the same way in which γ2

is used to define the procedure of charge conjugation without
implying any dependence on the second axis of the coordinate
system.

The advantage of writing (95) is straightforward: Because
the spinor is in the form of an invertible matrix, it is immediate
to invert the Dirac equation with respect to the electrody-
namic potential. Then, solutions of the Maxwell equations can
be obtained very easily. Before describing the inversion, let us
massage a bit (95), so that one can more easily compare it
with (22), by multiplying it to the right with γ 2γ 1. Hence,
after collecting all the terms, we end up with

γ μ
(∇μ ln

√
ρ − i(∇μβ/2 + XWμ) − 1

2 Ri jμσ i j)	γ 2γ 1

+ Pμγ μ	 − m	γ 0 = 0. (96)
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The inversion is then[
γ μ

(∇μ ln
√

ρ − i(∇μβ/2 + XWμ) − 1
2 Ri jμσ i j)	γ 2γ 1

− m	γ 0
]
	−1 = −γ μPμ, (97)

showing that it is possible to write Pμ in terms of something
that does not contain Pμ itself. Because Pμ is the only instance
containing Aμ, the electrodynamics is inverted. Since we will
not be considering torsion in this paper, hereinafter we choose
X = 0 in (95) and (97).

By following the procedure of [17] one can see that

Pη = mc cos βvη + h̄

2
[(∂μβ + Bμ)vμsη

− (∂μβ + Bμ)sμvη − (∂μ ln ρ + Rμ)sαvνε
μανη], (98)

where Rμ = R a
μa and Bμ = 1

2εμανηRανη. It is noteworthy that
in order to calculate the vector potential from (98), one needs
to get the functions β, sμ, vμ, Bμ, and Rμ using the matrix
spinor 	. We notice that according to (98), Pη is a real func-
tion, so taking (93) written as Aμ ≡∂μξ − Pμ/q shows that Aη

is also real, and therefore Aη describes a real electrodynamic
potential, as expected. This seems to indicate that Pη is the
momentum of the particle. This can definitively be accepted
by considering that in the case of plane waves (94) reduces to

∇μ	 = Pμ	γ 1γ 2, (99)

which is equivalent to

∇μψ = −iPμψ (100)

as can be seen in Ref. [18]. This is precisely the definition
of the quantum mechanical momentum. A final confirmation
comes from its macroscopic limit, taken when the spin is
approximated to zero. This implies that sη and β vanish [5].
In this case, Pη → mcvη, which is precisely the kinematic
momentum. This also shows that the full momentum is given
by the simplest kinematic momentum with two corrections.
One is the multiplication by cos β, and it accounts for the
internal dynamics [5]; the other is the addition of a term that
is linear in h̄ and as such accounts for quantum mechanical
corrections. In fact, it can be proven that these corrections
are precisely the quantum potential of the de Broglie–Bohm
theory extended to the relativistic case with spin [19].

Also, from the Dirac equation we extract the following
constraints on the velocity ρv/ and spin ρs/ vector densities:

∇μ(ρvμ) = 0, (101)

∇μ(ρsμ) = −2mc

h̄
ρ sin β. (102)

Equations (98), (101), and (102) correspond to the covariant
generalization of (26), (27), and (25). Note that, based on
the discussion of Sec. III, an important feature of CRDI is
that it can be straightforwardly connected with the quaternion
formalism of Gürsey (see also Ref. [20]).

In what follows we will apply (98), (101), and (102) to con-
struct a family of analytical solutions to the Dirac equation in
spherical coordinates in order to illustrate the power of CRDI.

V. ILLUSTRATIONS OF THE METHOD

In this section, we start with the Dirac representation of
the gamma matrices in Cartesian coordinates and will trans-
form them to spherical coordinates using tetrads. Moreover,
in addition to presenting an example for the method, we will
also choose the example to be representing a specific physical
situation that we find extremely intriguing, namely, the one in
which the YT angle is taken to generate a spin-orbit coupling.

A. YT angle and spin-orbit coupling

As a prototype of the matrix spinor we will consider the
structure originally considered in Refs. [21,22], and that is

	 = √
ρei β

2 BUe−γ2γ1εt/h̄, (103)

B = e(− sin φγ1γ0+cos φγ2γ0 ) w
2 , (104)

U = e−γ2γ1φ/2e−γ3γ1 arctan[tan( β

2 ) tanh( w
2 )]eγ2γ1φ/2, (105)

where φ = arctan y/x, β = arctan g, w = arctanh f , g =
g(x, y, z), and f = f (x, y, z). This form is general in the sense
that it contains the module ρ and the chiral angle β as two
physical degrees of freedom. The other degrees of freedom are
the real constant ε, the rotation U , and the boost B. In anal-
ogy to the classical Kepler problem, we consider an electron
moving in a circular orbit on the x-y plane; such a feature is
described by the boost. Since the electron is in an accelerated
frame, there is also a precession of the spin vector, which
is given by U . The specific form of the rotation matrix is a
consequence of the conservation of total angular momentum
due to its dependence on the rapidity tanh( w

2 ), which follows
from the spin-orbit coupling. Thus the physically relevant
potentials derived from the matrix spinor (103) are the ones
for which the total angular momentum is conserved.

1. 2D time-independent solution

Here, we briefly discuss the relationship of (103) with the
solutions presented in Ref. [3]. Let us consider a solution with
g = 0 in (103) so that there will be no rotation in the γ3γ1

plane, only in the γ2γ1 plane. The dynamics is thus confined
to the x-y plane, with the system possessing cylindrical sym-
metry, since the boost is also along the γ2γ0 direction (i.e., the
y direction). The matrix spinor (103) then becomes

	 = √
ρe−γ2γ1φ/2eγ2γ0

arctanh f
2 eγ2γ1φ/2e−γ2γ1

εt
h̄

= √
ρe(− sin φγ1γ0+cos φγ2γ0 ) arctanh f

2 e−γ2γ1
εt
h̄ , (106)

which is just a boost with rapidity w = arctanh f (r), in which
r =

√
x2 + y2, along the azimuthal direction in the x-y plane

together with the rotation around the ẑ axis. It is notewor-
thy that the matrix spinor (106) corresponds to a solution
with zero orbital angular momentum L. The generalization
to include it (i.e., by considering the corresponding quantum
number l �= 0) can be done by simply multiplying (106) on
the right with a matrix proportional to (re−γ2γ1φ )−l as we have
previously described in Ref. [3]. Moreover, the matrix spinor
(106), with the addition of the orbital angular momentum
term, corresponds to the one underlying all stationary solu-
tions presented in Ref. [3].
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2. 3D time-independent solution

In the 3D case we work with the matrix spinor (103) in its
full glory. In order to have nonzero YT angle, from (35) we
require that rμsμ �= 0 and rμrμ − sμs

μ �= 0. In keeping with
this requirement, there is a particular form of f and g that
leads to the ground state of the hydrogen atom; that is,

f = sin θ√
1 + X 2

, g = cos θ

X
, (107)

for constant X = √
1 − Z2α2/Zα, where Z is the atomic

charge and α is the fine-structure constant. Note that the func-
tion f is nothing but the magnitude of the electron’s velocity.
In order to generalize this solution, let us consider X = X (r)
a general real function of r alone. Moreover, let us make the
following choice of density:

√
ρ = κ

e−G/2

r
(X 2 + | cos θ |2)1/4, (108)

for some function G = G(r) and where κ is a normalization
constant.

Substituting this into (103) gives

	 = √
ρei β

2 BUe−γ2γ1(εt/h̄−φ/2), (109)

B = e(− sin φγ1γ0+cos φγ2γ0 ) arctanh( f )
2 , (110)

U = e−γ2γ1φ/2e−γ3γ1�/2, (111)

� = arccos

( |sin θ |2X + |cos θ |2√X 2 + 1√
|cos θ |2 + X 2

)
, (112)

from which we extract the spinor

ψ = κe− iεt
h̄ − G

2√
2r

⎛
⎜⎜⎜⎜⎜⎜⎝

√
X + √

1 + X 2

0

i cos θ√
X+√

1+X 2

i eiφ sin θ√
X+√

1+X 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(113)

that solves the Dirac equation for the vector potential A0 =
−V (r) and �A = 0 calculated from (26) and (27), as long as
the constraints

dX

dr
= −2

√
X 2 + 1

r

(
r
[ ε

h̄c
+ V

h̄

]√
1 + X 2 − 1 − mc

h̄
rX

)
,

(114)

dG

dr
= 2

(
mc

h̄

√
1 + X 2 − X

[
ε

h̄c
+ V

h̄

])
(115)

are imposed on X and G. The constraints imposed on X and G
are needed so that the second equation in (25) is satisfied while
the first equation is obeyed regardless. Before proceeding,
let us analyze the definition (108). Such a form of density
is not arbitrary; it is given by (34). There is another way of
getting the density that relies solely on the matrix part of
(109). Consider a general function

√
ρ. By looking at the

matrix ei β

2 BUeγ2γ1φ/2 one notes that all of its columns are

multiplied by the term (X 2 + | cos θ |2)−1/4. Given that the po-
tential has spherical symmetry, the components of ψ (i.e., the
first column of 	) must be written as the product of a radial-
only function and an angular-only function [e.g., ζ (r)η(θ, φ)].
Since the only term that cannot be written in such a way is the
overall multiplying function (X 2 + | cos θ |2)−1/4, one must
choose

√
ρ = ζ (r)(X 2 + | cos θ |2)1/4 for some real function

ζ (r) which must obey the constraint limr→∞ ζ (r) = 0. The
specific form of ζ (r) chosen here is inspired by the spinor in
the ground state of the hydrogen atom.

The equation for X can be cast into the form of a Riccati
differential equation. For instance, upon making the substitu-
tion X = −csch(2arctanh[Z (r)]), we get

dZ

dr
= Z (r)2(c2m − cV − ε)

ch̄
− c2m + cV + ε

ch̄
+ 2Z (r)

r
,

(116)

dG

dr
= Z (r)(c2m − cV − ε)

ch̄
+ c2m + cV + ε

ch̄Z (r)
. (117)

Hence a solution of the equation for Z (r) that is guaranteed to
exist should be substituted into the equation for G, which is
then integrated.

We next move from Cartesian to spherical coordinates. To
do that, we first notice that (108) and (113) retain their current
form in spherical coordinates since the spinors transform as
scalars under a change of coordinates. To build the tetrads, we
start by considering the metric tensor

gtt = 1, grr = −1, gθθ = −r2, gφφ = −r2|sin θ |2,
(118)

giving connections

�θ
θr = �

φ

φr = 1

r
, (119)

�r
θθ = −r, (120)

�r
φφ = −r|sin θ |2, (121)

�
φ

φθ = cot θ, (122)

�θ
φφ = − cos θ sin θ (123)

that are used in the calculation of the components of the
spin connection �μ. Next we use the unitary operator U =
e−γ2γ1φ/2e−γ1γ3θ/2 in order to construct the gamma matrices on
the manifold γν (note that γt = γ0 in this case),

γr = Uγ3U†, γθ = rUγ1U†, γφ = r| sin θ |Uγ2U†,

(124)

γ r = Uγ 3U†, γ θ = 1

r
Uγ 1U†, γ φ = 1

r| sin θ |Uγ 2U†,

(125)

as can be easily checked. From ea
νγa = γν we extract the

tetrads

e0
t = 1, (126)

e1
r = cos φ sin θ, e2

r = sin φ sin θ, (127)
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e3
r = cos θ, (128)

e1
θ = r cos θ cos φ, e2

θ = r cos θ sin φ, (129)

e3
θ = −r sin θ, (130)

e1
φ = −r sin φ sin θ, e2

φ = r cos φ sin θ, (131)

with dual

et
0 = 1, (132)

er
1 = cos φ sin θ, er

2 = sin φ sin θ, (133)

er
3 = cos θ, (134)

eθ
1 = 1

r
cos θ cos φ, eθ

2 = 1

r
cos θ sin φ, (135)

eθ
3 = −1

r
sin θ, (136)

eφ

1 = − sin φ
1

r sin θ
, eφ

2 = cos φ
1

r sin θ
. (137)

It turns out that the above tetrads give a zero spin connection.
Also, with the matrix spinor (103) we calculate the following
normalized components of the spin (18) and velocity (17):

s1 = (−X + √
X 2 + 1) sin θ cos θ cos φ√
| cos θ |2 + X 2

, (138)

s2 = (−X + √
X 2 + 1) sin θ cos θ sin φ√
| cos θ |2 + X 2

, (139)

s3 = | sin θ |2X + | cos θ |2√X 2 + 1√
| cos θ |2 + X 2

, (140)

v0 =
√

X 2 + 1√
| cos θ |2 + X 2

, v1 = − sin θ sin φ√
| cos θ |2 + X 2

, (141)

v2 = sin θ cos φ√
| cos θ |2 + X 2

, (142)

where we recall that X = X (r) everywhere.
Let us pause now and consider for a moment the compo-

nents of the spin vector. By making the definition

V = (−X + √
X 2 + 1) sin θ cos θ√

| cos θ |2 + X 2
,

with range 0 � V � (
√

X 2 + 1 − X )/
√

2 + 4X 2, the spin
components (138), (139), and (140) then take the simple form

s1 = V cos φ, s2 = V sin φ, s3 =
√

1 − V2, (143)

which, for the case of the H atom (i.e., if X is constant), is just
the parametrization of the upper hemisphere of a sphere of
radius (

√
X 2 + 1 − X )/

√
2 + 4X 2; the geometrical interpre-

tation of this result is straightforward: Considering (143) as a
parametric equation with parameters φ and θ , it can be inter-
preted that the spin vector precesses, with its tip constrained
to move on the upper hemisphere of a sphere whose radius is a
function of X . Hence the chosen matrix spinor (103) success-
fully describes the motion of an electron whose velocity lies

on the x-y plane and whose spin vector wobbles on a surface
in which the polar angle lies in the region 0 � θ � π/4 (this
is because V attains its maximal value for θ = π/4). In the
general case with X = X (r), the aforementioned geometrical
picture does not strictly hold (meaning that while the spin
vector still precesses, its wobbling will lie on a more general
surface). It is noteworthy that the above interpretation is based
on the idea that the spinor is a quantum field, which can be
seen as some sort of fluid, the streamlines of which are the
electron trajectories in the given electromagnetic field. Hence
it is in this context that the idea of motion is applied, given
that everything is time independent.

With the tetrads one can make the transition from the
tangent space to the manifold with sμ = saeμ

a and vμ = vaeμ
a ,

giving the following nonzero components:

sr = cos θ
√

X 2 + 1√
|cos θ |2 + X 2

, sθ = − sin θX

r
√

| cos θ |2 + X 2
, (144)

vt =
√

X 2 + 1√
|cos θ |2 + X 2

, vφ = 1

r
√

|cos θ |2 + X 2
. (145)

The Ri jμ tensor is calculated as the solution to the equation

2R∂μR−1 − �i jμσ i j = Ri jμσ i j (146)

with R = BU above.
Let us illustrate here a very powerful property of the pro-

posed method, which is the possibility of easily writing the
solution to the Dirac equation in any frame of reference.
First, one should remember that the solutions to the Dirac
equation are written in a frame of reference at rest located
at the origin of any chosen coordinate system. For instance, in
the case of the hydrogen atom, this is the frame of the proton
(to be precise, it should be the rest frame of the center of mass
of the proton-electron system, but because the proton is much
more massive than the electron, the center of mass and the
proton are approximately the same). The electron is seen by
the observer as undergoing a motion composed of translations
and rotations that can easily be inferred from the matrix spinor
(103). Here, we show how to change from the aforementioned
frame of reference to the rest frame of the electron. The rest
frame of the electron is the one for which the spinor takes a
form such that the spatial part of the velocity operator is zero.
The attentive reader might complain that the change of these
two systems might be meaningless because in this transfer we
move from one inertial frame to a noninertial frame. Such
a reader would in principle be right, as in fact there would
have to be difficulties in treating noninertial frames with the
standard methods. However, our method here instead is fully
covariant, and as such it is naturally equipped to treat noniner-
tial as well as inertial frames with equal ease, the information
about the acceleration of the frame being contained in the spin
connection.

In order to change reference frames we first have to cal-
culate the new tetrads. The tetrads are calculated with the
following simple formulas:

et
a = 1

4 Tr (R−1γ 0Rγa), eθ
a = 1

4 Tr (R−1γ θRγa), (147)

eφ
a = 1

4 Tr (R−1γ φRγa), er
a = 1

4 Tr (R−1γ rRγa), (148)
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whose components are

et
0 =

√
X 2 + 1√

|cos θ |2 + X 2
, et

2 = sin θ√
|cos θ |2 + X 2

,

er
1 = sin θX√

|cos θ |2 + X 2
, er

3 = cos θ

√
X 2 + 1√

|cos θ |2 + X 2
,

eθ
1 = cos θ

r

√
X 2 + 1√

|cos θ |2 + X 2
, eθ

3 = − sin θX

r
√

|cos θ |2 + X 2
,

eφ

0 = 1

r
√

|cos θ |2 + X 2
, eφ

2 = 1

r sin θ

√
X 2 + 1√

|cos θ |2 + X 2
,

as can be straightforwardly seen.
The electron rest frame is the one for which the spinor-

tetrad system gives the velocity va = (1, 0, 0, 0) (this can
always be done so long as the spinor is nonsingular, that
is, if the matrix spinor has a determinant not equal to zero
identically in general). In this frame we are also going to pick
the spin aligned along the third axis (which can always be
done). In this case then, the matrix spinor is simply

	RF = √
ρei β

2 1e−γ2γ1(εt/h̄−φ/2), (149)

which is just the matrix spinor (103) in which the replacement
R → 1 is made. Moreover, the components of the spin con-
nection describing the acceleration of the frame are

�02r = − sin θXX ′
√

X 2 + 1(| cos θ |2 + X 2)
, (150)

�13r = sin θ cos θX ′
√

X 2 + 1(| cos θ |2 + X 2)
, (151)

�02θ = cos θ
√

X 2 + 1

|cos θ |2 + X 2
, (152)

�13θ = X
√

X 2 + 1

|cos θ |2 + X 2
− 1, (153)

�01φ = − sin θ
(|sin θ |2X + |cos θ |2√X 2 + 1

)
|cos θ |2 + X 2

, (154)

�03φ = |sin θ |2 cos θ
(
X − √

X 2 + 1
)

| cos θ |2 + X 2
, (155)

�12φ = |sin θ |2X
√

X 2 + 1 + |cos θ |2(X 2 + 1)

|cos θ |2 + X 2
, (156)

�23φ = sin θ cos θ
(
X

(√
X 2 + 1 − X

) − 1
)

|cos θ |2 + X 2
. (157)

Therefore the Dirac spinor in the rest frame

ψRF = 	RF

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ = κe− G

2 − itε
h̄ + iφ

2√
2r

⎛
⎜⎜⎜⎜⎝

√√
|cos θ |2 + X 2 + X

0√√
|cos θ |2 + X 2 − X

0

⎞
⎟⎟⎟⎟⎠,

(158)

along with the tetrads and the spin connection and the vector
potential At = −V (r), obeys the Dirac equation

ih̄eμ
a γ a

(
∂μ + 1

2�i jμσ i j
)
ψRF − q et

aγ
aAtψRF

− mcψRF = 0 (159)

as long as conditions (114) and (115) are satisfied. It is note-
worthy that with the choice of functions (107), if one fixes
θ = π/2 (i.e., a projection onto the x-y plane), the matrix
spinor (103) takes the same form as (106).

The solution (158) was first presented in Refs. [21,22].
The most intriguing property of this spinor is that it is not
separable, even though the potential has spherical symmetry.
In Ref. [21] it was not explicitly shown, but instead spec-
ulated that the nonseparability of the Dirac spinor was a
consequence of the frame in which the solution was written.
In this paper we were able to prove the connection between
nonseparability and the reference frame. In fact, if we com-
pare (158) with the spinor (113), which is the solution to the
Dirac equation for the same potential albeit in another frame
of reference, we note that variable separability is restored.
Hence we can conclude that the symmetries of equations are
not always inherited by their solutions. In fact, here we just
proved that such symmetries, and, in particular, the property
of variable separability for the Dirac equation, are frame
dependent.

The cases just discussed represent physical situations in-
volving the presence of the YT chiral angle and the fact that
it is strictly connected to spin-orbit coupling effects. We will
investigate the inverse statement, that is, that the absence of
spin-orbit coupling should only be possible when the YT
chiral angle is zero.

B. Zero YT angle and spin-orbit decoupling

A zero YT angle implies, from (35), that rμsμ = 0. With
this constraint in mind, let us choose the matrix spinor in the
form

	 = √
ρBUe−γ2γ1

εt
h̄ , (160)

B = e(− sin φγ1γ0+cos φγ2γ0 ) arctanh f
2 , (161)

U = e−γ2γ1φ/2e−γ3γ1θ/2e−γ3γ1π/4. (162)

In comparing the matrix spinor (103) against (160) we note
that, apart from

√
ρ and the fact that β is gone, the only change

is in the rotation matrix U .
As an illustration, let us choose f = −√

1 − a2, with a >

0 and a < 1 being constant. Moreover, let us make the follow-
ing choice of density:

√
ρ = κ (1 − a2)1/4

e−G/2

√
2a r

√
sin θ

, (163)
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where κ is a normalization constant. Given these choices,
from (160) we extract the Dirac spinor

ψ = √
ρe− iεt

h̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1+a)1/2e− iφ
2 (cos θ

2 −sin θ
2 )

2

(1+a)1/2e
iφ
2 (sin θ

2 +cos θ
2 )

2

i(1−a)1/2e− iφ
2 (sin θ

2 +cos θ
2 )

2

− i(1−a)1/2e
iφ
2 (cos θ

2 −sin θ
2 )

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(164)

as is easy to see. The most remarkable thing about this spinor
is that, from (26) and (27) (RDI is used here because we are
still in Cartesian coordinates) we extract the vector potential

A0 =
√

1 − a2h̄G′(r) + 2aε
c − 2cm

2a
, (165)

A1 = sin φ( − 2
√

1 − a2cm + h̄G′(r))
2a

, (166)

A2 = −cos φ( − 2
√

1 − a2cm + h̄G′(r))
2a

, (167)

A3 = 0, (168)

where r =
√

x2 + y2 + z2, thus implying that in order to re-
move the spin precession, it was necessary to add a magnetic
field. Moreover, with the matrix spinor (160) we calculate the
normalized components of the velocity (17) and spin (18),
which are given by

s0 = 0, s1 = − cos θ cos φ, (169)

s2 = − cos θ sin φ, s3 = sin θ, (170)

v0 = 1

a
, v1 = −

√
1 − a2

a
sin φ, (171)

v2 =
√

1 − a2

a
cos φ, v3 = 0. (172)

Note that the matrix spinor (160), the Dirac spinor (164),
and the vector potential above satisfy the Dirac equation in
Cartesian coordinates. Moreover, it is noteworthy that the
spin vector no longer precesses, instead always pointing in
the −θ̂ direction. Hence, by making the YT angle equal to
zero, the spin-orbit coupling causing the precession of the spin
vector also vanishes.

We next change to spherical coordinates. The form of the
spinor (164) remains the same, while both γa and Aa are
transformed via the tetrads as usual. Given that all the com-
ponents of the spin connection �i jμ with the above tetrads
and connection coefficients are zero, the calculation of the
components of the Ri jμ tensors is straightforward, and the
nonzero components are

R13θ = cos φ, R23θ = sin φ, (173)

R12φ = −1. (174)

We can transform the above tensors to the spacetime manifold
as

Rμνρ = ei
μe j

νRi jρ,

whose components are

Rrθθ = −r, (175)

Rrφφ = −r| sin θ |2, Rθφφ = −r2 cos θ sin θ, (176)

as can be easily checked. Finally, the components of the ve-
locity and spin vectors in spherical coordinates are

sθ = −r, (177)

vt = 1

a
, vφ =

√
1 − a2

a
r sin θ, (178)

with vector potential

At = h̄

√
1 − a2G′(r)

2a
− cm

a
+ ε

c
, (179)

Aφ = r sin θ ( − 2
√

1 − a2cm + h̄G′(r))
2a

, (180)

and as is easy to see, the density (163) is a solution to the
Dirac equation in polar form.

Let us next check some particular solutions. We first con-
sider the limit a → 1. In doing so, (164) and (178)–(180)
become

ψ = √
ρe− imc2t

h̄

⎛
⎜⎜⎜⎜⎜⎜⎝

e− iφ
2 (cos θ

2 −sin θ
2 )√

2

e
iφ
2 (sin θ

2 +cos θ
2 )√

2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

(181)

and

vt = 1, vφ = 0, (182)

At = 0, Aφ = r sin θ h̄G′(r)

2
, (183)

where we also assumed ε = mc2 for simplicity. In the same
limit the density (163) would go to zero, but the density is
defined only up to a normalization constant. In our case, to
avoid the degeneracy of this limit, we will choose the density

√
ρ = κe−G/2

r
√

2 sin θ
, (184)

thus preserving the fact that we still have a solution of
the Dirac equations. This special solution for the magnetic-
solenoid field is quite interesting. For a discussion of solutions
to the Dirac equation in similar fields, see Ref. [23] and
references therein.

As another particular solution, let us consider again (164)
but now take the function G to be

G = − 2aα√
1 − a2

ln
(cmr

h̄

)
+ 2

√
1 − a2cmr

h̄
+ aiμ0r

2Rh̄
.

(185)

This particular form of the function G leads to the following
components of the vector potential:

At = −αh̄

r
, Aφ = 1

4
sin θ

(
iμ0r

R
− 4αh̄√

1 − a2

)
. (186)
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Thus such a choice leads to the analytical solution for the
ground state of the hydrogen atom along with a magnetic field
having components

Br = iμ0 cos θ

2R
− 2αh̄ cos θ√

1 − a2r
,

Bθ = αh̄ sin θ√
1 − a2r

− iμ0 sin θ

2R
(187)

corresponding to a superposition of a magnetic-solenoid field
such as the one at the center of a circular loop of radius R
carrying a current i and a magnetic field generated by the
current density J having only the following component in the
azimuthal direction:

Jφ = − 2αh̄ sin θ√
1 − a2r2

. (188)

Incidentally, by making the substitution

G = iμ0

2Rh̄
r

into the Dirac spinor (181) and the vector potential (183)
we arrive at the analytical solution for the case with only
the constant and homogeneous magnetic field, i.e., the field
one gets by putting α = 0 in (187). It is noteworthy that this
solution corresponds to the three-dimensional generalization
of the inhomogeneous magnetic field solution given in Ref. [3]
as can be easily seen if one writes the correspondingly mag-
netic field in Cartesian coordinates and chooses θ = π/2 (i.e.,
z = 0).

VI. DISCUSSION

In a comparison between the matrix spinors (109) and
(160), the most noteworthy features of these solutions to the
Dirac equation are the effects the removal of the YT angle
has on the physics of the problem. The first notable effect is
the change from a purely spherically symmetric electric field
in (109) to a combination of a spherically symmetric electric
field with magnetic fields in (160). The second, even more
remarkable, effect is that the removal of the YT angle leads to
the absence of spin-orbit coupling. That the latter is the case
can be clearly inferred from the structure of the matrix spinor
as discussed below.

Regarding the first effect, one can note the following. For
all localized solutions found using RDI, a matrix spinor with
zero YT angle always led to a solution of the Dirac equa-
tion for an electron interacting with a magnetic field. It is
well known that for the case of a magnetostatic field there
exists a Foldy-Wouthuysen transformation in closed form
that exactly diagonalizes the Dirac Hamiltonian [24], thus
allowing a full separation into states of positive and negative
energy (or charge). This is consistent with the interpretation
that a nonzero YT angle corresponds to a mixture of positive
and negative energy states, even more so in the hydrogen-
like atom case in which the YT angle depends on θ . The
form of the matrix spinor (109) and the observation that for
stationary electric fields no closed-form Foldy-Wouthuysen
transformation exists (yet) which exactly diagonalizes the
Dirac Hamiltonian led us to speculate that, in such cases, a
nonzero YT angle in the matrix spinor is necessary. However,

the matrix spinor (160) proves that one can still have an inho-
mogeneous static electric field for a matrix spinor having zero
YT angle with the expense of also adding a magnetic field.
These findings suggest a deep connection between positive
and negative energy states’ separability, magnetic fields, and
the YT angle.

Finally, in the case of the second effect, it seems to be
connected with the geometric features of the matrix spinors
(109) and (160). It was previously mentioned that the function
f is the magnitude of the electron’s velocity. In the case of the
matrix spinor (109) for constant X (i.e., the spinor correspond-
ing to the ground state of a hydrogenlike atom) the spatial
components of the velocity four-vector v/ live on the circles
of latitude of a sphere of radius Zα as can be inferred from
their dependence on sin θ . In contrast, for the matrix spinor
(160) the electron’s velocity is everywhere constant and has its
direction opposite to the hydrogenlike atom case. Moreover,
from the definition of the spin vector (18) we see that the
considerable change in the rotation matrix U from (109) to
(160) will greatly influence the form of s/. This implies that
one effect of the YT angle is to tilt the spin vector as can be
seen by the appearance of the term tan(β/2) in the rotation
matrix (105), making it dependent on the boost matrix in the
hydrogenlike case, in contrast to the electric-plus-magnetic-
field case, where the rotation matrix (162) is such that Uγ3U †

end up commuting with B in (18); such a feature can easily
be inferred from (138), (139), (140), (169), and (170). It is
this commutativity between the boost matrix and the rotation
matrix that led us to conclude that there is a connection be-
tween a nonzero YT angle and the spin-orbit coupling. The
fact that the aforementioned features are so straightforwardly
identifiable in the matrix spinor, while being hidden in the
standard Dirac spinor, highlights the advantages of the CRDI
technique in the geometrical interpretation of solutions to the
Dirac equation.

VII. CONCLUSION

We have written RDI in explicitly covariant form, thus
putting forward the more general CRDI technique, which is
the main result of this work. We then showed how it can
be used to perform a nontrivial change of reference frames
with respect to which a given matrix spinor is given that can
potentially be a powerful tool in the quest for novel solutions
to the Dirac equation. In addition, a whole family of normal-
izable analytic solutions to the Dirac equation is presented.
More specifically, we find exact solutions for the case of a
Dirac electron in the presence of a magnetic field as well as a
solution consisting of a combination of a spherically symmet-
ric electric field with magnetic fields. Giving the connection
of the YT angle β with quantum states having particle and
antiparticle admixtures as well as with the dynamics of the
spinor’s internal degrees of freedom (also known as spin),
its role in the solutions to the Dirac equation is yet to be
fully elucidated. Hence an important feature of the solutions
presented here is that they offer some hints of a possibly
deep connection between β, magnetic fields, and spin-orbit
coupling for normalizable Dirac spinors. In fact, we propose
the following conjecture: The only localized (normalizable)
solutions to the Dirac equation having no spin-orbit coupling
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are those having zero YT angle. Therefore proving (or dis-
proving) this conjecture would be an important contribution
in better understanding the geometrical role of β in the Dirac
spinor.

Another application of CRDI would be the construction
of solutions of the Dirac equation in the presence of both
electromagnetic and gravitational fields. For instance, such
solutions could be used to study the so-called traversable

wormholes, i.e., stable wormholes that do not require exotic
matter [25–27]. The recently proposed solution describing a
macroscopic (that is, allowing for humans to travel through
it) traversable wormhole [28] is noteworthy. Also, solutions
to the Dirac equation in the presence of gravitational fields
could be used in order to test the prediction that matter inter-
acting with a quantized gravitational field should lead to an
entangling interaction between massive objects [29].
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