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Analytic solution to pseudo-Landau levels in strongly bent graphene nanoribbons
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Nonuniform elastic strain is known to induce pseudo-Landau levels in Dirac materials. But these pseudo-
Landau levels are hardly resolvable in an analytic fashion when the strain is strong because of the emerging
complicated space dependence in both the strain-modulated Fermi velocity and the strain-induced pseudomag-
netic field. We here analytically characterize the solution to the pseudo-Landau levels in strongly bent graphene
nanoribbons by treating the effects of the nonuniform Fermi velocity and pseudomagnetic field on equal footing.
The analytic solution is detectable through angle-resolved photoemission spectroscopy and allows quantitative
comparison between theories and various experimental signatures of transport, such as the Shubnikov-de Haas
oscillation in the complete absence of magnetic fields and the negative strain-resistivity resulting from the valley
anomaly. The analytic solution can be generalized to various Dirac materials and will shed light on the related
experimental explorations and straintronics applications.
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I. INTRODUCTION

Landau levels [1] act as the canonical response of the or-
bital motion of electrons to the applied magnetic field and are
the reason behind so many macroscopic quantum phenomena,
such as the quantum Hall effect [2], quantum oscillations
[3], and quantum anomalies [4–11]. The formation of Landau
levels in Dirac materials such as graphene or Weyl semimet-
als, intriguingly, does not necessarily rely on magnetic fields
as long as an appropriate elastic strain is applied [12–27].
Such strain displaces the Dirac cones in a space-dependent
fashion analogous to magnetic fields and can thus induce
low-energy pseudo-Landau levels that support quantum oscil-
lations [28,29] as well as the chiral anomaly and the associated
chiral magnetic effect [30,31]. In the simplest and probably
the most flexible Dirac material, graphene, the experimentally
implementable strain can be as large as 27% [32,33], and may
be of various patterns, such as bend [34–37], twist [33,38],
and other simple uniaxial ones [39,40].

Unfortunately, the pseudo-Landau levels induced by the
aforementioned strain patterns [33–40] are dispersive and thus
are not directly interpretable by the standard Dirac theory
established for the ordinary dispersionless Landau levels. For
weak strain, the pseudo-Landau level dispersions are often
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overlooked for simplicity until a recent study [40] analytically
and nonperturbatively solves such dispersions in a uniaxi-
ally strained graphene nanoribbon with a nonuniform Fermi
velocity but a uniform pseudomagnetic field. Nevertheless,
understanding how pseudo-Landau levels disperse in the pres-
ence of strong strain is a much more complicated problem
remaining largely unexplored. This is presumably because the
pseudo-Landau levels are expected to occupy a large portion
of the Brillouin zone with increased strain; and the standard
procedure solving pseudo-Landau levels using the linearized
Hamiltonians [15,16,20–22,34,36,39,40] at the Brillouin zone
corners consequently fails.

In this paper, we present an analytic approach to solve the
pseudo-Landau levels in bent zigzag graphene nanoribbons
under strong strain. In Sec. II, we briefly review two com-
monly used and analytically solvable Dirac models for weakly
bent graphene nanoribbons and demonstrate the applicability
as well as the limitations of such models. In Sec. III, we show
that the graphene nanoribbon unit cell [Fig. 1(a)] is effectively
a Su-Schrieffer-Heeger model [41] with strain-modulated bi-
partite hoppings, giving rise to a zero-energy topological
domain wall mode [Fig. 1(b)], which is actually the zeroth
pseudo-Landau level by nature. Linearizing the lattice model
in the vicinity of the domain wall (i.e., the pseudo-Landau
level guiding center) into an analytically solvable Schrödinger
differential equation, we obtain the pseudo-Landau level dis-
persions in a wide range of the Brillouin zone. In Sec. IV,
we elucidate that the superiority of the lattice model over
the commonly used Dirac models lies in the real-space lin-
earization, which treats the strain-modulated Fermi velocity
and the strain-induced pseudomagnetic field on equal footing.
In Sec. V, we derive the dispersions of the pseudo-Landau
levels for more realistic graphene models with the Semenoff
mass, the intrinsic spin-orbit coupling, the electric fields, and
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FIG. 1. (a) Schematic plot of an undeformed zigzag graphene
nanoribbon. The yellow shadow marks the unit cell with bipartite
hoppings in aj ↔ bj and bj ↔ aj+1. The blue (red) arrows mark the
nearest- (next-nearest-) neighbor vectors. δx(y) is the x(y)-direction
spacing between two neighboring sites belonging to the same sub-
lattice. (b) Schematic plot of a fan-shaped graphene nanoribbon
circularly bent from a rectangular graphene nanoribbon of length
L and width W . Note that the central arc of the bent nanoribbon
coincides with the length L of the undeformed nanoribbon, while
the width of the bent nanoribbon is identical to its counterpart in the
absence of strain. The bend may create in the bulk a domain wall
(dashed) at which the bipartite hoppings are identical. The localized
domain-wall state is the zeroth pseudo-Landau level |ψ0(y)〉 by na-
ture. Inset: The circular bend is parameterized by the curvature of
the central arc (orange curve), denoted as λ, such that the radius of
curvature of the central arc is λ−1.

the next-nearest-neighbor hoppings. The resolved analytic
dispersions enable us to explore, in Sec. VI, the transport
resulting from the pseudo-Landau levels, exemplified by the
Shubnikov-de Haas oscillation in the absence of magnetic
fields and the negative strain-resistivity arising from the valley
anomaly. Section VII concludes the paper and addresses the
potential generalization of our real-space approach to a variety
of Dirac materials.

II. DIRAC MODELS IN THE WEAK STRAIN LIMIT

We begin by briefly reviewing the commonly used Dirac
models of strained graphene [15,16,20–22,34,36,39,40] with
a focus on their applicability and limitations. In the frame-
work of nearest-neighbor tight-binding theory, the graphene
Hamiltonian reads

H =
∑
R,i

tib
†
R+αi

aR + H.c., (1)

where aR (bR+αi ) annihilates an electron on the A (B) sublat-
tice at position R (R + αi) with the nearest-neighbor vectors
(α1,α2,α3) = (

√
3

2 ax̂ + 1
2 aŷ,−

√
3

2 ax̂ + 1
2 aŷ,−aŷ) [blue ar-

rows, Fig. 1(a)] measured by the lattice constant a = 1.42 Å;
and ti is the electron hopping parameter between the site
located at R and its ith nearest-neighboring site at R + αi.
In the absence of strain and anisotropy, the nearest-neighbor
hopping parameters are set as ti = t = −2.8 eV [42].

External elastic strain alters the positions of lattice sites and
thus spatially modulates the hopping parameters. In graphene,
such a strain effect is incorporated through the empirical for-
mula

ti → t exp

[
− g

|αi + u(R + αi ) − u(R)| − |αi|
|αi|

]
, (2)

where u(r) is the displacement of the lattice site located at
position r and g = 3.37 is the Grüneisen parameter [43]. In the
weak strain limit, the displacement field u(r) varies slowly on
the lattice scale, i.e., |αi · ∇u| � |u|. As a common practice
[13–15,21,29,34,39,40], the empirical formula [Eq. (2)] of
the strain-modulated hopping can then be approximated by
expanding to the linear order of ∇u as

ti → t

(
1 − g

αi · ∇u · αi

|αi|2
)

= t

(
1 − g

a2
α

μ
i uμνα

ν
i

)
, (3)

where uμν = 1
2 (∂μuν + ∂νuμ) is the strain tensor. The strain

tensor should take its value at the position R + 1
2αi such

that the hoppings along αi and −αi are the same. For con-
stant strain tensors, the hopping parameters determined by
Eq. (3) incorporate no space dependence and the translational
symmetry is preserved. By the Fourier transform (ar, br)T =
n−1/2

uc
∑

k eik·r(ak, bk)T , where nuc is the number of unit cells,
we obtain the Bloch Hamiltonian

Hk =
∑

i

ti cos(k · αi )σ
x −

∑
i

ti sin(k · αi )σ
y, (4)

which derives from H = ∑
k ψ

†
k Hkψk with the sublattice ba-

sis ψk = (ak, bk)T , where the Pauli matrices σ x,y are defined.
According to Eq. (3), ti → t for weak strain. Therefore, the
low-energy theory of Eq. (4) can be obtained by lineariz-
ing Hk in the vicinity of the Brillouin zone corners kη =
(η 4π

3
√

3a
, 0) as

hη
q = h̄vη

x

[
qx + η

g(uyy − uxx )

2a

]
σ x + h̄vη

y

(
qy + η

guxy

a

)
σ y,

(5)
where η = ±1 is the valley index; (vη

x , vη
y ) = 3ta

2h̄ (−η, 1) is the
Fermi velocity; and q = k − kη is measured from the corners
of the Brillouin zone. Since hη

q is in a Peierls substitution
form, we can define a strain-induced vector potential �Aη =
η

gh̄
2ae (uyy − uxx, 2uxy). Though hη

q is obtained by assuming
constant strain, we argue that it is in fact a legitimate theory
even if the strain tensor incorporates space dependence be-
cause the strain only varies slowly. In particular, for the weak
circular bend, the displacement field reads u = λ(xy,− 1

2 x2)
[29], where λ is the curvature of the central arc of the bent
nanoribbon [inset, Fig. 1(b)]. Then hη

q explicitly reads

hη
q = h̄vη

x

(
qx − η

g

2a
λy

)
σ x + h̄vη

y qyσ
y, (6)

where a strain-induced uniform pseudomagnetic field can be
defined as �Bη = ∇ × �Aη = η

gh̄
2eaλẑ. The spectrum of hη

q com-
prises of the dispersionless Dirac-Landau levels,

Eη
n = ±

√
2n

∣∣e �Bη h̄v
η
x v

η
y

∣∣ = ± 3
2 t

√
ngλa, (7)

where the integer n is the Landau level index. Equation (7)
is often referred to as the pseudo-Landau levels to be dis-
tinguished from those Landau levels produced by ordinary
magnetic fields. Unfortunately, Eq. (7) is only capable of
capturing the numerical band structure, which is obtained
by diagonalizing H [Eq. (1)] under the strain modulation
t1,2 = t (1 − 3

4 gλy) and t3 = t [Eq. (3)] right at the projected
Brillouin zone corners kx = ±kD with kD = 2π

3
√

3a
[Figs. 2(a)
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FIG. 2. Strain-induced pseudo-Landau levels in a bent graphene
nanoribbon of width W = 192 nm and bend curvature λ =
0.642 μm−1. (a), (c) and (b), (d) plot the energy bands in vicinity
of the left and right projected Brillouin zone corners, respectively.
(a), (b) Numerically calculated energy bands (solid) with theoreti-
cally predicted flat pseudo-Landau levels [Eq. (7)] overlaid as the
red dotted curves. The color scheme represents the average of the
position operator ȳ. The insets better illustrate the marked energy
bands whose flat sectors are blocked due to the degeneracy at the
charge neutrality point. (c), (d) The same numerical energy bands
overlaid by the slightly dispersive pseudo-Landau levels [Eq. (9)]
as the red solid curves. The blue curves mark the projected Dirac
cones εDC

max.

and 2(b)] because hη
q merely encloses the terms linear in the

momentum q and the strain tensor uxx = λy (note uxy = uyy =
0). To improve the match, we include additional higher order
terms O(qyqx ), O(uxxqx ), and O(uxxqyqx ) to hη

q and obtain a
modified Dirac theory

hη
q = h̄ṽη

x

(
qx − η

g

2a
λy

)
σ x + h̄ṽη

y qyσ
y, (8)

where the renormalized Fermi velocities are ṽη
x = vη

x (1 −
3
4λgy) and ṽη

y = vη
y (1 + 1

2ηqxa − 1
4λgy − 3

8ηqxaλgy), but the
pseudomagnetic field is intact [cf. Eq. (6)] to the lowest order
of y. The diagonalization of h

η
q is analogous to the Sturm-

Liouville problem analyzed in Ref. [40] and the spectrum of
h

η
q can be analytically solved as

Eη
n (qx ) = ± 3

2 t
√

ngλa
√

1 + 3
2ηaqx, (9)

which indeed better fits the numerical band structure in the
vicinity of the projected Brillouin zone corners [Figs. 2(c)
and 2(d)]. It is worth noting that Eη

n (qx ) only captures the
bulk bands bounded between the two projected Dirac cones
εDC

max = ±h̄ṽη
x (qx − η

g
2aλy)|y=±W/2, while the dispersive en-

ergy bands inside the projected Dirac cones and the flat energy
bands emerging from the projected Dirac points are clearly
originating from the marginal regions as reflected by the aver-
age of the position operator ȳ = ∫

dy ψ∗
nkx

(y) y ψnkx (y), where
ψnkx (y) is the wave function, as illustrated in Figs. 2(c) and

2(d). The real-space position of these energy bands can also
be resolved by the spectral function, which is detailed in the
Appendix.

We mention that Eη
n (qx ) derived from the modified Dirac

Hamiltonian h
η
q can gradually lose its validity when the bend

curvature λ is increased. In fact, the acquisition of h
η
q relies on

two important approximations: (i) a momentum space expan-
sion (with respect to q) of the Bloch Hamiltonian [Eq. (4)] in
the vicinity of the Brillouin zone corners and (ii) a real-space
linearization (with respect to y) of the exponentially varying
strain-modulated hopping [Eq. (2)]. However, a strong strain
inevitably extends the pseudo-Landau levels in the momentum
space and renders the momentum space expansion around the
Brillouin zone corners inadequate. Moreover, the overlooked
higher order terms by the linearization in the real space can
become more important at strong strain. Consequently, a more
sophisticated theory valid for strong strain would be desired
and worthy of investigation.

III. LATTICE MODEL IN THE STRONG STRAIN LIMIT

In Sec. II, we have seen that the Dirac models are only ap-
plicable in the weak strain limit, but the expansion around the
Brillouin zone corners would lose its ground for strong strain
and the additional higher order terms can transform the low-
energy theories to non-Dirac models, where neither the Fermi
velocity nor the pseudomagnetic field can be well-defined. In
the present section, we develop a real-space approach based
on the band topology analysis to derive the dispersions of the
pseudo-Landau levels induced by strong (as well as weak)
circular bend.

For the circular bend lattice deformation [Fig. 1(b)], the
length of the central arc coincides with the nanoribbon length
before bending and the width of nanoribbon is unchanged.
This implies that the azimuthal projection of a chemical
bond alters linearly with the y coordinate, while the radial
projection of the bond is unchanged. Specifically, along the
bonds α1,2, the projections in the azimuthal direction become
x̂ · α1,2(1 + λy). But the bond α3 remains intact. According
to the empirical formula [Eq. (2)], the modulated hopping
parameters are

t1,2 → t exp
{
g
[
1 −

√
3
4 (1 + λy)2 + 1

4

]} ≡ t (y),

t3 → t,
(10)

which preserve the x-direction translational symmetry. We are
thus able to perform the partial Fourier transform (ar, br)T =
N−1/2

uc
∑

kx
eikxx(akx,y, bkx,y)T , where Nuc is the number of unit

cells of the bent graphene nanoribbon [Fig. 1(b)], to obtain
a tight-binding Hamiltonian for the circularly bent graphene
nanoribbon as

H =
∑
kx,y

b†

kx,y+ δy
6

[
2t (y) cos

(
1

2
kxδx

)
+ t ŝδy

]
a

kx,y− δy
6

+ H.c.,

(11)

where δx = √
3a, δy = 3

2 a, and ŝδy is a shift operator sat-
isfying ŝδy akx,y = akx,y+δy . At a given momentum kx, the
nanoribbon tight-binding Hamiltonian [Eq. (11)] becomes
a Su-Schrieffer-Heeger model [41] with intracell hopping
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FIG. 3. Phase diagrams of a bent graphene nanoribbon of a
generic width W . (a) An undeformed nanoribbon with λ = 0. (b) A
moderately bent nanoribbon with λW = 0.263. (c) A critically bent
nanoribbon with λcW = 0.534. (d) A maximally bent nanoribbon
with λmaxW = 0.696. In each panel, the blue curve between the
dashed lines marks the position of the Su-Schrieffer-Heeger domain
wall [Eq. (12)] and the green (orange) patch above (below) the blue
curve labels the topological (trivial) segment of the nanoribbon unit
cell. The topological segments also produce edge states at the charge
neutrality point as indicated by the bold red lines at both the stretched
edge (y = W/2) and the compressed edge (y = −W/2).

2t (y) cos( 1
2 kxδx ) and intercell hopping t . Due to the y depen-

dence of the hopping parameters [Eqs. (10)], for momenta
|kx| � kc = 2

δx
arccos( 1

2 e−g/2), a domain wall can possibly ap-
pear at

l0 = 1

λ

{√
4

3

{
1 + g−1 ln

[
2 cos

(
1

2
kxδx

)]}2

− 1

3
− 1

}
,

(12)
where the two hoppings are the same, while no domain wall
can exist if kc < |kx| � π

δx
, in which case the intercell hopping

is always overwhelmed.
The position of the domain wall has a profound influ-

ence on the band topology of the nanoribbon tight-binding
Hamiltonian [Eq. (11)]. For an undeformed nanoribbon with
λ = 0, the domain wall can only be located within the
nanoribbon at the kx = ±kD. For |kx| > kD (|kx| < kD), the
intercell (intracell) hopping dominates and the unit cell
becomes a topological (trivial) Su-Schrieffer-Heeger chain
with (without) a pair of end modes. It is such end modes
that constitute for the momenta kD � |kx| � π

δx
the well-

known flat zigzag edge states [Fig. 3(a)]. For a moderately
bent graphene nanoribbon with 0 < λ < λc, where λc =
2

W {[ 4
3 (1 + g−1 ln 2)2 − 1

3 ]1/2 − 1} = 0.534W −1, the domain
wall is located within the nanoribbon at the momenta satisfy-
ing k−

max � |kx| � k+
max, where k±

max = 2
δx

arccos{ 1
2 exp[g(1 ∓

3
4λW + 3

16λ2W 2)1/2 − g]}. For a given momentum kx is this
range, the upper (lower) sector of the unit cell is topological
(trivial), giving rise to an end mode and a domain wall mode
at the charge neutrality point [Fig. 3(b)]. The end modes
at all allowed momenta, i.e., k−

max � |kx| � k+
max, constitute

a dispersionless energy band located at the stretched zigzag
edge, while the domain wall modes result in a flat bulk band,
which must be interpreted as the zeroth pseudo-Landau level,
since no other bulk states are expected to be dispersionless.
For the momenta |kx| > k+

max (|kx| < k−
max), the unit cell real-

izes a purely topological (trivial) Su-Schrieffer-Heeger model
[Fig. 3(b)]. Therefore, a pair of flat edge states composed
of Su-Schrieffer-Heeger end modes are expected at k+

max <

|kx| � π
δx

, which corresponds to the momentum-space scope
of the edge state located at the compressed edge. As for
the stretched edge, the ranges of the edge state add up to
k−

max < |kx| � π
δx

. For a critically bent nanoribbon with λ =
λc, the pseudo-Landau levels from the left half and right
half of the Brillouin zone merge at the center, i.e., k−

max = 0;
and the domain wall falls inside the nanoribbon for |kx| �
k+

max [Fig. 3(c)]. The topological end modes on the stretched
edge consequently constitute a flat band traversing the whole
Brillouin zone [Fig. 3(c)]. Such a flat band persists in a maxi-
mally bent nanoribbon with λ increased to λmax = 0.696W −1

[Fig. 3(d)], which corresponds to the maximal bond elonga-
tion ∼27% [32,33].

The Su-Schrieffer-Heeger picture of the unit cell sheds
light on the resolution of the pseudo-Landau levels, i.e., the
spectrum of the nanoribbon Bloch Hamiltonian

Hkx,y =
[

2t (y) cos

(
1

2
kxδx

)
+ t

]
σ x − itδyσ

y d

dy
, (13)

which is related to the nanoribbon tight-binding Hamilto-
nian [Eq. (11)] through H = ∑

kx,y
ψ

†
kx,y

Hkx,yψkx,y with the
sublattice basis ψkx,y = (akx,y−δy/6, bkx,y+δy/6)T . Note that we
have taken the continuum limit in Eq. (11) such that the
shift operator is written as ŝδy ≈ 1 + δy

d
dy . Because of the

complicated space dependence of t (y), analytically solving
the Schrödinger differential equation characterized by Hkx,y

is generally not feasible. But the band topology analysis has
revealed the nature of the zeroth pseudo-Landau level being
the Su-Schrieffer-Heeger domain wall mode, and thus locates
the common guiding center of all pseudo-Landau levels in
the real space, provided that there are no electric fields or
next-nearest-neighbor hoppings, whose effects are detailed
in Secs. V C and V D. Since the pseudo-Landau levels are
well localized states, their dispersions can, in principle, be
accurately approximated by studying the nanoribbon Bloch
Hamiltonian [Eq. (13)] in the vicinity of their common guid-
ing center. We find it more convenient to work with the
momenta kx ∈ [ π

δx
, 3π

δx
] and then maps the resolved dispersions

of the pseudo-Landau levels back to the conventional first
Brillouin zone. Such a manipulation introduces no artifacts
because the legitimate energy bands must have a 2π

δx
period in

kx, even though the nanoribbon Bloch Hamiltonian [Eq. (13)]
seemingly has a 4π

δx
period due to the specific form of the

Fourier transform we have chosen. For the momenta kx ∈
[ π
δx

, 3π
δx

], the position of the domain wall should be rewritten
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as

�0 = 1

λ

{√
4

3

{
1 + 1

g
ln

[
−2 cos

(
1

2
kxδx

)]}2

− 1

3
− 1

}
,

(14)
which can be reduced to Eq. (12) by setting kx → kx + 2π

δx
. In

the vicinity of the domain wall, i.e., the common guiding cen-
ter, the nanoribbon Bloch Hamiltonian [Eq. (13)] is restored
to a standard Dirac Hamiltonian,

hkx,y = �0 (y − �0)σ x − itδyσ
y d

dy
, (15)

where �0 = − t
t (�0 )

dt
dy |�0 = 3

4λgt (1 + λ�0)/[ 3
4 (1 + λ�0)2 +

1
4 ]1/2. Alternatively, such a Dirac Hamiltonian may be written
as a matrix operator

hkx,y =
[

0 −εBâ†

−εBâ 0

]
, (16)

where εB = √
2|�0tδy| is the energy scale. In Eq. (16), â and

â† are the ladder operators defined as

â = 1√
2

(
ξa + d

dξa

)
, â† = 1√

2

(
ξa − d

dξa

)
, (17)

in which we have defined the dimensionless parameter
ξa = (y − �0)/lB with lB = √|tδy/�0 | being the magnetic
length. To solve the spectrum of hkx,y, we adopt the
trial solution |ψn>0〉 = (ζA,n|n〉, ζB,n|n − 1〉)T and |ψ0〉 =
(ζA,0|0〉, 0)T , where |n〉 is defined to be an eigen-
state of the bosonic number operator â†â, satisfying
â†â|n〉 = n|n〉. Explicitly, |n〉 can be written as |n〉 =
(2n√πn!)−1/2 exp(−ξ 2

a /2)Hn(ξa), where Hn(·) is the nth Her-
mite polynomial. It is straightforward to verify that |ψn>0〉
(|ψ0〉) is the eigenvector of hkx,y when ζ 2

A,n = ζ 2
B,n (ζA,0 �= 0).

We here choose ζA,n = ∓1/
√

2, ζB,n = 1/
√

2, and ζA,0 = 1.
And the explicit eigenvectors are

|ψn>0〉 = 1√
2n+1π

1
2 n!

eikxxe− ξ2
a
2

[ ∓Hn(ξa)√
2nHn−1(ξa)

]
,

|ψ0〉 = 1√
π

1
2

eikxxe− ξ2
a
2

[
H0(ξa)

0

]
, (18)

which correspond to the spectra εn>0 = ±εB
√

n and ε0 =
0, respectively. Mapping back to the first Brillouin zone
through kx → kx + 2π

δx
, we obtain the explicit dispersions of

the pseudo-Landau levels:

εn(kx ) = ±3

2
t
√

ngλa 4

√
4

3
− 1

3

1{
1 + g−1 ln

[
2 cos

(
1
2 kxδx

)]}2 .

(19)

Equation (19) is our key result, whose validity is justified
by the good match in a wide range of momenta to the nu-
merical band structure resulting from directly diagonalizing
the nanoribbon tight-binding Hamiltonian [Eq. (11)] for a
maximally bent graphene nanoribbon [Fig. 4(a)]. It is also
worth noting that the derivation of εn(kx ) does not depend on
the specific value of the bend curvature λ. Therefore, Eq. (19)
is in fact applicable for both strong and weak strain. Consis-
tent with our aforementioned analysis, Eq. (19) is defined for

FIG. 4. (a) Band structure of a bent graphene nanoribbon of
width W = 511 nm and maximal bend curvature λmax = 1.36 μm−1.
The blue curves are numerically obtained by diagonalizing the
nanoribbon tight-binding Hamiltonian [Eq. (11)] under the strain
modulation [Eqs. (10)]. The red curves are the dispersive pseudo-
Landau levels predicted by Eq. (19). (b) The energy differences
between the numerical energy bands (blue) in panel (a) and various
analytically proposed pseudo-Landau levels [Eqs. (19), (9), and (7)]
are plotted as solid, dashed, and dot dashed curves, respectively. Left
(right) inset enlarges the energy differences associated with Eqs. (19)
and (7) [Eqs. (19) and (9)] in the vicinity of kx = −kD (dotted line).

kx ∈ [−kc, kc], in which the domain wall l0 can possibly exist,
while the range of the pseudo-Landau levels cannot exceed the
subset [−k+

max, k+
max] to confine the domain wall l0 inside the

nanoribbon. Comparing to Eqs. (7) and (9) derived from Dirac
models [Eqs. (6) and (8)] in the weak strain limit, Eq. (19)
is equally accurate at the projected Brillouin zone corners
kx = ±kD but exhibits much lower discrepancy with respect
to the numerical band structure elsewhere for |kx| � k+

max
[Fig. 4(b)].

IV. SUPERIORITY OVER DIRAC MODELS
IN THE WEAK STRAIN LIMIT

In Sec. III, we have elucidated that the dispersive pseudo-
Landau levels [Eq. (19)] are more accurate than those [Eqs. (7)
and (9)] arising from the Dirac models [Eqs. (6) and (8)] in
the strong strain limit. Such a finding may not be surprising
because the Dirac models are only applicable in the weak
strain limit. We are thus motivated to examine whether the
superiority of Eq. (19) can retain in the weak strain limit.
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FIG. 5. Energy difference between the first five analytic pseudo-
Landau levels and the numerical energy bands for a bent
graphene nanoribbon of width W = 511 nm and bend curvature
λ = 0.207 μm−1. The solid (dashed) curves mark the energy differ-
ence between the pseudo-Landau levels characterized by Eq. (19)
[Eq. (9)] and the numerical energy bands obtained by diagonalizing
the nanoribbon tight-binding Hamiltonian [Eq. (11)]. (a) Energy
difference in the vicinity of kx = −kD with the inset enlarging the
difference in a narrower range around kx = −kD (dotted line). (b) En-
ergy difference in the vicinity of kx = kD with the inset enlarging the
difference in a narrower range around kx = kD (dotted line).

According to Sec. II, the modified Dirac model [Eq. (8)] is
a more accurate low-energy theory for weak strain. We thus
focus on the comparison between Eqs. (19) and (9) in the
present section.

We intuitively expect Eqs. (19) and (9) to have similar per-
formance in fitting the numerical band structure in the vicinity
of the projected Brillouin zone corners kx = ±kD for weak
strain. This is because the hopping modulation [Eqs. (10)],
which is the ground for Eq. (19), can be reduced in the
weak strain limit to t1,2 = (1 − 3

4λgy) and t3 = t , identical
to the condition [i.e., Eq. (3) with the displacement field
u = λ(xy,− 1

2 x2)] we use to derive Eq. (9). Surprisingly, we
find Eq. (19) exhibits much smaller deviation to the numer-
ics than Eq. (9) even for weak strain [Figs. 5(a) and 5(b)].
Since the only difference between the two analytic dispersions
εn(kx ) and Eη

n (qx ) lies in the hopping modulation, we thus at-
tribute the difference to the higher order terms [e.g., O(λ2y2)]
overlooked during the linearization of the strain-modulated
hopping t (y).

To substantiate this claim, we rewrite the modified Dirac
Hamiltonian [Eq. (8)] as

hη
q = h̄vη

x (y)

[
qx + e

h̄
Aη

x (y)

]
σ x + h̄vη

y (y)qyσ
y, (20)

with the nonuniform velocity parameters

vη
x (y) = −3at

2h̄
η

t (y)

t
, (21a)

vη
y (y) = 3at

2h̄

[
2

3
+

(
1

3
+ 1

2
ηaqx

)
t (y)

t

]
, (21b)

where we temporarily do not specify the space dependence of
the strain-modulated hopping t (y); and the strain-induced vec-
tor potential Aη

x = 2h̄η

3ea
t (y)−t

t (y) gives rise to a pseudomagnetic

field:

Bη
z (y) = −2h̄η

3ea

t∂yt (y)

[t (y)]2
. (22)

Because of the simultaneous spatial inhomogeneity in
the velocity parameters and the pseudomagnetic field, the
Schrödinger differential equation associated with h

η
q is gener-

ally not analytically solvable except for t (y) with simple (e.g.,
linear) space dependence.

For the purpose of deriving the spectrum of h
η
q , we shall

follow the strategy established in Sec. III by studying h
η
q in

the vicinity of the pseudo-Landau level guiding center y0,
which coincides with the domain wall �0 when t (y) adopts
the form of Eqs. (10). For a strain-modulated hopping t (y)
of generic space dependence, according to Ref. [44], the
guiding center of the pseudo-Landau levels is determined by
Aη

x (y0) = −h̄qx/e such that there exists a zero-energy mode
in the spectrum of h

η
q to be interpreted as the zeroth pseudo-

Landau level. By expanding in the vicinity of the guiding
center y0, it is straightforward to find

hη
q ≈ −eBη

z (y0)vη
x (y0)(y − y0)σ x + h̄vη

y (y0)qyσ
y, (23)

whose spectrum is completely determined by the velocity
parameters and the pseudomagnetic field at the guiding cen-
ter y0. Making use of the condition Aη

x (y0) = 2h̄η

3ea
t (y0 )−t

t (y0 ) =
−h̄qx/e, we find the velocity parameters are

vη
x (y0) = −3at

2h̄

η

1 + 3
2ηaqx

, (24a)

vη
y (y0) = 3at

2h̄
, (24b)

which are independent of the specific space dependence of
t (y). However, the pseudomagnetic field sensitively depends
on the form of t (y) due to the appearance of ∂yt (y). Explicitly,
it reads

Bη
z (y0) = h̄η

2ea
λg

(
1 + 3

2
ηaqx

)
fqx , (25)

where the coefficient reads fqx = 1 + 3
2ηaqx for the linearized

hopping modulation [Eq. (3)] and fqx = 1 + 1
2gηaqx for the

full empirical hopping modulation [Eqs. (10)]. The resulting
pseudo-Landau level dispersions are

εn(qx ) = ±3

2
t
√

ngλa

√
1 + 3

2
ηaqx, (26a)

εn(qx ) = ±3

2
t
√

ngλa

√
1 + 1

2g
ηaqx, (26b)

where the former is simply the slightly dispersive pseudo-
Landau levels Eη

n (qx ) in Eq. (9), and the latter corresponds to
εn(kx ) in Eq. (19) expanded in the vicinity of the projected
Brillouin zone corners ηkD. Indeed, the latter is much less
dispersive than the former by a ratio of 3g, which confirms
our observation in Figs. 5(a) and 5(b).

The finding that the higher order terms overlooked during
the linearization of the strain-modulated hopping do affect
the pseudomagnetic field [Eq. (25)] but do not impact the
Fermi velocity [Eqs. (24)] up to the linear order of qx suggests
that the widely used strain-modulated hoppings with linear
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space dependence [13–15,21,29,34,39,40] may be insufficient
in characterizing the dispersions of the strain-induced pseudo-
Landau levels. To find the accurate dispersions, one would
need to adopt the full space dependence of the hopping param-
eters without any approximation. But the complicated space
dependence of such hopping parameters may hardly result
in analytically solvable Schrödinger differential equations,
which govern the dispersions of the pseudo-Landau levels. In
contrast, our analytic method is rooted in the band topology
analysis, does not rely on the specific form of the space depen-
dence of the hopping parameters, and thus can be transplanted
to strain patterns beyond circular bend as long as such strain
patterns are still characterized by t1,2 → t (y) and t3 → t .

V. DISPERSIONS OF PSEUDO-LANDAU LEVELS IN
REALISTIC GRAPHENE

In Sec. III, we derive the dispersions of the pseudo-Landau
levels using a simple nearest-neighbor tight-binding model
[Eq. (11)] of a bent graphene nanoribbon. In realistic graphene
samples, there are several inevitable effects: (i) the Semenoff
mass arising from the interplay with the substrate, (ii) the
Haldane mass due to the intrinsic spin-orbit coupling, (iii) the
electric fields, and (iv) the next-nearest-neighbor hoppings.
The deformation of pseudo-Landau levels in the presence of
such effects are, respectively, analyzed in this section.

A. Semenoff mass

The interplay between the graphene and the substrate
where it is hosted breaks the chiral symmetry by introduc-
ing a staggered potential characterized by a Semenoff mass
[45]. The magnitude of the Semenoff mass mS closely relies
on the details of the substrates. For hexagonal boron nitride
(hBN) substrates [46], density-functional calculations reveal
mS = 27 meV, while mS in silicon carbide (SiC) [47,48] can
be as large as mS = 135 meV. Due to the presence of the
Semenoff mass, the linearized Bloch Hamiltonian [Eq. (15)]
acquires an extra term and becomes

hI
kx,y = hkx,y + mSσ

z, (27)

which may be rewritten in terms of the ladder operators
[Eqs. (17)] as

hI
kx,y =

[
mS −εBâ†

−εBâ −mS

]
. (28)

With the trial solution |ψ I
n>0〉 = (ζ I

A,n|n〉, ζ I
B,n|n − 1〉)T and

|ψ I
0〉 = (ζ I

A,0|0〉, 0)T , we find that hI
kx,y

can be diagonal-
ized when the parameters adopt the following values ζ I

A,n =
−sgn(εI

n)εB[2εI
n(εI

n − mS )/n]−1/2, ζ I
B,n = [(εI

n − mS )/2εI
n]1/2,

and ζ I
A,0 = 1, where the spectrum reads

εI
n>0(kx ) = ±

√
2n

∣∣�0tδy

∣∣ + m2
S, εI

0(kx ) = mS. (29)

Note that the zeroth pseudo-Landau level is no longer located
at the charge neutrality point but is pushed to mS in the energy
dimension [Figs. 6(a) and 6(b)]. Analysis of ȳ reveals that
the two segments of the zeroth pseudo-Landau level are still
connected by the edge state originating from the compressed
edge, which has the same sublattice support, while the other

FIG. 6. Strain-induced pseudo-Landau levels in a bent graphene
nanoribbon of width W = 192 nm and bend curvature λ =
0.642 μm−1 in the presence of chiral symmetry breaking mass terms.
(a), (c), (e) and (b), (d), (f) plot the energy bands in the vicinity
of the left and right projected Brillouin zone corners, respectively.
(a), (b) The numerical band structure (solid curves) in the pres-
ence of a Semenoff mass mS = −56 meV with analytically predicted
pseudo-Landau levels [Eqs. (29)] overlaid as red dotted curves. (c),
(d) The numerical band structure (solid curves) in the presence of
a Haldane mass mH ≡ Dkx ,�0 arising from the spin-orbit coupling
whose strength in the absence of strain is d ′ = −10.64 meV, such
that mH = ±56 meV at the projected Brillouin zone corners. The
analytically predicted pseudo-Landau levels [Eqs. (36)] are overlaid
as red dotted curves. (e), (f) The numerical band structure (solid
curves) in the presence of both a Semenoff mass mS = −56 meV
and a Haldane mass characterized by the spin-orbit coupling d ′ =
−10.64 meV, such that the band gap at the left (right) projected
Brillouin zone corner is doubled (closed). The analytically predicted
pseudo-Landau levels (red dotted curves) can be obtained by re-
placing mS in Eqs. (29) or Dkx ,�0 in Eqs. (36) by an effective mass
meff = mS + Dkx ,�0 . For all panels, the color index of the energy
bands indicates the average value of the position operator ȳ.

edge state located on the stretched edge and originally degen-
erate with the zeroth pseudo-Landau level in the absence of
mS is now separated from the zeroth pseudo-Landau level by
a band gap of 2mS .

B. Spin-orbit coupling

The chiral symmetry can also be broken intrinsically by
the spin-orbit coupling HSO ∼ s · (∇V × k), where s is the
Pauli matrix in spin space [49,50]. Such a spin-orbit cou-
pling term further breaks the time-reversal symmetry and is
known to topologically gap out the Dirac cones of graphene by
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introducing a Haldane mass [51], which possesses opposite
signs at the different projected Brillouin zone corners. The
effect of the spin-orbit coupling can be modeled by the fol-
lowing imaginary next-nearest-neighbor hopping terms,

H ′
SOa

= i
∑

ra

∑
i

d ′
i

(
ra + 1

2
βi

)
a†

ra+βi
ara + H.c., (30a)

H ′
SOb

= i
∑

rb

∑
i

d ′
i

(
rb + 1

2
βi

)
b†

rb
brb+βi

+ H.c., (30b)

where ra (rb = ra + α1) labels the lattice sites belonging to
the A (B) sublattice and (β1,β2,β3) = (

√
3

2 ax̂ − 3
2 aŷ,

√
3

2 ax̂ +
3
2 aŷ,−√

3ax̂) are the next-nearest-neighbor vectors [red ar-
rows, Fig. 1(a)]; and d ′

i measures the strength of the spin-orbit
coupling associated with βi in the presence of the circu-
lar bend. For simplicity, we assume di to be exponentially
varying, similar to the modulation of the nearest-neighbor
hoppings [Eqs. (10)]. Explicitly, d ′

i reads

d ′
1,2(y) = d ′ exp

{
g
[
1 −

√
1
4 (1 + λy)2 + 3

4

]}
,

d ′
3(y) = d ′ exp(−gλy),

(31)

where d ′ measures the spin-orbit coupling without strain. By
applying the partial Fourier transform in the x direction, the
nanoribbon tight-binding Hamiltonian [Eq. (11)] should be
supplemented by

H ′
SOa

=
∑
kx,ya

a†
kx,ya

Dkx,ya akx,ya , (32a)

H ′
SOb

= −
∑
kx,yb

b†
kx,yb

Dkx,ybbkx,yb, (32b)

where, for transparency, we have defined the parame-
ter Dkx,y = 2 sin( 1

2 kxδx )[d ′
1(y + 1

2δy)ŝδy + d ′
1(y − 1

2δy)ŝ−δy ] −
2d ′

3(y) sin(kxδx ) and set ya = y − 1
6δy and yb = y + 1

6δy such
that we may write Eqs. (32) in the sublattice basis ψkx,y =
(akx,y−δy/6, bkx,y+δy/6)T as H ′

SOa
+ H ′

SOb
= ∑

kx,y
ψ

†
kx,y

H′
SOψkx,y

with the correction to the nanoribbon Bloch Hamilto-
nian [Eq. (13)] being a purely diagonal matrix H′

SO =
diag(Dkx,y−δy/6,−Dkx,y+δy/6). For experimentally available
bend with λa � 1, it is straightforward to see from Eqs. (31)
that all d ′

i are slowly varying on the lattice scale such that H′
SO

can be estimated through linearization as

H′
SO ≈ Dkx,yσ

z − 1

6
δy

dDkx,y

dy
σ 0, (33)

where the first chiral symmetry breaking term is associated
with the Haldane mass and opens up a band gap, and the
second term emerges from the small separation of sublattices
in the y direction and shifts the energy bands in a y-dependent
fashion. Although the parameter Dkx,y explicitly encloses shift
operators ŝ±δy , it can be approximated as a purely scalar func-
tion of y

Dkx,y ≈ 4d ′
1(y) sin

(
1
2 kxδx

) − 2d ′
3(y) sin(kxδx ), (34)

where we work in the continuum limit ŝ±δy ≈ 1 ± δy
d
dy , take

the linearization of d ′
1(y ± 1

2δy), and only keep the lowest
order terms. Since we are only interested in the low-energy

pseudo-Landau levels, which are localized around the domain
wall �0, it would be sufficient to study Dkx,y exactly at this do-
main wall. The resulting momentum dependent Dkx,�0 acts as
the Haldane mass mH ≡ Dkx,�0 . In such an approximation, the
linearized Bloch Hamiltonian [Eq. (15)] should be rewritten
as

hII
kx,y = hkx,y + Dkx,�0σ

z, (35)

where we have neglected the second term in Eq. (33) because
such a term only contributes at �0 a tiny shift to the pseudo-
Landau levels. The spectrum of hII

kx,y
can be directly written

by comparing to Eqs. (29) as

εII
n>0(kx ) = ±

√
2n�0tδy + D2

kx,�0
, εII

0 (kx ) = Dkx,�0 , (36)

which captures the numerical simulations [Figs. 6(c) and
6(d)]. Note the strength of the spin-orbit coupling d ′ =
−10.64 meV used in Figs. 6(c) and 6(d) is exaggerated to
better show the band gap opened by the Haldane mass. The
actual strength of the intrinsic spin-orbit coupling in graphene
should be expected to be 10−3 ∼ 10−1 meV and thus can be,
in general, neglected for the purpose of resolving pseudo-
Landau levels [49,50].

In contrast to the zeroth pseudo-Landau level in the pres-
ence of the Semenoff mass [Figs. 6(a) and 6(b)], whose two
segments at the left half and right half of the Brillouin zone
have identical energies consistent with the time-reversal sym-
metry, the zeroth pseudo-Landau level under the spin-orbit
coupling exhibits fundamentally different physics by emerg-
ing as a valence band at the left half of the Brillouin zone
[Fig. 6(c)] but as a conduction band at the right half of the
Brillouin zone [Fig. 6(d)]. Such positioning is dictated by
the particle-hole symmetry, which is preserved because the
Haldane mass is odd in both the chiral symmetry and the time-
reversal symmetry. As reflected by ȳ in Figs. 6(c) and 6(d),
the two segments of the zeroth pseudo-Landau level are still
connected by the edge state hosted by the compressed zigzag
edge, and both edge states traverse the band gap topologically
[not explicitly shown in Figs. 6(c) and 6(d)]. The band gap
and the edge states can be manipulated by introducing an
additional Semenoff mass such that the effective mass is the
combination of the two types of masses as meff = mS + Dkx,�0 ,
which is now different around the two projected Brillouin
zone corners kx = ±kD. The topology of the band gap de-
pends on which type of mass is dominant. At the critical
point mS = ±Dkx,�0 , the zeroth pseudo-Landau level can be
pushed away from the charge neutrality point around the left
projected Brillouin zone corner [Fig. 6(e)] but pinned at the
neutrality point around the right projected Brillouin zone cor-
ner [Fig. 6(f)].

C. Electric field

In the presence of a uniform electric field E = Eŷ along
the y direction, each of the electrons on the lattice acquires a
potential energy −eφ(y), where the electric potential is cho-
sen as φ(y) = −Ey − φ0. The linearized Bloch Hamiltonian
[Eq. (15)] is then rewritten as

hIII
kx,y = hkx,y + eφ0σ

0 + eEyσ 0 − 1
6 eEδyσ

z, (37)
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which has chiral symmetry preserving on-site terms e(φ0 +
Ey)σ 0 and a mass term − 1

6 eEδyσ
z due to the small separation

of sublattices along the direction of the applied electric field.
We write hIII

kx,y
in a matrix form as

hIII
kx,y =

[
εE (â† + â) + m −εBâ†

−εBâ εE (â† + â) − m

]
, (38)

where we define the parameters εE = eElB/
√

2 and m =
− 1

6 eEδy for transparency. To solve the eigenvalues of hIII
kx,y

,
we construct the following relation:

K
∣∣ψ III

n

〉 = [(
εIII

n

)2 − m2
]∣∣ψ III

n

〉
, (39)

where εIII
n is the eigenvalue of hIII

kx,y
with respect to the eigen-

vector |ψ III
n 〉 and we have defined the auxiliary matrix operator

K = εIII
n (σ zhIII

kx,y
σ z + hIII

kx,y
− 2mσ z ) − (σ zhIII

kx,y
− m)2 with no

ladder operators in its off-diagonal entries. The dispersions of
the pseudo-Landau levels can then be obtained by resolving
the eigenvalues of K . To diagonalize K , we apply a reversible
(but not unitary) transformation to the eigenvector |ψ III

n 〉 =
P|ψ̃ III

n 〉 with

P = 1√
2ω2 + 2εBω

[
εB + ω 2εE

2εE εB + ω

]
, (40)

where we have defined the parameter ω =
√

ε2
B − 4ε2

E . After
the transformation, Eq. (39) can be rewritten as

P−1KP
∣∣ψ̃ III

n

〉 = [(
εIII

n

)2 − m2
]∣∣ψ̃ III

n

〉
, (41)

where P−1KP is a purely diagonal matrix operator and reads

P−1KP = 1

2

[(
ε2

B − 2ε2
E

)
σ 0 − εBωσ z

] + 2εIII
n εE (â† + â)σ 0

− ε2
E (â†â† + ââ)σ 0 + (

ε2
B − 2ε2

E

)
â†âσ 0. (42)

We now remove the terms linear in â and â† by translation,

â = b̂ − 2εIII
n εE/ω2,

â† = b̂† − 2εIII
n εE/ω2,

(43)

where the shifted ladder operators are

b̂ = 1√
2

(
ξb + d

dξb

)
, b̂† = 1√

2

(
ξb − d

dξb

)
, (44)

with the dimensionless parameter ξb = 2
√

2εIII
n εE/ω2 + ξa. In

terms of these shifted ladder operators, Eq. (42) becomes

P−1K̂P = 1

2

[(
ε2

B − 2ε2
E

)
σ 0 − εBωσ z

] − 4ε2
E

ω2

(
εIII

n

)2
σ 0

− ε2
E (b̂†b̂† + b̂b̂)σ 0 + (

ε2
B − 2ε2

E

)
b̂†b̂σ 0. (45)

We then remove the pairing ladder operators (i.e., b̂†b̂† and b̂b̂)
through the Bogoliubov transformation

b̂ = ĉ

√
ε2

B − 2ε2
E + εBω

2εBω
+ ĉ†

√
ε2

B − 2ε2
E − εBω

2εBω
,

b̂† = ĉ

√
ε2

B − 2ε2
E − εBω

2εBω
+ ĉ†

√
ε2

B − 2ε2
E + εBω

2εBω
,

(46)

where the rotated ladder operators are

ĉ = 1√
2

(
ξc + d

dξc

)
, ĉ† = 1√

2

(
ξc − d

dξc

)
, (47)

with the dimensionless parameter ξc = ξb[(ε2
B − 2ε2

E +
εBω)1/2 − (ε2

B − 2ε2
E − εBω)1/2](2εBω)−1/2. In terms of the

these rotated ladder operators, Eq. (45) becomes

P−1K̂P = εBω

[
ĉ†ĉσ 0 + 1

2
(σ 0 − σ z )

]
− 4ε2

E

ω2

(
εIII

n

)2
σ 0.

(48)

We plug Eq. (48) into Eq. (41) and solve the dispersions of the
pseudo-Landau levels to be

εIII
n>0 = ± ω

εB

√
nωεB + m2, εIII

0 = ω

εB
m, (49)

where the sign of the zeroth pseudo-Landau level is deter-
mined by requiring Eqs. (49) to reduce to Eqs. (29) in the
limit ω → εB or, equivalently, εE → 0. It is worth noting
that the pseudo-Landau levels [Eqs. (49)] no longer share
a common guiding center because of the shift operation in
Eqs. (43). Nevertheless, when the electric fields are suffi-
ciently weak with E � �0/e (or, equivalently, εE � εB),
the shift of the nth guiding center from the zeroth guiding
center at �0 should be much smaller than the magnetic length
(i.e., 2

√
2εIII

n εE lB/ω2 � lB). And our theory hIII
kx,y

[Eq. (37)]
relying on the linearized Bloch Hamiltonian [Eq. (15)] is still
legitimate.

For a weak electric field E � �0/e, the mass barely
affects the pseudo-Landau levels and can thus be safely ne-
glected. Then Eqs. (49) are reduced to

εIII
n (kx ) = ±√

2n�0tδy

(
1 − e2E2

2
�0

)3/4

+ eφ0 + eE�0. (50)

The validity of Eq. (50) has been manifested by its accor-
dance to the numerical simulations [Figs. 7(a) and 7(b)]. Such
pseudo-Landau levels are symmetric with respect to the Bril-
louin zone center because of the time-reversal symmetry, and
thus are fundamentally different from the ordinary Landau
levels that produce quantum Hall effects [52,53].

We now briefly mention the effects of electric fields in
the other two directions. A z-direction electric field breaks
the mirror symmetry and brings up an extrinsic spin-orbit
coupling Rashba term HR ∼ ẑ · (s × k) [54]. The Rashba spin-
orbit coupling arising from experimentally available electric
fields is typically small compared to the nearest-neighbor
hoppings [55–59], and thus should not drastically alter the
strain-induced pseudo-Landau levels, in principle. On the
other hand, an x-direction electric field can drive a current
of electrons along the nanoribbon and lead to longitudinal
transport, which will be detailed in Sec. VI C.

D. Next-nearest-neighbor hopping

In realistic graphene, electrons can also hop to the next-
nearest-neighboring sites belonging to the same sublattice and
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FIG. 7. Strain-induced pseudo-Landau levels in a bent graphene
nanoribbon of width W = 192 nm and bend curvature λ =
0.642 μm−1 in the presence of electric fields and/or next-nearest-
neighbor hoppings. (a), (c), (e) and (b), (d), (f) plot the band structure
in the vicinity of the left and right projected Brillouin zone corners,
respectively. (a), (b) The numerical band structure (blue) in the pres-
ence of a uniform electric field in the y direction arising from the
electric potential φ(y) = (0.17 y

W − 0.84) V. The analytically pre-
dicted pseudo-Landau levels [Eq. (50)] are overlaid as red curves. (c),
(d) The numerical band structure (blue) with next-nearest-neighbor
hoppings, whose bare value in the absence of strain is t ′ = −0.28 eV.
The red curves are the predicted pseudo-Landau levels [Eq. (56)].
(e), (f) The numerical band structure (blue) under both the electric
potential φ(y) = −(0.17 y

W − 0.84) V and the next-nearest-neighbor
hoppings with t ′ = −0.28 eV. The two effects cancel out at the
projected Brillouin zone corners. And the resulting pseudo-Landau
levels resemble those [Eq. (19)] obtained by only considering the
nearest-neighbor hoppings.

produce in the tight-binding Hamiltonian additional terms

H ′
a =

∑
ra

∑
i

t ′
i

(
ra + 1

2
βi

)
a†

ra+βi
ara + H.c., (51a)

H ′
b =

∑
rb

∑
i

t ′
i

(
rb + 1

2
βi

)
b†

rb+βi
brb + H.c.. (51b)

Unlike the Hamiltonian [Eqs. (30)] used to model the spin-
orbit coupling, the hopping parameters in Eqs. (51) are chosen

to be purely real and exponentially varying as

t ′
1,2(y) = t ′ exp

{
g
[
1 −

√
1
4 (1 + λy)2 + 3

4

]}
,

t ′
3(y) = t ′ exp(−gλy),

(52)

where t ′ ∈ [0.02t, 0.2t] is the next-nearest-neighbor hopping
in the absence of strain [60]. Following the procedure we have
formulated in Sec. V B, it is straightforward to find out that the
nanoribbon Bloch Hamiltonian [Eq. (13)] now approximately
acquires an extra term,

H′
kx,y ≈ Tkx,yσ

0 − 1

6
δy

dTkx,y

dy
σ z, (53)

where we have made use of the fact that t ′
i are slowly

varying on the lattice scale when λa � 1 and defined param-
eter Tkx,y = 2 cos( 1

2 kxδx )[t ′
1(y + 1

2δy)ŝδy + t ′
1(y − 1

2δy)ŝ−δy ] +
2t ′

3(y) cos(kxδx ). We notice that H′
kx,y

resembles the terms
[cf. Eq. (37)] induced by an electric field E = Eŷ with Tkx,y

playing the role of the potential energy −eφ(y) = eφ0 + eEy.
Although the parameter Tkx,y contains shift operators ŝ±δy and
thus is different from the electrostatic energy, it is straightfor-
ward to show that such a parameter is approximately a purely
scalar function of y as

Tkx,y ≈ 4t ′
1(y) cos

(
1
2 kxδx

) + 2t ′
3(y) cos(kxδx ), (54)

where the continuum limit of ŝ±δy and linearization of t ′
1(y ±

1
2δy) are taken. For our purpose of finding the dispersions
of low-energy pseudo-Landau levels, it would be sufficient
to study Tkx,y in the vicinity of the domain wall �0 through
the linearization Tkx,y = Tkx,�0 + T�0 (y − �0), where the deriva-

tive T�0 = dTkx ,y

dy |�0 = −λg{t ′
1(�0)(1 + λ�0) cos( 1

2 kxδx )/[ 1
4 (1 +

λ�0)2 + 3
4 ]1/2 + 2t ′

3(�0) cos(kxδx )}. Consequently, the lin-
earized Bloch Hamiltonian [Eq. (15)] should be rewritten as

hIV
kx,y = hkx,y + Tkx,�0σ

0 + T�0 (y − �0)σ 0 − 1
6δyT�0σ

z, (55)

which is analogous to Eq. (37) with T�0 in place of the force
eE . By comparing to Eq. (50), we can immediately write the
pseudo-Landau levels,

εIV
n (kx ) = ±√

2n�0tδy

(
1 − T2

�0

2
�0

)3/4

+ Tkx,�0 , (56)

which well match the numerically calculated band
structure [Figs. 7(c) and 7(d)]. Because of the similarity
between the parameter Tkx,y and the potential energy
−eφ(y), the next-nearest-neighbor effect can be exactly
canceled at (and greatly suppressed around) the pro-
jected Brillouin zone corners by an electric potential
φ(y) = 1

e [Tkx,�0 + T�0 (y − �0)]|kx=±4π/3δx = − 3t ′
e (1 − 1

2λgy).
Then the resulting energy bands can still be approximately
characterized by Eq. (19), which is derived with only the
nearest-neighbor terms considered [Figs. 7(e) and 7(f)].

VI. TRANSPORT OF BENT GRAPHENE NANORIBBONS

We have performed a systematic study on the ana-
lytic dispersions of pseudo-Landau levels in bent graphene
nanoribbons in Secs. II–V. To allow comparison to exper-
iments, analytic evaluations of transport signatures of bent
graphene nanoribbons would be greatly favored. In the present
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section, we first justify the sufficiency of our nearest-neighbor
lattice model of bent graphene nanoribbons. We then phe-
nomenologically find the analytic dispersions of the marginal
energy bands spliced to the pseudo-Landau levels. Ultimately,
the transport signatures including the density of states (DOS),
the longitudinal electrical conductivity, and the Seebeck co-
efficient are analytically evaluated and compared to their
numerical counterparts.

A. Justification of the nearest-neighbor lattice model of bent
graphene nanoribbons

In Sec. V, we have elucidated that the pseudo-Landau
levels resulting from the nearest-neighbor lattice model
[Eq. (11)] are vulnerable to a variety of mechanisms such
as the Semenoff mass, the spin-orbit coupling, the electric
fields, and the next-nearest-neighbor hoppings. Despite ap-
pearing unavoidable at the first sight, these effects can actually
be neglected in certain conditions. Specifically, we require a
pristine graphene sample prepared on a proper substrate (e.g.,
hBN [46] would be superior over SiC [47,48]), where the
Semenoff mass arising from the interplay with the sample is
minimized, the Haldane mass (Rashba effect) resulting from
the intrinsic (extrinsic) spin-orbit coupling is proved to be
much smaller than the nearest-neighbor hopping and can thus
be neglected [49,50,55–59], and the ubiquitous next-nearest-
neighbor hoppings can be compensated by a properly tuned
uniform y-direction electric field as discussed in Sec. V D.
Under such conditions, it would be sufficient for the lattice
model to only enclose the dominant nearest-neighbor hopping
terms.

Our nearest-neighbor lattice model, for simplicity, only
encloses the in-plane circular bend, which inhomogeneously
stretches (compresses) the upper (lower) half of the nanorib-
bon [Fig. 1(b)], while ignores the potential out-of-plane strain
effects as a common practice [34,35,37]. In fact, the compres-
sive strain, even as weak as 0.1% [61,62], can induce out-
of-plane lattice deformation (e.g., bubbles and/or wrinkles)
[61–64], which can further complicate the strain-modulated
hoppings [Eqs. (10)] by breaking the x-direction translational
invariance. To suppress such compression-induced buckling,
graphene samples should be rigidly attached to the substrate
or tightly sandwiched by two substrates such that the out-
of-plane lattice deformation is constrained [61]. To avoid the
buckling in the experimental implementation, a circular bend
created only by tensile strain is preferred. Such a bend can still
be modeled by Eqs. (10) but the domain of definition of the co-
ordinate should be adjusted to y ∈ [0,W ] from y ∈ [−W

2 , W
2 ].

Such a shift is analogous to a gauge transformation, which
only relocates the guiding center but does not affect the dis-
persions of the pseudo-Landau levels. Therefore, even for the
more experimentally accessible bent graphene nanoribbons
created by pure tensile strain, our key result [Eq. (19)] arising
from the nearest-neighbor lattice model [Eq. (11)] can still
characterize the pseudo-Landau levels.

B. Phenomenological analytics of marginal energy bands

A full analytic analysis of the transport of bent graphene
nanoribbons requires the knowledge of all energy bands. The

pseudo-Landau levels [Eq. (19)] are clearly the bulk bands of
the bent graphene nanoribbon because their common guiding
center is constrained in the bulk through −W

2 � l0 � W
2 . How-

ever, such pseudo-Landau levels are distributed around l0 with
a characteristic width ∼lB as reflected by their wave functions
[Eqs. (18)]. Therefore, when the guiding center approaches
the edges (i.e., within a few lB’s), the pseudo-Landau levels
begin to be affected by the edges and evolve into more disper-
sive energy bands in the marginal regions of the nanoribbon,
consistent with our observation on ȳ in Figs. 2(a)–2(d). Such
energy bands are thus referred to as the marginal energy
bands to be distinguished from the dispersionless topological
edge bands. To investigate the transport of the bent graphene
nanoribbon, we aspire to quantify such marginal energy bands
on a phenomenological basis. For transparency, we only con-
sider the energy bands in the left half of the Brillouin zone,
while the energy bands in the right half can be obtained by
time-reversal operation.

We first note that the width of a pseudo-Landau level in
the momentum space decreases with an increased Landau
level index n as illustrated in Fig. 8(a). In fact, a higher
pseudo-Landau level has a more extensive wave function
because of more nodes in the Hermite polynomial Hn(·) in
Eqs. (18), making it easier to touch the edges of the nanorib-
bon and thus more confined in the momentum space due to
the monotonic dependence of l0 on kx [cf. Figs. 3(b)–3(d)
and Eq. (12)]. Consequently, all the pseudo-Landau levels are
phenomenologically bounded between two projected Dirac
cones [Fig. 8(a)]

εl
DC(kx ) = ±

[
2t

(
−W

2

)
cos

(
1

2
kxδx

)
− t

]
,

εr
DC(kx ) = ±

[
2t

(
W

2

)
cos

(
1

2
kxδx

)
− t

]
,

(57)

which are the projected spectra of the Bloch Hamiltonian Hk

with the parameters in Eq. (4) set to t1,2 = t (±W
2 ), t3 = t , and

ky = ± 2π
3a as well as the strong strain counterparts of εDC

max.
Denoting the ends of the nth pseudo-Landau level as kl,r

n ,
whose values are determined by finding the crossings of the
projected Dirac cones [Eqs. (57)] with the pseudo-Landau
levels [Eq. (19)], we find the real-space range of the nth
pseudo-Landau levels to be [l0(kl

n), l0(kr
n)]. At l0(kl,r

n ), the
pseudo-Landau levels begin to evolve into marginal energy
bands, whose dispersions are governed by

h̃kx,y = �0 (y − �0)σ x − itδyσ
y d

dy

+ t

[
1 − cos

(
1
2 kxδx

)
cos

(
1
2 kl,r

n δx
)
]
σ x, (58)

which is obtained by linearizing the nanoribbon Bloch Hamil-
tonian [Eq. (13)] around l0(kl,r

n ) = �0(kl,r
n + 2π

δx
). The first

two terms of Eq. (58) turn out to be a Dirac Hamiltonian
[cf. Eq. (15)] characterizing pseudo-Landau levels centered
at l0(kl,r

n ), while the last term can be understood as a shift
to the guiding center. However, it is critically important to
note that such a term must not be absorbed into the Dirac
Hamiltonian because the absorption would relocate the guid-
ing center to somewhere outside the allowed scope of the
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FIG. 8. Strain-induced quantum oscillations in a bent graphene nanoribbon of width W = 192 nm. (a) Numerical band structure (blue
solid) at λ = 0.642 μm−1 in the vicinity of the left projected Brillouin zone corner at kx = −kD with the projected Dirac cones [Eqs. (57)]
overlaid as dotted curves. (b) Artificial construction of the analytic band structure. The orange flat curve is the topological edge state from the
compressed edge. The orange and green dispersive curves are marginal energy bands respectively characterized by Eqs. (59a) and (59b). The
curves with color gradient are the pseudo-Landau levels [Eq. (19)]. The orange (green) scatters mark the connection of Eqs. (19) and (59a)
[Eqs. (19) and (59b)] at the boundary of the projected Dirac cones (dotted). Quantum oscillations of (c) the DOS, (d) the electrical conductivity,
(e) the Seebeck coefficient at a fixed bend curvature λ = 0.642 μm−1. Quantum oscillations of (f) the DOS, (g) the electrical conductivity, (h)
the Seebeck coefficient at a fixed chemical potential μ = 0.112 eV. In (c)–(h), the blue curves represent the quantities calculated from the
numerical band structure in (a) using the tetrahedron method [65]; the red curves represent the quantities calculated from the analytic band
structure in (b) using Eqs. (62), (65), and (66); the units g(μ, 0) = 4W μ

9πa2t2 and σ xx (μ, 0) = 9e2

8h̄2 Ca2t2 are, respectively, the DOS and the electrical
conductivity in the absence of strain; the parameter L = 2.45 × 10−5 V/K2 is closely related to the Lorenz number [66]; T is the temperature
and all the data are broadened by convolving in energy a Lorentzian of width δε = 5.6 meV to simulate the effects of disorder and finite
temperature.

nth pseudo-Landau level. In the vicinity of kl,r
n , where the

linearization [Eq. (58)] of the nanoribbon Bloch Hamiltonian
is legitimate, the last term in Eq. (58) can be treated as
a perturbation. Performing the perturbation calculations for
h̃2

kx,y
, we find the first-order correction to the eigenvalue to be

t2[1 − cos( 1
2 kxδx )/ cos( 1

2 kl,r
n δx )]2, which is doubly degenerate

due to the particle-hole symmetry. Therefore, the analytic
dispersions of the marginal energy bands are

εl
n(kx ) =

√√√√t2

[
1 − cos

(
1
2 kxδx

)
cos

(
1
2 kl

nδx
)]2

+ [
εn

(
kl

n

)]2
, (59a)

εr
n(kx ) =

√√√√t2

[
1 − cos

(
1
2 kxδx

)
cos

(
1
2 kr

nδx
)]2

+ [
εn

(
kr

n

)]2
. (59b)

We note that Eqs. (19) and (59) together with the flat topo-
logical edge bands at the charge neutrality point constitute an
artificial band structure [Fig. 8(b)] that satisfactorily mimics
the numerical band structure [Fig. 8(a)]. We thus expect such
a band structure can phenomenologically capture the transport
associated with the numerical energy bands.

C. Transport signatures

The phenomenologically derived artificial band structure
allows analytic investigation of transport signatures and com-
parison to numerics as well as experimental observations.
Without loss of generality, we here only consider the transport
of electronlike energy bands (i.e., μ > 0) and conduct explicit

calculations in the left half of the Brillouin zone (i.e., kx < 0),
while the transport associated with the holelike energy bands
(i.e., μ < 0) and the right half of the Brillouin zone (i.e.,
kx > 0) can be found using the particle-hole symmetry and
the time-reversal symmetry, respectively.

We first consider the DOS of the bent graphene nanorib-
bon. In the bulk, the energy bands are dispersive pseudo-
Landau levels [Eq. (19)]. The corresponding bulk DOS
reads

gb(μ, λ) =
∑
n�0

∫ kr
n

kl
n

dkx

2π
δ[εn(kx ) − μ] = 1

2π

∑
n�0

νn(μ, λ)
dεn
dkx

|μ
,

(60)

where we define for the nth pseudo-Landau level the occu-
pancy parameter νn(μ, λ) = θ [εn(kr

n) − μ] − θ [εn(kr
n) − μ]

with θ (·) being the Heaviside function. The dependence on
the bend curvature λ in νn(μ, λ) is acquired from kl,r

n . In
the marginal regions, the energy bands are characterized by
Eqs. (59), whose contribution to the DOS reads

gm(μ, λ) = 1

2π

∑
n�0

θ
[
μ − εn

(
kr

n

)]
dεr

n
dkx

|μ
− 1

2π

∑
n>0

θ
[
μ − εn

(
kl

n

)]
dεl

n
dkx

|μ
.

(61)
The resulting total DOS of the bent graphene nanoribbon thus
reads

g(μ, λ) = 2[gb(μ, λ) + gm(μ, λ)], (62)

where the doubling is to include the contribution from the
right half of the Brillouin zone. We find the calculated
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total DOS [Eq. (62)] satisfactorily fits the DOS numerically
evaluated through the tetrahedron method [65] as illustrated
in Figs. 8(c) and 8(f) for a bent graphene nanoribbon with
varying chemical potential and bend curvature, respectively.
Such good matches substantiate our claim on the dispersions
of the marginal energy bands [Eqs. (59)].

We then turn to calculate the longitudinal electrical con-
ductivity of the bent graphene nanoribbon by the Boltzmann
equation approach [66] at low temperatures (i.e., kBT �
t
√

gλa). The bulk conductivity contributed by the pseudo-
Landau levels reads

σ xx
b (μ, λ) = e2

h̄2

∑
n�0

∫ kr
n

kl
n

dkx

2π
τ a

n (kx, λ)

(
dεn

dkx

)2

δ[εn(kx ) − μ]

= e2τ (μ, λ)

2π h̄2

∑
n�0

dεn

dkx

∣∣∣∣
μ

νn(μ, λ), (63)

where, through change of variables, we can rewrite the re-
laxation time as τ a

n (kx, λ) = τ a
n (εa

n , λ), with εa
n being the

dispersion of the nth energy band in the artificial band
structure [Fig. 8(b)]. We further assume, for simplicity, an
identical relaxation time τ a

n (μ, λ) = τ (μ, λ) in the second
line of Eq. (63). In the framework of Fermi’s golden rule,
the relaxation time is inversely proportional to the DOS as
τ (μ, λ) = C/g(μ, λ), where the proportionality coefficient C
encodes the information of the scattering potential in the bent
graphene nanoribbon.

It is worth noting that for a certain bend curvature λ that
makes the nth pseudo-Landau level partially occupied, i.e.,
νn(μ, λ) = 1, the marginal energy bands always have little
influence on the relaxation time because the DOS is mostly
contributed by the nth pseudo-Landau level. The bulk con-
ductivity [Eq. (63)] is then reduced to σ xx

b (μ, λ) = e2C
2h̄2 ( dεn

dkx
)2
μ,

which turns out to be a decreasing function of 1/λ [67] and
implies a negative strain-resistivity analogous to the nega-
tive magnetoresistivity in the chiral magnetic effect of Weyl
semimetals [4–11]. This negative strain-resistivity is origi-
nated from the dispersive pseudo-Landau levels [Eq. (19)],
which play the same role as the chiral zeroth Landau levels
in Weyl semimetals. Moreover, it reflects the nonconservation
of the valley charge η, i.e., the valley anomaly [40], which
is a direct manifestation of the (1 + 1)-dimensional chiral
anomaly [68].

Despite the interesting anomalous transport in the bulk
conductivity σ xx

b (μ, λ), the major source of contribution to
the total longitudinal electrical conductivity is actually from
the marginal regions as

σ xx
m (μ, λ) = − e2τ (μ, λ)

2π h̄2

∑
n

dεl
n

dkx

∣∣∣∣
μ

θ
[
μ − εn

(
kl

n

)]

+ e2τ (μ, λ)

2π h̄2

∑
n

dεr
n

dkx

∣∣∣∣
μ

θ
[
μ − εn

(
kr

n

)]
, (64)

The total longitudinal electrical conductivity then reads

σ xx(μ, λ) = 2
[
σ xx

b (μ, λ) + σ xx
m (μ, λ)

]
, (65)

which again encloses the contribution from the right half of
the Brillouin zone. The consistency between the analytic con-
ductivity [Eq. (65)] and its numerical counterpart [Figs. 8(d)

and 8(g)] again justifies the validity of the marginal energy
band dispersions [Eqs. (59)]. For a fixed chemical poten-
tial, a scanned bend curvature can push the pseudo-Landau
levels through μ, resulting in a periodic electron popula-
tion [Fig. 8(f)], which produces an unusual Shubnikov-de
Haas oscillation in the complete absence of magnetic fields
[Fig. 8(g)].

With the μ dependence of σ xx(μ, λ) figured out, it is
straightforward to calculate the Seebeck coefficient Sxx(μ, λ)
through the Mott relation [69],

Sxx(μ, λ) = −π2k2
BT

3e

d

dμ
ln σ xx(μ, λ), (66)

which is plotted in Figs. 8(e) and 8(h). The oscillatory
behavior of the Seebeck coefficient is inherited from the lon-
gitudinal electrical conductivity [Eq. (65)].

VII. CONCLUSIONS

In conclusion, the dispersions and the transport of the
pseudo-Landau levels in a strongly bent graphene nanoribbon
are analytically studied. Such a study is motivated by the fact
that the widely used Dirac models [15,16,20–22,34,36,39,40]
workable for comparatively weak strain become insufficient
in the strong strain limit due to the oversimplification ig-
noring the nonlinear terms of the momentum and the strain
tensor. Applying the band topology analysis based on the
hidden chiral symmetry [70], we find that the unit cell of a
bent graphene nanoribbon effectively maps to a Su-Schrieffer-
Heeger model [41] with strain-modulated bipartite hoppings.
A domain wall separating the topological and trivial sectors
of the unit cell results from the strain modulation and carries a
zero-energy mode, which is the zeroth pseudo-Landau level
by nature. In the vicinity of such a domain wall (i.e., the
guiding center of the pseudo-Landau levels), we restore the
Schrödinger differential equation into an analytically solvable
standard Dirac equation through linearizing the model Hamil-
tonian. In contrast to the standard linearization adopted when
deriving the Dirac models around the Brillouin zone corners,
our linear expansion is conducted in real space. It thus treats
the strain-modulated Fermi velocity and the strain-induced
pseudomagnetic field on equal footing to give an analytic
solution to the pseudo-Landau levels. The resolved pseudo-
Landau level dispersions are accurate in a wide range of the
Brillouin zone for strong strain and are even superior over the
Dirac models for weak strain.

Having acquired the dispersions of pseudo-Landau lev-
els using a nearest-neighbor lattice model of bent graphene
nanoribbons, we turn to consider more realistic models with
chiral symmetry breaking masses, applied electric fields,
and next-nearest-neighbor hoppings. The Semenoff (Haldane)
mass arises from the interplay with the substrate (the intrin-
sic spin-orbit coupling) and opens up a trivial (topological)
band gap to pseudo-Landau levels. Nevertheless, compar-
ing to the nearest-neighbor hopping effect, the effect of
the mass terms is comparatively small in graphene. On the
other hand, the electric fields and the next-nearest-neighbor
hoppings can be strong perturbations and thus drastically
affect the electronic structure by suppressing and tilting the
pseudo-Landau levels. Fortunately, these two effects can
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cancel each other and the resulting bulk bands show no ob-
vious difference from the pseudo-Landau levels derived from
the nearest-neighbor lattice model. The analytically derived
pseudo-Landau levels and the phenomenologically approx-
imated marginal energy bands constitute an artificial band
structure, allowing the analytic computation of the transport
signatures (e.g., Shubnikov-de Haas oscillation in the absence
of magnetic fields and the negative strain-resistivity resulting
from the valley anomaly) and the comparison to numerics and
experimental observations.

Our findings may pave the way to graphene straintronics
devices in the strong strain paradigm, which so far remains
largely unexplored. Our approach may be transplanted to a
various novel materials such as the twisted bilayer graphene
[71], Dirac superconductors [72–76], and bosonic semimetals
[44,77–83], where pseudo-Landau levels have been reported.
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APPENDIX: SPECTRAL FUNCTIONS IN THE WEAK
STRAIN LIMIT

In Sec. II of the main text, we plot the spectrum
[Figs. 2(a)–2(d)] of a weakly bent graphene nanoribbon and
use the average value of the position operator [i.e., ȳ =∫

dy ψ∗
nkx

(y) y ψnkx (y), where ψnkx (y) is the wave function] to
mark the positions of the energy bands. We here show that
such positions can also be resolved by the spectral function.

The spectral function of a bent graphene nanoribbon can
be written as

An(ε, kx ) = − 1

π
lim
δ→0

�[ε + iδ − Hnm(kx )]−1
n=m, (A1)

which represents the local density of states at the nth site with
Hnm(kx ) being the Hamiltonian matrix of the bent graphene
nanoribbon. Equation (A1) allows us to study the spectral den-
sity in any part of the nanoribbon. For example, we may define
the spectral function of the stretched (compressed) marginal
region [the uppermost (lowermost) 5% of the bent graphene

nanoribbon] by summing An(ε, kx ) over the sites belonging to
that part of the nanoribbon.

We first calculate the spectral function in the bulk of the
bent graphene nanoribbon at low energies [Figs. 9(a) and 9(b)]
and find a set of slightly dispersive bulk bands, which are
the strain-induced pseudo-Landau levels, bounded between
the projected Dirac cones [white curves in Figs. 9(a) and
9(b)] characterized by εDC

max = ±h̄ṽη
x (qx − η

g
2aλy)|y=±W/2 [i.e.,

the weak strain limit of Eqs. (57)]. On a phenomenological
basis, the effect of the bend on a certain Dirac point is to
relocate its position along the x direction in a y-dependent
fashion. The trace constituted by the displaced Dirac points
at different y ∈ [−W

2 , W
2 ] is then a flat band spreading in the

vicinity of the chosen Dirac point; and thus is the zeroth

FIG. 9. Spectral functions of a bent graphene nanoribbon of
width W = 192 nm and bend curvature λ = 0.642 μm−1. (a), (c), (e)
and (b), (d), (f) plot the spectral functions in the vicinity of the left
and right projected Brillouin zone corners, respectively. (a), (b) The
bulk spectral functions with projected Dirac cones labeled by the
white curves. The states bounded between the projected Dirac cones
are the strain-induced pseudo-Landau levels. (c), (d) The spectral
functions of the stretched marginal region, whose hosted energy
bands are trapped in the inner projected Dirac cones (white curves)
with their Dirac points pinned at ±k−

max. (e), (f) The spectral functions
of the compressed marginal region, the energy bands of which are
trapped in the outer projected Dirac cones (white curves) with their
Dirac points located at ±k+

max.
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FIG. 10. Edge spectral functions of a bent graphene nanoribbon
of width W = 192 nm and bend curvature λ = 0.642 μm−1. (a) The
edge states on the stretched zigzag edge emerge from the Dirac points
of the inner projected Dirac cones (white curves) at ±k−

max. (b) The
edge states on the compressed zigzag edge emerge from the Dirac
points of the outer projected Dirac cones (white curves) at ±k+

max.

pseudo-Landau level by nature. For a higher pseudo-Landau
level, the wave function has more nodes and consequently gets
less localized in the real space. Its width in the momentum

space becomes narrower. Eventually, all the pseudo-Landau
levels are bounded between the aforementioned two projected
Dirac cones.

We also notice that the energy bands outside the bounded
area unambiguously belong to the stretched [Figs. 9(c) and
9(d)] and compressed [Figs. 9(e) and 9(f)] marginal regions,
consistent with our observation of ȳ in Figs. 2(a) and 2(d).
Most of these energy bands are strongly dispersive and spliced
to the pseudo-Landau levels at the boundaries of the projected
Dirac cones except for a pair of longer flat bands [Figs. 9(c)
and 9(d)] degenerate with the zeroth pseudo-Landau level and
a pair of shorter flat bands [Figs. 9(e) and 9(f)] connecting
the two sectors of the zeroth pseudo-Landau level across the
Brillouin zone boundary. Further calculations of the spectral
functions on the zigzag edges, i.e., the a1 site and the b2N

site in Fig. 1(a), clarify that the longer (shorter) flat bands
emerging from the projected Dirac points at ±k−

max (±k+
max)

are located on the stretched (compressed) edge as illustrated
in Fig. 10(a) [Fig. 10(b)]. We thus refer to such flat bands as
the edge states, which have a topological origin (cf. Sec. III),
while calling those dispersive bands inside the projected Dirac
cones the marginal energy bands.
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