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Neural-network quantum states for periodic systems in continuous space
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We introduce a family of neural quantum states for the simulation of strongly interacting systems in the
presence of spatial periodicity. Our variational state is parametrized in terms of a permutationally invariant
part described by the Deep Sets neural-network architecture. The input coordinates to the Deep Sets are
periodically transformed such that they are suitable to directly describe periodic bosonic systems. We show
example applications to both one- and two-dimensional interacting quantum gases with Gaussian interactions,
as well as to 4He confined in a one-dimensional geometry. For the one-dimensional systems we find very precise
estimations of the ground-state energies and the radial distribution functions of the particles. In two dimensions
we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional
methods.
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I. INTRODUCTION

In recent years, the field of machine learning has
seen tremendous progress in various applications of high-
dimensional data analysis such as image recognition, lan-
guage processing, or classification tasks [1,2]. A large portion
of this progress is achieved by incorporating a priori known
structure in the data into the learning algorithm. In this way, it
is possible to reduce the set of possible solutions of a learning
algorithm to the relevant ones [3–5]. Because of the omnipres-
ence of symmetries in modern physics, the application of
these techniques to computational physics has become a very
active field of research that has produced promising results,
especially in the area of many-body quantum physics [6]. In
this field, since the early research work, considerable attention
has been devoted to the problem of approximating ground-
state wave functions of spin systems through artificial neural
networks. These representations, known as neural-network
quantum states (NQSs) [7], can encode highly entangled wave
functions [8–10] and are routinely used to study correlated
quantum systems with discrete degrees of freedom [11–18],
often improving upon existing state-of-the-art results.

More recently, NQSs have been extended to study ground-
state properties of fermionic systems in continuous space,
introducing deep neural-network architectures that by design
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satisfy the Pauli exclusion principle. The focus of these ap-
proaches has been primarily on relatively small atomic and
molecular systems [19–24], as well as nuclear physics [25,26].
These applications have already shown significant improve-
ments over more traditional, physics-inspired wave functions.
However, for these tools to also become a compelling, more
accurate alternative ab initio approach for the prediction of
electronic structure properties, and bulk properties in differ-
ent phases of matter, it is crucial that they are extended to
periodic systems. While progress in this direction has been
already realized in the context of lattice-based NQSs [27],
an open methodological issue is the extension of continuous-
space NQSs to efficiently encode periodicity, while preserving
other fundamental symmetries, most importantly particle-
permutation invariance.

The ability to treat strongly correlated periodic systems
in continuous space is of chief importance in a wide range
of condensed-matter physics, nuclear physics, and quantum
chemistry problems. Emblematic examples of strongly inter-
acting periodic systems in condensed matter are the electron
gas [28], the bulk of bosonic and fermionic helium [29–31],
supersolids [32,33], and high-pressure hydrogen [34,35]. In
nuclear physics, the matter comprising the interior of neutron
stars is typically modeled as a periodic system of strongly in-
teracting protons and neutrons [36–38]. It has to be noted that
neural networks have been recently employed to reduce the
associated finite-size effects, extrapolating quantum Monte
Carlo calculations of neutron matter and unitary gas to the
thermodynamic limit [39].

In all these problems, physics-driven wave functions com-
bined with quantum Monte Carlo methods have played a
crucial role in the understanding of key phenomena, including
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superfluidity, superconductivity, and crystallization. Notable
examples of these wave functions include Jastrow correlators
[40] applied to a mean-field Slater determinant, which may in-
clude backflow correlations [41–43]. Despite their success at
describing key physical phenomena, these ansatz state stems
are not systematically improvable and typically require sig-
nificant adjustments when used on systems different from the
one they were originally designed for.

In this paper, we introduce continuous-space NQSs based
on a periodic transformation of the single- and two-body
coordinates of particles that are suitable for the description of
periodic systems of interacting bosons. These NQS variational
states are by construction permutation invariant with respect
to particle exchanges. We demonstrate their flexibility in solv-
ing nonrelativistic Hamiltonians, including those relevant for
liquid helium and soft Gaussian cores, for different densities
and system sizes.

II. METHODS

Throughout this paper we will consider the many-body
Hamiltonian of N interacting particles in d-dimensional con-
tinuous space, given by

H = T + V = − h̄2

2m

N∑
i=1

∇2
i + V (x), (1)

where T and V denote the kinetic and potential energy, re-
spectively. The continuous position variable x = (x1, . . . , xN )
denotes the set of all N single-particle positions xi ∈ Rd . We
will confine the single-particle positions to a finite box of
length L, equipped with periodic boundaries, such that the
methods introduced hereinafter are well suited for the study
of the bulk properties of a variety of quantum systems as well
as intrinsically periodic structures such as solids.

A. Periodic boundary conditions

In the presence of periodic boundary conditions (PBCs),
the bare single-particle coordinates are not well suited as input
to our variational ansatz, since they do not reflect the periodic-
ity of the simulation cell. The wave function must be invariant
under the translation of a single particle by a primitive
lattice vector L j = Le j , i.e., ψα (x1, . . . , xi + L j, . . . , xN ) =
ψα (x1, . . . , xi, . . . , xN ) (e j in our case denotes the Euclidean
standard basis vector of Rd ) [44].

To respect the boundary conditions, we propose to map the
single-particle coordinates to a truncated L-periodic Fourier
basis [45]

xi �→
(

sin

(
2πk

L
xi

)
, cos

(
2πk

L
xi

))K

k=1

= x(K )
i ∈ Rd·2K . (2)

Here, sin(xi ) and cos(xi ) mean applying the trigonometric
functions componentwise to the vector xi. Note that x(K )

i is
invariant under the translation xi �→ xi + L j , and thus the
whole wave-function ansatz is invariant.

In order to respect the periodicity of the simulation box
also in the computation of interparticle distances, we will use

dsin(xi, x j ) = ‖ L
2 sin( π

L ri j )‖ with ri j = xi − x j as a surrogate
for the ordinary Euclidean distance (d (xi, x j ) = ‖xi − x j‖) in
the variational ansatz. Distances in the potential energy will
be computed using the minimum image convention [46].

B. Variational ansatz

We construct the variational wave-function ansatz ψα as
a product of a short- and a long-range part. The former is
determined by requiring that the diverging behavior of the
potential V (x) at short interparticle distances is compensated
by the kinetic energy contribution of the wave function, such
that we obtain a finite energy contribution:

lim
r→0

(∇2ψ (r)

ψ (r)
+ V (x)

)
< ∞. (3)

This is called Kato’s cusp condition and constitutes a bound-
ary condition for the given many-body system [47].

The long-range part is parametrized by a neural network
based on the Deep Sets (DSs) architecture, which builds on
the fact that a function f (x1, . . . , xN ) is invariant under per-
mutations of its input if and only if it can be decomposed as
follows [48,49]:

f (x1, . . . , xN ) = ρ(Pool[φ(x)]), (4)

where x ∈ RN×d is the matrix of all single-particle coordi-
nates xi. The two vector functions ρ(x) and φ(x) depend on
the function f (x1, . . . , xN ) [φ(x) is applied row-wise to x].
The pooling operation Pool[φ(x)] denotes the mixing of the
feature vectors yi := φ(xi ) such that the output is permuta-
tionally invariant with respect to the particle index (see Fig. 1)
[48]. Examples of such pooling operations are the sum pool-
ing Pool(y) = ∑

i yi and log sum exp pooling (L�E ), defined
as L�E (y) = log(

∑
i exp[yi]), which is a continuous version

of the max pooling.
The function φ can be seen as an encoding of the single-

particle coordinates into an appropriate feature space. The
pooling collects the relevant features to produce a global
feature vector that is then fed to the function ρ, which cor-
relates the combined encodings. To have a flexible variational
ansatz applicable to a variety of different systems, the func-
tions φ and ρ are parametrized by dense feed-forward neural
networks. This ansatz can then be shown to be a universal
approximator for the permutation-invariant function class.

The complete neural variational ansatz reads

ψα (x1, . . . , xN ) =
∏
i< j

exp

[
−1

2
u2[dsin(xi, x j )]

]

× exp[ρ(Pool[φ(x(K ) )])], (5)

where u2(r) is chosen such that Eq. (3) holds, x(K ) is a matrix
storing all periodized single-particle coordinates defined in
Eq. (2), and we denote the set of all variational parameters
used to parametrize the functions u2, ρ, and φ by α.

As an alternative to the single-particle coordinates x(K )
i it

is also possible to input the periodized two-body distances
between the particles dsin(xi, xj) = ‖ L

2 sin( π
L ri j )‖ and then

pool over all indices i, j. This facilitates the learning proce-
dure substantially, though at the price of higher computational
complexity of the DSs.
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Deep Sets

FIG. 1. Illustration of the Deep Sets neural-network architecture used in this paper. Starting from the left, we have a simulation box in
d spatial dimensions of extent L. The single-particle coordinates xi ∈ Rd are transformed to the truncated Fourier basis in Eq. (2), i.e., each
single-particle coordinate is mapped to a (2K · d)-dimensional vector. These periodic encodings are then fed to the DSs architecture, defined
by the neural networks φ and ρ and a pool function. The output of the DSs architecture is the logarithm of the variational wave function. The
top row depicts the number of feature vectors and their dimensionality at each stage of the ansatz.

Note that in either case (single- or two-body coordinates)
the functional form of this ansatz, e.g., transforming the input
coordinates individually followed by a pooling of all the re-
sulting embeddings, allows it to process an arbitrary number
of inputs. This feature allows us to train a small system with
only a few particles and then use the obtained optimized wave
function as an initialization for the variational ansatz for a
bigger system, containing more particles. This is only possible
if the architecture for the bigger system is exactly the same
as for the smaller system, thereby preventing the introduction
of additional variational parameters. Consequently, if a big
number of parameters is needed to describe the big system,
they must already be introduced for the small system size.
This has, however, not shown to be a limiting factor in our
applications.

The reutilization of an already optimized structure in a
context that is similar to, but goes beyond, the one in which
it was originally trained, is called transfer learning [50] and
has been applied to different neural-network architectures
and tasks in classical machine learning fields such as image
recognition [51], as well as in quantum physics such as iden-
tifying phase transitions in spin systems or scaling up ab initio
computations on spin systems to larger system sizes [52–54].
The most prominent architecture for which transfer learning is
easily applicable is the convolutional neural network (CNN).
It consists of convolutional layers that are parametrized by
filters of fixed size (fixed number of parameters) that move
across the whole input to produce a coarse-grained version
of data. The size of the input does not matter since the filter
explores the whole input, and therefore after being trained on
a small system the filters can be applied to a much larger one
subsequently.

C. Optimization

The Rayleigh-Ritz principle establishes a lower bound on
the expectation value of the Hamiltonian 〈ψ |H |ψ〉/〈ψ |ψ〉 ≡

E [ψ] � E0, allowing us to formulate a variational principle
on the ground-state wave function

ψ0(x) = arg min
ψ

E [ψ], (6)

where H |ψ0〉 = E0|ψ0〉. The exact evaluation of the energy
expectation value is not computationally feasible using de-
terministic integration methods, and we resort to sampling
techniques commonly adopted in quantum Monte Carlo. The
energy is estimated by accumulating samples of the local
energy Eloc(x) = 〈x|H |ψα〉/〈x|ψα〉, where the coordinates x
are drawn from the probability distribution |ψα (x)|2 using the
Metropolis-Hastings algorithm.

The variational principle allows us to obtain progressively
better approximations to the ground-state wave function by
minimizing E [ψα]. The gradient components of the energy
with respect to αi (the ith component of the variational pa-
rameter α) are given by

Gi = 2

( 〈∂iψ |H |ψ〉
〈ψ |ψ〉 − E [ψ]

〈∂iψ |ψ〉
〈ψ |ψ〉

)
(7)

and can be efficiently estimated through Monte Carlo sam-
pling. The variational parameters are updated as δα =
−ηS−1G, where η is the learning rate and

Si j = 〈∂iψ |∂ jψ〉
〈ψ |ψ〉 − 〈∂iψ |ψ〉〈ψ |∂ jψ〉

〈ψ |ψ〉〈ψ |ψ〉 (8)

is the Fisher-information matrix. This approach, known as the
stochastic-reconfiguration (SR) algorithm [55,56], is equiva-
lent to performing imaginary-time evolution in the variational
manifold, and it is related to the natural gradient descent
method [57] in unsupervised learning.
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FIG. 2. DMC (solid lines) and DSs (solid circles) two-body
density distributions of N = 40 particles in one dimension (1D)
interacting through the Aziz potential.

III. RESULTS

To test the expressiveness of the proposed variational
ansatz in Eq. (5) and, in particular, its compatibility with
the periodic transformation in Eq. (2) and the cusp condition
in Eq. (3), we examine its performance first on a system of
4He in d = 1 dimension interacting via a Lennard-Jones-like
potential. Subsequently, we show the versatility of the ansatz
by applying it also to a cuspless system of Gaussian cores in
d = 1 and d = 2 spatial dimensions.

A. Helium

The interparticle interactions of 4He particles in d = 1
spatial dimension are described by an effective two-body
potential which qualitatively resembles a Lennard-Jones in-
teraction. Here, we adopt the Aziz-79 potential [58–60].

V (x) = ε
∑
i< j

VAziz[d (xi, x j )]. (9)

For large distances the potential decays rapidly, while for
short distances the potential resembles a Lennard-Jones po-
tential exhibiting a ∝ r−12 divergence. To enforce the cusp
condition Eq. (3), this divergence needs to be compensated.
It is easy to verify that the McMillan factor u2(r) = −( b

r5 )
fulfills Eq. (5), where we treat b as a variational parameter.

For this system we focus on one density only (D =
0.3 Å−1) for different system sizes (N = 10, 20, 40). We com-
pare the energies obtained from the ordinary DSs model with
periodized single-particle coordinates, the DSs with two-body
coordinates dsin(xi, xj), a traditional Jastrow ansatz, and dif-
fusion Monte Carlo (DMC) [61] computations. Additionally,
we plot the two-body density distributions yielded by the
optimized DSs and DMC wave functions (Fig. 2). The results
are reported in Table I. The energies from the single-particle
coordinate DSs are clearly inferior to the ones obtained by
any of the other methods for N > 10. We suspect that the
main limitation of this ansatz is the optimization procedure

TABLE I. Energy per particle E/N for (d = 1)-dimensional 4He.
Displayed are three different system sizes (N = 10, 20, 40) at D =
0.3 Å−1 obtained variationally by a DSs architecture with single- and
two-body coordinates, by a Jastrow ansatz, and by means of DMC.

Deep Sets
N Deep Sets two-body Jastrow DMC

10 7.272(7) 7.269(5) 7.273(9) 7.269(3)
20 7.391(9) 7.387(3) 7.424(9) 7.375(2)
40 7.456(3) 7.403(4) 7.406(5) 7.404(3)

rather than its representative power. To support this claim,
we display two training curves for N = 40 obtained with the
single-particle DSs in Fig. 3. In one case the training is started
with a random initialization, while in the other case we use
the optimized variational state of N = 10 particles as initial-
ization to the ansatz for the N = 40 system. Not only does the
pretrained state reach lower energies with fewer optimization
steps, but also the obtained energy estimate for the ground
state is considerably lower for the pretrained state.

In contrast to the single-particle case, the two-body DSs
do not seem to have any representative or optimization prob-
lem. Note that since the variational ansatz contains two-body
coordinates in the cusp part, the computational complexity
is not increased when using two-body coordinates. The ob-
tained energies are close to the ones obtained from DMC
and consistently lower than the Jastrow energies (or within
statistical error). Also the two-body density distribution fits
the DMC results almost perfectly, in particular, also at large
interparticle distance (see Fig. 2). Note the strong oscillations
in the two-body distribution, indicating that two particles can-
not come closer to each other than the Aziz core. Since in one
spatial dimension the particles cannot go around each other, a
crystallinelike structure emerges.

0 200 400 600 800 1000
Iteration step

7.50

7.75

8.00

8.25

8.50

8.75

9.00

E
/N

pretrained

random

FIG. 3. Convergence pattern of the DSs architecture for N = 40
helium particles in 1D. Blue shows the energy for a variational ansatz
initialized with the optimized weights for the same system at N = 10
particles. Orange shows the energy for randomly initialized weights.
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FIG. 4. Left: DMC (solid lines) and DSs (solid circles) two-body density distributions of N = 50 particles in 1D at different densities
interacting through the Gaussian potential. Right: the two-body density distribution of N = 64 particles in 2D at different densities interacting
through the Gaussian potential.

B. Gaussian cores

The Hamiltonian of the Gaussian cores is given by Eq. (1)
with a Gaussian interaction potential [62]

V (x) = ε
∑
i< j

exp

[
−d (xi, x j )2

2σ 2

]
. (10)

Since the interaction does not exhibit divergent behavior in
the zero-distance limit, we take u2 = 0 in Eq. (5), and the
variational ansatz solely consists of the DSs architecture.

We again benchmark the energies obtained with this NQS
approach with variational energies given by DMC computa-
tions and a traditional Jastrow ansatz. Additionally, we plot
the two-body density distributions yielded by the optimized
DSs and DMC wave functions (Fig. 4).

For the one-dimensional system we studied two differ-
ent system sizes (N = 20, 50) at three different densities
(D = N

L = 1, 2, 3) with ε = 2, σ = 2−1/2. As can be seen in
Table II the two variational energies obtained from DSs and
Jastrow as well as the DMC energies lie within statistical
error of each other. We also obtain almost perfect agreement
for the radial distribution functions from the DSs and DMC,
indicating that our variational state appropriately describes
the ground state of the system. An advantage of the DSs

TABLE II. Energy per particle E/N for (d = 1)-dimensional
Gaussian cores. Displayed are two different system sizes (N =
20, 50) and three different densities (D = 1, 2, 3) obtained variation-
ally by a DSs architecture and a Jastrow ansatz and by means of
DMC.

N D Deep Sets Jastrow DMC

20 1.0 1.2373(4) 1.2373(1) 1.2371(1)
20 2.0 2.9223(5) 2.9224(1) 2.9222(1)
20 3.0 4.6445(7) 4.6447(1) 4.6446(2)
50 1.0 1.2402(5) 1.2408(1) 1.2390(4)
50 2.0 2.9286(3) 2.9310(1) 2.9280(2)
50 3.0 4.6557(1) 4.6597(1) 4.6553(2)

architecture over the Jastrow ansatz is that the computational
complexity only scales as O(N ) for one evaluation of the
ansatz, rather than O(N2) as is the case for the Jastrow ansatz.

In the case of two spatial dimensions (Table III), we com-
pare the same three models (DSs, Jastrow, and DMC) for two
different system sizes (N = 32, 64) at three different densities
(D = N

L2 = 4/9, 1/9, 1/16) with h̄2/(mεσ 2) = 1/30. Instead
of single-particle coordinates, we use the periodized two-body
distance between the particles as input to the DSs. We find that
the DSs and Jastrow are again very close. However, the DMC
computations yield smaller energies. The energy difference is
notable in the radial distribution function. In particular, for
the density D = 1/9, the DSs cannot reproduce the oscillating
behavior visible in the DMC result. This might indicate a
limitation of the expressiveness of our variational ansatz.

C. Influence of network architecture

For all the computations we used the multilayer perceptron
architecture (MLP) with one and two hidden layers, respec-
tively, as parametrization for the functions φ and ρ of Eq. (1).
We chose the L�E pooling and sum pooling for single- and
two-body input, respectively. The nonlinearity in the neurons
of the MLPs was chosen to be the Gaussian error linear unit

TABLE III. Energy per particle E/N for (d = 2)-dimensional
Gaussian cores. Displayed are two different system sizes (N =
32, 64) and three different densities (D = 4/9, 1/9, 1/16) obtained
variationally by a DSs architecture and a Jastrow ansatz and by
means of DMC.

Deep Sets
N D two-body Jastrow DMC

32 4/9 1.01707(4) 1.02020(3) 1.01355(4)
32 1/9 0.08864(5) 0.08895(2) 0.08546(4)
32 1/16 0.02545(5) 0.02549(1) 0.02434(1)
64 4/9 1.01621(3) 1.02661(4) 1.01429(6)
64 1/9 0.08905(3) 0.08994(2) 0.08519(4)
64 1/16 0.02573(5) 0.02580(2) 0.02443(5)
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FIG. 5. Final energy of training the DSs with single-particle
input for the two-dimensional Gaussian core model with N = 32
particles at a density D = 1/9 as a function of the width of the neural
networks used. The horizontal lines correspond to the Jastrow and
DMC results, respectively.

(GELU) activation [63] as a differentiable surrogate for the
rectified linear unit (ReLU) activation.

Increasing the number of hidden layers in either of the two
MLPs has not increased the accuracy of the results. However,
increasing the width of the layers has a significant impact
on the quality of the results, in particular, for the (d = 2)-
dimensional Gaussian cores. In Fig. 5 we show the training
curves and final energies for N = 32 particles with density
D = 1/9, interacting via a Gaussian potential in two spatial
dimensions. As an ansatz the single-particle DSs are used
with K = 10 [see Eq. (2)]. Whereas for <128 neurons per
layer, the ordinary Jastrow ansatz has an edge over the DSs,
our NQS approach starts to outperform the Jastrow ansatz
for wider layers. We find the same behavior if we use a
two-body neural-network-based Jastrow ansatz, in the form
of

∑
i< j φ[sin( π

L ri j )], where φ is a neural network whose
output dimension is 1. This comparison indicates that the
Deep Sets approach starts to capture correlations beyond the
reach of a two-body Jastrow ansatz. The DMC energies do
not seem to be reachable by simply increasing the size of the
layers, indicating the necessity of refinements to the current
architecture.

IV. DISCUSSION

We have introduced an extension of NQSs to systems in
continuous space and with intrinsic spatial periodicity. The
approach we discuss in this paper is specialized to bosonic
degrees of freedom, and it is based on permutationally equiv-
ariant states based on Deep Sets, featuring periodicity under
spatial translations. We have successfully applied our periodic
DSs neural quantum state to one-dimensional Gaussian cores,
confined to a periodic simulation cell, and showed that the ob-
tained system properties typically improve upon traditionally
used wave functions based on two-body Jastrow correlators,
and are in excellent agreement with exact diffusion Monte
Carlo results. An advantage of the NQS-based approach is

that it can be applied to different systems without signifi-
cant modifications. Specifically, using the exact same ansatz
(up to modifying the input) to model interacting 4He in one
spatial dimension, we observe excellent agreement with exist-
ing state-of-the-art methods. Modeling the helium system is
considerably more difficult than modeling the Gaussian cores
because of the rapidly diverging potential at short distances.
For the case of two spatial dimensions, we obtain energies
that are marginally better than the ordinary Jastrow ansatz. We
show that the energy estimate can be improved by increasing
the width of the neural networks; however, we are not able to
reach the DMC energies even with the largest network used.

An important result for the optimization of our variational
state is that the optimized ansatz for small systems can very
well be used as an initialization for larger systems (known as
transfer learning). However, it remains to be seen whether for
even larger systems than were presented in this paper, a higher
number of parameters is necessary to capture all the relevant
correlations between the particles. If so, these parameters
must already be present in the training of the small system
when applying the transfer learning method above, potentially
making the training of small systems less efficient.

Concluding, we showed that our NQS approach respects
the periodicity of the simulation cell as well as the permuta-
tion invariance of the wave function with respect to particle
exchange, while still yielding high-precision results. It can
be envisioned that the current architecture is altered to better
account for the locality of the interaction potential as well
as further relevant symmetries of the problem. We suspect
that a more flexible ansatz than DSs will help systematically
improve the accuracy in the two-dimensional case, and we
leave this aspect for future studies. Also the architecture might
be used to model fermionic systems, which ordinarily are
modeled as the product of a symmetric and an antisymmetric
part. The DSs can provide the symmetric component of such
an ansatz.
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