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Realizing exceptional points of any order in the presence of symmetry
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Exceptional points (EPs) appear as degeneracies in the spectrum of non-Hermitian matrices at which the
eigenvectors coalesce. In general, an EP of order n may find room to emerge if 2(n − 1) real constraints are
imposed. Our results show that these constraints can be expressed in terms of the determinant and traces of the
non-Hermitian matrix. Our findings further reveal that the total number of constraints may reduce in the presence
of unitary and antiunitary symmetries. Additionally, we draw generic conclusions for the asymptotic dispersion
of the EPs. Based on our calculations, we show that in odd dimensions the presence of sublattice or pseudochiral
symmetry enforces nth order EPs to disperse with the (n − 1)th root. For two-, three- and four-band systems, we
explicitly present the constraints needed for the occurrence of EPs in terms of system parameters and classify
EPs based on their asymptotic dispersion relations.
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I. INTRODUCTION

The appearance of symmetry-protected degeneracies in
the energy dispersion of various Hermitian topological sys-
tems has attracted much attention in the past decades [1–8].
These Hermitian topological systems, aside from their space-
group symmetry, are classified using 10 symmetry classes
[9] identified based on three discrete symmetries, namely,
time-reversal symmetry (TRS), particle-hole (or charge conju-
gation) symmetry (PHS), and chiral (or sublattice) symmetry
(CS) [7]. Topological semimetals [10–12] and multifold
fermions [13–15] are excellent representatives of such sys-
tems in which two- or multiband crossings can be observed
in the energy spectra. In the absence of symmetry, these band
touchings are generally unstable in lower-dimensional models
due to the hybridization of the bands resulting in the gaping
out of degeneracies. However, this band repulsion mechanism
is absent in topological systems in which crystalline symme-
tries and/or discrete symmetries, e.g., TRS, may protect band
touching points [16].

It has further been shown that the commonly observed lin-
ear energy dispersion close to nontrivial degeneracies might
be forbidden due to certain symmetry constraints present in
some systems [17]. As a result, higher-order band dispersions,
such as cubic or quadratic, may find room to arise close to
band touching manifolds [18–20]. These distinct characters of
energy spectra are considered as an additional tool to classify
various nontrivial degeneracies in Hermitian systems [16].
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The recent surge of theoretical and experimental interests
in the field of non-Hermitian systems has advanced our un-
derstanding of the intrinsic properties of systems with no
Hermitian counterparts. Some of these exotic properties are
(i) the piling up of bulk states on the boundaries known as the
non-Hermitian skin effect [21], which goes hand in hand with
a violation of the conventional (Hermitian) bulk-boundary
correspondence [22–24]; (ii) the emergence of exceptional
points (EPs) [25,26] as defective degeneracies at which the
geometric multiplicity is smaller than the algebraic multi-
plicity; and (iii) the observation of different non-Hermitian
topological systems due to the closure of non-Hermitian (line
or point) gaps [27–29].

The emergence of these unique properties of non-
Hermitian systems is linked to the extended 38 symmetry
classes [25], which are the non-Hermitian counterparts of the
10-fold Altland–Zirnbauer classification [7,9] in Hermitian
systems. As Hermiticity is not respected in non-Hermitian
systems, PHS (and PHS†), TRS, and (TRS†) acquire two
different flavors, and CS is discerned from sublattice sym-
metry (SLS). These six symmetries combined with pseudo-
Hermiticity (psH) [30] give rise to 38 symmetry classes as
defined in Ref. [25]. Aside from these seven symmetries,
pseudochiral symmetry (psCS) [31], inversion (I) symmetry
[32], parity (P) symmetry, and its combination with time-
reversal (PT ) [33] and PH (CP) symmetries [34] have been
considered in exploring various properties of non-Hermitian
systems. We summarize these symmetries in Table I. We note
that these symmetries can also be written in terms of the
classification of random matrices [35] introduced by Bernard
and LeClair (BLC) [36]; see also the Supplemental Material
(SM) in Ref. [37] for details.

Among the unique properties of non-Hermitian systems,
acquiring a deeper understanding regarding exceptional points
has been the focus of numerous recent theoretical [26,34,38–
44] and experimental [45–49] studies because of their pu-
tative applications, for instance, in sensing devices [50,51]
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TABLE I. Summarized symmetries and their associated energy constraints.

Symmetry Symmetry constraint Energy constraint

PHS I H(−k) = −C−HT (k)C†
− {ε(k)} = {−ε(−k)}

PHS II (PHS†) H(−k) = −T−H∗(k)T †
− {ε(k)} = {−ε∗(−k)}

TRS I H(−k) = T+H∗(k)T †
+ {ε(k)} = {ε∗(−k)}

TRS II (TRS†) H(−k) = C+HT (k)C†
+ {ε(k)} = {ε(−k)}

CS H(k) = −�H†(k)�−1 {ε(k)} = {−ε∗(k)}
psCS HT (k) = −�H(k)�−1 {ε(k)} = {−ε(k)}
SLS H(k) = −SH(k)S−1 {ε(k)} = {−ε(k)}
psH H(k) = ςH†(k)ς−1 {ε(k)} = {ε∗(k)}
I H†(−k) = IH(k)I−1 {ε(k)} = {ε∗(−k)}
P H(−k) = PH(k)P−1 {ε(k)} = {ε(−k)}
PT H(k) = (PT+)H∗(k)(PT+)−1 {ε(k)} = {ε∗(k)}
CP H(k) = −(CP )H∗(k)(CP )−1 {ε(k)} = {−ε∗(k)}
Here the unitary operator A ∈ {�,�, ς,S,P,I} obeys A2 = 1, and the antiunitary operator A ∈ {C±,T±} satisfies AA∗ = ζA1 with ζA = ±1.
Note that the spectra of systems with TRS, PHS, TRS†, and PHS† exhibit the Kramers degeneracy [59,60]. We refer to the SM for the specific
form of the symmetry-preserving Hamiltonians [37].

and unidirectional lasing [52,53]. While the major focus of
these works has been mainly on EPs of order two, i.e., EPs
at which two eigenvalues coincide and simultaneously asso-
ciated eigenvectors coalesce onto one, a recent shift has been
made toward studying the properties of EPs with higher orders
[34,39–42,54,55].

These investigations, which usually explore case studies,
mainly address a number of questions as follows: (i) How
many constraints need to be satisfied to find an nth order
EP, dubbed as EPn? It has been argued that 2(n − 1) real
constraints should be imposed to detect EPns in systems
with no symmetry [26]. Even though a description for these
constraints is discussed in Ref. [34], a generic recipe to gen-
erate and understand these constraints in the presence of any
symmetry is absent in the literature. Nevertheless, it has been
suggested that relating each of these constraints to a momen-
tum coordinate implies that merely EP2s can be realized in
three spatial dimensions [56,57]. (ii) What role is played by
symmetries in the appearance of EPns? Recent researches
reveal that including symmetries may reduce the number of
constraints to realize EPs. As a result, various case studies
reported the occurrence of Ep2s [39,40], Ep3s [55], and Ep4s
[42] in one, two, and three spatial dimensions, respectively.
More extended studies have also explored the link between
observing EPns and the presence of either PT [41] or antiu-
nitary [34] symmetries. (iii) Is it possible to distinguish EPns
based on the asymptotic dispersions close to them? Similar
to Hermitian systems at which linear, cubic, and quadratic
dispersions were reported close to nontrivial degeneracies,
nth-root dispersion in the vicinity of EPns was numerously
identified [40]. A recent study reports the square-root behavior
of band spectra close to EP3s in the presence of SLS [55],
where this possibility has also been studied in Ref. [58] with-
out reference to symmetry.

In this work, we revisit these questions using a generic
mathematical formulation to explore the appearance of EPns
in Hamiltonians represented by n-dimensional matrices.
Based on our formalism, we are able to count the number
of constraints in the presence of any symmetry and evaluate
each constraint based on the traces and the determinant of

the Hamiltonian of our interests. In particular, we find that
one needs to satisfy tr[Hk] = 0 with k = 2, . . . , n − 1 and
det[H] = 0 to find an EP with order n arriving at a total of
2(n − 1) constraints in agreement with the literature. Impos-
ing symmetry considerations, we show that in the presence of
CS, psCS, SLS, psH, PT , and CP symmetries, some traces
or the determinant of n-band systems generally disappear.
Moreover, when psH, PT , or CP symmetry is present, we
find that the number of constraints is reduced to half, i.e.,
n − 1 constraints. When we instead consider psCS or SLS, we
recover n constraints for n ∈ even and n − 1 constraints when
n ∈ odd. CS is only defined in even dimensions, in which
case we find n − 1 constraints. We summarize these results
in Table II.

Furthermore, we identify conditions to characterize vari-
ous EPns based on their asymptotic dispersions. To do so,
we introduce an alternative approach based on the Frobenius
companion matrix of the characteristic polynomial, which can
be interpreted as representing a perturbation close to an EPn.
With this matrix in mind, we rederive the above statement
pertaining to the 2(n − 1) constraints as well as explicitly
calculate the asymptotic band dispersions around an EPn.
Despite the common assumption that EPns disperse with the
nth root, we find that in the presence of SLS or psCS with
n ∈ odd, the leading-order term of the dispersion around an
EPn generically scales with the (n − 1)th root.

We emphasize that our formulation is not limited to any
specific spatial dimension. For completeness purposes, we
calculate explicit forms for the nonzero constraints for all 12
symmetries listed in Table I for two-, three-, and four-band
systems and present their nonzero parameters.

The outline of this paper is as follows. In Sec. II, we present
our generic mathematical formulation to describe EPns. We
further draw generic symmetry-based arguments on the be-
havior of EPns when a specific symmetry is respected. Using
the generic decomposition of two-band systems in terms of
Pauli matrices, we discuss the properties of EP2s, explicit
forms of constraints, and collections of nonzero parameters
in the presence of each 12 symmetries in Sec. III. In Secs. IV
and V we pursue similar lines of thought for EP3s and EP4s,
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TABLE II. Number of constraints to realize EPns in n-band
systems.

# constraints

Symmetry n ∈ even n ∈ odd

CS n − 1

⎧⎨
⎩

Re[det[H]],
Re[tr[H2l ]],
Im[tr[H2l−1]].

−

psCS n

{
det[H],
tr[H2l ].

n − 1{tr[H2l ].

SLS n

{
det[H],
tr[H2l ].

n − 1{tr[H2l ].

psH symmetry n − 1

{
Re[det[H]],
Re[tr[Hk]].

n − 1

{
Re[det[H]],
Re[tr[Hk]].

PT symmetry n − 1

{
Re[det[H]],
Re[tr[Hk]].

n − 1

{
Re[det[H]],
Re[tr[Hk]].

CP symmetry n − 1

⎧⎨
⎩

Re[det[H]],
Re[tr[H2l ]],
Im[tr[H2l−1]].

n − 1

⎧⎨
⎩

Im[det[H]],
Re[tr[H2l ]],
Im[tr[H2l−1]].

Here k ∈ {1, . . . n} and l ∈ {1, . . . , n/2}. Details are provided in the
SM [37]. Behind the number of constraints we write the specific
constraints that need to be satisfied to find EPns. We note that there
is no entry for CS with n ∈ odd as this symmetry is not defined in
that case.

respectively. Using the Gell-Mann matrices and their gener-
alization, we rewrite three- and four-band Hamiltonians and
identify their nonzero components when a symmetry con-
straint is enforced. We also discuss various possibilities to
observe different energy dispersions close to EP3s and EP4s
in Secs. IV and V, respectively. We conclude our paper in
Sec. VI.

II. EPs IN N-BAND SYSTEMS

Given a generic n×n matrix H, the characteristic polyno-
mial is defined by

Fλ = det[λ1 − H],

= λn − σ1λ
n−1 + · · · + (−1)nσn = 0, (1)

where

σ1 = tr[H], σn = det[H], (2)

and other σk’s are the sum of kth order diagonal minors of H.
Defining pk = (−1)kσk and sk = tr[Hk], we have

pk = − sk + p1sk−1 + · · · + pk−1s1

k
, k = 1, . . . n − 1. (3)

We can thus express all coefficients of Fλ in terms of tr[Hk]
and det[H] [61,62]. Having the characteristic polynomial in
Eq. (1), one can then calculate its discriminant D[H]. D[H] is
zero when Fλ possesses multiple, say m with m � n, degen-
erate roots λm. Those m degenerate roots, whose associated
eigenvectors in H coalesce, are dubbed mth order EPs (EPms)
or defective degeneracies. As a result, the Jordan canonical
form of H with EPms exhibits a Jordan block of dimension m
and with eigenvalue λm on the major diagonal.

Adjusting coefficients in Eq. (1) can give rise to the ap-
pearance of EPns in the eigenspectrum of H. Subsequently,
one can evaluate the number of constraints to observe EPns.
More precisely, by setting σ1 = tr[H] = 0, which is a trivial
shift to the spectrum, we are left with (n − 1) complex-valued
coefficients, n − 2 different traces and one determinant. To
find EPns, we should thus enforce 2(n − 1) constraints,
i.e., Re[det[H]] = 0, Im[det[H]] = 0, Re[tr[Hk]] = 0, and
Im[tr[Hk]] = 0 with k = 2, . . . , n − 1. We emphasize that
EPns occur when all of these 2(n − 1) constraints are simul-
taneously enforced. In parameter regimes in which smaller
number of constraints are satisfied, lower-order EPs, e.g.,
EPms with m � n, may find room to emerge in the spectrum
of n×n-dimensional matrices.

An alternative approach to counting the number of con-
straints in matrices with EPns is based on perturbing H close
to EPns [63]. Here we introduce a Jordan block Jn as a de-
scription for the EPns in H with dimension n and, without
loss of generality, diagonal value λn = 0. Introducing the
perturbation matrix δS, one can find all insignificant, trivial
perturbations using [δS, Jn] [63]. The remaining nontrivial
perturbation is a n×n matrix δJn. The matrix elements of δJn

are always zero except for n − 1 complex-valued elements,
which are δJn, j with j = 1, . . . n − 1. The summation of the
Jordan block and its nontrivial perturbation, namely, Jn + δJ ,
describes the asymptotic behavior of H close to EPns, which
reads

H0 = Jn + δJn

=

⎛
⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 0 1
δJn,1 δJn,2 δJn,3 . . . δJn,n−1 0

⎞
⎟⎟⎟⎟⎠. (4)

Note that when tr[H] is nonzero, the (n, n) matrix element
of δJn is also nonzero. The matrix elements δJn, j are related
to the coefficients σk since the characteristic polynomial of
Jn + δJ is identical to Eq. (1).

In fact, H0 constructs the (transpose) Frobenius compan-
ion matrix for the characteristic polynomial in Eq. (1) [64],
and each of the δJn, j is proportional to σn+1− j , in particular,
δJn, j = (−1)n+ jσn+1− j . This result was also derived in Ref.
[65] and further generalized to describe perturbations of any
matrix written in the Jordan normal form. From this approach,
we again realize that 2(n − 1) constraints are needed to deter-
mine the presence of EPns in matrix H, i.e., Re[δJn, j] = 0 and
Im[δJn, j] = 0 with j = 1, . . . , n − 1.

From the characteristic polynomial in Eq. (1) as well as the
perturbed Jordan block in Eq. (4), we can also deduce how
the EPns disperse. While it is commonly assumed that the
series expansion resulting from a perturbation with ω around
an EPn, i.e., writing H0 = Jn + ωδJn, results in the Puiseux
series, λ = λ0 + ∑∞

j=1 ω j/nλ j with λ1 = δJ1/n
n,1 , this is not

generally the case. Indeed, only when δJn,1 �= 0, the Puiseux
series is recovered for the energy eigenvalues close to an EPn
[58,66]. When δJn,1 = 0, the perturbed eigenvalues generally
split in different cycles of the form λ = λ0 + ∑∞

j=1 ω j/pλ j

with p < n and the different values of p summing up to n
[58,66,67].
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Let us now see how this translates into our perturbed
Jordan block in Eq. (4). In particular, when σn �= 0 and all
other σ j = 0 (or equivalently, when δJn,1 �= 0 and all other
δJn, j = 0), we straightforwardly find that the characteristic
polynomial reduces to λn + (−1)nσn = 0 (or λn − δJn,1 =
0). In this case, the EPn disperses with e2π ir/n[(−1)nσn]1/n

(e2π ir/n[δJn,1]1/n) for r = 1, . . . , n [68,69]. When σn−1 �=
0 and all other σ j = 0, (or equivalently, when δJn,2 �= 0
and all other δJn, j = 0), we find λ(λn−1 + (−1)n−1σn−1) =
0 (or λ(λn−1 − δJn,2) = 0) for the characteristic polyno-
mial. Now, the EPn disperses with the n − 1th root, i.e.,
∼[(−1)n−1σn−1]1/(n−1) (∼[δJn,2]1/(n−1)), combined with a flat
band with λ = 0. In general, we thus find that when σ j �=
0 (δJn, j �= 0) and all other σk = 0 (δJn,k = 0), the asymp-
totic approximation around the EPn reads ∼[(−1) jσ j]1/ j

(∼[δJn, j]1/(n+1− j)). When all σk �= 0 (or all δJn,k �= 0), it is no
longer possible to find complete analytical solutions for the
eigenvalues λ when n � 5. Nevertheless, one can numerically
compute explicit solutions for the leading terms [67,70].

So far, we discussed EPns in systems with no additional
symmetries. Let us now see how the presence of symme-
tries affects the appearance of EPns. Writing the determinant
and traces as det[H] = ∏

i εi and tr[Hk] = ∑
i ε

k
i with εi

the eigenvalues of H allows us to make general statements
when making use of the energy constraints listed in Table I.
We immediately see that PHS, PHS†, TRS, TRS†, I, and
P symmetry are nonlocal in parameter space as they relate
eigenvalues with momentum k to eigenvalues with momen-
tum −k. As such, the presence of these symmetries does not
reduce the number of constraints but instead puts a constraint
on whether the entries in the Hamiltonian are symmetric or
antisymmetric. We thus find that the number of constraints
for finding EPns in the presence of these symmetries remains
at 2(n − 1). For the remaining symmetries listed in Table I,
however, there is a reduction in the number of constraints.

In the presence of SLS and psCS, {ε(k)} = {−ε(k)} dic-
tates that in the case of n ∈ odd, at least one of the eigenvalues
is necessarily zero, such that det[H] = 0. For n ∈ even, there
is no such argument and we thus generally find det[H] �= 0.
Turning to the traces, we see that tr[Hk] �= 0 when k ∈ even,
while tr[Hk] = 0 when k ∈ odd for all n. To find EPns, we
thus need to satisfy n constraints when n ∈ even and n − 1
constraints when n ∈ odd. The fact that {ε(k)} = {−ε(k)}
also leads to an interesting consequence when considering the
possibility of realizing lower-order EPs in n-band systems,
namely, the addition of an extra band to an (n − 1)-band
system, immediately promotes a possibly existing EP(n − 1)
to an EPn as long as this additional band is coupled to the
other bands. As such, there is a notion of fragility in these
systems, as also pointed out in Ref. [55] for the case of SLS.
However, if a band is added that does not couple to any of the
other bands, the EP(n − 1) survives even though the energy
eigenvalues are n-fold degenerate at the EP.

If we instead consider PT and psH symmetry, we see that
{ε(k)} = {ε∗(k)} implies {det[H], tr[Hk]} ∈ R,∀k < n. This
means that we need to satisfy n − 1 constraints to find an
EPn in agreement with what is found in Ref. [34]. Last, con-
sidering CS and CP symmetry, {ε(k)} = {−ε∗(k)} leads to
det[H] ∈ R for n ∈ even, det[H] ∈ iR for n ∈ odd, tr[Hk] ∈
R, k ∈ even, and tr[Hk] ∈ iR, k ∈ odd. This gives us again

n − 1 constraints, which were also found in Ref. [34]; see also
Ref. [71]. We summarize the results for SLS, psCS, CS, PT ,
psH, and CP symmetry in Table II and refer to the SM for
details on the derivation of these findings [37].

Now turning back to our results for the dispersion around
EPns, we see that in the case of SLS and psCS with n ∈ odd,
where det[H] = 0 (i.e., σn = 0 or δJ1,n = 0), EPns disperse
with O(ω1/(n−1)). Interestingly, this is the only instance of
symmetries generically preventing the recovery of the nth root
dispersion for EPns.

In the following, we explore EPns and the implications
of symmetry in greater detail by deriving exact results. Ga-
lois theory [72] implies that characteristic polynomials with
dimensions greater than four cannot be expressed as com-
binations of radicals of rational functions of the polynomial
coefficients. Therefore, to present analytical results in terms
of radicals, we explore the role of symmetries in modifying
the structure and numbers of constraints to detect EPns with
n = 2, 3, 4.

III. EPs IN TWO-BAND SYSTEMS

To study second-order EPs, we perform a matrix de-
composition in the Pauli basis. The most generic two-band
Hamiltonian in this representation is given by

H(k) = d0(k)12 + d(k) · σ, (5)

where σ = (σ x, σ y, σ z ) is the vector of Pauli matrices (see
the SM [37]), 12 is the 2×2 identity matrix, k denotes the
momentum with the appropriate dimensions, and d0 and d =
(dx, dy, dz ) are complex-valued momentum-dependent vari-
ables. In the following, we drop the momentum dependence
for the purpose of brevity and reinstate it when needed. Con-
sidering d = dR + id I and d0 = d0R + id0I with {dR, d I} ∈ R,
the eigenvalues cast

λ± = d0 ±
√

d2
R − d2

I + 2idR · d I . (6)

The characteristic polynomial given in Eq. (1) in this case
reads

Fλ(k) = λ2 − tr[H]λ + det[H] = 0, (7)

such that λ = (tr[H] ±
√

tr[H]2 − 4 det[H])/2. Comparing
these roots with λ± given in Eq. (6), we get

tr[H]2 − 4 det[H] = d2
R − d2

I + 2idR · d I . (8)

The degenerate points are then obtained by setting the dis-
criminant of Fλ(k) in Eq. (7) to zero, i.e.,

D[H] = tr[H]2 − 4 det[H] = 0. (9)

The defective degenerate points are the EP2s. Without loss
of generality, we can set tr[H] = 2d0 = 0. To find EP2s, we
introduce two constraints based on the real (η) and imaginary
(ν) parts of D[H] as

η = d2
R − d2

I = 0, & ν = dR · d I = 0. (10)

Here η and ν describe N-spatial-dimensional surfaces. Note
that in Hermitian systems, i.e., d I = 0, band touching points
occur when all components of dR vanish amounting to at most
three constraints.
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In the vicinity of EP2s, the Hamiltonian casts the perturbed
Jordan block with dimension n = 2 in Eq. (4) and reads

H0 =
(

0 1
− det[H(k)] 0

)
. (11)

Using the similarity transformation H0 = S�S−1, the disper-
sion relation close to the EP2s yields ±√− det[H(k)], which
are the diagonal elements of �. This result is central in various
studies on systems with det[H(k)] = −|k| due to the nonana-
lytical energy dispersion [57].

In two spatial systems, solutions to η = ν = 0 [cf.
Eq. (10)] describe two closed curves in k space, such that
EP2s appear when these curves intersect. In three spatial di-
mensions, the intersection between the two-dimensional (2D)
surfaces described by η = 0 and ν = 0 forms a closed ex-
ceptional curve, which can give rise to exceptional knots and
result in exotic features such as open real/imaginary Fermi
surfaces [57].

We now turn to the symmetries listed in Table I and see how
the presence of one or the coexistence of multiple symmetries
constraints the appearance of EP2s. This problem for EP2s
was also studied in Ref. [40] for the symmetries defined by
BLC [36] (see also the SM [37]). We cast it here in the form
of the symmetries as given in Table I, which also includes ad-
ditional symmetries to the BLC classification. To demonstrate
our procedure, we treat two symmetries explicitly as well as
their combination in the following.

As an example, we start by considering PHS† symmetry
with T−T ∗

− = −1. We choose T− = iσy, such that the most
generic form of a PH-symmetric Hamiltonian from Eq. (5)
casts

HPHS† = (id0Is − d0Ra)12 + (dRs − idIa) · σ. (12)

Here we have introduced an additional label onto d , where
each of the d parameters is represented as dOα = dOαs +
dOαa with O ∈ {x, y, z} and α ∈ {R, I} where dOαs (dOαa) is
(anti-)symmetric under k → −k, i.e., dOαs(k) = dOαs(−k)
and dOαa(k) = −dOαa(−k). The trace and determinant then
read

tr[HPHS† ] = 2(id0Is − d0Ra), (13)

det[HPHS† ] = (id0Is − d0Ra)2 − d2
Rs + d2

Ia + 2idRs · dIa. (14)

Setting the discriminant in Eq. (9) to zero (D[HPHS† ] = 0), we
immediately find modified η, ν constraints, which are

η = d2
Rs − d2

Ia = 0, & ν = dRs · dIa = 0. (15)

The presence of PHS† thus does not reduce the number of
constraints for finding EP2s but merely restricts the momen-
tum dependency of parameters d .

If we instead consider P symmetry with P = σx, the most
generic form of a parity-symmetric Hamiltonian reads

HP = d0s12 + (dxs,−dya,−dza) · σ. (16)

The trace and determinant then read

tr[HP ] = 2(d0Rs + id0Is), (17)

det[HP ] = (d0Rs + id0Is)2 − d2
RP + d2

IP + 2idRP · dIP .

(18)

Here we used dRP = (dxRs,−dyRa,−dzRa) and dIP =
(dxIs,−dyIa,−dzIa). To find EP2s, we satisfy η and ν con-
straints for this system as

η = d2
xRs + d2

yRa + d2
zRa − d2

xIs − d2
yIa − d2

zIa = 0,

ν = dxRsdxIs + dyRadyIa + dzRadzIa = 0. (19)

Similar to PHS†, P symmetry puts restrictions on the momen-
tum dependency of the di’s while not reducing the number of
constraints for realizing EP2s.

If we now consider the presence of both PHS† with T− =
iσy and P symmetry imposed by σx, we get

HP−PHS† = id0Is12 + (dxRs,−idyIa,−idzIa) · σ. (20)

The trace and determinant then read

tr[HP−PHS† ] = 2id0Is, (21)

det[HP−PHS† ] = −d2
0Is − d2

xRs + d2
yIa + d2

zIa, (22)

and we find

η = d2
xRs − d2

yIa − d2
zIa = 0, & ν = 0. (23)

Clearly one merely should satisfy η = 0 to find EP2s in
this system. Therefore, even though PHS† and P symmetry
individually do not reduce the number of constraints, the
combination of these symmetries leaves only one constraint
nonzero.

We summarize the results for these and the other symme-
tries in Table III. There we specify the symmetry generator
and number of nonvanishing constraints and d parameters in
the presence of each symmetry. Table IV summarizes various
combinations of psH symmetry and other symmetries in the
system. We note that one can simply compare the number of
parameters in the fourth column of Table III to see which
terms survive in the presence of multiple symmetries. As
expected, the results in Table III are in agreement with our
general findings regarding EPns in Table II.

To demonstrate our findings in this section by a concrete
example, we now look at an effective description of the
driven-dissipative Kitaev model presented in Ref. [29]. Here
the traceless Hamiltonian is given by

HddK =
( −i2

√
γlγg −i(2Jeik + μ)

i(2Je−ik + μ) i2
√

γlγg

)
, (24)

where k stands for the momentum index, J is the nearest-
neighbor hopping amplitude, μ denotes the chemical poten-
tial, and γl and γg are, respectively, loss and gain coupling
rates between the 1D system and the dissipative reservoir. This
model displays TRS† with generator σz, PHS† with generator
1, and CS with generator σz [29]. The trace and determinant
of HddK read

tr[HddK] = 0, (25)

det[HddK] = 4γgγl − 4J2 − 4Jμ cos(k) − μ2. (26)

As a result, the η and ν constraints cast

η = 4γgγl − 4J2 − 4Jμ cos(k) − μ2, (27)

ν = 0. (28)
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TABLE III. Number of constraints and parameters to realize degenerate points in two-band systems.

Symmetry Operator # constraints # parameters

No symmetry – 2 (η, ν ) 2×3 (dx, dy, dz )
PHS with C−C∗

− = 1 12 2 (η, ν ) 2×3 (dxIa, dxRa, dyIs, dyRs, dzIa, dzRa )
PHS with C−C∗

− = −1 iσy 2 (η, ν ) 2×3 (dxRs, dxIs, dyRs, dyIs, dzRs, dzIs )
PHS† with T−T ∗

− = 1 12 2 (η, ν ) 2×3 (dxRa, dxIs, dyRs, dyIa, dzRa, dzIs )
PHS† with T−T ∗

− = −1 iσy 2 (η, ν ) 2×3 (dxRs, dxIa, dyRs, dyIa, dzRs, dzIa )
TRS with T+T ∗

+ = 1 12 2 (η, ν ) 2×3 (dxRs, dxIa, dyRa, dyIs, dzRs, dzIa )
TRS with T+T ∗

+ = −1 iσy 2 (η, ν ) 2×3 (dxRa, dxIs, dyRa, dyIs, dzRa, dzIs )
TRS† with C+C∗

+ = 1 12 2 (η, ν ) 2×3 (dxRs, dxIs, dyRa, dyIa, dzRs, dzIs )
TRS† with C+C∗

+ = −1 iσy 2 (η, ν ) 2×3 (dxRa, dxIa, dyRa, dyIa, dzRa, dzIa )
CS σz 1 (η) 3 (dxR, dyR, dzI )
psCS σz 2 (η, ν ) 2×1 (dx )
SLS σz 2 (η, ν ) 2×2 (dx, dy )
I symmetry σz 2 (η, ν ) 2× 3 (dxRs, dxIa, dyRs, dyIa, dzRa, dzIs )
psH σx 1 (η) 3 (dxR, dyI , dzI )
P symmetry σx 2 (η, ν ) 2×3 (dxs, dya, dza)
P symmetry σz 2 (η, ν ) 2×3 (dxa, dya, dzs )
PT symmetry σx 1 (η) 3 (dxR, dyR, dzI )
CP symmetry σx 1 (η) 3 (dxI , dyI , dzR )

Here dO = dOR + idOI with O ∈ {x, y, z}. Symmetric and antisymmetric components of dO with respect to k → −k are labeled by dOαs and
dOαa with α ∈ {R, I}, respectively [73]; η and ν are introduced in Eq. (10). Note that nonzero parameters might vary by changing the chosen
Pauli matrix for each symmetry operator, an example of which is presented for the parity symmetry for which we include two representations.
Nevertheless, the number of parameters and constraints remain intact.

At k = k∗ in which η = 0, EP2s appear in the spectrum of
HddK. For instance, when k = 0 (k = π ), EP2s occur when
2
√

γlγg = 2J + μ (2J − μ) which is consistent with the anal-
ysis of Ref. [29].

IV. EPs IN THREE-BAND SYSTEMS

To study EPs of order three, we perform a matrix decom-
position in the Gell-Mann basis. Within this decomposition,
the most generic three-band Hamiltonian is given by

H(k) = d0(k)13 + d(k) · M, (29)

TABLE IV. Summarized combined PsH symmetry with other
symmetries and numbers of constraints and parameters.

Symmetry # constr. # parameters

psH + CS 1 (η) 2 (dxR, dzI )
psH + SLS 1 (η) 2 (dxR, dyI )
psH + I 1 (η) 3 (dxRs, dyIa, dzIs )
psH+ PHS with C−C∗

− = 1 1 (η) 3 (dxRa, dyIs, dzIa )
psH+ PHS† with T−T ∗

− = 1 1 (η) 3 (dxRa, dyIa, dzIs )
psH+ TRS with T+T ∗

+ = 1 1 (η) 3 (dxRs, dyIs, dzIa )
psH+ TRS† with C+C∗

+ = 1 1 (η) 3 (dxRs, dyIa, dzIs )
psH+ PHS with C−C∗

− = −1 1 (η) 3 (dxRs, dyIs, dzIs )
psH+ PHS† with T−T ∗

− = −1 1 (η) 3 (dxRa, dyIs, dzIa )
psH+ TRS with T+T ∗

+ = −1 1 (η) 3 (dxRa, dyIs, dzIs )
psH+ TRS† with C+C∗

+ = −1 1 (η) 3 (dxRa, dyIa, dzIa )

One can find nonzero d parameters by keeping common nonzero
parameters given by each symmetry individually presented in
Table III. While we only list the coexistence of psH symmetry with
other non-Hermitian symmetries, the found recipe for determining
the number of parameters is generic.

where M = (M1, M2, . . . , M8) is the vector of traceless three-
band Gell-Mann matrices (see the SM [37]), 13 is the
3×3 identity matrix, k denotes the momentum with the ap-
propriate dimensions, and (d0(k), d(k)) are complex-valued
momentum-dependent variables.

For the 3×3 matrix H in Eq. (29), the characteristic poly-
nomial in Eq. (1) reads

Fλ = λ3 − tr[H]λ2 + (tr[H])2 − tr[H2]

2
λ − det[H] = 0.

(30)

The three solutions λ1, λ2, λ3 of Fλ are eigenvalues of H in
Eq. (29) and are given explicitly in the SM [37]. The associ-
ated discriminant for Eq. (30) then casts

D = − 1
27 [4η3 + ν2]. (31)

Here the complex-valued constraints read

η = tr[H]2

2
− 3 tr[H2]

2
, (32)

ν = 27 det[H] − 5 tr[H]3

2
+ 9 tr[H] tr[H2]

2
. (33)

In the presence of symmetries, the number of nonzero
constraints may reduce and different d’s may vanish. Table V
summarizes these constraints and the number of nonzero pa-
rameters in Hamiltonians with a specific symmetry, listed in
Table I. As before, although we depict a particular symme-
try generator for each symmetry, the number of constraints
and nonzero parameters does not depend on our choice of
generator. This can be explicitly seen for PT symmetry for
which we have presented two possible symmetry operators.
Similar to the case of EP2s, three-band touchings occur in
the Hermitian case (d I = 0) when dR = 0 amounting to at
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TABLE V. Number of constraints and parameters to realize degenerate points in three-band systems.

Symmetry Operator # constr. # parameters

No symmetry – 2×2 (η, ν ) 2×8 (d1, d2, d3, d4, d5, d6, d7, d8)
PHS with C−C∗

− = 1 13 2×2 (η, ν ) 2×8 (d1Rs, d2Rs, d3Rs, d4Ra, d5Ra, d6Ra, d7Ra, d8Ra

d1Is, d2Is, d3Is, d4Ia, d5Ia, d6Ia, d7Ia, d8Ia )
PHS† with T−T ∗

− = 1 13 2×2 (η, ν ) 2×8 (d1Rs, d2Rs, d3Rs, d4Ra, d5Ra, d6Ra, d7Ra, d8Ra

d1Ia, d2Ia, d3Ia, d4Is, d5Is, d6Is, d7Is, d8Is )
TRS with T+T ∗

+ = 1 13 2×2 (η, ν ) 2×8 (d1Ra, d2Ra, d3Ra, d4Rs, d5Rs, , d6Rs, d7Rs, d8Rs

d1Is, d2Is, d3Is, d4Ia, d5Ia, d6Ia, d7Ia, d8Ia )
TRS† with C+C∗

+ = 1 13 2×2 (η, ν ) 2×8 (d1Ra, d2Ra, d3Ra, d4Rs, d5Rs, d6Rs, d7Rs, d8Rs

d1Ia, d2Ia, d3Ia, d4Is, d5Is, d6Is, d7Is, d8Is )
psCS 13

3 + M7 − M8√
3

2 ×1 (η) 6 (d2R, d2I , d4R, d4I , d6R, d6I )

SLS 13
3 + M7 − M8√

3
2 ×1 (η) 8 (d1R, d1I , d3R, d3I , d4R, d4I , d6R, d6I )

I symmetry 13
3 + M6 + M7

2 + M8

2
√

3
2×2 (η, ν ) 2×8 (d1, d2, d3Ra, d3Is, d4, d5, d6Rs, d6Ia, d7, d8)

psH 13
3 + M4 − M8√

3
2 (ηR, νR ) 12 (d1I , d2R, d2I , d3R, d3I , d4R, d5R, d5I , d6R, d6I , d7I , d8R )

P symmetry i13
3 + M7 − i M8√

3
2×2 (η, ν ) 2×8 (d1Ra, d2Rs, d3Ra, d4Ra, d5Rs, d6Ra, d7Rs, d8Rs

d1Ia, d2Is, d3Ia, d4Ia, d5Is, d6Ia, d7Is, d8Is )

PT symmetry i13
3 + M7 − i M8√

3
2 (ηR, νR ) 12 (d1R, d2R, d2I , d3R, d3I , d4I , d5R, d5I , d6R, d6I , d7R, d8R )

PT symmetry 13
3 + M7 − M8√

3
2 (ηR, νR ) 8 (d1R, d2I , d3R, d4I , d5R, d6I , d7, d8)

CP symmetry i13
3 + M7 − i M8√

3
2 (ηR, νI ) 8 (d1I , d2R, d3I , d4R, d5I , d6R, d7I , d8I )

Here dO = dOR + idOI with O ∈ {x, y, z}. Symmetric and antisymmetric components of dO with respect to k → −k are labeled by dOs and
dOa, respectively. Complex-valued η and ν are introduced in Eqs. (32), (33). νR, ηR stand for the real components of ν, η. Note that nonzero
parameters might vary by changing the depicted symmetry operators for each symmetry, see, e.g., the two different choices for PT symmetry.
Nevertheless, the number of parameters and constraints remains intact.

most eight constraints. To find EP3s, however, we may again
set tr[H] = 0 without loss of generality and satisfy four real
constraints, Re[det[H]] = 0, Im[det[H]] = 0, Re[tr[H2]] =
0, and Im[tr[H2]] = 0 or equivalently Re[η] = 0, Im[η] = 0,
Re[ν] = 0, and Im[ν] = 0.

Perturbing close to an EP3 gives [cf. Eq. (4)]

H0 =
⎛
⎝ 0 1 0

0 0 1
det[H] tr[H2]

2 0

⎞
⎠. (34)

From this we see that depending on the values of det[H] and
tr[H2], it is possible to realize different types of EP3s. Note
that, without loss of generality, we again set tr[H] to zero.

For systems in which tr[H2] �= 0 and det[H] = 0, the Jor-
dan decomposition of H0 reveals EPs whose asymptotic bands
consist of a flat band with energy 0 and two bands with
dispersion ±

√
tr[H2]/2. In Sec. II, we showed that det[H]

is always zero for systems with odd n in the presence of SLS
and psCS. In the presence of these symmetries, one can thus
only find this type of EP3. An explicit example of this type of
EP3 is reported in a system with SLS symmetry in Ref. [55];
see also Ref. [74].

For Hamiltonians in which by construction tr[H2] = 0 and
det[H] �= 0, the Jordan decomposition of H0 suggests it is
possible to get a second type of EP3 whose asymptotic dis-
persion yields (−1) j+ j/3 3

√
det[H] for j = 1, 2, 3.

A third type of EP3s can emerge when the constraints ν

and η, respectively, in Eqs. (32) and (33) are purely real,
i.e., Im[ν] = Im[det[H]] = 0 and Im[η] = Im[tr[H2]] = 0.
In this case, the asymptotic dispersion can be obtained from

the generic solution of λ j with j = 1, 2, 3; cf. the SM [37].
If Re[η] ∝ Re[tr[H2]] decrease to zero faster than Re[ν] ∝
Re[det[H]] close to EP3, the dominant terms in the asymp-
totic dispersion should be proportional to { 3

√
Re[ν], (i +√

3) 3
√

Re[ν], (i − √
3) 3

√
Re[ν]}. This type of EP3 is explicitly

studied in a PT -symmetric Hamiltonian in Ref. [55].
We summarize these three types of EP3s in Table VI.

Without reference to symmetries, types I and III were also
reported in Ref. [58].

Aside from EP3s, three-band systems may also host EP2s.
To explore the conditions in which these EPs can be realized,
we introduce a subclass of traceless 3×3 Hamiltonians, which

TABLE VI. Various possibilities of EP3s and their energy
dispersion.

Condition Energy dispersion

EP3 0 η �= 0, ν �= 0 (λ1, λ2, λ3)

EP3 I det[H] = 0 0, ±
√

tr[H2]
2

EP3 II tr[H2] = 0 (−1) j+ j/3 3
√

det[H]

EP3 III Im[η] = Im[ν] = 0 3
√

Re[ν], α 3
√

Re[ν], α∗ 3
√

Re[ν]

Here j ∈ {1, 2, 3} and α = (i + √
3). Note that in all cases four real

constraints should be satisfied to observe EP3s. These constraints
are counted by two complex equations either (η = 0, ν = 0) or
(tr[H2] = 0, det[H] = 0). (λ1, λ2, λ3) are given in the SM [37]. For
EP3 III, Re[η] goes faster to zero than Re[ν]. See details in the text.
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read

H1 =
⎛
⎝−(b + e) 0 0

0 b c
0 d e

⎞
⎠ =

(−(b + e) 01×2

02×1 h2×2

)
, (35)

= h3M3 + h6M6 + h7M7 + h8M8, (36)

where b, c, d, e are complex values, and a = −(b + e), h3 =
i(c − d )/2, h6 = (c + d )/2, h7 = (a − b)/2, and h8 = (a +
b − 2e)/(2

√
3). The associated characteristic polynomial for

H1 in Eq. (35) is

(b + e + λ)
(
be − bλ − cd − eλ + λ2) = 0, (37)

where the second factor originates from h2×2. For this factor,
we can write the companion matrix

h2×2 =
(

0 1
− det[h2×2] tr[h2×2]

)
, (38)

which explicitly shows the possibility of observing EP2s in
this subsystem of three-band Hamiltonians.

To explore the effect of imposing symmetries on the behav-
ior of EPs and the associated conditions for their appearance,
we introduce an explicit three-band model in the following.
Our model Hamiltonian reads

H =
⎛
⎝ 0 hx −hy

−hx 0 hz

hy −hz 0

⎞
⎠, (39)

where hx = αx + i sin(kx ), hy = αy + i sin(ky), and hz = αz +
i(−2 + cos(kx ) + cos(ky)). Our model is a non-Hermitian
generalization of the effective Hamiltonian for threefold
fermions at kz = π/2 introduced in Ref. [13]. This model
Hamiltonian displays the psCS symmetry with generator −13

and hosts a threefold degeneracy in its Hermitian spectrum at
αx = αy = αz = 0, as shown in Fig. 1(a). The traces and the
determinant of this model read

tr[H] = 0, (40)

− tr[H2]

2
= α2

x + α2
y + αz(αz − 4i) + 2iαx sin(kx )

+ cos(kx )(2iαz − 2 cos(ky) + 4) + 2iαy sin(ky)

+ (4 + 2iαz ) cos(ky) − 6, (41)

det[H] = 0. (42)

For the purpose of simplicity, we set αx = α, αy = α and
αz = i

√
2α2 with α as a real-valued number. The real and

imaginary parts of the eigenvalues with α = 0.3 are shown
in Figs. 1(b) and 1(c) and Figs. 2(a) and 2(b), respectively,
and reveal that our system exhibits an EP3 when (kx, ky) → 0.
Based on the asymptotic dispersion of the spectrum with one
flat (with energy zero) and two dispersive bands, Table VI
suggests that we are dealing with an EP3 I. To examine this
suggestion, we look at the band structure of our model at small

Re[ ] Im[ ]

kx kx

kyky

kx

ky

(a)

(d) (e)

Im[ ]

ky

(c)

kx

(b)

Re[ ]

ky

kx

FIG. 1. (a) The spectrum of the three-band model in Eq. (39) in
its Hermitian limit with αx = αy = αz = 0. (Middle panels) The real
(b) and imaginary (c) components of the band structure for the non-
Hermitian model in Eq. (39) in the presence of psCS with αx = αy =
0.3 and αz = i

√
0.6. (Bottom panels) The real (d) and imaginary (e)

components of the the band structure for the non-Hermitian model
in the presence of psCS and PT symmetry given in Eq. (46) with
αx = αy = 0.3 and αz = i

√
0.6. Line colors in middle and bottom

panels are chosen such that largest (smallest) values are presented in
red (blue). Smaller ranges for kx, ky are for a better visibility purpose.

momenta ({kx, ky} → 0)

ε1 = 0, (43)

ε2 = −i
√

−k2
x + 2iα(kx + ky) − k2

y , (44)

ε3 = i
√

−k2
x + 2iα(kx + ky) − k2

y . (45)

The factor which is under the square root in ε2 and ε3 is
− tr[H2]/2. Thus our model in Eq. (39) indeed gives rise to
type I EP3s.

Imposing PT symmetry with generator 13/3 + M7 −
M8/

√
3 = diag(1,−1, 1) on this model leads to a psCS–PT -
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(a) (b)

(c) (d)

FIG. 2. (Upper panels) The same as panels (b), (c) in Fig. 1 along
the kx = ky direction. (Bottom panels) The same as panels (d), (e) in
Fig. 1 along the kx = ky direction.

symmetric Hamiltonian, which reads

HPT =
⎛
⎝ 0 i sin(kx ) −α

−i sin(kx ) 0 ihα

α −ihα 0

⎞
⎠, (46)

where hα = [
√

2α + cos(kx ) + cos(ky) − 2]. The band struc-
ture of this system at α = 0.3 is plotted in Figs. 1(d) and 1(e)
and Figs. 2(c) and 2(d). Even though we observe three-band
crossings in the band structure of this system, we emphasize
that EP2s, instead of EP3s, emerge at momenta slightly away
from the origin. To demonstrate this statement, we look at the
characteristic polynomial, which reads

−λ[λ2 − �α (kx, ky)] = 0, (47)

where �α (kx, ky) = −α2 + 4
√

2α − 2
√

2α cos(kx ) −
2 cos(kx ) cos(ky) − sin2(kx ) − cos2(kx ) + 4 cos(kx ) −
2
√

2α cos(ky) − cos2(ky) + 4 cos(ky) − 4. The characteristic
polynomial in Eq. (47) factorizes into a first-order and a
second-order polynomial, similar to Eq. (37). This means that
it is possible to find a unitary transformation such that the
Hamiltonian matrix in Eq. (47) features a zero row and zero
column, or in other words, that the zero-energy flat band is not
coupled to the other bands. We also note that �α (kx, ky) = 0
delineates the region in which EP2s exist.

Last, we consider the case of finding EP2s in a three-band
model in the presence of SLS. We start with the Hamilto-
nian in Eq. (35), which is SL symmetric with S = 13/3 +
M7 − M8/

√
3 = diag(1,−1, 1) as defined in Table V when

e = −b, such that H1,SLS = h3M3 + h6M6. The eigenvalues
for this Hamiltonian read 0,±√

b2 − cd . Even though the
eigenvalues are threefold degenerate when b2 = −cd , only
two eigenvectors coalesce onto one at this point, and we thus
find an EP2 in the system. There are two important things

to note for this example. First, it is only possible to find
EP2s in three-band models with SLS as long as the zero-
energy band is not coupled to the other bands, or in other
words, as long as the three-band model can be described by
a Hamiltonian like Eq. (35). Indeed, if the zero-energy band
were to be coupled to the other bands such that the most
generic three-band SL-symmetric Hamiltonian reads HSLS =
d1M1 + d3M3 + d4M4 + d6M6 (cf. Table V), any previously
existing EP2 would immediately be promoted to an EP3.
Second, to retrieve H1,SLS, one has to tune d1 = d4 = 0. This
means that to find an EP2 in a three-band SL-symmetric
model, one has to satisfy six real constraints, namely, the two
constraints Re[b2] = − Re[cd], Im[b2] = − Im[cd] that one
needs to satisfy to find an EP2 in the presence of SLS (cf.
Table III) as well as the additional four constraints Re[d1] =
Im[d1] = Re[d4] = Im[d4] = 0.

V. EPs IN FOUR-BAND SYSTEMS

We now turn to EP4s and present the most generic four-
band Hamiltonian decomposed in the generalized Gell-Mann
basis

H(k) = d0(k)14 + d(k) · �, (48)

where � = (�1,�2, . . . , �15) is the vector of four-band
Gell-Mann matrices (see the SM [37]), 14 is the 4×4
identity matrix, k denotes the momentum with the ap-
propriate dimensions, and (d0(k), d(k)) are complex-valued
momentum-dependent variables.

The associated characteristic polynomial for H in Eq. (48),
from Eq. (1), is given by

Fλ = λ4 − aλ3 + bλ2 − cλ + d = 0, (49)

where

a = tr[H], (50)

b = (tr[H])2 − tr[H2]

2
, (51)

c = (tr[H]3 − 3 tr[H] tr[H2] + 2 tr[H3])

6
, (52)

d = det[H]. (53)

The four solutions λ1, λ2, λ3, λ4 of Fλ are eigenvalues of
H in Eq. (48) and are given explicitly in the SM [37]. The
discriminant associated with Eq. (49) reads

D = 4η3 − ν2

27
, (54)

where η, ν, and κ are

η = −3ac + b2 + 12d, (55)

ν = 27a2d − 9abc + 2b3 − 72bd + 27c2, (56)

κ = a3 − 4ab + 8c, (57)

with a, b, c, d in Eqs. (50), (51), (52), and (53), respectively.
From the structure of this discriminant, one may naively
expect that merely four real constraints, namely, Re[η] =
Im[η] = Re[ν] = Im[ν] = 0, should be satisfied to observe
EP4s in four-band systems. However, to force all roots of D
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TABLE VII. Number of constraints and parameters to realize degenerate points in four-band systems.

Symmetry Operator # constr. # parameters

No symmetry – 2×3 (ν, η, κ ) 2×15 (d1, d2, d3, d4, d5, d6d7, d8, d9, d10, d11, d12, d13, d14, d15)
PHS with C−C∗

− = 1 �8 + �11 2×3 (ν, η, κ ) 2×15 (d1Ra, d1Rs, d2Ra, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d6Ra, d6Rs, d7Ra,

d7Rs, d8Ra, d9Ra, d9Rs, d10Ra, d10Rs, d11Ra, d12Ra, d12Rs,

d13Ra, d13Rs, d14Ra, d14Rs, d15Rs, d15Ra, d1Ia, d1Is, d2Ia, d3Ia, d3Is,

d4Ia, d4Is, d5Ia, d6Ia, d6Is, d7Ia, d7Is, d8Ia, d9Ia, d9Is, d10Ia, d10Is,

d11Ia, d12Ia, d12Is, d13Ia, d13Is, d14Ia, d14Is, d15Ia, d15Is )
PHS with C−C∗

− = −1 −i(�1 + �6)2×3 (ν, η, κ ) 2×15 (d1Rs, d2Rs, d2Ra, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d5Rs, d6Rs,

d7Rs, d8Ra, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs, d11Ra, d11Rs,

d12Rs, d13Rs, d14Ra, d14Rs, d15Rs, d15Ra, d1Is, d2Ia,

d2Is, d3Ia, d3Is, d4Ia, d4Is, d5Ia, d5Is, d6Is, d7Is, d8Ia, d8Is, d9Ia, d9Is,

d10Ia, d10Is, d11Ia, d11Is, d12Is, d13Is, d14Is, d14Ia, d15Ia, d15Is )
PHS† with T−T ∗

− = 1 �8 + �11 2×3 (ν, η, κ ) 2×15 (d1Ra, d1Rs, d2Ra, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d6Ra, d6Rs,

d7Ra, d7Rs, d8Ra, d9Ra, d9Rs, d10Ra, d10Rs, d11Ra, d12Ra, d12Rs,

d13Ra, d13Rs, d14Ra, d14Rs, d15Ra, d15Rs, d1Ia, d1Is, d2Is, d3Ia, d3Is,

d4Ia, d4Is, d5Is, d6Ia, d6Is, d7Ia, d7Is, d8Is, d9Ia, d9Is, d10Ia, d10Is,

d11Is, d12Ia, d12Is, d13Ia, d13Is, d14Ia, d14Is, d15Is, d15Ia )
PHS† with T−T ∗

− = −1−i(�1 + �6)2×3 (ν, η, κ ) 2×15 (d1Rs, d2Ra, d2Rs, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d5Rs, , d6Rsd7Rs,

d8Ra, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs, d11Ra, d11Rs, d12Rs, d13Rs,

d14Rs, d14Ra, d15Ra, d15Rs, d1Ia, d2Ia, d2Is, d3Ia, d3Is,

d4Ia, d4Is, d5Ia, d5Is, d6Ia, d7Ia, d8Ia, d8Is, d9Ia, d9Is,

d10Ia, d10Is, d11Ia, d11Is, d12Ia, d13Ia, d14Ia, d14Is, d15Is, d15Ia )
TRS with T+T ∗

+ = 1 �8 + �11 2×3 (ν, η, κ ) 2×15 (d1Ra, d1Rs, d2Rs, d3Ra, d3Rs, d4Ra, d4Rs, d5Rs, d6Ra, d6Rs, d7Ra,

d7Rs, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs, d11Rs, d12Rs, d12Ra, d13Ra,

d13Rs, d14Ra, d14Rs, d15Rs, d15Ra, d1Is, d1Ia, d2Iad3Ia, d3Is,

d4Ia, d4Is, d5Ia, d6Ia, d6Is, d7Ia, d7Is, d8Ia, d9Ia, d9Is,

d10Ia, d10Is, d11Ia, d12Ia, d12Is, d13Ia, d13Is, d14Ia, d14Is, d15Ia, d15Is )
TRS with T+T ∗

+ = −1 −i(�1 + �6)2×3 (ν, η, κ ) 2×15 (d1Ra, d2Ra, d2Rs, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d5Rs,

d6Ra, d7Ra, d8Ra, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs, d11Ra, d11Rs, d12Ra,

d13Ra, d14Rs, d14Ra, d15Ra, d15Rs, d1Is, d2Ia, d2Is, d3Ia, d3Is,

d4Ia, d4Is, d5Ia, d5Is, d6Is, d7Is, d8Ia, d8Is, d9Ia, d9Is,

d10Ia, d10Is, d11Ia, d11Is, d12Isd13Is, d14Ia, d14Is, d15Is, d15Ia )
TRS† with C+C∗

+ = 1 �8 + �11 2×3 (ν, η, κ ) 2×15 (d1Ra, d1Rs, d2Rs, d3Ra, d3Rs, d4Ra, d4Rs, d5Rs, d6Ra, d6Rs,

d7Ra, d7Rs, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs, d11Rs, d12Ra, d12Rs,

d13Ra, d13Rs, d14Ra, d14Rs, d15Rs, d15Ra, d1Ia, d1Is, d2Is, d3Ia, d3Is,

d4Ia, d4Is, d6Ia, d6Is, d5Is, d7Ia, d7Is, d8Is, d9Ia, d9Is,

d10Is, d10Ia, d11Is, d12Ia, d12Is, d13Ia, d13Is, d14Ia, d14Is, d15Is, d15Ia )
TRS† with C+C∗

+ = −1−i(�1 + �6)2×3 (ν, η, κ ) 2×15 (d1Ra, d2Ra, d2Rs, d3Ra, d3Rs, d4Ra, d4Rs, d5Ra, d5Rs,

d6Ra, d7Ra, d8Ra, d8Rs, d9Ra, d9Rs, d10Ra, d10Rs,

d11Ra, d11Rs, d12Ra, d13Ra, d14Rs, d14Ra, d15Ra, d15Rs,

d1Ia, d2Ia, d2Is, d3Ia, d3Is, d4Ia, d4Is, d5Ia, d5Is,

d6Ia, d7Ia, d8Ia, d8Is, d9Ia, d9Is, d10Ia, d10Is,

d11Ia, d11Is, d12Ia, d13Ia, d14Is, d14Ia, d15Ia, d15Is )

Here dO = dOR + idOI with O ∈ {x, y, z}. Symmetric and antisymmetric components of dO with respect to k → −k are labeled by dOs and
dOs, respectively. η, ν, and κ are introduced in Eqs. (55), (56), and (57). Note that nonzero parameters might vary by changing the depicted
generators for each symmetry operator. Nevertheless, the number of parameters and constraints remain intact.

to coincide, a third constraint, namely, κ in Eq. (57), should
also be set to zero. This can be better understood if we follow
the argument mentioned in Sec. II by counting numbers of
available traces (tr[H2], tr[H3]) and the determinant (det[H])
in the companion matrix of EP4s given by

H0 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

− det[H] tr[H3]
3

tr[H2]
2 0

⎞
⎟⎟⎠. (58)

Note that, without loss of generality, we set tr[H] = 0 as
before. As a result, six real constraints should be imposed to

obtain EP4s in a four-band system. We summarize these con-
straints in the presence of various symmetries in Tables VII
and VIII. Here aside from considering � matrices as symme-
try generators, we also use two Gamma matrices (cf. the SM
[37]) defined as

�1 = σx ⊗ 12, (59)

�5 = σy ⊗ τz, (60)

where σ and τ are Pauli matrices. We again note that in the
case of a Hermitian model (d I = 0), a four-band crossing
requires solving 15 constraints dR = 0.
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TABLE VIII. Number of constraints and parameters to realize degenerate points in four-band systems.

Symmetry Operator # constr. # parameters

CS �5 3 (νR, ηR, κI ) 26 (d1R, d3R, d4R, d6R, d7R, d8R, d9R, d10R, d11R, d12R, d13R, d14R, d15R, d1I , d2I , d3I ,

d4I , d5I , d6I , d7I , d9I , d10I , d12I , d13I , d14I , d15I )
psCS �5 4 (η, ν ) 2×15 (d1R, d2R, d3R, d4R, d5R, d6R, d7R, d8R, d9R, d10R,

d11R, d12R, d13R, d14R, d15R, d1I , d2I , d3I , d4I , d5I , d6I ,

d7I , d8I , d9I , d10I , d11I , d12I , d13I , d14I , d15I )
SLS i�5 4 (η, ν ) 26 (d1R, d3R, d4R, d6R, d7R, d8R, d9R, d10R,

d11R, d12R, d13R, d14R, d15R, d1I , d3I , d4I , d6I ,

d7I , d8I , d9I , d10I , d11I , d12I , d13I , d14I , d15I )

I symmetry �13 − �14√
3

+
√

2
3 �15 2×3 (ν, η, κ ) 2×15 (d1Ra, d2Rs, d3Ra, d4Ra, d5Rs, d6Rad7Ra, d8Rs, d9Ra, d10Ra,

d11Rs, d12Ra, d13Rs, d14Rs, d15Rs, d1Is, d2Ia, d3Is, d4Is, d5Ia,

d6Is, d7Is, d8Ia, d9Is, d10Is, d11Ia, d12Is, d13Ia, d14Ia, d15Ia )
psH �1 3 (ηR, νR, κR) 26 (d1R, d3R, d4R, d6R, d7R, d8R, d9R, d10R,

d11R, d12R, d13R, d14R, d15R, d1I , d2I , d3I ,

d4I , d5I , d6I , d7I , d9I , d10I , d12I , d13I , d14I , d15I )

P symmetry �13 − �14√
3

+
√

2
3 �15 2×3 (ν, η, κ ) 2×15 (d1Ra, d2Rs, d3Ra, d4Ra, d5Rs, d6Ra, d8Rs, d9Ra, d7Ra, d10Ra,

d11Rs, d12Ra, d13Rs, d14Rs, d15Rs, d1Ia, d2Is, d3Ia, d4Ia, d5Is,

d6Ia, d7Ia, d8Is, d9Ia, d10Ia, d11Is, d12Ia, d13Is, d14Is, d15Is )
PT symmetry P×(�8 + �11) 3 (ηR, νR, κR ) 26 (d1R, d2R, d3R, d4R, d5R, d6R, d7R, d8R, d9R,

d10R, d11R, d12R, d13R, d14R, d15R, d3I , d4I ,

d1I , d6I , d7I , d9I , d10I , d12I , d13I , d14I , d15I )
CP symmetry (�8 − �11) 3 (ηR, νR, κI ) 26 (d1R, d3R, d4R, d6R, d7R, d9R, d10R,

d12R, d13R, d14R, d15R, d1I , d2I , d3I , d4I , d5I ,

d6I , d7I , d8I , d9I , d10I , d11I , d12I , d13I , d14I , d15I )

Here dO = dOR + idOI with O ∈ {x, y, z}. Symmetric and antisymmetric components of dO with respect to k → −k are labeled by dOs and
dOs, respectively. �1 and �5 are given in Eqs. (59) and (60); η, ν and κ are introduced in Eqs. (55), (56), and (57). Note that nonzero parameters
might vary by changing the depicted generators for each symmetry operator. Nevertheless, the number of parameters and constraints remain
intact.

Perturbing in the vicinity of EP4s with tr[H] = 0 is de-
scribed by H0 in Eq. (58). To find various types of EP4s,
we consider different cases summarized in Table IX: (i)
For Hamiltonians with tr[H2] = tr[H3] = 0, the energy dis-
persion close to EP4s casts ik 4

√
det[H] with k = 1, 2, 3, 4.

(ii) If the Hamiltonian is constructed in such a way that
det[H] = tr[H2] = 0, the energy dispersion of H0 reads
0, (−1) j+ j/3 3

√
tr[H3]/3 with j = 1, 2, 3. (iii) When det[H] =

TABLE IX. Various possibilities of EP4s and their energy
dispersion.

Condition Energy dispersion

EP4 0 η �= 0, ν �= 0, κ �= 0 (λ1, λ2, λ3, λ4)

EP4 I tr[H2] = tr[H3] = 0 ik 4
√

det[H]

EP4 II det[H] = tr[H2] = 0 0, (−1) j+ j/3 3
√

tr[H3]/3

EP4 III det[H] = tr[H3] = 0 0, 0, ±√
tr[H2]/2

EP4 IV η, κ → 0 faster than ν → 0 ±√
2ω1 ± ω2

Here k ∈ {1, 2, 3, 4}, j ∈ {1, 2, 3}, ω1 =
√

−8b − 22/3 3
√

ν and ω2 =√
−8b + 25/3 3

√
ν with b given in Eq. (51). Note that in all cases six

real constraints should be satisfied to observe EP4s. These constraints
are counted by three complex equations either (η = 0, ν = 0, κ = 0)
or (tr[H2] = 0, tr[H3] = 0, det[H] = 0). (λ1, λ2, λ3, λ4) are given
in the SM [37] .

tr[H3] = 0 for a four-band Hamiltonian, the system exhibits
two flat bands with energy zero and two dispersive bands
±

√
tr[H2]/2. (iv) The fourth situation is when close to an

EP4, η and κ given in Eqs. (55) and (57) decrease to zero
faster than ν in Eq. (56). In this case, the asymptotic disper-
sion should be computed from the general eigenvalues; see
the SM in Ref. [37] for details. As a result, the four bands
close to the EP4 are proportional to ∓√

2
√

−8b − 22/3 3
√

ν ∓√
−8b + 25/3 3

√
ν.

Aside from EP4s, one might also encounter EP3s and EP2s
in four-band systems. Let us first consider the case in which
EP3s can be realized. The effective Hamiltonian reads

H1 =

⎛
⎜⎝

a 0 0 0
0 b c d
0 e f g
0 h i j

⎞
⎟⎠ =

(
a 01×3

03×1 h3×3

)
. (61)

Without loss of generality we consider tr[h3×3] = b + f +
j = 0. Based on our results in Sec. IV, we conclude that h3×3

can host EP3s if η and ν given in Eqs. (32) and (33) with
H = h3×3 are simultaneously zero.

To explore EP2s in four-band systems, we consider two
possibilities: A four-band system with (i) two trivial bands
and an EP2, or (ii) two EP2s. For the former scenario, we
introduce a generic Hamiltonian which reads

H2 =

⎛
⎜⎝

a 0 0 0
0 b 0 0
0 0 c d
0 0 e f

⎞
⎟⎠ =

⎛
⎝ a 0 01×2

0 b 01×2

02×1 02×1 h2×2

⎞
⎠. (62)
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Following the results in Sec. III, we conclude that H possesses
an EP2 when η and ν constraints in Eq. (10) are satisfied by
h2×2. The second plausible situation to detect EP2s can be
described by an effective Hamiltonian given by

H3 =

⎛
⎜⎝

a b 0 0
c d 0 0
0 0 e f
0 0 g h

⎞
⎟⎠ =

(
h̃2×2 02×2

02×2 h2×2

)
. (63)

H3 displays EP2s if discriminants of h̃2×2 and h2×2 are set to
zero, i.e., Eq. (10) is satisfied for h̃2×2 and h2×2. In very special
cases in which both discriminants acquire zero in a particular
parameter regime, we can realize the coexistence of two EP2s.

To exemplify the role of symmetries on the asymptotic dis-
persion of EP4s, we present a case study in the following. We
start with a traceless non-Hermitian four-band model, which
reads

H =

⎛
⎜⎜⎜⎜⎝

0 αp + kx hzz2 hbx

kx − αp 0 h̃bx2 hzz1

h̃zz2 hbx2 0 kx − αm

h̃bx h̃zz1 αm + kx 0

⎞
⎟⎟⎟⎟⎠, (64)

where hzz2 = αz − eiθ1 kz, h̃zz2 = −αz − e−iθ1 kz, hbx = αb +
e−iθ2 kx, h̃bx = −αb + eiθ2 kx, h̃bx2 = −αb + e−iθ2 kx, hbx2 =
αb + eiθ2 kx, hzz1 = αz + eiθ1 kz, and h̃zz1 = −αz + e−iθ1 kz. Here
αO with O ∈ {p, m, z, b} are complex-valued non-Hermitian
parameters, (θ1, θ2) denote phase variables, and (kx, kz ) in-
dicate momenta. When non-Hermitian variables αO vanish,
the Hamiltonian in Eq. (64) describes the asymptotic band
structure of fourfold fermions at ky = 0 [75]. We plot the
dispersion relation for this four-band model in the Hermi-
tian limit with αp = αm = αz = αb = 0 and θ1 = θ2 = π/2 in
Fig. 3(a). This Hermitian band structure displays a fourfold
degeneracy in its spectrum at kx = kz = 0. The traces and the
determinant of the Hamiltonian at θ1 = θ2 = π/2 in Eq. (64)
read

tr[H] = 0, (65)

tr[H2] = −2
(
2α2

b + α2
m + α2

p + 2α2
z

) + 8k2
x + 4k2

z , (66)

tr[H3] = 24iαzk
2
x , (67)

det[H] = k2
x

(−(αm − αp)2 + 4α2
z + 4k2

z

)
+ (

α2
b + αmαp + α2

z + k2
z

)2
. (68)

For simplicity purposes, we merely consider cases in which
αm = αp = α, αz = iα, αb = 0 with α be a real-valued num-
ber. In this parameter regime, constraints in Eqs. (55), (56),
and (57) cast

η = (−4k2
x − 2k2

z

)2 + 12
(
k2

x

(
4k2

z − 4α2
) + k4

z

)
, (69)

ν

2
= 864α2k4

x + (−4k2
x − 2k2

z

)3

− 36
(−4k2

x − 2k2
z

)(
k2

x

(
4k2

z − 4α2
) + k4

z

)
, (70)

κ = −64αk2
x . (71)

kz

Im

kx

kz

(a)

kx

kz

Re[ ]

(b)
z

kx

kz

Im[ ]

(c)

kzkzkk

Re[ ]

kx

(d) kzkk

Im

(e)

[ ]

kx

FIG. 3. (a) The spectrum of the four-band model in Eq. (64)
in its Hermitian limit with αp = αm = αz = αb = 0 and θ1 = θ2 =
π/2. (Middle panels) The real (b) and imaginary (c) components
of the band structure for the non-Hermitian model in Eq. (64) with
αp = αm = 0.15, αz = 0.15i, and αb = 0. (Bottom panels) The real
(d) and imaginary (e) components of the band structure for the non-
Hermitian model in the presence of psH symmetry in Eq. (72). Bands
in panels (d), (e) are twofold degenerate. Line colors in the middle
and bottom panels are chosen such that lowest to higher bands are
presented in blue, orange, green, and red colors, respectively.

These constraints simultaneously vanish when kx = kz = 0.
As a result, EP4s appear in this system as we have shown in
Figs. 3(b) and 3(c) and Figs. 4(a) and 4(b). As close to this
EP4, η, ν, and κ are nonzero, we identify this EP4 as type 0;
see Table IX. Aside from EP4s, our model also exhibits EP2s
close to kx = kz ≈ 0.47, as shown in Figs. 3(b) and 3(c) and
Figs. 4(a) and 4(b).

To further explore the effect of symmetry on the appear-
ance of EPs, we impose psH symmetry with generator �1 on
our Hamiltonian in Eq. (64). The psH-symmetric Hamiltonian
then reads

HpsH =

⎛
⎜⎜⎜⎜⎝

0 h1 hzz hx2

hmpx 0 hx2 h̃zz

−h̃zz hx2 0 hmpx

hx2 −hzz h1 0

⎞
⎟⎟⎟⎟⎠, (72)

where h1 = 1
2 (αm + αp + 2kx ), hzz = αz − kz cos(θ1), h̃zz =

αz + kz cos(θ1) hmpx = −αm
2 − αp

2 + kx, and hx2 = kx cos(θ2).

023130-12



REALIZING EXCEPTIONAL POINTS OF ANY ORDER IN … PHYSICAL REVIEW RESEARCH 4, 023130 (2022)

(a) (b)

(c) (d)

FIG. 4. (Upper panels) The same as panels (b) and (c) in Fig. 3
along the kx = kz direction. (Bottom panels) The same as panels (d)
and (e) in Fig. 3 at kz = 0 and along the kx direction.

The associated characteristic polynomial at θ1 = θ2 = π/2
factorizes into two second-order polynomials as(−α2 − λ2 + k2

x

)2 = 0. (73)

This twofold degeneracy is evident in Figs. 3(d) and 3(e) and
Figs. 4(c) and 4(d) in which we plot the band structure of
HpsH at kz = 0, αm = αp = α, αz = iα, αb = 0 with α = 0.2.
Here we see that bands are doubly degenerate come in pairs
as merely two bands are visible. The momenta at which EP2s
occur are kx = ±α. This can be obtained from the associated
constraints for HpsH

η = 16
(
k2

x − α2
)2

, (74)

ν = 128
(
k2

x − α2
)3

, (75)

κ = 0; (76)

η and ν are zero when kx = ±α. Finally, in agreement with our
findings, the number of constraints reduces when we impose
psH symmetry to our non-Hermitian system in Eq. (64).

VI. DISCUSSION AND CONCLUSION

In this work, we have studied the appearance of EPs of any
order in the presence of symmetries. In particular, we have ad-
dressed three questions pertaining to the number of constraints
to find EPns, the implications of symmetries on the number
of constraints for realizing EPs, and the asymptotic behavior
of these EPs. By expressing the characteristic polynomial of
an n-dimensional non-Hermitian Hamiltonian in terms of the
determinant and traces of the Hamiltonian, we have shown
that one can identify 2n − 2 real constraints for finding EPns.
Furthermore, we have discussed that in the presence of vari-
ous symmetries, the number of constraints may reduce. Our
results show that combining symmetries generally results in
further decreasing the number of constraints. By interpreting

the companion matrix as a perturbation close to an EPn, we
have explicitly identified plausible asymptotic dispersions of
EPns. Besides these general considerations for EPs of any or-
der, we have derived exact results for EPs of orders two, three,
and four. Through looking at the companion matrix, we have
also calculated explicit expressions for the dispersion around
an EP, allowing us to characterize EP3s and EP4s based on
their asymptotic spectrum. In addition, we have presented the
appearance of lower-order EPs in n-dimensional models and
find that EP2s can be realized in three-band systems, while
both EP2s and EP3s can appear in four-band systems.

While we have focused on EPns in this work, we em-
phasize that our results can be straightforwardly generalized
to exceptional structures of higher dimensions. Associating
a parameter with each constraint, we have shown that EPns
generally appear in n − 1D setups in the presence of, e.g.,
psH symmetry. Consequently, exceptional 1D lines or 2D
surfaces of order n appear generically in n- and n + 1D sys-
tems, respectively. In other words, the number of constraints
is related to the codimension of the exceptional structure,
i.e., the difference between the total dimension of the sys-
tem and the dimension of the exceptional structure, and our
results can thus be readily applied to study the realization of
higher-dimensional exceptional structures in the presence of
symmetries.

Besides exceptional degeneracies, ordinary (Hermitian)
degeneracies may appear in non-Hermitian systems where the
eigenvalues coalesce, but the eigenbasis is complete. As we
briefly discussed in Secs. III–V, this requires setting d = 0
for the various Hamiltonians such that these Hamiltonians are
proportional to an identity matrix. Generally, this results in
having to satisfy a large number of constraints to find these de-
generacies. Indeed, one needs to satisfy 2(n2 − 1) constraints
to find an ordinary n-fold degeneracy, where n2 − 1 is the
number of dimensions of the group SU(n). Clearly, d = 0 is
a solution to the characteristic polynomial in Eq. (1). We note
that one of the crucial differences between EPs and ordinary
degeneracies on the level of polynomial equations sits in the
relation between the characteristic and the minimal polynomi-
als: For EPs, the characteristic polynomial equals the minimal
polynomial, whereas for ordinary degeneracies, the character-
istic polynomial is a multiple of the minimal polynomial [76].

In Ref. [34], it is stated that symmetry-protected multi-
fold EPs are points at which the symmetry is spontaneously
broken. This is indeed the case for the symmetries the au-
thors consider there (CS, psH, PT , and CP symmetry),
which are antiunitary symmetries that are local in parameter
space. Here we show that unitary, local symmetries such as
SLS and psCS can also stabilize higher-order EPs in lower
dimensions. These EPs do not mark a transition between
broken and unbroken symmetry, thus showing that not all
symmetry-protected EPns necessarily correspond to sponta-
neous symmetry-breaking points.

While we have presented an extensive study here on the
realization of EPs of any order in the presence of symmetry,
we did not touch on the possibility of defining topological
invariants. Former studies proposed to define the Z2 index
based on either sign(det[H]) (sign(det[iH])) in two-band
models with PT (CP) symmetry [39,77] or the sign of the
discriminant [34] for systems of any dimension with CS, psH,
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PT , and CP symmetry. It would be intriguing to investigate
whether more generic invariants could be defined based on our
rigorous mathematical framework. We leave this problem for
later studies.
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