
PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

Approximate amplitude encoding in shallow parameterized quantum circuits
and its application to financial market indicators

Kouhei Nakaji ,1,2 Shumpei Uno ,3,2 Yohichi Suzuki,2 Rudy Raymond,4,2 Tamiya Onodera,4,2 Tomoki Tanaka,5,2,1

Hiroyuki Tezuka ,6,2,1 Naoki Mitsuda,7,2 and Naoki Yamamoto2,8,*

1Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223- 8522, Japan
2Quantum Computing Center, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

3Mizuho Research & Technologies, Ltd., 2-3 Kanda-Nishikicho, Chiyoda-ku, Tokyo 101-8443, Japan
4IBM Quantum, IBM Research-Tokyo, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan

5Mitsubishi UFJ Financial Group, Inc. and MUFG Bank, Ltd., 2-7-1 Marunouchi, Chiyoda-ku, Tokyo 100-8388, Japan
6Sony Group Corporation, 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

7Sumitomo Mitsui Trust Bank, Ltd., 1-4-1, Marunouchi, Chiyoda-ku, Tokyo 100-8233, Japan
8Department of Applied Physics and Physico-Informatics, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan

(Received 7 April 2021; accepted 4 April 2022; published 20 May 2022)

Efficient methods for loading given classical data into quantum circuits are essential for various quantum
algorithms. In this paper, we propose an algorithm called Approximate Amplitude Encoding that can effectively
load all the components of a given real-valued data vector into the amplitude of quantum state, while the previous
proposal can load only the absolute values of those components. The key of our algorithm is to variationally
train a shallow parameterized quantum circuit, using the results of two types of measurement: the standard
computational-basis measurement plus the measurement in the Hadamard-transformed basis, introduced in
order to handle the sign of the data components. The variational algorithm changes the circuit parameters so
as to minimize the sum of two costs corresponding to those two measurement basis, both of which are given
by the efficiently computable maximum mean discrepancy. We also consider the problem of constructing the
singular value decomposition entropy via the stock market data set to give a financial market indicator; a
quantum algorithm (the variational singular value decomposition algorithm) is known to produce a solution faster
than classical, which yet requires the sign-dependent amplitude encoding. We demonstrate, with an in-depth
numerical analysis, that our algorithm realizes loading of time series of real stock prices on quantum state with
small approximation error, and thereby it enables constructing an indicator of the financial market based on the
stock prices.

DOI: 10.1103/PhysRevResearch.4.023136

I. INTRODUCTION

Quantum computing is expected to solve problems that
cannot be solved efficiently by any classical means. The
promising quantum algorithms are Shor’s factoring algo-
rithm [1] and the Grover search algorithm [2]. After these
landmark findings, a number of quantum algorithms have
been developed, including quantum-enhanced linear algebra
solvers [3–14]. An important caveat is that those algorithms
assume that the classical data (i.e., elements of the linear
equation) has been loaded into the (real) amplitude of a quan-
tum state, i.e., amplitude encoding. However, to realize the
amplitude encoding without ancillary qubits, in general we
are required to operate quantum circuit with exponential depth

*yamamoto@appi.keio.ac.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

with respect to the number of qubits [15–26]. Hence there
have been developed several techniques to achieve amplitude
encoding without using an exponential depth circuit, e.g., the
method introducing ancillary qubits [27–30], which, however,
may introduce an exponential number of the ancillary qubits
in the worst case. References [31–34] achieve this purpose
by limiting the data to a unary one. Also, Refs. [35–39]
employ the black-box oracle approach. Note that these are
perfect or precision-guaranteed data-loading methods, which
consequently can require a large quantum circuit involv-
ing hard-to-implement gate operations. On the other hand,
there are many problems that need only an approximate
calculation (e.g., calculation of a financial market indicator
mentioned below), in which case it is reasonable to seek an
approximate data-loading method that effectively runs even
on currently available shallow and limited-structural quantum
circuit.

In this paper, we propose an algorithm called the ap-
proximate amplitude encoding (AAE) that trains a shallow
parameterized quantum circuit (PQC) to approximate the
ideal exact data-loading process. Note that, because of un-
avoidable approximation error, the application of AAE must

2643-1564/2022/4(2)/023136(20) 023136-1 Published by the American Physical Society

https://orcid.org/0000-0002-3501-5734
https://orcid.org/0000-0001-9244-4642
https://orcid.org/0000-0002-8572-4272
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023136&domain=pdf&date_stamp=2022-05-20
https://doi.org/10.1103/PhysRevResearch.4.023136
https://creativecommons.org/licenses/by/4.0/

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

be the one that allows imperfection in the focused quantity,
such as a global trend of the financial market indicator, which
will be described later. That is, the scope of this paper is
not to propose a perfect or precision-guaranteed encoding
algorithm. Rather, AAE is a data-loading algorithm that works
with fewer gates, despite the unavoidable error caused by the
limited representation ability of a fixed ansatz and possibly
the incomplete optimization.

To describe the problem more precisely, let |Data〉 be the
target n-qubit state whose amplitude represents the classical
data component. Then AAE provides the training policy of
a PQC represented by the unitary U (θ), so that the finally
obtained U (θ) followed by another shallow circuit V approx-
imately generates |Data〉, with the help of an auxiliary qubit.
Namely, as a result of training, VU (θ)|0〉⊗n|0〉 approximates
the state eiα|Data〉|y〉, where |y〉 is a state of the auxiliary qubit
and eiα is the global phase. Hence, though there appears an
approximation error, the O(1) ∼ O(poly(n))-depth quantum
circuit VU (θ) achieves the approximate data loading, instead
of the ideal exponential-depth circuit [15–26]. It should also
be mentioned that the number of classical bits for storing
2n dimensional vector data is O(2n), while the number of
qubits for this purpose is O(poly(n)) in several data-loading
algorithms [15–26,31–39] and the proposed AAE is included
in this class.

Our work is motivated by Ref. [40], which proposed a
variational algorithm for constructing an approximate quan-
tum data receiver, in the framework of generative adversarial
network (GAN); the idea is to train a shallow PQC so that the
absolute values of the amplitude of the final state approximate
the absolute values of the data vector components. Hence the
method is limited to the case where the sign of the data com-
ponents does not matter or the case where the data are given
by a probability vector as in the setting of [40]. In other words,
this method cannot be applied to a quantum algorithm based
on the amplitude encoding that needs loading the classical
data onto the quantum state without dropping their sign. In
contrast, our proposed method can encode the sign in addition
to the absolute value, although there may be an approximation
error between the generated state and the target state.

As another contribution of this paper, we show that the
combination of our AAE algorithm and the variational quan-
tum Singular Value Decomposition (qSVD) algorithm [41]
offers an alternative quantum algorithm for computing the
SVD entropy for stock price dynamics [42], which is used as a
good indicator of the financial market. In fact, this algorithm
requires that the signs of the stock price data are correctly
loaded into the quantum amplitudes; on the other hand, the
goal is to capture a global trend of the SVD entropy over
time rather than its precise values, meaning that this problem
satisfies the basic requirement of AAE described in the second
paragraph. We give an in-depth numerical simulation with a
set of real stock price data, to demonstrate that this algorithm
generates a good approximating solution of the correct SVD
entropy.

The rest of the paper is organized as follows. In Sec. II we
describe the algorithm of AAE. Section III gives a demon-
stration of AAE applied to approximately compute the SVD
entropy for stock market dynamics. Finally, we conclude the
paper with some remarks in Sec. IV.

II. APPROXIMATE AMPLITUDE
ENCODING ALGORITHM

A. The goal of the AAE algorithm

In quantum algorithms that process a classical data repre-
sented by a real-valued N-dimensional vector d, first it has to
be encoded into the quantum state; a particular encoding that
can potentially be linked to quantum advantage is to encode d
to the amplitude of an n-qubits state |Data〉. More specifically,
given | j〉 as | j〉 = | j1 j2 · · · jn〉 where jk is the state of the kth
qubit in computational basis and j = ∑n

k=1 2n−k jk , the data
quantum state is given by

|Data〉 =
N−1∑
j=0

d j | j〉, (1)

where N = 2n and d j denotes the jth element of the vector
d. Also here d is normalized;

∑
j d2

j = 1. Recall that, even
when all the elements of d are fully accessible, in general,
a quantum circuit for generating the state (1) requires an ex-
ponential number of gates, which might destroy the quantum
advantage [15–26].

In contrast, our algorithm uses a �-depth PQC [hence com-
posed of O(�n) gates] to try to approximate the ideal state (1).
The depth � is set to be O(1) ∼ O(poly(n)). Suppose now
that, given an N-dimensional vector a, the state generated by
a PQC, represented by the unitary matrix U (θ) with θ the
vector of parameters, is given by U (θ)|0〉⊗n = ∑N−1

j=0 a j | j〉.
If the probability to have | j〉 as a result of measurement in
the computational basis is d2

j , this means |a j | = |d j | for all j.
Therefore, if only the absolute values of the amplitudes are
necessary in a quantum algorithm after the data loading as in
the case of [40], the goal is to train U (θ) so that the following
condition is satisfied:

|a j |2 = |〈 j|U (θ)|0〉|2 = d2
j , ∀ j ∈ [0, 1, . . . , N − 1]. (2)

However, some quantum algorithms need a quantum state
containing d j itself, rather than d2

j . Naively, hence, the goal
is to train U (θ) so that U (θ)|0〉⊗n = |Data〉. But as will be
discussed later, in general we need an auxiliary qubit and
thereby aim to train U (θ) so that

VU (θ)|0〉⊗n|0〉 = eiα|Data〉|y〉, (3)

where V represents a fixed operator containing postselection
and eiα is the global phase. |0〉 in the left-hand side and |y〉 in
the right-hand side are the auxiliary qubit state, which might
not be necessary in a particular case (Case 1 is shown later).
This is the goal of the proposed AAE algorithm. When Eq. (3)
is satisfied, the first n-qubits of VU (θ)|0〉⊗n serve as an input
of the subsequent quantum algorithm.

In the following, we assume that all matrix components
of U (θ) are real in the computational basis for any θ, to
ensure that U (θ)|0〉⊗n generates only real amplitude quan-
tum states. In particular, we take U (θ) composed of only
the parameterized Ry rotational gate Ry(θr) = exp(−iθrσy/2)
and controlled-not (CNOT) gates; here θr is the rth element
of θ and σy is the Pauli Y operator. There is still a huge
freedom for constructing the PQC as a sequence of Ry and
CNOT gates, but in this paper we take the so-called hardware
efficient ansatz [43] due to its high expressibility or rich state

023136-2

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

FIG. 1. Example of the structure of the hardware efficient ansatz U (θ), composed of five qubits with eight layers. We use the ansatz in the
numerical demonstration in Sec. III. Each layer is composed of the set of parameterized single-qubit rotational gate Ry(θr) = exp(−iθrσy/2)
and controlled-not (CNOT) gates that connect adjacent qubits; θr is the rth parameter and σy is the Pauli Y operator [hence U (θ) is a real matrix].
We randomly initialize all θr at the beginning of each training.

generation capability. We show the example of the structure
of the hardware efficient ansatz in Fig. 1. Note that according
to the literature [44], the alternating layered ansatz proposed
in [45] also has high expressibility comparable to the hard-
ware efficient ansatz; thus, the alternating layered ansatz is
another viable ansatz for our problem.

B. The proposed algorithm

This section is twofold; first we identify a condition that
guarantees the equality in Eq. (3); then, based on this condi-
tion, we specify a valid cost function and describe the design
procedure of U (θ). The algorithm depends on the following
two cases related to the elements of target d:
Case 1: The elements of d are all nonpositive or all
nonnegative.
Case 2: Otherwise.

It should be noted that, even in Case 1, the previously
proposed method [40] does not always load the signs cor-
rectly. For instance, suppose that we aim to create the ansatz
state to approximate the target data state |Data〉 = (|0〉 +
|1〉 + |2〉 + |3〉)/2. The method [40] guarantees only that,
even ideally (i.e., the case where the cost takes the min-
imum value zero), the absolute value of the amplitude of
U (θ∗)|0〉⊗n is (1/2, 1/2, 1/2, 1/2); but the output state can
be, e.g., U (θ∗)|0〉⊗n = (|0〉 − |1〉 + |2〉 − |3〉)/2. On the other
hand, our method guarantees that, in the ideal case, the output
state is exactly the target state, i.e., U (θ∗)|0〉⊗n = (|0〉 + |1〉 +
|2〉 + |3〉)/2 = |Data〉.

1. Condition for the perfect encoding

In Case 1, we consider the following two conditions:

|〈 j|U (θ)|0〉⊗n|2 = d2
j (∀ j), (4)

|〈 j|H⊗nU (θ)|0〉⊗n|2 =
(

N−1∑
k=0

dk〈 j|H⊗n|k〉
)2

≡ (
dH

j

)2
(∀ j). (5)

Note that dH
j is classically computable with complexity

O(N log N), by using the Walsh-Hadamard transform [46];
in particular, if d is a sparse vector, this complexity can be
reduced; that is, if d has only K = Nα nonzero elements (0 <

α < 1), there exists a modified Walsh-Hadamard-based algo-
rithm with computational complexity O(K log K log(N/K))
such that the success probability asymptotically approaches
to 1 as N increases [47].

If both two conditions (4) and (5) are satisfied, it is guar-
anteed that our goal is exactly satisfied, which is stated in the
following theorem (the proof is found in Appendix A):

Theorem 1. In Case 1, if the n-qubits PQC U (θ) satisfies
Eqs. (4) and (5), then U (θ)|0〉⊗n = ∑

j d j | j〉 or U (θ)|0〉⊗n =
−∑

j d j | j〉 holds.
In Case 2, i.e., the case where some (not all) elements of d

are nonnegative while the others are positive, the target state
|Data〉 can be decomposed to

|Data〉 = |Data+〉 + |Data−〉, (6)

where the amplitudes of |Data+〉 are positive and those of
|Data−〉 are nonpositive. Then, by introducing an auxiliary
single qubit, we can represent the state |Data〉 in the form
considered in Case 1; that is, the amplitudes of the (n + 1)-
qubits state

|ψ̄〉 ≡ |Data+〉|0〉 − |Data−〉|1〉 (7)

are nonnegative and 〈ψ̄ |ψ̄〉 = 1. We write this state as |ψ̄〉 =∑2N−1
i=0 d̄ j | j〉 in terms of the computational basis {| j〉} and

the corresponding 2N-dimensional vector d̄. Then Theorem 1
states that, if the conditions

|〈 j|U (θ)|0〉⊗n+1|2 = d̄2
j (∀ j), (8)

|〈 j|H⊗n+1U (θ)|0〉⊗n+1|2 =
(

2N−1∑
k=0

d̄k〈 j|H⊗n+1|k〉
)2

≡ (
d̄H

j

)2
(∀ j) (9)

are satisfied, then U (θ)|0〉⊗n+1 = ±|ψ̄〉 holds. Further, once
we obtain |ψ̄〉, this gives us the target |Data〉, via the following
procedure. That is, operating the Hadamard transform to the
last auxiliary qubit yields

I⊗n ⊗ H |ψ̄〉 = |Data+〉 − |Data−〉√
2

|0〉

+ |Data+〉 + |Data−〉√
2

|1〉, (10)

and then the postselection of |1〉 via the measurement on the
last qubit in Eq. (10) gives us |Data〉 in the first n-qubits. The
above result is summarized as follows.

Theorem 2. In Case 2, suppose that the (n + 1)-qubits
PQC U (θ) satisfies Eqs. (8) and (9). Then, if the measurement
result of the last qubit in the computational basis for the state

023136-3

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

FIG. 2. Overview of the data loading in Case 1 and Case 2.

(I⊗n ⊗ H)U (θ)|0〉⊗n+1 is |1〉, |Data〉 is generated. That is,

(I⊗n ⊗ |1〉〈1|)(I⊗n ⊗ H)U (θ)|0〉⊗n+1 ∝ |Data〉|1〉.
This theorem implies that, if U (θ) is trained so that con-

ditions (8) and (9) are satisfied, |Data〉 can be obtained by
the above postselection procedure, with success probability
nearly 1/2. Note that, by applying the extra postprocessing,
we can obtain |Data〉 with success probability 1 instead of
1/2, which is shown in Appendix B. The overview of the
data-loading circuits in Case 1 and Case 2 are summarized
in Fig. 2. As seen from the figure, U (θ) is directly used as the
data-loading circuit in Case 1, while we need the postprocess-
ing after U (θ) in Case 2.

2. Optimization of U (θ)

Here we provide a training method for optimizing U (θ), so
that Eqs. (4) and (5) are nearly satisfied in Case 1, and Eqs. (8)
and (9) are nearly satisfied in Case 2, with as small approx-
imation error as possible. For this purpose, we employ the
strategy to decrease the maximum mean discrepancy (MMD)
cost [48,49], which was previously proposed for training the
Quantum Born Machine [9,50]. Note that the other costs,
the Stein discrepancy (SD) [9] and the Sinkhorn divergence
(SHD) [9] can also be taken, but in this paper we use MMD
for its ease of use.

The MMD is a cost of the discrepancy between two
probability distributions: qθ (j), the model probability distri-
bution, and p(j), the target distribution. The cost function
LMMD(qθ , p) is defined as

LMMD(qθ , p) ≡ γMMD(qθ , p)2,

γMMD(qθ , p) =
∣∣∣∣∣
N−1∑
j=0

qθ (j)�(j) −
N−1∑
j=0

p(j)�(j)

∣∣∣∣∣, (11)

where �(j) is a function that maps j to a feature space. Thus,
given the kernel κ (j, k) as κ (j, k) = �(j)T �(k), it holds

LMMD(qθ , p) = E j∼qθ

k∼qθ

[κ (j, k)] − 2E j∼qθ

k∼p
[κ (j, k)]

+ E j∼p
k∼p

[κ (j, k)], (12)

where, for example, one of the expectation values is defined
by

E j∼qθ

k∼qθ

[κ (j, k)] =
N−1∑
j=0

N−1∑
k=0

κ (j, k)qθ (j)qθ (k). (13)

Note that, even though the index of the sum goes till N − 1
in Eq. (13), we can efficiently estimate the expectation value
without O(N) computation by sample averaging as follows.
First, given Nshot as the number of samples for each index, we
sample { j�}Nshot−1

�=0 and {k�}Nshot−1
�=0 according to the probability

distribution qθ (·); note that, in our case, qθ (j) is the proba-
bility to obtain | j〉 as a result of measuring the final state of
PQC, and thus we can obtain samples just by measuring the
final state multiple times. Then, using the samples { j�}Nshot−1

�=0

and {k�}Nshot−1
�=0 , we can approximate the expectation value as

E j∼qθ

k∼qθ

[κ (j, k)] � 1

Nshot

Nshot−1∑
�=0

κ (j�, k�). (14)

The approximation error is bounded by O(1/
√

Nshot) with
high probability; this fact can be proven by using the bound
for probability distributions such as Chernoff bound [51]
combined with the technique to derive the error bound; see,
e.g., [9,52]. Similarly, we can efficiently estimate the other
expectation values in LMMD by the sample-averaging tech-
nique; as a result, we can estimate LMMD with guaranteed
error O(1/

√
Nshot), via O(Nshot) < O(N) computation.

It should also be noted that when the kernel is characteris-
tic [48,49], then LMMD(qθ , p) = 0 means qθ (j) = p(j) for all
j. In this paper, we take a one-dimensional Gaussian kernel
κ (j, k) = C exp[−(j − k)2/2σ 2] with a positive constant C,
which is characteristic.

In Case 1, the goal is to train the model distributions

qθ (j) = |〈 j|U (θ)|0〉⊗n|2,
qH

θ (j) = |〈 j|H⊗nU (θ)|0〉⊗n|2,
so that they approximate the target distributions

p(j) = d2
j , pH (j) = (

dH
j

)2
, (15)

respectively. In Case 2, the model distributions

qθ (j) = |〈 j|U (θ)|0〉⊗n+1|2,
qH

θ (j) = |〈 j|H⊗n+1U (θ)|0〉⊗n+1|2
are trained so that they approximate the target distributions

p(j) = d̄2
j , pH (j) = d̄H2

j , (16)

respectively. In both cases, our training policy is to minimize
the following cost function:

L(θ) = LMMD(qθ , p) + LMMD(qH
θ , pH)

2
. (17)

Actually, L(θ) becomes zero if and only if LMMD(qθ , p) =
0 and LMMD(qH

θ , pH) = 0, or equivalently qθ (j) = p(j) and
qH

θ (j) = pH (j) for all j as long as we use a characteristic
kernel.

To minimize the cost function (17), we take the standard
gradient descent algorithm. In particular as we note at the end
of Sec. II A, we consider the PQC where each parameter θr is
embedded in the quantum circuit in the form exp(−iθrσy/2).
In this case, the gradients of qθ and qH

θ with respect to θr can
be computed by using the parameter shift rule [53] as

∂qθ (j)

∂θr
= q+

θr
(j) − q−

θr
(j),

∂qH
θ (j)

∂θr
= qH+

θr
(j) − qH−

θr
(j), (18)

023136-4

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

where q±
θr

(j) = |〈 j|Ur±(θ)|0〉|2, qH±
θr

(j) = |〈 j|HUr±(θ)|0〉|2.
The shifted unitary operator is defined by

Ur±(θ) = Ur±({θ1, . . . , θr−1, θr, θr+1, . . . , θR})

= U ({θ1, . . . , θr−1, θr ± π/2, θr+1, . . . , θR}), (19)

with R as the number of the parameters, which can be writ-
ten as R = �n (recall that � is the depth of PQC). Then, by
differentiating (12) and using (18), the gradient of L can be
explicitly computed [50] as

2
∂L
∂θr

= E j∼q+
θr

k∼qθ

[κ (j, k)] − E j∼q−
θr

k∼qθ

[κ (j, k)]

− E j∼q+
θr

k∼p

[κ (j, k)] + E j∼q−
θr

k∼p

[κ (j, k)]

+ E j∼qH+
θr

k∼qH
θ

[κ (j, k)] − E j∼qH−
θr

k∼qH
θ

[κ (j, k)]

− E j∼qH+
θr

k∼pH

[κ (j, k)] + E j∼qH−
θr

k∼pH

[κ (j, k)]. (20)

We can approximately compute the gradient (20) by sam-
pling j and k from the distributions qθ , q+

θr
, q−

θr
, qH

θ , qH+
θr

,
qH−

θr
p, and pH similar to the case of Eq. (14). Then, using

the gradient descent algorithm with Eq. (20), we can update
the vector θ = (θ1, . . . , θR) to the direction that minimizes
L(θ). Note that, in the above sampling approach, the estima-
tion error of the gradient vectors does not depend on N but
only on the number of samples Nshot. This is because each
gradient is written as the sum of the expectation values (20)
and each expectation value can be estimated with the error
O(1/

√
Nshot), as discussed around Eq. (14).

Lastly we remark that we may be able to utilize the clas-
sical shadow technique [54,55] and its extension [56], to
significantly reduce the number of measurements as follows.
Recall that the density matrix of an n-qubit quantum state ρ is
a linear combination of 4n Pauli terms written as ρ = ∑

P αPP
where αP ∈ R and P ∈ {I, X,Y, Z}⊗n. Also in the proposed
method, the quantum state generated from the PQC is mea-
sured either in the computational basis (i.e., the eigenstates of
Z⊗n) or in the rotated computational basis via the Hadamard
gate (i.e., the eigenstates of X ⊗n). Applying the classical
shadow technique allows us to estimate all coefficients αP for
P ∈ {I, Z}n and for P ∈ {I, X }n within an additive error ε by
spending ∝ poly(n)/ε2 number of measurements. We can also
extend the measurement basis by the eigenstates of Y , and by
applying the classical shadow technique to probabilistically
check if the coefficients of αP’s are correct. We leave the
details of the analysis for future work.

C. Computational complexity of the AAE algorithm

We have seen above that the number of measurements
required for estimating the cost and the gradient vector does
not scale exponentially with the number of qubits. However,
we must still solve the issues that often appear in the standard
variational quantum algorithms (VQAs), for ensuring the scal-
ability of our algorithm. Below we pose a few typical issues
and describe how we could handle them.

Firstly, it is theoretically shown that the general VQA with
highly expressive PQC has the barren plateau issue [57]; that

is, the gradient of the cost function becomes exponentially
small as the number of qubits increases. Our algorithm may
also have the same issue, even though U (θ) is limited to
be real in the computational basis. For mitigating this issue,
several approaches have been proposed: e.g., circuit initial-
ization [58], special structured ansatz [45], and parameter
embedding [59], while further studies are necessary to ex-
amine the validity of these approaches. The methods [58]
and [59] are applicable to our algorithm; on the other hand, the
approach of [45] depends on the detail of the cost function (the
MMD cost in our case), and we need further investigation to
see the applicability of this method to our algorithm. Related
to this point, we also need to carefully address the issue that
the landscape of the cost function in VQA may have many
local minima, which may result in many trials of the train-
ing for PQC. Because this local minima issue is ubiquitous
in classical optimization problems, we can employ several
established classical optimizers [60]. Other approaches may
also be applicable to our algorithm, but their theoretical un-
derstanding, particularly the convergence proof, are still to be
investigated.

The next typical issue that our algorithm shares in common
with the general VQA is that the depth of circuit tends to
become bigger in order to reduce the value of cost function be-
low a certain specified value [61]. Various attempts to reduce
the circuit depth have been made in the literature [62–65],
and some of those are applicable to our algorithm. Also,
Refs. [66,67] provide methods to split a large quantum circuit
to several small quantum circuits. Even with those assistance,
we need further theoretical development to conclude that
O(poly(n)) depth is actually enough for training any data-
loading circuit. Nevertheless, in contrast to the problems that
require near-perfect cost minimization such as VQE in chem-
istry, the depth needed for our algorithm is smaller as long as
very precise data loading is not necessary. Computation of the
singular value decomposition entropy, which we will discuss
in Sec. III, is an example of such quantum algorithms.

Table I summarizes the computational complexity of AAE,
under the assumption that the PQC with the number of gates
O(poly(n)) achieves the approximate data loading with suffi-
cient precision for the given problem. We show two cases: (1)
the case when using AAE (denoted by “AAE” in the table)
and (2) the case when exactly encoding data (denoted by
“exact encoding”) [15–26,68]; for each case we show both
the results when the data vector is dense or sparse. For exact
encoding with sparse data, we show the result in Ref. [68].
Also, the number of nonzero elements in sparse data is de-
noted by K . We divide the computational complexity into two
stages: the training stage (training) and the execution stage
of the quantum algorithm (execution). In the case of exact
encoding, there is no training stage. The total number of gate
operations required in the training stage of AAE is denoted by
Ntrain, and that for the main quantum algorithm is denoted by
Nalg. The total number of measurements required to retrieve
the output of the algorithm, satisfying sufficient precision for
the given problem, is denoted by Nmes. We emphasize the
total computational complexity in the execution stage by bold
letters.

Regarding the computational complexity, the merit of us-
ing AAE exists in the computational complexity in execution

023136-5

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

TABLE I. Overview of the computational complexity for our algorithm (AAE) and the case for exact encoding [15–26,68]; for each case
we show both the results when the data vector is dense or sparse. For exact encoding with sparse data, we show the result in Ref. [68]. We
divide the computational complexity into two stages: the training stage (training) and the execution stage of the quantum algorithm (execution).
In the case of exact encoding, there is no training stage. The total number of gate operations required in the training stage of AAE is denoted
by Ntrain (as the gate operations, we include both the single qubit operations and the two-qubit operations). The number of gates required for
the main quantum algorithm is denoted by Nalg, and the total number of measurements required to retrieve the output satisfying a sufficient
precision for each problem is denoted by Nmes.

(1) AAE (2) Exact encoding

Strategy Dense Sparse Dense Sparse

No. of nonzero elements in the data N K N K

No. of gates in the data-loading circuit O(poly(log N)) O(N) O(K log N)

Computational
complexity
(training)

Classical (Walsh Hadamard
Transform)

O(N log N) O[K log K × log(N
K)] —

Quantum (total no. of gate
operations)

Ntrain

Computational
complexity
(execution)

(a) No. of gate operations
for the data loading per one
measurement

O(poly(log N)) O(N) O(K)

(b) No. of gate operations
for quantum algorithm per
one measurement

Nalg

(c) No. of measurements Nmes

Total = [(a) + (b)]×(c) O((poly(log N) + Nalg) ×Nmes O(N + Nalg) ×Nmes O(K + Nalg) ×Nmes

stage. In particular, the computational complexity of AAE
is O(N) times smaller in the execution stage than that of
the exact encoding method, when Nalg is of the order of
poly(log N). Such a merit is favorable in particular when the
data-loading circuit is used repeatedly. One example is when
Nmes is as large as poly(log N). Another example is when the
data-loading circuit is usable in various problems; for exam-
ple, once we load a training data set for a particular quantum
machine learning problem, it can be utilized in other machine
learning models.

For the training stage of AAE, however, we need fur-
ther discussion. Firstly, the O(N log N) classical computation
for the case of dense data, which comes from the Walsh-
Hadamard transform in AAE, seems costly. However, other
data-loading methods implicitly contains processes to register
the data. For instance, the exact encoding method shown in
the table needs the process that compiles the data into O(N)
quantum gates, which at least requires O(N) computational
complexity. Also, even when a quantum random access mem-
ory (QRAM) [69] is ideally available, registering O(N) data
into the QRAM requires at least O(N) computational com-
plexity; e.g., in the QRAM proposed in Ref. [70], O(N log N)
gate operations are necessary for the data registration.

Secondly, related with the above-mentioned trainability
issues in VQA, Ntrain might become large, in the absence of
some elaborated techniques for VQA. A promising approach
is to take the convex relaxation on the target cost function, in
which case the total number of iterations to achieve L̃(θ) < ε

is O(poly(log N)/ε2) [71], where L̃ is the relaxed convex cost
function. Furthermore, it was shown in [71] that the total

number of measurements for realizing L̃(θ) < ε is O(GS/ε2),
where G is the upper bound of |∂L̃/∂θr | over the parameter
space and S is a constant that relates with the size of the
parameter space. Thus, combining these two complexities, we
find that the total number of gate operations Ntrain to achieve
L̃(θ) < ε is O(poly(log N)poly(1/ε)), provided that the num-
ber of parameters is of the order of poly(log N). Note that,
of course, the convex relaxation appends an additional error
related with the gap between the original cost function and
the relaxed one. Nonetheless, we hope that, in our case, this
gap could be minor compared to the target precision of the
cost function (SVD entropy in our case); we will study this
problem as an important future work for having scalability.

D. Some modification on the AAE algorithm

Before concluding this section, we consider four types of
modifications on the AAE algorithm. The first two are the
change of the cost function, and the next one discusses the
change of the conditions for perfect encoding; the fourth one
is on the possibility to formulate the AAE algorithm in the
GAN framework.

The first one is simple; we may be able to build the
cost function as the weighted average of LMMD(qθ , p) and
LMMD(qH

θ , pH) instead of the current equally weighted av-
erage (17). It is worth investigating the effect of this
modification.

The second possible change is taking a cost function other
than MMD. That is, as mentioned above, Stein discrepancy
(SD) or Sinkhorn divergence (SHD) can serve as a cost

023136-6

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

for measuring the difference of two probability distributions.
Also, as another type of cost function, readers may wonder if
the Kullback-Leibler divergence (KL divergence)

LKL(p, qθ) =
N−1∑
j=0

{p(j) log[p(j)] − p(j) log[qθ (j)]} (21)

would be a more natural cost function for comparing a tar-
get distribution p(j) and a model distribution qθ (j) with
parameter θ .

The gradient ∂LKL/∂θr is given by

∂LKL

∂θr
= −

N−1∑
j=0

p(j)

qθ (j)

∂qθ (j)

∂θr

= −
N−1∑
j=0

p(j)

qθ (j)
[q+

θr
(j) − q−

θr
(j)]

= −E j∼q+
θr

[
p(j)

qθ (j)

]
+ E j∼q−

θr

[
p(j)

qθ (j)

]
. (22)

However, we cannot efficiently compute this quantity by sam-
ple averaging unlike the case of MMD. For example, we
sample { j�}Nshot−1

�=0 from q+
θr

(·) and may compute the first term
of the gradient as

E j∼q+
θr

[
p(j)

qθ (j)

]
� 1

Nshot

Nshot−1∑
�=0

p(j�)

qθ (j�)
, (23)

similar to the case of Eq. (14). Then we need to compute
the value of qθ (j) = |〈 j|U (θ)|0〉⊗n|2 for each �, which, how-
ever, requires O(2n) measurements. Therefore, the gradient
of the KL-divergence cannot be efficiently computed in our
setting, unlike the case of MMD (see [50] for more detailed
explanation).

To the contrary, the gradient of SD and SHD as well as
MMD are efficiently computable, because the gradient vector
is written in terms of the averages of efficiently computable
statistical quantities as in Eq. (20) [9].

The third possible change is altering conditions (5) and (9),
which is used for characterizing the perfect encoding. In Case
1, we train U (θ) so that Eqs. (4) and (5) are approximately
satisfied; the complexity for computing the right-hand side
of Eq. (5) is O(N logN). However, as seen in the proof of
Theorem 1, even if condition (5) is replaced by

|〈0|H⊗nU (θ)|0〉⊗n|2 =
(

N−1∑
k=0

dk〈0|H⊗n|k〉
)2

, (24)

the perfect encoding is still achieved; that is, U (θ)|0〉 =∑
j d j | j〉 or U (θ)|0〉 = −∑

j d j | j〉 holds. This implies that
we can obtain the data-loading circuit by training U (θ) so
that Eqs. (4) and (24) are approximately satisfied. Then the
complexity for computing the right hand side is reduced to
O(N). In Case 2, the situation is the same. Therefore, the
modified algorithm with the use of conditions (4) and (24)
may also work.

Now, as another possibility of changing conditions (5)
and (9), readers may wonder that, if we carefully choose an
operator X instead of H⊗n, the conditions

|〈 j|U (θ)|0〉⊗n|2 = d2
j , (25)

|〈 j|XU (θ)|0〉⊗n|2 =
(

N−1∑
k=0

dk〈 j|X |k〉
)2

(26)

would also result in U (θ)|0〉 = ∑
j d j | j〉 or U (θ)|0〉 =

−∑
j d j | j〉 for arbitrary real vector d. This is clearly favor-

able because we do not need Case 2; namely, we need neither
auxiliary qubits nor the postselection. However, as shown in
Appendix C, it seems to be difficult to find such X for arbitrary
d. This is why we consider the two cases depending on d.

The final possible change is utilizing GAN [72], which
was originally proposed as the method to train a generative
model. GAN consists of two components: a generator and a
discriminator. The generator generates samples (fake data),
and the discriminator receives either a real data from a data
source or fake data from the generator. The discriminator is
trained so that it exclusively classifies the fake data as fake
and the real data as real. The generator is trained so that the
samples generated by the generator are classified as real by
the discriminator. If the training is successfully conducted,
we will have a good generative model; i.e., the probability
distribution that governs the samples of the generator well ap-
proximates the source distribution. As mentioned in Sec. I, the
motivating work [40] applied GAN composed of the quantum
generator implemented by the PQC and the classical (neu-
ral network) discriminator, and demonstrated that the trained
PQC approximates the probability distribution p(j) = d2

j . In
our work, in contrast, we do not take the GAN formulation.
The main reason is that, in our case, the PQC is trained to
learn two probability distributions [Eqs. (4) and (5) in Case 1],
which cannot be formulated in the ordinary GAN that handles
only one generator and one discriminator.

However, customizing GAN to fit into our setting may
be doable as follows; we will discuss only Case 1, but the
same argument applies to Case 2. The customized GAN is
composed of two quantum generators (Generator A and Gen-
erator B) and two classical discriminators (Discriminator A
and Discriminator B). In particular, we use one PQC to realize
the two generators. First, Generator A and Discriminator A
correspond to condition (4); output samples of Generator A
(fake data A) are obtained by measuring the output state of
PQC in computational basis, and Discriminator A receives the
real data sampled from p(j) = d2

j or the fake data A generated
from Generator A. Also, Generator B and Discriminator B
correspond to condition (5); output samples of Generator B
(fake data B) are generated by measuring the output state of
the same PQC yet in the Hadamard basis, and Discriminator
B receives the real data sampled from pH (j) = dH2

j or the
fake data B generated by Generator B. With this setting, the
discriminators are trained so that they will exclusively classify
the real and fake data. On the other hand, the PQC is trained
so that the outputs of the generators are to be classified as real
by the discriminators. Ideally, as a result of the training, we
will obtain the generator that almost satisfies (4) and (5).

023136-7

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

III. APPLICATION TO SVD ENTROPY CALCULATION
FOR FINANCIAL MARKET INDICATOR

This section is devoted to describe the quantum algo-
rithm composed of our AAE and the variational qSVD
algorithm [41] for computing the SVD entropy for stock price
dynamics [42]. We first give the definition of SVD entropy and
then describe the quantum algorithm, with particular emphasis
on how the AAE algorithm well fits into the problem of
computing the SVD entropy. Finally the in-depth numerical
simulation is provided.

A. SVD entropy

The SVD entropy is used as one of the good indicators
for forewarning the financial crisis, which is computed by
the singular value decomposition of the correlation matrix
between stock prices. Let s j,t be the price of the jth stock
at time t . Then we define the logarithmic rate of return as
follows:

r jt = log(s j,t) − log(s j,t−1). (27)

Also, the correlation matrix C of the set of stocks j =
1, 2, . . . , Ns over the term t = 1, 2, . . . , T is defined as

Cjk =
T∑

t=1

a jt akt , (28)

where

a jt = r jt − 〈r j〉
σ j

√
NsT

. (29)

The average 〈r j〉 and the standard deviation σ j over the whole
period of term are defined as

〈r j〉 = 1

T

T∑
t=1

r jt , σ 2
j = 1

T

T∑
t=1

(r jt − 〈r j〉)2. (30)

The correlation matrix C is positive semidefinite, and thus its
eigenvalues are nonnegative. In addition, C satisfies

Tr(C) =
Ns∑
j=1

T∑
t=1

a2
jt = 1. (31)

Now for the positive eigenvalues λ1, λ2, . . . , λU of the corre-
lation matrix, which satisfy

∑U
u=1 λu = 1 from Eq. (31), the

SVD entropy S is defined as

S = −
U∑

u=1

λu log λu. (32)

Computation of S in any classical means requires the diag-
onalization of the Ns×Ns matrix C, hence its computational
complexity is O(N3

s).
The SVD entropy S has been proposed as an indicator

to detect financial crises, such as financial crashes and bub-
bles, based on the methodology of information theory [42].
In the information theory, entropy measures the randomness
of random variables [73]. According to the Efficient Market
Hypothesis [74,75], financial markets during normal periods
show highly random behavior, which lead to large entropy. In

fact, it is known that the eigenvalue distribution of the corre-
lation matrix C can be well explained by the chiral random
matrix theory, except for some large eigenvalues [76–79]. The
eigenvector associated with the largest eigenvalue is inter-
preted as the market portfolio, which consists of the entire
stocks, and the eigenvectors associated with the other large
eigenvalues are interpreted as the portfolios of stocks be-
longing to different industrial sectors. The structural relation
of these eigenvalues does not change a lot during the nor-
mal periods, but it changes drastically at a point related to
financial crisis. Actually, the stock prices across the entire
market or the clusters of several industrial sectors have been
reported to show collective behavior when financial crisis
occurred [80–86]; mathematically, this means that the eigen-
values become nearly degenerate, or roughly speaking the
probability distribution of the eigenvalues visibly becomes
sharp. As a result, the SVD entropy S takes a relatively small
value, indicating the financial crisis. This behavior is analo-
gous to that of the statistical mechanical systems near a critical
point, where spins form a set of clusters due to the very large
correlation length [87]. Lastly we add a remark that a similar
and detailed analysis for image processing can be found in
Ref. [88].

B. Computation on quantum devices

Computation of the SVD entropy on a quantum device can
be performed by first training the PQC U (θ) by the AAE
algorithm, to generate a target state in which the stock data
a jt is suitably embedded. Next, the PQC USVD(ξ) is varia-
tionally trained so that it performs the SVD. Finally, the SVD
entropy is estimated from the output state of the entire circuit
USVD(ξ)U (θ). In the following, we show the detail discussions
of the procedures.

1. The first part: Data loading

The AAE serves as the first part of the entire algorithm; that
is, it is used to load the normalized logarithmic rate of return
of the stock price data a jt given in Eq. (29) into a quantum
state. The target state that the AAE aims to approximate is the
following bipartite state:

|Data〉 =
Ns∑
j=1

T∑
t=1

a jt | j〉stock|t〉time, (33)

where {| j〉stock} j=1,...,Ns and {|t〉time}t=1,...,T are the computa-
tional basis set constructing the stock index Hilbert space
Hstock and the time index Hilbert space Htime, respectively.
The number of qubits needed to prepare this state is ns + nt ,
where ns = O(log Ns) and nt = O(log T), meaning that the
quantum approach has an exponential advantage in the mem-
ory resource. Also note that the state (33) is normalized
because of Eq. (31). The partial trace over Htime gives rise
to

ρstock = TrHtime (|Data〉〈Data|) =
∑

jk

Cjk| j〉stock〈k|stock, (34)

where Cjk is the (j, k) element of the correlation matrix given
in Eq. (28); that is, ρstock = C is realized on a quantum device.
Hence, we need an efficient algorithm to diagonalize ρstock and

023136-8

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

eventually compute the SVD entropy S on a quantum device,
and this is the reason why we use the qSVD algorithm.

2. The second part: Quantum singular value decomposition

We apply the qSVD algorithm [41] to achieve the above-
mentioned diagonalization task. The point of this algorithm
lies in the fact that diagonalizing ρstock = C is equivalent to
realizing the Schmidt decomposition of |Data〉:

|Data〉 =
M∑

m=1

cm|vm〉stock|v′
m〉time, (35)

where {cm}M
m=1 are the Schmidt coefficients, and {|vm〉stock}M

m=1
and {|v′

m〉time}M
m=1 are set of orthogonal states, with M �

min(Ns, T); note that in general these are not the com-
putational basis. Actually, in this representation, ρstock is
calculated as

ρstock = TrHtime (|Data〉〈Data|)

=
M∑

m=1

|cm|2|vm〉stock〈vm|stock, (36)

which is exactly the diagonalization of ρstock = C. This equa-
tion tells us that the eigenvalue of the correlation matrix C
is now found to be λ j = |c j |2 for all j = 1, . . . , M = U , and
thus we end up with the expression

S = −
M∑

m=1

|cm|2 log |cm|2. (37)

This coincides with the entanglement entropy between
Hstock and Htime, i.e., von Neumann entropy of ρstock, S =
−Tr(ρstock log ρstock).

Note now that we cannot efficiently extract the values of
|cm|2 from the state |Data〉, because {|vm〉}M

m=1 and {|v′
m〉}M

m=1
are not the computational basis. Thus, as the next step, we
need to transform the basis {|vm〉}M

m=1 and {|v′
m〉}M

m=1 to the
computational basis, which is done by using qSVD [41].

The qSVD is a variational algorithm for finding the trans-
formation that transforms Schmidt basis to the computational
basis. For simplicity, let us assume ns = nt , which is the case
in our numerical demonstration in Sec. III D. Let |D̃ata〉 be
the output of the AAE circuit, which approximates the target
|Data〉. We train PQCs U1(ξ) and U2(ξ ′) with parameters ξ

and ξ ′, so that, ideally, they realize

U1(ξ) ⊗ U2(ξ ′)|D̃ata〉 =
M∑

m=1

cm|m̄〉stock|m̄〉time. (38)

Here {|m̄〉stock}M
m=1 and {|m̄〉time}M

m=1 are subset of the compu-
tational basis states, which thus satisfy 〈m̄|�̄〉 = δm,� (here
we omit the subscript “stock” or “time” for simplicity).
Clearly, then, the Schmidt basis is identified as |vm〉stock =
U †

1 (ξ)|m̄〉stock and |v′
m〉time = U †

2 (ξ ′)|m̄〉time. The training pol-
icy is chosen so that U1(ξ) ⊗ U2(ξ ′)|D̃ata〉 is as close to
the Schmidt form in the computational basis as possible.
The cost function to be minimized, proposed in [41], is
the sum of Hamming distances between the stock bit se-
quence and the time bit sequence, obtained as the result of

computational-basis measurement on Hstock and Htime; ac-
tually, if we measure the right-hand side of Eq. (38), the
outcomes are perfectly correlated, e.g., 010 on Hstock and 010
on Htime. The cost function is represented as

LSVD(ξ, ξ ′) =
ns∑

q=1

1 − 〈
σ

q
z σ

q+ns
z

〉
2

, (39)

where the expectation 〈·〉 is taken over U1(ξ) ⊗ U2(ξ ′)|D̃ata〉.
The operator σ

q
z is the Pauli Z operator that acts on the

qth qubit. We see that LSVD(ξ, ξ ′) = 0 holds, if and only if
U1(ξ) ⊗ U2(ξ ′)|D̃ata〉 takes the form of the right-hand side
of Eq. (38). Therefore, by training U1(ξ) and U2(ξ ′) so that
LSVD(ξ, ξ ′) is minimized, we obtain the state that best approx-
imates the Schmidt decomposed state.

Lastly, we gain the information on the amplitude of the
output of qSVD circuit (i.e., the values approximating |cm|2),
via the computational basis measurements, and then com-
pute the SVD entropy S. For example, we take the method
proposed in [89], which effectively estimates S from the
state

∑M
m=1 cm|m̄〉stock|m̄〉time; more specifically, this algorithm

utilizes the amplitude estimation [90] to estimate S with com-
plexity Õ(

√
min(Ns, T)/ε2), where ε is the estimation error

and the Õ hides the polylog factor. The computational com-
plexity of estimating S is negligible if the quantum state after
the qSVD is sparse, or when T is small. This is indeed the case
in our problem for computing the SVD entropy in the financial
example, because in practice only a few large eigenvalues
are associated with the market sectors and carry important
information, especially in an abnormal period [76–79]. This
situation is well suited to the spirit of the qSVD algorithm,
which aims to estimate only large eigenvalues. Hence, taking
those fact into consideration, we may be able to reduce the
complexity for estimating the value of the SVD entropy.

C. Complexity of the algorithm

The complexity for computing the SVD entropy can
be obtained by setting N = NsT , Nalg = O(poly(log NsT)),
and Nmes = Õ(

√
min(Ns, T)/ε2) in Table I, where the data

is dense. As noted in Sec. II C, even though we need
O(NsT log NsT) computation in a classical computing device,
the exact data loading method also requires the same amount
of classical computation for compiling the data into gate op-
erations. On the other hand, for the execution stage, AAE
requires O(poly[log(NsT)])Õ(

√
min(Ns, T)/ε2) gate opera-

tions in a quantum computing device. In contrast, for exactly
encoding the data we need O(NsT) gates (say, with the tech-
nique in [15,24]), and the total gate operations on a quantum
computing device is O(NsT)Õ(

√
min(Ns, T)/ε2), which is

much larger than the one using the AAE method.

D. Demonstration

Here we give a numerical demonstration to show the per-
formance of our algorithm composed of AAE and qSVD, in
the problem of computing the SVD entropy for the following
stock data found in the Dow Jones Industrial Average at the
end of 2008: Exxon Mobil Corporation (XOM), Walmart

023136-9

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

TABLE II. Stock prices for Exxon Mobil Corporation (XOM), Walmart (WMT), Procter & Gamble (PG), and Microsoft (MSFT) between
April 2008 and March 2009.

Symbol Apr 08 May 08 Jun 08 Jul 08 Aug 08 Sep 08 Oct 08 Nov 08 Dec 08 Jan 09 Feb 09 Mar 09

XOM 84.80 90.10 88.09 87.87 80.55 78.04 77.19 73.45 77.89 80.06 76.06 67.00
WMT 53.19 58.20 57.41 56.00 58.75 59.90 59.51 56.76 55.37 55.98 46.57 48.81
PG 70.41 67.03 65.92 60.55 65.73 70.35 69.34 64.72 63.73 61.69 54.00 47.32
MSFT 28.83 28.50 28.24 27.27 25.92 27.67 26.38 22.48 19.88 19.53 17.03 15.96

(WMT), Procter & Gamble (PG), and Microsoft (MSFT).
They are top four stocks included in Dow Jones Industrial
Average by market capitalization at the end of 2008. For each
stock, we use the one-year monthly data from April 2008 to
March 2009, which is shown in Table II. Data were taken from
Yahoo Finance (in every month, the opening price is used).
Figure 3 shows the logarithmic rate of return (27) for each
stock at every month computed with the data in Table II.

The goal is to compute the SVD entropy at each term,
with the length T = 5 months. For example, we compute
the SVD entropy at August 2008, using the data from April
2008 to August 2008. The stock indices j = 1, 2, 3, 4 cor-
respond to XOM, WMT, PG, and MSFT, respectively. Also,
the time indices t = 0, 1, 2, 3, 4 identify the month in which
the SVD entropy is computed; for instance, the SVD entropy
in August 2008 is computed, using the data of April 2008
(t = 0), May 2008 (t = 1), June 2008 (t = 2), July 2008
(t = 3), and August 2008 (t = 4). As a result, s jt has to-
tally 20 = 4 (stocks)×5 (terms) components, and thus, from
Eq. (27), both r jt and a jt have 16 = 4×4 components, where
the indices run over j = 1, 2, 3, 4 and t = 1, 2, 3, 4; that is,
Hstock ⊗ Htime = C4 ⊗ C4. Note that {a jt } contain both posi-
tive and negative quantities, and thus AAE algorithm for Case
2 is used for the data loading. Hence, we need an additional
ancilla qubit, meaning that the total number of qubit is 5. The
extended target state (7) is now given by

|ψ̄〉 =
31∑

k=0

ψ̄k|k〉, (40)

where

ψ̄k =

⎧⎪⎨⎪⎩
a jt if k = 8(j − 1) + 2(t − 1), ajt � 0
0 if k = 8(j − 1) + 2(t − 1), ajt < 0
−a jt if k = 8(j − 1) + 2(t − 1) + 1, ajt < 0
0 if k = 8(j − 1) + 2(t − 1) + 1, ajt � 0.

The binary representation of k corresponds to the state of the
qubits, e.g., |2〉 ≡ |00010〉. Then the conditions of perfect data
loading, given by Eqs. (8) and (9), are represented as

|〈k|U (θ)|0〉⊗5|2 = ψ̄2
k ,

|〈k|H⊗5U (θ)|0〉⊗5|2 =
(

31∑
�=0

ψ̄�〈�|H⊗5|k〉
)2

. (41)

The right-hand side of these equations are the target probabil-
ity distributions to be approximated by the output probability
distributions (left-hand side) of the trained PQC U (θ); that
is, qθ (k) = |〈k|U (θ)|0〉⊗5|2, qH

θ (k) = |〈k|H⊗5U (θ)|0〉⊗5|2,
p(k) = ψ̄2

k , and pH (k) = (
∑31

�=0 ψ̄�〈�|H⊗5|k〉)2.
In this work, we execute the AAE algorithm as follows.

The PQC is the eight-layer ansatz U (θ) illustrated in Fig. 1.
Each layer is composed of the set of parameterized single-
qubit rotational gate Ry(θr) = exp(−iθrσy/2) and CNOT gates
that connect adjacent qubits; θr is the rth parameter and σy is
the Pauli Y operator (hence U (θ) is a real matrix). We ran-
domly initialize all θr at the beginning of each training. As the
kernel function, κ (x, y) = exp[−(x − y)2/0.25] is used. To
compute the rth gradient of L given in Eq. (20), we generate

FIG. 3. Logarithmic rate of return (r jt) for each stock and each moment that is computed with the data in Table II.

023136-10

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

FIG. 4. Structure of the qSVD circuit. The parameters θopt in the AAE circuit are fixed. Each layer of U1 is composed of parameterized
single-qubit rotational gates exp(−iξrσar /2) and CNOT gates that connect adjacent qubits, where ξr is the rth parameter and σar is the Pauli
operator (ar = x, y, z). The circuit U2 has the same structure as U1. For each trial, we randomly initialize the gate types and parameters, e.g.,
as for U1, we choose the gate types σar (ar = x, y, z) at the beginning of each trial and fix them during training, and we initialize parameters ξr .
We initialize U2 in the same way.

400 samples for each q+
θr

, q−
θr

, qH+
θr

, and qH−
θr

. As the optimizer,
Adam [91] is used; the learning rate is 0.1 for the first 100
iterations and 0.01 for the other iterations. The number of
iterations (i.e., the number of the updates of the parameters)
is set to 200 for training U (θ). We performed 10 trials for
training U (θ) and then chose the one which best minimizes
the cost L at the final iteration step.

Suppose that the above AAE algorithm generated the quan-
tum state |D̃ata〉, which approximates Eq. (33). Then the next
step is to apply the qSVD circuit to |D̃ata〉 and then com-
pute the SVD entropy. The PQCs U1(ξ) and U2(ξ ′), which
respectively act on the stock state | j〉 and the time state |t〉,
are set to two-qubit eight-layer ansatz illustrated in Fig. 4.
Each layer of U1 is composed of parameterized single-qubit
rotational gates exp(−iξrσar /2) and CNOT gates that connect
adjacent qubits, where ξr is the rth parameter and σar is the
Pauli operator (ar = x, y, z). As seen in the figure, U2 has the
same structure as U1. For each trial, we randomly initialize the

gate types and parameters, e.g., as for U1, we choose the gate
types σar (ar = x, y, z) at the beginning of each trial and fix
them during the training, and we initialize parameters ξr . We
initialize U2 in the same way. Also we used Adam optimizer,
with learning rate 0.01. For simulating the quantum circuit, we
used Qiskit [92]. To focus on the net approximation error that
stems from qSVD algorithm, we assume that the gradient of
LSVD can be exactly computed (equivalently, infinite number
of measurements are performed to compute this quantity). The
number of iterations for training U1(ξ) ⊗ U2(ξ ′)|Data〉 is 500.
Unlike the case of AAE, we performed qSVD only once, to
determine the optimal parameter set (ξopt, ξ

′
opt). Finally, we

compute the SVD entropy based on the amplitude of the final
state U1(ξopt) ⊗ U2(ξ ′

opt)|D̃ata〉, under the assumption that the
ideal quantum state tomography can be executed.

The SVD entropy in each term, computed through AAE
and qSVD algorithms, is shown by the orange line with
square dots in Fig. 5. As a reference, the exact value of SVD

FIG. 5. Change of the SVD entropy for each term, with different computing method. The SVD entropy computed via AAE and qSVD
algorithms, is shown by the orange line with square dots. The exact value of SVD entropy, computed by diagonalizing the correlation matrix,
is shown by the blue line with circle dots. The SVD entropy computed with the method [40] is shown by the green line with cross marks.

023136-11

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

TABLE III. The mean value and the maximum value of the overlap O = |〈1|〈Data|VU (θ)|0〉⊗5| for each term, depending on the values of
the cost functions L1 and L2. The number of trials that satisfy each condition out of 10 trials is also listed.

L1 < 0.01 and L2 < 0.01 at the final iteration Otherwise: L1 � 0.01 or L2 � 0.01 at the final iteration

O O

Term No. of trials satisfying the condition Mean Max No. of trials satisfying the condition Mean Max

Apr 08–Aug 08 2 0.977 0.981 8 0.591 0.851
May 08–Sep 08 4 0.948 0.973 6 0.435 0.646
Jun 08–Oct 08 4 0.960 0.977 6 0.284 0.718
Jul 08–Nov 08 3 0.973 0.981 7 0.439 0.875
Aug 08–Dec 08 2 0.968 0.972 8 0.437 0.648
Sep 08–Jan 08 3 0.955 0.968 7 0.203 0.441
Oct 08–Feb 08 7 0.957 0.980 3 0.578 0.829
Nov 08–Mar 08 7 0.969 0.979 3 0.613 0.655

entropy, computed by diagonalizing the correlation matrix,
is shown by the blue line with circle dots. Also, to see a
distinguishing property of AAE, we study the naive data-
loading method [40] that trains the PQC Unaive(θ) so that
it learns only the absolute value of the data by minimizing
the cost function LMMD(|〈 j|〈t |Unaive(θ)|0〉⊗4|2, a2

jt); namely,
Unaive(θ) loads the data so that the absolute values of the
amplitudes of Unaive(θ)|0〉⊗4 is close to |a jt | yet without taking
into account the signs. The resulting value of SVD entropy
computed with this naive method is shown by the green line
with cross marks. Importantly, the SVD entropies computed
with our AAE algorithm well approximate the exact values,
while the naive method poorly works at some point of term.
Note that the estimation errors in the case of AAE is within
the acceptable range for application, because the SVD entropy
usually fluctuates by several percent during the normal period,
while it can change drastically by a few tens of percent at
around financial events [42,93–95].

Now, to see the quality of the data-loading circuit for each
trial in detail, we compute the overlap between the target state
|Data〉 and the generated state VU (θ)|0〉⊗5 after each training
(10 trials for each term). The overlap can be measured by
using the value

O ≡ |〈1|〈Data|VU (θ)|0〉⊗5| (42)

at the final iteration of each trial. In fact, in terms of O, the
generated state can be represented as

VU (θ)|0〉 = (O|Data〉 +
√

1 − O2|Data⊥〉)|1〉, (43)

where |Data⊥〉 is a state that is orthogonal to |Data〉. Namely,
the closer the value of O is to 1, the more accurately VU (θ)
generates |Data〉. To evaluate the statistics of the overlap in
each trial, we divide the 10 trials for each term into the follow-
ing two patterns of conditions satisfied by the cost function at
the final iteration step: L1,L2 < 0.01 or otherwise, where we
simply denote

L1 = LMMD(qθ , p), L2 = LMMD(qH
θ , pH).

Recall that (qθ , p, qH
θ , pH) are given below Eq. (41). In

Table III we show the mean value and the maximum value of
the overlap O for each pattern and for each term. The number
of trials that satisfy each condition out of 10 trials is also
listed in the table. We then find that, as long as the condition
L1,L2 < 0.01 is satisfied, the mean of O is larger than 0.94,
and there are at least two out of 10 trials that satisfy this
condition. Also, the maximum value of O is larger than 0.96
in all terms; such large overlaps between the target state and
the generated state will lead to a successful computation of the
SVD entropy for each term. When L1 � 0.01 or L2 � 0.01,
on the other hand, O takes a relatively small value; in this
case the subsequent qSVD algorithm may yield an imprecise
value of SVD entropy, hence this trial should be discarded. A
notable point here is that the success probability is relatively
high; a thorough examination for a larger system is an impor-
tant future work.

In Fig. 6 we show an example of set of the training re-
sults of qθ (k) and qH

θ (k) for four terms Apr 08–Aug 08,
May 08–Sep 08, Jun 08–Oct 08, and Jul 08–Nov 08 (green

TABLE IV. Stock prices for Exxon Mobil Corporation (XOM), Walmart (WMT), Procter & Gamble (PG), Microsoft (MSFT), General
Electronic (GE), AT&T (T), Johnson & Johnson (JNJ), and Chevron (CVX) between April 2008 and March 2009.

Symbol Apr 08 May 08 Jun 08 Jul 08 Aug 08 Sep 08 Oct 08 Nov 08 Dec 08 Jan 09 Feb 09 Mar 09

XOM 84.80 90.10 88.09 87.87 80.55 78.04 77.19 73.45 77.89 80.06 76.06 67.00
WMT 53.19 58.20 57.41 56.00 58.75 59.90 59.51 56.76 55.37 55.98 46.57 48.81
PG 70.41 67.03 65.92 60.55 65.73 70.35 69.34 64.72 63.73 61.69 54.00 47.32
MSFT 28.83 28.50 28.24 27.27 25.92 27.67 26.38 22.48 19.88 19.53 17.03 15.96
GE 35.92 31.54 29.57 25.40 27.34 27.44 23.08 19.02 15.73 15.88 11.57 7.970
T 38.70 39.29 39.67 33.41 31.01 32.53 28.15 26.87 28.00 28.74 24.97 22.80
JNJ 65.13 67.13 66.55 63.75 68.50 71.09 69.07 61.49 57.66 60.13 57.25 49.03
CVX 85.08 94.86 98.82 98.26 83.98 84.49 81.51 73.44 76.50 74.23 69.52 59.37

023136-12

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

FIG. 6. (1) Example of the training results of qθ (k) = |〈k|U (θ)|0〉⊗5|2 and qH
θ (k) = |〈k|H⊗5U (θ)|0〉⊗5|2 for each term (green lines), and

the corresponding target distributions p(k) = ψ̃2
k and pH (k) = (

∑31
�=0 ψ̃�〈�|H⊗5|k〉)2 (green bars). These distributions are the best one in the

sense that the cost function L at the 200th epoch takes the smallest in 10 trials. (2) The change of the cost function L in the same trial as (1)
for each term. We also show the change of the cost functions for the two distributions qθ (k) and qH

θ (k) that contribute to L.

lines); this set of distributions is the best one out of 10 trials
in the sense that it minimizes the cost LMMD(θ) at the 200th
iteration step, corresponding to the case when the overlap is
maximized for each term. Also the target distributions p(k)
and pH (k) are illustrated with green bars. The right column
of Fig. 6 plots the change of the costs L1, L2, and L =
(L1 + L2)/2 for each term. These results confirm that the
AAE algorithm realizes near perfect data loading; that is, the
resulting model distributions qθ and qH

θ well approximate the
target distributions p and pH , respectively, which eventually
leads to the successful computation of SVD entropy as dis-
cussed above.

Here we point out the interesting feature of the SVD en-
tropy, which can be observed from Figs. 3 and 5. Figure 3
shows that, until August 2008, the stocks did not strongly
correlate with each other, which leads to the relatively large
value of SVD entropy (∼0.9) as seen in Fig. 5. In September
2008, the Lehman Brothers bankruptcy ignited the global
financial crisis. As a result, from October 2008 to February
2009, the stocks became strongly correlated with each other.
In such a case, many of stocks cooperatively moved as seen in
Fig. 3. This strong correlation led to the small SVD entropy
(∼0.7) from October to February, which is an evidence of the
financial crisis. In March 2009, Fig. 5 shows that the SVD

023136-13

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

entropy again takes relatively large value (∼0.9), indicating
that the market returned to normal and each stock moved dif-
ferently. Interestingly, according to the S&P index, it is argued
that the financial crisis ended in March 2009 (e.g., see [96]),
which is consistent to the result of SVD entropy. We would
like to emphasize that AAE algorithm correctly computed the
SVD entropy and enables us to capture the above-mentioned
financial trends.

Lastly, it is surely important to assess the performance of
AAE for other example problems with different size and data
set. Appendix D gives such a demonstration where the number
of stocks is eight.

IV. CONCLUSIONS

This paper provides the Approximate Amplitude Encoding
(AAE) algorithm that effectively loads a given classical data
into a shallow parameterized quantum circuit. The point of
the AAE algorithm is in the formulation of a valid cost func-
tion composed of two types of maximum mean discrepancy
measures, based on the perfect encoding condition (Theorem
1 for Case 1 and Theorem 2 for Case 2); training of the
circuit is executed by minimizing this cost function, which
enables encoding the signs of the data components unlike the
previous proposal (that can only load the absolute values). We
also provide an algorithm composed of AAE and the existing
quantum singular value decomposition (qSVD) algorithm, for
computing the SVD entropy in the stock market. A thorough
numerical study was performed, showing that the approxima-
tion error of AAE was found to be sufficiently small in this
case and, as a result, the subsequent qSVD algorithm yields a
good approximation solution.

To show that the proposed AAE algorithm will be prac-
tically useful to implement various quantum algorithms that
need classical data loading, it is important to examine a larger
system, e.g., a 20-qubit problem with a 20-layer ansatz. In
fact in this case the number of parameters is 400, while the
degree of freedom of the state vector is 220 ≈ 1 000 000, re-
flecting that the polynomial-size circuit could deal with an
exponential-size problem. However, even in this potentially
classically doable size setting, there are several practical prob-
lems to be resolved. For instance, we expect that the gradient
vanishing issue will arise, which needs careful application of
several (existing) methods such as circuit initialization [58],
special structured ansatz [45], and parameter embedding [59].
Moreover, recently we find some approaches for approximat-
ing a large circuit with set of small circuits [66,67]; these
methods are worth investigating to address the scalability of
our method. At the same time, a notable point of the problem
of calculating the SVD entropy is that it does not require
a very precise calculation but only a global trend over a
certain time period. Hence we need to carefully determine
the number of layers as well as the iteration steps of the
variational algorithm to have necessary precision; in particular
the former might be further reduced using existing techniques,
e.g., [62–65]. With these elaboration, furthermore, we are also
interested in testing the algorithm with a real quantum com-
puting device. Overall, these additional tasks are all important
and yet not straightforward, so we will study this problem as
a separate work.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for JSPS Re-
search Fellow Grant No. 22J01501, and MEXT Quantum
Leap Flagship Program Grants No. JPMXS0118067285 and
No. JPMXS0120319794.

APPENDIX A: PROOF OF THEOREM 1

Theorem 1. In Case 1, if (4) and (5) are exactly satisfied,
U (θ)|0〉 = ∑

j d j | j〉 or U (θ)|0〉 = −∑
j d j | j〉.

Proof. Let us denote a j by 〈 j|U (θ)|0〉. Then (4) and (5) are
rewritten as

a2
j = d2

j (∀ j), (A1)(
N−1∑
k=0

H⊗n
jk ak

)2

=
(

N−1∑
k=0

H⊗n
jk dk

)2

(∀ j), (A2)

where H⊗n
jk ≡ 〈 j|H⊗n|k〉. For j = 0, the left-hand side of (A2)

becomes(
N−1∑
k=0

H⊗n
0k ak

)2

= 1

2n

(
N−1∑
k=0

ak

)2

� 1

2n

(
N−1∑
k=0

|ak|
)2

, (A3)

where the equality holds only when ak � 0 (∀k) or ak �
0 (∀k). The equality condition is equivalent to a = d or a =
−d, because of (A1) and the condition of Case 1: d j � 0 (∀ j)
or d j � 0 (∀ j). Conversely, if the equality condition is not
satisfied, we find that

1

2n

(
N−1∑
k=0

ak

)2

<
1

2n

(
N−1∑
k=0

|ak|
)2

= 1

2n

(
N−1∑
k=0

dk

)2

=
(

N−1∑
k=0

H⊗n
0k dk

)2

, (A4)

which contradicts to (A2) for j = 0. Thus, the equality condi-
tion of (A3) is satisfied, i.e., a = d or a = −d.

APPENDIX B: AMPLIFICATION OF THE SUCCESS
PROBABILITY IN CASE 2

In Case 2, the encoding can be carried out with suc-
cess probability 1/2 in the ideal case [i.e., the case where
Eqs. (8) and (9) are exactly satisfied]. But by applying the
amplitude amplification operation [90], we obtain |Data〉 with
success probability 1, instead of 1/2, although more gates to
implement this extra operation are required. The method is
described as follows. By adding another qubit, it holds

± (In ⊗ H)U (θ)|0〉⊗n+1H |0〉

= |Data+〉 − |Data−〉
2

|00〉 + |Data+〉 − |Data−〉
2

|01〉

+ |Data+〉 + |Data−〉
2

|10〉 + |Data+〉 + |Data−〉
2

|11〉.
(B1)

023136-14

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

Similar to [97,98], the amplitude amplification operator Q can
be defined as

Q ≡ A(In+2 − 2|0〉n+2〈0|n+2)A†(In+2 − 2In ⊗ |11〉〈11|),

where A ≡ (In ⊗ H)U (θ) ⊗ H . The operator Q amplifies the
amplitude of the state where the last two qubits are |11〉.
In general, given the amplitude before the amplification as
cos ξ , one application of the amplitude amplification operator
changes the amplitude to cos(3ξ). In our case, ξ = π/3, and
therefore the resulting amplitude after the amplification is
cos(π) = −1. Thus by applying Q to the state (B1), we have

QA|0〉⊗n|0〉|0〉 = ±(|Data+〉 + |Data−〉)|1〉|1〉
= ±|Data〉|1〉|1〉. (B2)

Namely, |Data〉 is obtained with probability 1 (by ignoring the
last two qubits).

APPENDIX C: IMPROVEMENT OF AAE

In our algorithm we train the data-loading circuit by using
the measurement results in the computational basis and the
Hadamard basis. However, it is possible to use the other basis;
namely, given X as an orthogonal operator, we can train U (θ)
so that

|〈 j|U (θ)|0〉⊗n|2 = d2
j , (C1)

|〈 j|XU (θ)|0〉⊗n|2 =
(

N−1∑
k=0

dk〈 j|X |k〉
)2

. (C2)

Then the question is whether there exists X such that
U (θ)|0〉 = ∑

j d j | j〉 or U (θ)|0〉 = −∑
j d j | j〉 is satisfied

when (C1) and (C2) hold. In the following, we show
that there exists such X , but it is difficult to find it for
arbitrary d.

As the preparation, we define the n × n row switching
matrix A(n)[j, k] as

A(n)[j, k] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(0 � j �= k � n − 1) (C3)

that can be created by swapping the row j and the row k of
the identity matrix. Then, given a n × n matrix R, the matrix
product A(n)[j, k]R is the matrix produced by exchanging the
row j and the row k of R and the matrix product RA(n)[j, k]
is the matrix produced by exchanging the column j and the
column k of R. We denote by A(n) as the set of the n × n
matrices that can be written as the product of A(n)[j, k]s (for
example, A(8)[0, 2]A(8)[4, 7]A(8)[2, 3] ∈ A(8)). By using the
above notations, we give the following definition for the pair
of a vector and a square matrix.

Definition 1. Let k be a column vector, dim(k) be the
number of columns of k, and A be a square matrix that
has dim(k) columns/rows. The pair (k, A) is said to be
pair-block-diagonal if there exists P, Q ∈ A(dim(k)) that
transforms k and A as k′ = Qk and A′ = PAQ where k′ and
A′ are splittable as

k′ =
(

k↑
k↓

)
, A′ =

(
A↑↑ A↑↓
A↓↑ A↓↓

)
(C4)

so that A↑↓k↓ = 0, A↓↑k↑ = 0. Here k↑, k↓ �= 0 and the num-
ber of rows in A↑↑ and A↑↓ is the same as that of k↑. The P is
said to be a left-pair-block generator and the Q is said to be
a right-pair-block generator.

By using the definition, we can state the following theorem:

Theorem 3. Suppose that X is an N × N real matrix. There
exist N-element real vectors d′(�= d,−d) and c′ = Xd′ that
satisfy

d′
j
2 = d j

2, c′
j
2 = c j

2 (∀ j ∈ [0, 1, · · · N − 1]) (C5)

if and only if the combination (d, X) is pair-block-diagonal
where c is an N-element vector that satisfies

c = Xd. (C6)

Proof. First, we prove the sufficient condition of the the-
orem. If the sufficient assumption is satisfied, there exist a
left-pair-block generator P and a right-pair-block generator Q.
By using Q2 = I , (C6) can be transformed into

Pc = (PXQ)(Qd). (C7)

From the definition of pair-block-diagonal, PXQ and Qd are
block composed:

PXQ =
(

X↑↑ X↑↓
X↓↑ X↓↓

)
, Qd =

(
d↑
d↓

)
, (C8)

where the number of columns of X↑↑ and X↑↓ equals to the
number of rows of d↑, and

X↑↓d↓ = 0, X↓↑d↑ = 0. (C9)

023136-15

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

Note that d↑, d↓ �= 0 and

d = Q

(
d↑
d↓

)
. (C10)

Substituting (C8) and (C9) into (C7), we get

Pc =
(

X↑↑d↑
X↓↓d↓

)
, (C11)

and therefore,

c = P

(
X↑↑d↑
X↓↓d↓

)
(C12)

holds because P2 = I . If we set

d′ = Q

(
d↑

−d↓

)
, (C13)

then

c′ = Xd′ = P(PXQ)

(
d↑

−d↓

)
= P

(
X↑↑d↑

−X↓↓d↓

)
. (C14)

Because P, Q are matrices that interchange rows, compar-
ing (C13) and (C10) and (C14) and (C12), we see that

d′
j
2 = d j

2, c′
j
2 = c j

2, d′ �= d,−d, (C15)

which concludes the proof of the sufficient condition of the
theorem.

Next, we prove the necessity condition of the theorem.
If the necessity assumption holds, there exist d′ and c′ that
satisfy c′ = Xd′ and (C5). We set

c+ = c + c′

2
, c− = c − c′

2
. (C16)

Then for each element of c−, c+, it holds that

c+
j =

{
c j (if c j = c′

j)
0 (if c j = −c′

j)

c−
j =

{
0 (if c j = c′

j)
c j (if c j = −c′

j)
. (C17)

We see that c−
j is nonzero only if c+

j is zero, and vice versa.
Therefore, by using a row swap matrix P ∈ A(N), c−

i and c+
i

can be transformed as

Pc+ =
(

c↑
0

)
, Pc− =

(
0
c↓

)
, (C18)

where dim(c↑) + dim(c↓) = N . Similarly, we set

d+ = d + d′

2
, d− = d − d′

2
.. (C19)

Then d−
j is nonzero only if d+

j is zero, and vice versa. Thus,
by using another row swap matrix Q ∈ A(N),

Qd+ =
(

d↑
0

)
, Qd− =

(
0

d↓

)
, (C20)

where dim(a↑) + dim(a↓) = N . From c′ = Xd′ and (C6),

c+ = Xd+. (C21)

By multiplying P from left and using Q2 = I , we get

Pc+ = PXQQd+. (C22)

Substituting the first equality in (C18) and that in (C20)
into (C22), (

c↑
0

)
=

(
X↑↑ X↑↓
X↓↑ X↓↓

)(
d↑
0

)
, (C23)

where we split PXQ into submatrices so that the number of
rows and columns of X↑↑ is dim(d↑) and dim(c↑) respec-
tively. Writing the equality in (C23) explicitly, we get

c↑ = X↑↑d↑, (C24)

0 = X↓↑d↑. (C25)

Similarly, we obtain(
0
c↓

)
=

(
X↑↑ X↑↓
X↓↑ X↓↓

)(
0

d↓

)
(C26)

and as a result,

0 = X↑↓d↓, (C27)

c↓ = X↓↓d↓. (C28)

Since (
d↑
d↓

)
= Qd, PXQ =

(
X↑↑ X↑↓
X↓↑ X↓↓

)
, (C29)

Eqs. (C25) and (C27) indicate that (d, X) is pair-block-
diagonal.

From the theorem, it seems that when a data set (hence d) is
given, we should find X that (d, X) is not pair-block-diagonal;
then by training U (θ) so that (C1) and (C2) with the X ,
the goal (3) is achieved. However, as far as our knowledge,
for general d, it is difficult to check if (d, X) is pair-block-
diagonal or not. On the other hand, if d j � 0 (∀ j) or d j �
0 (∀ j), we can show that (d, H⊗n) is not pair-block-diagonal;
although we already know the fact from the Theorem 1,
we can also prove it by directly showing that the condition
for pair-block-diagonal is not satisfied when d j � 0 (∀ j) or
d j � 0 (∀ j) and X = H⊗n. Therefore, instead of finding X
for general d, we build our algorithm depending on the values
of d.

APPENDIX D: COMPUTATION OF THE SVD ENTROPY
IN THE CASE OF EIGHT STOCKS

Here we show the SVD entropy computation in a larger
size setting. In addition to XOM, WMT, PG, and MSFT,
we use the stock data of General Electric (GE), AT&T (T),
Johnson & Johnson (JNJ), and Chevron (CVX); they are top
eight stocks included in the Dow Jones Industrial Average at
the end of 2008. As in the case of Table II, we use the one-year
monthly data from April 2008 to March 2009. Data were taken
from Yahoo Finance (in every month, the opening price is
used). We show the stock price data in Table IV.

The goal is to compute the SVD entropy at each term, with
the length T = 5 months, which is the same as Sec. III D. The
stock indices j = 1, 2, 3, 4, 5, 6, 7, 8 correspond to XOM,
WMT, PG, MSFT, GE, T, JNJ, and CVX, respectively. Also,
the time indices t = 0, 1, 2, 3, 4 identify the month in which
the SVD entropy is computed; for instance, the SVD en-
tropy in August 2008 is computed, using the data of April

023136-16

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

FIG. 7. Change of the SVD entropy for each term, with different computing method when using stock data in Table IV. The SVD entropy
computed via AAE and qSVD algorithms, is shown by the orange line with square dots. The exact value of SVD entropy, computed by
diagonalizing the correlation matrix, is shown by the blue line with circle dots. The SVD entropy computed with the naive data-loading
method is shown by the green line with cross marks.

2008 (t = 0), May 2008 (t = 1), June 2008 (t = 2), July
2008 (t = 3), and August 2008 (t = 4). As a result, s jt has
a total of 40 = 8 (stocks)×5 (terms) components. Thus, from
Eq. (27), both r jt and a jt have 32 = 8×4 components, where
the indices run over j = 1, 2, 3, 4, 5, 6, 7, 8 and t = 1, 2, 3, 4;
that is, Hstock ⊗ Htime = C8 ⊗ C4. We use AAE algorithm
in Case 2 for the data loading. Hence, we need an addi-
tional ancilla qubit, meaning that the total number of qubits
is six.

Note that unlike the experiment in Sec. III D, ns (=3) and nt

(=2) are different, which requires a little modification for the
cost function of the qSVD algorithm. Recall that the purpose
of training PQCs U1(ξ) and U2(ξ ′) in qSVD is finding unitary
operators that transform the Schmidt basis {|vm〉stock}M

m=1 and
{|v′

m〉time}M
m=1 to the computational basis. We have freedom

of the choice to which computational basis we transform the
Schmidt basis, but we limit our goal of the training as U1(ξ)
and U2(ξ ′) ideally operates as follows:

U1(ξ) ⊗ U2(ξ ′)|D̃ata〉 =
M∑

m=1

cm(|m̄〉|0〉)stock|m̄〉time, (D1)

where {(|m̄〉|0〉)stock}M
m=1 is a subset of the computational basis

in Hstock with the last qubit equal to zero and {|m̄〉time}M
m=1

is the subset of the computational basis in Htime. The corre-
sponding cost function is given by

LSVD(ξ, ξ ′) = 1 − σ 3
z

2
+

2∑
q=1

1 − 〈
σ

q
z σ

q+3
z

〉
2

, (D2)

where the expectation 〈·〉 is taken over U1(ξ) ⊗ U2(ξ ′)|D̃ata〉.
The operator σ

q
z is the Pauli Z operator that acts on the q-th

qubit. We can see that LSVD(ξ, ξ ′) = 0 holds, if and only if
U1(ξ) ⊗ U2(ξ ′)|D̃ata〉 takes the form of the right hand side
of Eq. (D1). Therefore, by training U1(ξ) and U2(ξ ′) so that
LSVD(ξ, ξ ′) is minimized, we obtain the state that best approx-
imates the Schmidt decomposed state.

The settings of AAE training is similar to the ones in
Sec. III D. As the PQC U (θ) for the data loading, we use
the hardware-efficient ansatz with six qubits. The composition
of each layer, the way of initialization, the kernel function,
the optimizer, and the number of samples for computing q±

θr

and qH±
θr

are the same as the previous case in Sec. III D. The
learning rate is 0.1 for the first 100 iterations and 0.01 for the
other iterations. We chose the number of layers from 12 or
13. We performed 10 trials of training U (θ) for each number
of layers (20 trials in total). Note that for each trial we saved
the model at the {200, 250, 300, 350, 400}-th iterations and
then the model which minimizes the cost L is chosen as the
output of the trial. Among the outputs of each trial, the mini-
mizer of L is adopted as the data-loading circuit used for the
computation of the SVD entropy in the next step. As a result,
for computing the SVD entropy in August 2008, February
2009, and March 2009, 12-layer data-loading circuits are used
and for computing that in September 2008, October 2008,
November 2008, December 2008, and January 2009, 13-layer
data-loading circuits are used.

The qSVD is performed with the cost function (D2). The
PQC U1(ξ), which acts on the stock state | j〉, is set to a three-
qubit, 12-layer ansatz; also U2(ξ ′), which acts on the time state
|t〉, is set to a two-qubit, 12-layer ansatz. The composition of
the circuit, the way of initialization, the optimizer, the learning
rate, and the number of iterations are the same as the previous
qSVD experiment. The computation of the SVD entropy is
also performed in the same way as in Sec. III D.

We show the SVD entropy in each term computed through
AAE and qSVD algorithms by the orange line with square
dots in Fig. 7. As a reference, the exact value of SVD en-
tropy, computed by diagonalizing the correlation matrix, is
shown by the blue line with circle dots. Also, to see a distin-
guishing property of AAE, we study the naive data-loading
method that trains the PQC Unaive(θ) so that it learns only
the absolute value of the data by minimizing the cost func-
tion LMMD(|〈 j|〈t |Unaive(θ)|0〉⊗5|2, a2

jt). The resulting value of

023136-17

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

SVD entropy computed with this naive method is shown by
the green line with cross marks.

Similar to the results in Sec. III D, the SVD entropies
computed with our AAE algorithm well approximate the ex-
act values, while the naive method poorly works. Notably,
despite the increase in the number of data, we see that the
estimation errors in Fig. 7 are about the same as those in
Fig. 5 (the maximum estimation error is about 10% in both
figures). Also, the number of layers for the data-loading cir-
cuit in this section (=12 or 13) is smaller than twice that

in Sec. III D (=8) even though the number of data doubles
and the number of qubits increases, which infers that the
number of layers for AAE does not increase exponentially
in conjunction with the increase of the number of qubits as
expected. Still, as the number of qubits increases, the is-
sues in the optimization discussed in Sec. II C may become
severer; a larger size experiment is necessary to study how
those issues affect our algorithm and how we can avoid them,
which is beyond the scope of this paper and left for future
work.

[1] P. Shor, Algorithms for quantum computation: Discrete log-
arithms and factoring, in Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (IEEE,
Piscataway, NJ, 1994), pp. 124–134.

[2] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing ’96 (ACM Press,
New York, NY, 1996), pp. 124–134.

[3] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum Algorithm
for Linear Systems of Equations, Phys. Rev. Lett. 103, 150502
(2009).

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[5] S. Srinivasan, C. Downey, and B. Boots, Learning and inference
in Hilbert space with quantum graphical models, in Advances
in Neural Information Processing Systems (Curran Associates,
Red Hook, NY, 2018), Vol. 31, pp. 10338–10347.

[6] M. Schuld, I. Sinayskiy, and F. Petruccione, Prediction by linear
regression on a quantum computer, Phys. Rev. A 94, 022342
(2016).

[7] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[8] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A.
Rocchetto, S. Severini, and L. Wossnig, Quantum machine
learning: A classical perspective, Proc. R. Soc. A 474,
20170551 (2018).

[9] C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione, Quan-
tum classifier with tailored quantum kernel, npj Quantum Inf.
6, 41 (2020).

[10] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Circuit-
centric quantum classifiers, Phys. Rev. A 101, 032308 (2020).

[11] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum Support
Vector Machine for Big Data Classification, Phys. Rev. Lett.
113, 130503 (2014).

[12] I. Kerenidis and A. Prakash, Quantum recommendation sys-
tems, arXiv:1603.08675.

[13] N. Wiebe, D. Braun, and S. Lloyd, Quantum Algorithm for Data
Fitting, Phys. Rev. Lett. 109, 050505 (2012).

[14] M. Schuld, M. Fingerhuth, and F. Petruccione, Implementing
a distance-based classifier with a quantum interference circuit,
Europhys. Lett. 119, 60002 (2017).

[15] M. Plesch and Č. Brukner, Quantum-state preparation with
universal gate decompositions, Phys. Rev. A 83, 032302
(2011).

[16] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of
quantum-logic circuits, IEEE Trans. Comput.-Aided Design
Integrated Circuits Syst. 25, 1000 (2006).

[17] L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112.

[18] M. Möttönen, J. Vartiainen, V. Bergholm, and M. Salomaa,
Transformation of quantum states using uniformly controlled
rotations, Quantum Inf. Computat. 5, 467 (2005).

[19] V. Shende and I. Markov, Quantum circuits for incompletely
specified two-qubit operators, Quantum Inf. Computat. 5, 49
(2005).

[20] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N.
Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter,
Elementary gates for quantum computation, Phys. Rev. A 52,
3457 (1995).

[21] J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Efficient
Decomposition of Quantum Gates, Phys. Rev. Lett. 92, 177902
(2004).

[22] V. V. Shende, I. L. Markov, and S. S. Bullock, Minimal uni-
versal two-qubit controlled-not-based circuits, Phys. Rev. A 69,
062321 (2004).

[23] G.-L. Long and Y. Sun, Efficient scheme for initializing a quan-
tum register with an arbitrary superposed state, Phys. Rev. A 64,
014303 (2001).

[24] V. Bergholm, J. J. Vartiainen, M. Mottonen, and M. M.
Salomaa, Quantum circuits with uniformly controlled one-qubit
gates, Phys. Rev. A 71, 052330 (2005).

[25] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl,
Quantum circuits for isometries, Phys. Rev. A 93, 032318
(2016).

[26] X. Sun, G. Tian, S. Yang, P. Yuan, and S. Zhang, Asymptotically
optimal circuit depth for quantum state preparation and general
unitary synthesis, arXiv:2108.06150.

[27] J. Zhao, Y.-C. Wu, G.-C. Guo, and G.-P. Guo, State preparation
based on quantum phase estimation, arXiv:1912.05335.

[28] G. Rosenthal, Query and depth upper bounds for quantum uni-
taries via Grover search, arXiv:2111.07992.

[29] X.-M. Zhang, M.-H. Yung, and X. Yuan, Low-depth quantum
state preparation, Phys. Rev. Research 3, 043200 (2021).

[30] Z. Zhang, Q. Wang, and M. Ying, Parallel quantum algorithm
for Hamiltonian simulation, arXiv:2105.11889.

[31] I. Kerenidis, A method for loading classical data into quantum
states for applications in machine learning and optimization,
U.S. Patent Application 16/986,553.

[32] S. Ramos-Calderer, A. Pérez-Salinas, D. García-Martín, C.
Bravo-Prieto, J. Cortada, J. Planaguma, and J. I. Latorre,

023136-18

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1038/nature23474
https://doi.org/10.1103/PhysRevA.94.022342
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1038/s41534-020-0272-6
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1103/PhysRevLett.113.130503
http://arxiv.org/abs/arXiv:1603.08675
https://doi.org/10.1103/PhysRevLett.109.050505
https://doi.org/10.1209/0295-5075/119/60002
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.1109/TCAD.2005.855930
http://arxiv.org/abs/arXiv:quant-ph/0208112
https://doi.org/10.26421/QIC5.6-5
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1103/PhysRevLett.92.177902
https://doi.org/10.1103/PhysRevA.69.062321
https://doi.org/10.1103/PhysRevA.64.014303
https://doi.org/10.1103/PhysRevA.71.052330
https://doi.org/10.1103/PhysRevA.93.032318
http://arxiv.org/abs/arXiv:2108.06150
http://arxiv.org/abs/arXiv:1912.05335
http://arxiv.org/abs/arXiv:2111.07992
https://doi.org/10.1103/PhysRevResearch.3.043200
http://arxiv.org/abs/arXiv:2105.11889

APPROXIMATE AMPLITUDE ENCODING IN SHALLOW … PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

Quantum unary approach to option pricing, Phys. Rev. A 103,
032414 (2021).

[33] S. Johri, S. Debnath, A. Mocherla, A. Singk, A. Prakash, J. Kim,
and I. Kerenidis, Nearest centroid classification on a trapped ion
quantum computer, npj Quantum Inf. 7, 122 (2021).

[34] N. Mathur, J. Landman, Y. Li, M. Strahm, S. Kazdaghli, A.
Prakash, and I. Kerenidis, Medical image classification via
quantum neural networks, arXiv:2109.01831.

[35] L. K. Grover, Synthesis of Quantum Superpositions by Quan-
tum Computation, Phys. Rev. Lett. 85, 1334 (2000).

[36] Y. R. Sanders, G. H. Low, A. Scherer, and D. W. Berry, Black-
Box Quantum State Preparation without Arithmetic, Phys. Rev.
Lett. 122, 020502 (2019).

[37] S. Wang, Z. Wang, G. Cui, S. Shi, R. Shang, L. Fan, W. Li, Z.
Wei, and Y. Gu, Fast black-box quantum state preparation based
on linear combination of unitaries, Quantum Inf. Proc. 20, 270
(2021).

[38] J. Bausch, Fast black-box quantum state preparation,
arXiv:2009.10709.

[39] A. N. Soklakov and R. Schack, Efficient state preparation for a
register of quantum bits, Phys. Rev. A 73, 012307 (2006).

[40] C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative
adversarial networks for learning and loading random distribu-
tions, npj Quantum Inf. 5, 103 (2019).

[41] C. Bravo-Prieto, D. García-Martín, and J. I. Latorre, Quantum
singular value decomposer, Phys. Rev. A 101, 062310 (2020).

[42] P. Caraiani, The predictive power of singular value decompo-
sition entropy for stock market dynamics, Physica A 393, 571
(2014).

[43] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[44] K. Nakaji and N. Yamamoto, Expressibility of the alternat-
ing layered ansatz for quantum computation, Quantum 5, 434
(2021).

[45] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[46] N. Ahmed and K. R. Rao, Walsh-Hadamard transform, in Or-
thogonal Transforms for Digital Signal Processing (Springer,
Berlin, Heidelberg, 1975), pp. 99–152.

[47] R. Scheibler, S. Haghighatshoar, and M. Vetterli, A fast
Hadamard transform for signals with sublinear sparsity in the
transform domain, IEEE Trans. Inf. Theory 61, 2115 (2015).

[48] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet,
and B. Schölkopf, Injective Hilbert space embeddings of prob-
ability measures, in Proceedings of the 21st Annual Conference
on Learning Theory (COLT 2008) (Omni Press, Madison, WI,
2008), pp. 111–122.

[49] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf, Kernel
measures of conditional dependence, in Advances in Neu-
ral Information Processing Systems 20 (Curran Associates,
Red Hook, NY, 2007), pp. 489–496.

[50] J.-G. Liu and L. Wang, Differentiable learning of quantum
circuit Born machines, Phys. Rev. A 98, 062324 (2018).

[51] H. Chernoff, A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations, Ann. Math. Stat.
23, 493 (1952).

[52] B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf,
and G. R. Lanckriet, On integral probability metrics, φ-
divergences and binary classification, arXiv:0901.2698.

[53] G. Crooks, Gradients of parameterized quantum gates
using the parameter-shift rule and gate decomposition,
arXiv:1905.13311.

[54] H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many prop-
erties of a quantum system from very few measurements,
Nat. Phys. 16, 1050 (2020).

[55] H.-Y. Huang, R. Kueng, and J. Preskill, Efficient Estimation of
Pauli Observables by Derandomization, Phys. Rev. Lett. 127,
030503 (2021).

[56] S. Hillmich, C. Hadfield, R. Raymond, A. Mezzacapo, and
R. Wille, Decision diagrams for quantum measurements with
shallow circuits, in Proceedings of the 2021 IEEE International
Conference on Quantum Computing and Engineering (QCE)
(IEEE, Piscataway, NJ, 2021), pp. 24–34.

[57] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[58] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti,
An initialization strategy for addressing barren plateaus in
parametrized quantum circuits, Quantum 3, 214 (2019).

[59] T. Volkoff and P. J. Coles, Large gradients via correlation in
random parameterized quantum circuits, Quantum Sci. Technol.
6, 025008 (2021).

[60] D. Wierichs, C. Gogolin, and M. Kastoryano, Avoiding local
minima in variational quantum eigensolvers with the natural
gradient optimizer, Phys. Rev. Research 2, 043246 (2020).

[61] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
Variational quantum algorithms, Nat. Rev. Phys. 3, 625 (2021).

[62] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
An adaptive variational algorithm for exact molecular simula-
tions on a quantum computer, Nat. Commun. 10, 3007 (2019).

[63] H. L. Tang, V. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J.
Mayhall, E. Barnes, and S. E. Economou, Qubit-ADAPT-VQE:
An adaptive algorithm for constructing hardware-efficient an-
sätze on a quantum processor, PRX Quantum 2, 020310 (2021).

[64] I. G. Ryabinkin, T.-C. Yen, S. N. Genin, and A. F. Izmaylov,
Qubit coupled cluster method: A systematic approach to quan-
tum chemistry on a quantum computer, J. Chem. Theory
Comput. 14, 6317 (2018).

[65] N. V. Tkachenko, J. Sud, Y. Zhang, S. Tretiak, P. M. Anisimov,
A. T. Arrasmith, P. J. Coles, L. Cincio, and P. A. Dub,
Correlation-informed permutation of qubits for reducing ansatz
depth in the variational quantum eigensolver, PRX Quantum 2,
020337 (2021).

[66] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi,
CutQC: Using small quantum computers for large quantum
circuit evaluations, in Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ACM Press, New York, NY,
2021), pp. 473–486.

[67] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, Simulating Large
Quantum Circuits on a Small Quantum Computer, Phys. Rev.
Lett. 125, 150504 (2020).

[68] E. Malvetti, R. Iten, and R. Colbeck, Quantum circuits for
sparse isometries, Quantum 5, 412 (2021).

023136-19

https://doi.org/10.1103/PhysRevA.103.032414
https://doi.org/10.1038/s41534-021-00456-5
http://arxiv.org/abs/arXiv:2109.01831
https://doi.org/10.1103/PhysRevLett.85.1334
https://doi.org/10.1103/PhysRevLett.122.020502
https://doi.org/10.1007/s11128-021-03203-z
http://arxiv.org/abs/arXiv:2009.10709
https://doi.org/10.1103/PhysRevA.73.012307
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1103/PhysRevA.101.062310
https://doi.org/10.1016/j.physa.2013.08.071
https://doi.org/10.1038/nature23879
https://doi.org/10.22331/q-2021-04-19-434
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1109/TIT.2015.2404441
https://doi.org/10.1103/PhysRevA.98.062324
https://doi.org/10.1214/aoms/1177729330
http://arxiv.org/abs/arXiv:0901.2698
http://arxiv.org/abs/arXiv:1905.13311
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.22331/q-2019-12-09-214
https://doi.org/10.1088/2058-9565/abd891
https://doi.org/10.1103/PhysRevResearch.2.043246
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1021/acs.jctc.8b00932
https://doi.org/10.1103/PRXQuantum.2.020337
https://doi.org/10.1103/PhysRevLett.125.150504
https://doi.org/10.22331/q-2021-03-15-412

KOUHEI NAKAJI et al. PHYSICAL REVIEW RESEARCH 4, 023136 (2022)

[69] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Random
Access Memory, Phys. Rev. Lett. 100, 160501 (2008).

[70] D. K. Park, F. Petruccione, and J.-K. K. Rhee, Circuit-based
quantum random access memory for classical data, Sci. Rep. 9,
3949 (2019).

[71] A. W. Harrow and J. C. Napp, Low-Depth Gradient Mea-
surements Can Improve Convergence in Variational Hybrid
Quantum-Classical Algorithms, Phys. Rev. Lett. 126, 140502
(2021).

[72] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, Generative
adversarial nets, in Advances in Neural Information Process-
ing Systems, edited by Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger (Curran Associates,
Red Hook, NY, 2014), Vol. 27, pp. 2672–2680.

[73] T. M. Cover, Elements of Information Theory (John Wiley &
Sons, New York, 1999).

[74] P. A. Samuelson, Proof that properly anticipated prices fluctuate
randomly, in The World Scientific Handbook of Futures Markets
(1965), pp. 25–38.

[75] E. F. Fama, Efficient capital markets: A review of theory and
empirical work, J. Finance 25, 383 (1970).

[76] L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Noise
Dressing of Financial Correlation Matrices, Phys. Rev. Lett. 83,
1467 (1999).

[77] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,
and H. E. Stanley, Universal and Nonuniversal Properties of
Cross Correlations in Financial Time Series, Phys. Rev. Lett.
83, 1471 (1999).

[78] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,
T. Guhr, and H. E. Stanley, Random matrix approach to cross
correlations in financial data, Phys. Rev. E 65, 066126 (2002).

[79] A. Utsugi, K. Ino, and M. Oshikawa, Random matrix theory
analysis of cross correlations in financial markets, Phys. Rev. E
70, 026110 (2004).

[80] J.-P. Onnela, A. Chakraborti, K. Kaski, and J. Kertesz, Dy-
namic asset trees and black Monday, Physica A 324, 247
(2003).

[81] W. A. Risso, The informational efficiency and the financial
crashes, Res. Int. Business Finance 22, 396 (2008).

[82] D. Y. Kenett, Y. Shapira, A. Madi, S. Bransburg-Zabary, G. Gur-
Gershgoren, and E. Ben-Jacob, Index cohesive force analysis
reveals that the us market became prone to systemic collapses
since 2002, PLoS ONE 6, e19378 (2011).

[83] A. Nobi, S. Lee, D. H. Kim, and J. W. Lee, Correlation and
network topologies in global and local stock indices, Phys. Lett.
A 378, 2482 (2014).

[84] F. Ren and W.-X. Zhou, Dynamic evolution of cross-
correlations in the Chinese stock market, PLoS ONE 9, e97711
(2014).

[85] L. Zhao, W. Li, and X. Cai, Structure and dynamics of stock
market in times of crisis, Phys. Lett. A 380, 654 (2016).

[86] K. Yin, Z. Liu, and P. Liu, Trend analysis of global stock market
linkage based on a dynamic conditional correlation network,
J. Business Econ. Manage. 18, 779 (2017).

[87] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran, T. F.
Rosenbaum, and D. Sen, Quantum Phase Transitions in Trans-
verse Field Spin Models: From Statistical Physics to Quantum
Information (Cambridge University Press, Cambridge, 2015).

[88] H. Matsueda, Renormalization group and curved spacetime,
arXiv:1106.5624.

[89] T. Li and X. Wu, Quantum query complexity of entropy estima-
tion, IEEE Trans. Inf. Theory 65, 2899 (2018).

[90] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum am-
plitude amplification and estimation, Contemp. Math. 305, 53
(2002).

[91] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[92] M. S. Anis, Abby-Mitchell, H. Abraham, AduOffei, R.
Agarwal, G. Agliardi, M. Aharoni, I. Y. Akhalwaya, G. Alek-
sandrowicz, T. Alexander, M. Amy, S. Anagolum et al., Qiskit:
An open-source framework for quantum computing (2019).

[93] R. Gu, W. Xiong, and X. Li, Does the singular value decomposi-
tion entropy have predictive power for stock market? Evidence
from the Shenzhen stock market, Physica A 439, 103 (2015).

[94] J. Civitarese, Volatility and correlation-based systemic risk
measures in the US market, Physica A 459, 55 (2016).

[95] P. Caraiani, Modeling the comovement of entropy between fi-
nancial markets, Entropy 20, 417 (2018).

[96] K. Manda et al., Stock market volatility during the 2008 finan-
cial crisis, Leonard N. Stern School of Business, Glucksman
Institute for Research in Securities Markets, List of Websites,
Working Paper No. 16976 (2021).

[97] S. Aaronson and P. Rall, Quantum approximate counting, sim-
plified, in Symposium on Simplicity in Algorithms (SIAM,
Philadelphia, 2020), pp. 24–32.

[98] K. Nakaji, Faster amplitude estimation, Quantum Inf.
Computat. 20, 1109 (2020).

023136-20

https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1103/PhysRevLett.126.140502
https://doi.org/10.2307/2325486
https://doi.org/10.1103/PhysRevLett.83.1467
https://doi.org/10.1103/PhysRevLett.83.1471
https://doi.org/10.1103/PhysRevE.65.066126
https://doi.org/10.1103/PhysRevE.70.026110
https://doi.org/10.1016/S0378-4371(02)01882-4
https://doi.org/10.1016/j.ribaf.2008.02.005
https://doi.org/10.1371/journal.pone.0019378
https://doi.org/10.1016/j.physleta.2014.07.009
https://doi.org/10.1371/journal.pone.0097711
https://doi.org/10.1016/j.physleta.2015.11.015
https://doi.org/10.3846/16111699.2017.1341849
http://arxiv.org/abs/arXiv:1106.5624
https://doi.org/10.1109/TIT.2018.2883306
https://doi.org/10.1090/conm/305/05215
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1016/j.physa.2015.07.028
https://doi.org/10.1016/j.physa.2016.03.095
https://doi.org/10.3390/e20060417
https://doi.org/10.26421/QIC20.13-14-2

