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We consider the effect of periodic conditional no-click measurements on a quantum system. What is the final
state of such a driven system? When the system has some symmetry built into it, the final state is a dark state
provided that the initial state overlaps with this nondetectable fragment of the Hilbert space. We find two classes
of such states: generic dark states that are found also for nonperiodic measurements, and Floquet dark states
that are directly controlled by the periodicity of the measurements and which do not rely on the underlying
symmetry of the Hamiltonian. A different behavior is found in the absence of dark manifolds, where for specific
periodicities of the measurements we find nontrivial oscillatory dynamics, controlled by the measurement rate.
Finally, when the control parameters are tuned, the eigenvalues of the survival operator coalesce to zero, and then
one finds exceptional points with a large degeneracy. The physical meaning of this special type of degeneracy
is that the null measurement process becomes impossible, implying that detecting the state is guaranteed. We
analyze these effects with a nonperturbative method based on a classical charge picture.
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I. INTRODUCTION

The control of quantum systems is an extensively stud-
ied topic [1–6] which is essential for many areas of physics
ranging from nuclear-magnetic-resonance experiments [7] to
trapped ions [8,9], quantum optics [10], superconducting
qubits [11], and quantum computing [12]. This can be done
for molecular processes with laser pulses [13] that modify
the system’s Hamiltonian or in condensed matter systems via
advanced Floquet engineering [14–16]. Another option is to
use measurements to drive quantum systems [17–29]. For
example, dark-state engineering is used to drive systems to
a desired steady state [30,31]. The general theme is to build a
measurement protocol that drives a system to a particular final
state.

Here, we consider quantum control of a generic quan-
tum system with repeated conditional null measurements (see
Fig. 1). Similar to the experimentally demonstrated approach
in [32], we choose the set of measurements such that the
system is not detected, also called no-click or postselection
measurement [33–38]. However, the crucial difference is that
in our study the measurements are made periodically. The
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possibility of implementing our protocol in the laboratory is
also made possible with the noise intermediate scale quantum
hardwares [39,40], for instance, the quantum computers from
IBM [41] or Honeywell [42], where conditional projective
measurement is realized as a designed quantum “IF” gate.
Similar to periodic driving with an external force [43], in our
protocol the measurements are performed stroboscopically. In
essence, this replaces the repeated action of a force with a
periodic action of a measurement. Our goal is to study the ef-
fect of periodic no-click measurements on a quantum system
and explore the consequences of this type of dynamics which
clearly differs from the widely studied periodic driving with a
force field. A list of the main effects we find is presented in
the summary of our paper, where we report six generic cases
for the final state of the system.

Formally, the heart of our analysis is related to a non-
Hermitian operator describing the combined effect of unitary
evolution and measurement in one period. In general, non-
Hermitian approaches [33,36,44–46] usually describe decay,
namely, a continuous leakage of probability out of a quantum
system, for example, describing photon emission, as is known
from the quantum jump method in quantum optics [30,47] or
the Lindblad approach to dissipation [48,49]. Our approach is
different, as aside from a periodic measurement that collapses
the wave function at the detection state suddenly, the evolution
is purely unitary. Technically, this means that we must invoke
a nonperturbative approach, and this challenge is met with a
classical charge theory promoted by Grünbaum et al. [50,51].
Our work is also related to the study of Floquet physics in
non-Hermitian systems [52,53], where a periodic drive is ap-
plied. In a broad sense, these investigations are related to our
work, namely, if we consider the combined effects of unitary
evolution and the measurement in one period as an effective
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FIG. 1. Schematic depiction of the quantum driving via null de-
tections. The quantum system is initially prepared at some pure state.
Local measurements of a target state |ψd〉 are performed at discrete
times t = τ, 2τ, . . . , nτ, . . . , whose outcomes are postselected to
null. We investigate the state of the quantum system under such
repeated steering.

non-Hermitian action, then the periodic measurement process
can be regarded as Floquet non-Hermitian operations. The
unique part in this work is that the non-Hermitian action is
induced by a conditioned projective measurement, which is
sharp and discontinuous as we discussed above.

We explore a wide range of scenarios. First, we investigate
dark-state physics. The Hilbert space under repeated measure-
ments is fragmented, and two subspaces are created: one is
called dark and the other bright. This mimics the effect of
nonergodicity in classical systems and it is deeply related to
many-body dark states [54]. A generic initial condition can
belong to both subspaces. The conditional null measurements
will drive the system to the dark subspace, which is fully
characterized below. Interestingly, we find two classes of dark
states. One type is called generic as these are states that can
be found for nonperiodic measurements [55], and these arise
from the symmetry of the Hamiltonian H . But, in addition
to those, we find what we call Floquet dark states that are
inherently related to the periodic driving and do not demand
an a priori symmetry of H . This in turn implies that with
periodic driving we may engineer dark states, for practically
any system.

We then consider cases where the dark states do not exist,
namely, we choose the period of driving far from the regime
where Floquet darks states are obtained. Still, the system is
driven to a final state, be it a fixed steady state or a time-
dependent one. Here, the mentioned classical charge theory
is again powerful as with it we obtain insights on these fi-
nal states. The measurements can also drive the system to
periodically oscillate in time, even for relatively large sys-
tems. This is promising for quantum control. Furthermore,
measurement-based control is also flexible. For instance, one
can easily modify the oscillation by changing the period
of measurements. Finally, there are special cases where the
conditional driving completely fails, and this is related to ex-
ceptional points [36,45,56–64] of the problem. The symmetry
we find in the classical charge theory allows us to classify
this special class of dynamics and predict where it is found
in parameter space. In an engineering sense, working close
to these degenerate states means that no-click measurements
and hence control are not possible, but physically these points
seem profound to us as the system exhibits there a gigantic
degeneracy.

We also note there are also other protocols that realize
quantum control with measurements, like the quantum Zeno

dynamics [65,66], using fast and multidimensional measure-
ments [67]. Here we show that quantum control is possible
without going to the Zeno regime, which is based on a clever
choice of the measurement rate. We can efficiently control the
quantum system with many fewer measurements and drive it
to a deterministic final state. On the other hand, for the quan-
tum Zeno dynamics, the evolution is unitary on the quantum
Zeno subspace, which is defined by the multidimensional fast
measurements. Hence, the non-Hermitian effects as we show
here are also impossible to achieve by the quantum Zeno con-
trol since they explicitly depend on the rate of measurements.
Note that the Zeno regime is a special case of our problem,
and we derive a lower bound for the evolution time to drive the
system, which is much slower if compared with the cases that
are far from this limit (see Fig. 4, for example). The challenge
is therefore to drive the system far from the well-studied case
of Zeno.

The paper is organized as follows. Sections II and III give
the model, general discussion of the mathematical properties
of the survival operator, a mapping of the quantum problem to
classical charge theory, and a simple discussion of the excep-
tional points. In Secs. IV and V we present the main results,
namely, the state function under conditional measurements,
for both finite and infinite measurement times. In Secs. VI
and VII, we present three examples: a three-level system, an
artificial atom that can shelve, and a glued binary tree with
degeneracy. In Sec. VIII, we present general insights on the
final state of the system with a perturbation approach. Then
in Sec. IX, we discuss exceptional points in a more general
setting from the point of view of the symmetry of the charge
configuration. We close the paper with a summary in Sec. X.

II. SURVIVAL OPERATOR

As mentioned, we are interested in the evolution of the
wave function of a system conditioned on null measure-
ments. The model describes unitary dynamics interleaved with
measurements. The system is discrete and finite, and H is
the Hamiltonian, which governs the dynamics between mea-
surement events. At the times τ , 2τ , 3τ , . . . we perform
measurements in an attempt to detect the system in the target
state |ψd〉. For example, for a tight-binding quantum walk on
a tree (see Fig. 7), discussed below, |ψd〉 describes a localized
node on the graph, or |ψd〉 can be an energy level (see Fig. 5),
etc. τ is a free parameter. The outcome of a given measure-
ment, at least in principle, is either the system is detected at
the target state |ψd〉 or not. We condition the measurements
and consider only the realization of the process described by
the string: no, no, . . . , no, which repeats n times, namely,
the particle has never been found in the target state, e.g., the
quantum walker has not been detected on the specified node
of the graph [68].

Therefore, the wave function after the first measurement
is |ψ1〉 = N1(1 − D)Û (τ )|ψin〉. Here, D = |ψd〉〈ψd| is the
projection operator onto the measured state, while Û (τ ) =
exp(−iHτ ) is the unitary evolution operator, and we have set
h̄ = 1. The operator

Ŝ = (1 − D)Û (τ ) (1)
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incorporates the unitary evolution in the time interval τ fol-
lowed by the projection described by 1 − D. The latter, when
acting on the state function, wipes out the amplitude on
the detected state, as the result of the measurement is null.
The operator Ŝ is called the survival operator as it describes
the wave function that survives the detection (if the particle
had been detected, the wave function would have collapsed on
|ψd〉). Clearly, it is a nonunitary operator. Immediately after
the nth measurement, the wave function |ψn〉 reads as

|ψn〉 = NnŜ
n|ψin〉. (2)

Below we suppress the index n in the normalization Nn.
We are interested in the large-n limit. In this limit, we

encounter a variety of dynamical features explored below. In
one case, the dynamics is determined by a subset of energy
levels, in another by a fixed point where the system has
no dynamics at all. Finally, we observe oscillatory behavior;
however, unlike the first case scenario, the eigenvalues deter-
mining this behavior are not standard energy levels of H . They
are controlled by H , D, and τ . Our goal is to classify these
behaviors and see when they emerge. What is clear is that the
large-n limit is described by the set of eigenvalues of Ŝ of
largest magnitude; hence, this is what we study next.

As usual, since the operator Ŝ is non-Hermitian it has left
and right eigenvalues and eigenvectors and these are denoted

Ŝ|ξR〉 = ξ |ξR〉, 〈ξL|Ŝ = 〈ξL|ξ . (3)

Here we used the fact, well known from linear algebra, that the
left and right eigenvalues are equal; hence, they are denoted
with ξ . These are complex numbers, and for the problem at
hand, it was shown that these eigenvalues are all on the unit
disk |ξ | � 1 [55,69]. We will use normalized states 〈ξR|ξR〉 =
〈ξL|ξL〉 = 1.

We start the analysis by considering three types of eigen-
values. The case ξ = 0, the case 0 < |ξ | < 1, and then |ξ | =
1. When the eigenvalue is zero, we have

|ξR〉 = Û −1|ψd〉, 〈ξL| = 〈ψd|, (4)

which is obvious due to (1 − D)UU −1|ψd〉 = 0 and 〈ψd|(1 −
D) = 0. The physical meaning of the |ξR〉 state is clear, as
it is a state that is detected with probability one in the first
measurement attempt. In fact, if we start in this state, namely,
|ψin〉 = U −1|ψd〉, we cannot achieve the desired conditional
measurement since the first measurement is always success-
ful. This implies that not all initial conditions can yield a string
of n null measurements, an issue we will return to below.

More interesting are the states with eigenvalues |ξ | = 1 on
the unit circle. This set can be empty as we show below, but for
now we assume that such states exist. These right eigenstates
satisfy

Ŝ|ξR〉 = exp(iθ )︸ ︷︷ ︸
ξ

|ξR〉. (5)

We express these states in terms of linear combinations of
stationary states of the time-independent Hamiltonian H . For
that, we denote H |Ek,l〉 = Ek|Ek,l〉, where k is the index of the
distinct energy levels, while l is a quantum number denoting
the degenerate sublevels, so that l = 1, . . . , gk , where gk is

the degeneracy of the energy level Ek . Degeneracy and hence
symmetry play a crucial role here.

An obvious eigenstate of Ŝ is an energy state |Ek,l〉 which
is orthogonal with respect to the detected state, namely, if we
have in our system a state 〈ψd|Ek,l〉 = 0 we get

(1 − D)Û (τ )|Ek,l〉 = exp(−iEkτ )|Ek,l〉. (6)

Hence, all energy states which are orthogonal to the detected
state are right eigenvectors of the survival operator |ξR〉 =
|Ek,l〉 with an eigenvalue ξ = exp(−iEkτ ). Physically, this
state corresponds to a dark state [30,55,70]. Namely, if such
a state exists, and if it is chosen as the initial condition, it
will never be detected. So, in this case, the condition of null
measurements is guaranteed from the start. Similarly, it is
easy to see that under the same condition, i.e., 〈ψd|Ek,l〉 = 0,
the corresponding left eigenvector is 〈ξL| = 〈Ek,l |. We see
in this special example a property which is unique to states
with eigenvalues on the unit circle, namely, |ξL〉 = |ξR〉. This
feature is of some importance later.

Our goal now is to consider other dark states, that are
eigenstates of the survival operator, with eigenvalues on the
unit circle. Recall that such states obviously have the largest
possible eigenvalue and hence dominate the large-n limit,
if they exist. We use the energy representation and con-
sider a degenerate subspace in the Hilbert space, namely,
{|Ek,1〉, . . . , |Ek,gk 〉}, where all these states have the same en-
ergy Ek . If some of them satisfy 〈ψd|Ek,l〉 = 0 they are clearly
dark as we have just explained. Consider now a linear combi-
nation of two energy states and we index these with l = 1 and
2. We then find the eigenvector of Ŝ:

|ξR〉 = N (〈ψd|Ek,2〉|Ek,1〉 − 〈ψd|Ek,1〉|Ek,2〉). (7)

Here clearly Ŝ|ξR〉 = exp(−iEkτ )|ξR〉 since U |ξR〉 =
exp(−iEkτ )|ξR〉 and D|ξR〉 = 0, and so the eigenvalue of
the survival operator is ξ = exp(−iEkτ ), namely, it is just
a phase determined by the energy Ek . Similarly, it is easy
to see that 〈ξL| = 〈ξR| is a left eigenvector of the survival
operator, and hence 〈ξL|ξR〉 = 1. So these vectors are parallel,
unlike the left and right vectors we found above with zero
eigenvalue ξ = 0 (and unlike the eigenvectors we discuss
below with |ξ | < 1). The state in Eq. (7) is clearly dark in
the sense that if we start in this state, the amplitude on the
detected state is always zero. This, in turn, is because this
is a stationary state of H , hence between measurements, the
dynamics do not allow the leakage of probability amplitude to
the detected state, so we never detect the system. Once again,
by a dark state, we mean that even if we do not condition the
measurements to be null, the sequence of measurements will
never detect the particle.

We can easily construct other normalized dark states using
similar methods. We denote these states, i.e., states that cannot
be detected as |δk,m〉 (δ is for dark). Following [55], we find
that in an energy subspace with gk states, there are gk − 1 dark
states {|δk,m〉} with m = 1, . . . , gk − 1. These states are given
by a Gram-Schmidt procedure [55,70]

|δk,m〉 = N
m∑

j=1

[|αk, j |2|Ek,m+1〉 − α∗
k,m+1αk, j |Ek, j〉], (8)
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where αk,m = 〈Ek,m|ψd〉 and m goes from 1 to gk − 1. All
these states are orthonormal with respect to each other,
and again they are stationary states of the system, namely,
H |δk,m〉 = Ek|δk,m〉. It is easy to see that these states are
eigenstates of the survival operator with eigenvalue ξ =
exp(−iEkτ ), namely, these eigenvalues all fall on the unit
circle since Ŝ|δk,m〉 = exp(−iEkτ )|δk,m〉. It is also easy to
show that the left eigenvectors satisfy 〈ξL| = 〈ξR|.

Interestingly, there exists another class of dark states that
are related to the periodicity of the measurements. These dark
states, which we call Floquet dark states, arise when we tune
the sampling time τ , such that the condition

(Ek − El )τ = 0 mod 2π (9)

is satisfied, where Ek �= El . The energy levels Ek and El are
thus quasidegenerate for this particular τ . Consider two such
energy states |Ek〉 and |El〉, and assume that these states are
nondegenerate. Then consider their linear combination

|δ〉 = N (〈ψd |El〉|Ek〉 − 〈ψd |Ek〉|El〉). (10)

This state is dark since after each period the amplitude on the
detected state is zero.

Now we can consider a more general case, where
the energy levels Ek and El are also degenerate. We
can construct new dark states in the subspace {|Ek,1, . . . ,

|Ek,gk 〉, |El,1〉, . . . , |El,gl 〉}. Formally, this can be done by re-
labeling the energy states |El,1〉 → |Ek,gk+1〉, . . . , |El,gl 〉 →
|Ek,gk+gl 〉, then Eq. (8) can be applied again.

More importantly, with Eq. (9) we can construct a dark
state in a nondegenerate system. Since such dark state is
defined by the measurements, and more specifically by the
period τ , this allows us to drive a system into a dark state
independent of the symmetry of the specific system. This is
a different route to perform the dark-state engineering for
nondegenerate systems. In Secs. VIII B and VIII C we develop
the charge theory to explore the physical effects close to the
quasidegeneracy defined by Eq. (9).

We have seen how dark states can be presented as energy
eigenstates of H but also as eigenstates of the survival operator
Ŝ. The moduli of the corresponding eigenvalues of Ŝ are
unity. As mentioned, with a gk-fold degenerate energy sub-
space {|Ek,1〉, . . . , |Ek,gk 〉}, we can generate gk − 1 dark states.
In this subspace, there exists one additional state, which we
call the bright state, and it is given by [55]

|βk〉 = NP̂k|ψd〉, (11)

where P̂k :=∑gk
m=1 |Ek,m〉〈Ek,m| is the eigenspace projector.

This state is not an eigenvector of the survival operator. Its
mathematical property is that it is orthogonal to all the gk − 1
dark states in its energy sector. This state, under repeated
measurements, without conditioning the outcome, will be
eventually detected with probability one; hence, it is called
a bright state. In the next section, we will show how to use
these bright states to construct the eigenstates of the survival
operator Ŝ with eigenvalues in the unit disk, i.e., 0 < |ξ | < 1.

To recapitulate this part, we have seen that the operator
Ŝ has an eigenvalue zero and we have formally found the
normalized left and right eigenvectors which are not parallel

〈ξL|ξR〉 �= 1. Using the energy representation, we saw that
dark states of the system are eigenvectors of the survival op-
erator, with eigenvalue ξ = exp(−iEkτ ). Clearly |ξ | = 1, so
these have the maximum possible eigenvalue magnitude, since
in general |ξ | � 1. In this case the left and right eigenvalues
are parallel 〈ξL|ξR〉 = 1. In a degenerate sector {|Ek,l〉} of the
Hilbert space, we have gk − 1 such eigenvectors that are given
in Eq. (8) and they all share the same eigenvalue exp(−iEkτ ).

For example, consider a system with three distinct energy
levels, the first with degeneracy 10, the second with degen-
eracy 5, and another with no degeneracy. Further assume
for simplicity that all the energy states have finite amplitude
on the detected state. Equation (8) specifies 13 orthonormal
eigenstates of the survival operator, all with eigenvalues on
the unit circle. These are dark states as mentioned, namely,
states that cannot be detected even if we do not condition the
measurements. However, if we consider the case where we
choose the detected state as the energy eigenstate of the non-
degenerate level, it then immediately follows from standard
quantum mechanics that the remaining 15 states are all dark
as they are orthogonal to the detected state. Hence, these 15
states are dark, and they are also eigenvectors of the survival
operator Ŝ.

If the system has no degeneracy, for example, a typical
random system with no symmetry in H , and if all the energy
states have finite overlaps with the detected one (even small),
we reach the conclusion that we have no dark states, and
hence we do not have eigenstates of the survival operator
with eigenvalues |ξ | = 1. This indicates that the dynamics
of systems with disorder and those without, under the con-
dition of repeated null measurements, can have very different
properties.

There exists, of course, a third family of states, which are
those with 0 < |ξ | < 1, namely, the eigenvalues all lie inside
the unit circle. There is no simple way to determine the values
of ξ and find the corresponding states. However, there is an
elegant method to find these eigenvalues in principle based
on a classical charge theory [50], which is discussed below.
With this classical theory, we will be able to gain physical
insight into the largest eigenvalues of systems with no dark
states, which in turn will give the long-time dynamics of the
conditioned measurement process.

III. CLASSICAL CHARGE PICTURE MAPPING
AND BIORTHOGONAL EIGENSTATES

As previously mentioned, the dark states are eigenfunc-
tions of the survival operator with a special property; their
eigenvalues are on the unit circle. However, the dark states
are certainly not the only eigenstates of the survival operator,
namely, the dark space HD := Span({|δk,m〉}) is a subspace of
the full Hilbert space H, so we need to search for the other
eigenstates. The eigenvalues of the remaining states, which
are now investigated, all fall inside the unit circle. Using
the matrix determinant lemma [71], the eigenvalues of the
survival operator Ŝ are given by (see Appendix A)

det[ξ1 − Ŝ] = det[ξ1 − Û (τ )]

×〈ψd|[ξ1 − Û (τ )]−1|ψd〉ξ = 0. (12)
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We observe the following:
(i) There is a stationary point, denoted ξ0, located at the

origin, namely ξ0 = 0 [see the last term in Eq. (12)]. We have
found its left and right eigenvectors in the former section.

(ii) For simplicity, let us assume all elements of the energy
basis {|Ek,l〉} have finite overlaps with |ψd〉. Using this energy
basis, we find

det[ξ1 − U (τ )] = 
w−1
k=0 (ξ − e−iEkτ )gk . (13)

We have here a multiplication of � terms (ξ − e−iEkτ ), where
� is the size of the full Hilbert space and w is the number
of distinct energy levels, namely

∑w−1
k=0 gk = � . Only in the

absence of degeneracy, gk = 1, do we have � = w. Here
following Grünbaum et al. [50,51], we use the symbol w,
as this is actually describing a certain winding number of the
problem. Naively, it seems from Eq. (13) that we already have
all � ξ ’s that satisfy Eq. (12). However, this intuition is not
true because 〈ψd|[ξ1 − Û (τ )]−1|ψd〉 cancels part of them, as
we now show.

(iii) The bright and dark space, i.e., {|βi〉w−1
i=0 } and {|δ〉},

form a complete basis. Importantly, |ψd〉 is orthogonal to the
dark states by definition. It follows that we can expand the
detected state in terms of the bright subspace only:

|ψd〉 =
w−1∑
k=0

〈βk|ψd〉|βk〉. (14)

The bright states {|βk〉w−1
l=0 } are also eigenstates of H and hence

of Û (τ ). It follows that

〈ψd|[ξ1 − Û (τ )]−1|ψd〉 =
w−1∑
k=0

|〈βk|ψd〉|2
ξ − e−iEkτ

. (15)

Using Eqs. (12), (13), (14), and (15), the equation for ξ ’s reads
as

w−1∑
k=0

|〈βk|ψd〉|2(ξ − e−iEkτ )gk−1
i �=k (ξ − e−iEiτ )gi = 0. (16)

From here we see that if the energy level Ek is degenerate,
gk > 1, then we find the survival operator Ŝ has the eigen-
value ξ = exp(−iEkτ ), which is (gk − 1)-fold degenerate. In
contrast, if gk = 1, ξ = exp(−iEkτ ) is clearly not an eigen-
value of Ŝ. This coincides with what we have found in the
previous section: any degenerate subspace with energy Ek has
gk − 1 dark states and one bright state. The (gk − 1)-fold de-
generate eigenvalue of the survival operator ξ = exp(−iEkτ )
corresponds to the gk − 1 dark states found in Eq. (8). The
total number of dark states is

∑w−1
k=0 (gk − 1) = � − w. These

states have the largest possible eigenvalue magnitude |ξ | = 1
of Ŝ, hence, they will control the long-time dynamics of
the conditional measurements process (see below). For dis-
ordered, interacting, or chaotic systems, where repulsion of
energy levels arises, namely gk = 1 for all the energy levels,
we cannot find eigenvalues on the unit circle in general. In this
case, � = w and

∑w−1
k=0 (gk − 1) = 0.

(iv) The other eigenvalues 0 < |ξι| < 1 are given by

〈ψd|[ξ1 − Û (τ )]−1|ψd〉 = 0. (17)

FIG. 2. Schematic depiction of the classical charge mapping [50]
(a) and the eigenvalues of the survival operator Ŝ (b). We plot a
system with energy levels E0, . . . , E4, where all the energy levels
are twofold degenerate, except for E0 which is nondegenerate. Ac-
cording the the charge picture, we have five charges on the unit
circle, as shown on the left, with the charges being p0, . . . , p4. These
charges are located on exp(−iEkτ ) from Eq. (18). All these charges
are positive, and hence this gives four stationary points in the unit
disk denoted ξ1, . . . , ξ4 in ((a). These, as explained in the text, give
the nonzero eigenvalues of the survival operator inside the unit circle
0 < |ξi| < 1. In (b), we plot all the eigenvalues of Ŝ. There are
three types of eigenvalues, i.e., |ξ | = 1, 0 < |ξ | < 1, and ξ0 = 0. The
degeneracy of the energy levels leads to the dark states, which are
eigenstates of Ŝ with eigenvalues exp(−iEkτ ) on the unit circle (b).
The eigenvalues in the unit circle are given by the charge picture, and
finally there is one eigenvalue that is at the center of the unit disk.
Note that the nondegenerate energy level E0 does not contribute a
dark state.

It turns out that there are w − 1 ξ ’s that satisfy 0 < |ξι| < 1.
So we see, we have � − w eigenvalues on the unit circle
|ξ | = 1, w − 1 in the unit disk 0 < |ξ | < 1, and one with
ξ = 0. (� − w) + (w − 1) + 1 = � , all the eigenvalues of
survival operator Ŝ are found.

The question remains: How do we find the eigenvalues sat-
isfying 0 < |ξι| < 1? Here we exploit a beautiful mapping of
the problem to a classical charge theory, following the work of
Grünbaum et al. [50,72,73]. By defining pk = 〈ψd|P̂k|ψd〉 =∑gk

i=1 |〈Ek,i|ψd〉|, together with Eqs. (11), (15), and (17), we
get

F (ξ ) =
w−1∑
k=0

pk

ξ − e−iEkτ
= 0. (18)

F (ξ ) can be considered as a two-dimensional electrostatic
field created by point charges pk at positions e−iEkτ (see
Fig. 2). These charges produce a logarithm potential, namely,
they can be viewed as long wires piercing the unit disk.
Equation (18) defines the stationary points of this classical
field. Namely, when we put a test charge into this field, the
stationary points {ξι} are the locations where the net force on
the test charge is zero. All the {ξι} are inside the unit disk
(|ξι| < 1), which is rather obvious since all the charges pk are
positive.

To summarize, to find the eigenvalues according to the
classical charge picture, we consider (i) w charges that are
placed on the unit circle, where w is the number of distinct
energy levels of H ; (ii) these charges are located at the phases
exp(−iEkτ ), where Ek are the energy levels of H ; (iii) the
charges have magnitude pk ; (iv) with these positive charges,
we have w − 1 zeros of the force field, all inside the unit disk;
(v) once we calculate these zeros, these are the eigenvalues
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0 < |ξ | < 1 we are looking for. The charge theory is useful
as it allows us to easily identify the largest eigenvalue of the
survival operator in certain limits of the problem discussed
below.

A. Eigenvectors of the survival operator

Now we formally find the eigenvectors of Ŝ that corre-
spond to the eigenvalues that are inside the unit circle. Here
we take advantage that the dark states are already eigenstates
of Ŝ that correspond to eigenvalues on the unit circle. Fur-
thermore, as mentioned, the dark and bright subspaces form
a complete basis. With these two preconditions, we expand
|ξR〉 in terms of the bright states, under the condition that the
eigenvalue of |ξR〉 is inside the unit circle. As presented in
Appendix B, we find

∣∣ξR
ι

〉 = N
w−1∑
j=0

R̂†
ι, j |ψd〉, R̂†

ι, j = P̂j

ξι − e−iE jτ
. (19)

Using Eq. (11), we see that the states {|ξR
ι 〉} indeed are lin-

ear combinations of the bright states {|βk〉} as stated. So,
|ξR〉 is a bright state as well, namely in the absences of
conditioning, starting in this state, detection (a click yes) is
eventually guaranteed. Although both {|βk〉} and {|ξR

ι 〉} are
bright states, the latter are eigenstates of the survival operator
Ŝ with corresponding eigenvalues {ξι} in the unit disk, while
the former are eigenstates of H and Û (τ ). Note that the right
eigenvectors of Ŝ do not have to be orthogonal with each
other, i.e., 〈ξR

ι |ξR
ι′ 〉 �= δι,ι′ .

In Eq. (19), the {|ξR
ι 〉} are presented in an energy basis, in

which the evolution operator Û (τ ) is diagonal. Using the iden-
tity
∑w−1

j=0 P̂j = 1, we have [ξι1 − Û (τ )]−1 =∑w−1
j, j′=0 P̂j[ξι −

Û (τ )]−1P̂j′ =∑w−1
j=0 P̂j/(ξι − e−iE jτ ) =∑w−1

j=0 R̂†
ι, j . So∣∣ξR

ι

〉 = N[ξι1 − Û (τ )]−1|ψd〉, (20)

independent of any representation. The geometry of the right
eigenstates is that they are all orthogonal with respect to the
detection state. This is easy to see using Eq. (1), and 〈ψd|(1 −
D) = 0.

Here we present a direct proof that Eq. (20) is indeed the
right eigenvector of Ŝ. We start from the definition of the right
eigenvectors. Using Eq. (3), we have

(Û − ξι1)
∣∣ξR

ι

〉 = |ψd〉〈ψd|Û
∣∣ξR

ι

〉
. (21)

Inserting Eq. (20) into (21), we get

−|ψd〉 = |ψd〉〈ψd| Û

ξι1 − Û
|ψd〉, (22)

which leads to −1 = 〈ψd|Û/(ξι1 − Û )|ψd〉. Using Û/(ξι1 −
Û ) + 1 = ξι1/(ξι1 − Û ), we get for ξι �= 0

〈ψd|[ξι1 − Û ]−1|ψd〉 = 0. (23)

From Eq. (17), this is the equation for the eigenvalues of the
survival operator Ŝ that are inside the unit circle, i.e., 0 <

|ξ | < 1. Hence, Eq. (20) is correct.

Following the same procedure, the left eigenvectors of
survival operator read as

〈
ξL
ι

∣∣ = N
w−1∑
j=0

〈ψd|Lι, j, Lι, j = P̂je−iE jτ

ξι − e−iE jτ
. (24)

Similar to Eq. (20), we have〈
ξL
ι

∣∣ = N〈ψd|Û (τ )[ξι1 − Û (τ )]−1. (25)

The right and left eigenvectors obey the biorthogonal relation
〈ξL

ι |ξR
ι′ 〉 = Nιδι,ι′ . Here Nι is a constant which depends on how

we normalize the two right and left vectors. Furthermore, the
right and left eigenvectors are orthogonal to the dark states
〈δk, j |ξR

ι 〉 = 0 and 〈ξL
ι |δk, j〉 = 0 since the dark subspace is

orthogonal to the bright subspace.

B. Phase gained under repeated measurements

We now explain the physical meaning of ξ . Using Eqs. (20)
and (25), if the system starts with the normalized right eigen-
state |ξR

ι 〉, i.e., |ψin〉 = |ξR
ι 〉, we have (Appendix C)∣∣ξR

ι

〉 Û (τ )−→ |ξL
ι 〉∗ (1−D)−→ ∣∣ξR

ι

〉
,
∣∣ξR

ι

〉 Ŝ−→ ∣∣ξR
ι

〉
, (26)

where ∗ is the complex conjugate. We have used the fact that
|ξR

ι 〉 is an eigenstate of Ŝ, so Ŝ|ξR
ι 〉 → |ξR

ι 〉. Using Eq. (2),
the wave function of the system after n measurements reads
as

|ψn〉 = Nnξ
n
ι

∣∣ξR
ι

〉
, (27)

where Nn is a normalization constant. In this process, the
operations Û (τ ) and (1 − D) send the wave function to the
|ξL

ι 〉∗ and |ξR
ι 〉 n times. Importantly, we gain an unusual phase,

namely,

|ψn〉 = exp(inφ)
∣∣ξR

ι

〉 = exp(inφ)|ψin〉 , (28)

where φ = −i ln(ξι/|ξι|). This phase is not determined by
the energy times evolution time, but is given by the phase of
the complex eigenvalue ξι of the survival operator Ŝ. As we
repeat the measurements, the system is driven periodically,
and the phase accumulated is nφ. We note that during a
period τ , the evolution is unitary, and hence the dynamical
phase, according to Aharonov and Anandan [74,75], is Eιτ

as usual (Eι = 〈ξL
ι |H |ξR

ι 〉), which clearly differs from our
φ. This indicates that a geometric part contributes since the
effect of measurement is crucial. We also note some related
investigations are made in Refs. [76–79], where measurement-
induced phases with unconditional weak measurements were
considered.

C. Exceptional points: Example of a two-level system

In the above discussion we assumed that the system has
no exceptional points. Exceptional points are cases, where for
specific τ , or for certain control parameters of H , we have
two (or more) eigenvalues ξ (|ξ | < 1) of the survival operator
Ŝ merging, a kind of degeneracy found for non-Hermitian
physical systems [80]. In this subsection, we illustrate part of
the effects with the simplest example: the two-level system,
also presenting the exceptional point and its meaning. A more
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general discussion about the exceptional points is presented in
Sec. IX.

For a two-level system with state |l〉 (left) and |r〉 (right),
the Hamiltonian reads as H = −γ (|l〉〈r| + |r〉〈l|) where γ is
the hopping amplitude between these two states. The energies
in this system are E1 = −γ and E2 = γ . We assume that we
detect the particle on the left node, so D = |l〉〈l|. In this basis
the survival operator is

Ŝ = (1 − D)Û (τ ) =
(

0 0

i sin(γ τ ) cos(γ τ )

)
. (29)

We easily find the following eigenvalues and vectors of Ŝ:

ξ = 0 : 〈ξL| = 〈l|, |ξR〉 = cos(γ τ )|l〉 − i sin(γ τ )|r〉;
ξ = cos(γ τ ) : 〈ξL| = i sin(γ τ )〈l| + cos(γ τ )〈r|, |ξR〉 = |r〉

(30)

We see from here the features discussed above, for example,
for the eigenvalue ξ = 0 the left eigenstate is 〈ξL| = 〈ψd|,
which in this model is 〈ξL| = 〈l|. Further

Û (τ ) =
(

cos(γ τ ) i sin(γ τ )

i sin(γ τ ) cos(γ τ )

)
, (31)

and hence for the second eigenvalue ξ = cos(γ τ ) and vector
|ξR〉 = |r〉, we have Û (τ )|ξR〉 = i sin(γ τ )|l〉 + cos(γ τ )|r〉 =
|ξL〉∗. Then the conditional measurement (1 − D) wipes out
the amplitude on |l〉, which leads to (1 − D)|ξL〉∗ → |r〉 =
|ξR〉. This is an illustration of Eq. (26).

According to our formalism, in the large-n limit the
state of the system is determined by the eigenvector cor-
responding to the eigenvalue closest to the unit circle,
i.e., max(0, | cos(γ τ )|) which, unless | cos(γ τ )| = 0, means
limn→∞ |ψn〉 = |r〉. This is easy to understand, as after the
null measurements, the system cannot be on |l〉. Since there
are only two states, we find the system after the nth measure-
ment on |r〉. This holds true for any n.

The exceptional point is found when cos(γ τ ) = 0, and for
this case Ŝ cannot be diagonalized at all. Three features are
found: (a) in this limit, Eq. (30) gives 〈ξL|ξR〉 = 0; (b) the two
eigenvalues coalesce on zero, i.e., ξ = 0; finally (c) the two
pairs of vectors, both L and R, in Eq. (30) become parallel
(in our representation, aside from an i they are identical).
Thus, at the exceptional sampling time τ = (π/2 + kπ )/γ ,
where k is an integer, we have only one eigenvector instead
of the familiar two. This means that both the eigenvalues and
the eigenvectors coalesce, which implies an exceptional point.
Mathematically, when cos(γ τ ) = 0, the survival operator now
reads as

Ŝ = (1 − D)Û (τ ) =
(

0 0

i 0

)
(32)

and then the eigenvalues are clearly zero, and we have only
one eigenvector solution instead of two.

How can we search for these exceptional points without
solving the problem exactly? We claim that we can use the
classical charge picture, which is very useful in determining
the exceptional points in general. Let us present it for the
two-level system so that the reader can get familiarized with
the basic ideas. We situate the classical charges on the unit

circle. The location of the pair of charges is on the phases
exp(−iE1τ ) = exp(iγ τ ) and exp(−iE2τ ) = exp(−iγ τ ). The
magnitudes of the charges in our example are identical and
positive. Then we search for the stable point, namely, the
point in space where the classical force field of the charges
vanishes. This is clearly on the midpoint connecting the two
charges. From basic geometry, we realize that this classical
stable point is found in this example on ξ = cos(γ τ ) in the
complex plane. Especially, if we choose τ such that these
charges are on the north and south poles, the stable point is
on the origin, in agreement with Eq. (30). This describes the
coalescence at the stationary point. Dynamically, we imagine
the eigenvalue cos(γ τ ) moving to the origin where it fuses
with the ever-present eigenvalue ξ = 0 there. By moving,
we mean that we think of the process as we tune γ τ . We
may control this fusing process with the rearrangement of the
charges on the unit circle, i.e., moving them to the south and
north poles. The mapping of the problem to a classical charge
theory allows for an intuitive understanding when exceptional
points emerge, in generality, and shows how this is related to
the symmetry of the problem.

For the two-level system, what is the physical meaning of
the exceptional point? When the system is tuned to this point,
and we attempt to follow the null measurements, we encounter
a problem. After the first measurement, we get a null result,
as this is the condition imposed by the rules of the model.
But now, after the first measurement, the system is in state |r〉
(since we conditioned the measurements to give a no when
we detect on |l〉). However, when cos(γ τ ) = 0, we will find
the state of the system just before the second measurement
in the state |l〉. We then perform the second measurement
and find the system in the detected state |l〉 with probability
one. It follows that we tried to impose the sequence of null
measurements. However, at the exceptional points, this is im-
possible since we always get a yes in the second measurement.
This feature is generic, and found below in systems whose
complexity exceeds that of a two-level example.

IV. STATE FUNCTION UNDER CONDITIONED
MEASUREMENTS

A useful identity which holds for non-Hermitian operators
and is not limited to our case reads as [81–83]

∑
ξ

|ξR〉〈ξL|
〈ξL|ξR〉 = 1. (33)

This formula is valid provided that we do not have exceptional
points in the system. The summation is over all the states in
the system, denoted by the sum over the index ξ . It follows
from Eq. (33) that a generic initial condition can be expanded
like

|ψin〉 =
∑

ξ

〈ξL|ψin〉|ξR〉
〈ξL|ξR〉 . (34)

For the case under study, we split the sum into three parts,
those with eigenvalues on the unit circle |ξ | = 1, ξ = 0, and

023129-7



LIU, ZIEGLER, KESSLER, AND BARKAI PHYSICAL REVIEW RESEARCH 4, 023129 (2022)

all the rest:

|ψin〉 = 〈ψd|ψin〉
〈ψd|U −1|ψd〉U −1|ψd〉︸ ︷︷ ︸

ξ=0

+
∑

0<|ξ |<1

〈ξL|ψin〉
〈ξL|ξR〉 |ξR〉

+
∑

δ,|ξ |=1

〈δ|ψin〉|δ〉. (35)

The first term, proportional to U (τ )−1|ψd〉, has a clear phys-
ical meaning since after the first time interval τ , the unitary

evolution yields UU −1|ψd〉 = |ψd〉. The first detection is
modeled with the projector (1 − D) and hence this first term
is wiped out by the first measurement. As mentioned, if
|ψin〉 = Û −1|ψd〉, we cannot get the conditional measure-
ments, namely, for this initial condition, we record a yes at the
first measurement attempt, so it is important for our discussion
that the second and third terms are nonzero. In Eq. (35), we
assume 〈ψd|U −1|ψd〉 �= 0 and 〈ξL|ξR〉 �= 0, otherwise we get
an exceptional point. Using Eqs. (2), (3), and (35), the wave
function after n � 1 measurements reads as

|ψn〉 = N

{ ∑
0<|ξ |<1

ξ n 〈ξL|ψin〉
〈ξL|ξR〉 |ξR〉 +

∑
δ,|ξ |=1

exp(−iEδnτ )〈δ|ψin〉|δ〉
}

, (36)

and N is the normalization. In the next section we use this equation to explore the large-n limit of the system. Here we see that
in general the state of the wave function is composed of dark states |δ〉 with eigenvalues exp(−iEδτ ) and bright states |ξR〉 with
eigenvalues 0 < |ξ | < 1. The effect of the state with eigenvalue ξ = 0 is washed out after the first measurement.

We now consider the mean energy of the system. Even though the particle is not detected, there must be an exchange of
energy between the system and the detector, hence, the energy of the particle is not constant. Initially, the expectation of the
energy of the system is E0 = 〈ψin|H |ψin〉. Due to the measurements, the average energy of the system after the nth measurement
is 〈En〉 = 〈ψn|H |ψn〉. Using Eq. (36), we have

〈En〉 =
∑

0<|ξ,ξ ′ |<1 aξ a∗
ξ ′ξ

n(ξ ′∗)n〈ξ ′R|H |ξR〉 +∑δ,|ξ |=1 |〈δ|ψin〉|2Eδ∑
0<|ξ,ξ ′ |<1 aξ a∗

ξ ′ξ n(ξ ′∗)n〈ξ ′R|ξR〉 +∑δ,|ξ |=1 |〈δ|ψin〉|2 , (37)

where aξ = 〈ξL|ψin〉/〈ξL|ξR〉, and 〈̃ξ ′R|H |ξR〉 =∑w−1
k=0 pkEk/[(̃ξ ′ − eiEkτ )(ξ − e−iEkτ )]. If initially the system

is prepared in a linear combination of dark states, then clearly
the energy is a constant of motion, but otherwise it is not. In
particular, if we have no dark states in our system, namely, no
symmetry and hence no degeneracy, the measurements never
conserve energy. Note that in this case the mean energy can
saturate for large n, or exhibit dynamical oscillations, which
are explored below.

V. FIXED STATE AND QUANTUM DYNAMICS

From Eq. (36), in the large-n limit, we reach several general
conclusions:

(a) If the dark subspace is not empty, namely, if we have
some degenerate energy levels (implying some symmetry in
the system) or if one of the stationary states of H is orthogonal
to |ψd〉, the second term in Eq. (36) dominates the large-n
limit provided that the initial condition |ψin〉 has some overlap
with the dark states. This means that the long-time dynamics is
determined by the phases exp(−iEδnτ ). Compared to unitary
dynamics, where all the energy levels contribute, the effect of
measurement is therefore to remove the nondegenerate energy
levels from the long-time dynamics. The wave function then
reads as

|ψ f 〉 = lim
n→∞ |ψn〉 ∼ N

∑
δ,|ξ |=1

e−iEδnτ 〈δ|ψin〉|δ〉 . (38)

(b) In the case when the dark subspace is empty, as typi-
cally found for systems without special symmetries, we find
two types of behaviors. We first need to determine the maxi-

mum of the set {|ξι|} and recall that these absolute values are
all less than unity. Then, note the following:

(b1) If the maximum is unique, the system in the long-time
limit goes to a specific state. There is no dynamics in this limit
as only one term dominates. This is similar to a fixed point.
We denote this unique largest eigenvalue of survival operator
Ŝ as ξ f . Using Eq. (36), we have

|ψ f 〉 ∼ Nξ n
f

∣∣ξR
f

〉 = einφ f
∣∣ξR

f

〉
, (39)

where φ f = −i ln(ξ f /|ξ f |). The system ends up with the state
|ξR

f 〉 and attains a global phase nφ f . In Eq. (28), the phase
φi of the system is determined by the initial state, while here
the phase φ f is determined by the maximum of the set {|ξι|}.
Furthermore, for a generic initial state, at the first stages of
the processes (n is not large) many phases φi = −i ln(ξi/|ξi|)
contribute [see Eq. (36)]. As the component |ξR

f 〉 gradually
wins the game, the corresponding phase becomes the only
term that dominates (n is large). Each application of Ŝ rotates
the phase of the system by φ f .

(b2) If the maximum of the set {|ξι|} is shared by several
eigenvalues of the survival operator Ŝ, all with the same ab-
solute value but with different phases, then these eigenvalues
will control the large-n limit of Eq. (36). In this case, the
wave function, for large n, will exhibit nontrivial dynamic.
The system not only gains a global phase like the above case
(b1), but also exhibits interference due to the relative phases
of these eigenvalues.

As an example, consider two eigenvalues |ξ1| = |ξ2| > |ξi|
(i �= 1, 2) and |ξ1| = |ξ2| < 1, we denote ξ1 = reiφ1 and
ξ2 = reiφ2 , where r = |ξ1| = |ξ2|, φ1 = −i ln(ξ1/|ξ1|),
and φ2 = −i ln(ξ2/|ξ2|). Using Eq. (36), the terms with
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FIG. 3. The absolute values of the eigenvalues ξ1 (red) and ξ2 (blue) versus τ are presented in (e) and (f). (a)–(d) Charge configurations
for τ = 0.1 (a), τ = 2 (b), τ = 4.316 97 (c), and τ = 4 (d). The black points are charges located on the unit disk. The red and blue points
are stationary points (eigenvalues of Ŝ) ξ1 and ξ2. In this simple model, we have two eigenvalues ξ1 and ξ2 that are inside the unit circle.
The eigenvalues with larger magnitude determine the final state of the system in the large-n limit. When the curves in (e) cross, namely
|ξ1| = |ξ2|, we find persistent quantum oscillations, for example for the energy. In the Zeno limit (a), τ → 0, both eigenvalues approach unity.
A comparison with the lower bound (42) (green line) is presented in (f). Note the usefulness of the charge picture. For example in (a), since τ

is small, all the charges, i.e., black points on the unit disk, are closely situated, and it follows from basic electrostatics that also the eigenvalues
(red and blue points) are both close to unity. This is shown clearly in subplot (e) in the small-τ limit.

eigenvalues ξi (i �= 1, 2) decay away, and we are left
with |ψ f 〉 = |ψn〉 ∼ N (a1rneinφ1 |ξR

1 〉 + a2rneinφ2 |ξR
2 〉) =

Nrn(a1einφ1 |ξR
1 〉 + a2einφ2 |ξR

2 〉) (as a reminder, ai is the
overlap with the initial state). rn can be absorbed by the
normalization. In the end, we have

|ψ f 〉 ∼ Nein φ1+φ2
2
(
a1ein φ1−φ2

2
∣∣ξR

1

〉+ a2ein φ2−φ1
2
∣∣ξR

2

〉)
. (40)

Comparing with Eq. (39), where there are two ξ ’s that
dominate the large-n evolution, the system not only gains a
global phase (φ1 + φ2)n/2 in the measurement process, but
also exhibits an oscillation that is controlled by the relative
phase (φ1 − φ2)n/2 of ξ1 and ξ2. We can tune this rela-
tive phase by changing the sampling time interval τ (see
Sec. VIII). Mean observables, like the energy, may thus
exhibit periodic controllable oscillations (see our examples
below). In this process, the system is steered periodically
by the repeated measurements, and we call this interesting
phenomena quantum dynamics induced by the measurements.

VI. THREE-LEVEL SYSTEM, V-SHAPED SYSTEM

The two-level system example, treated in Sec. III C, is
obviously a very special case, and misses a lot of the different
dynamical regimes. We now consider a three-level system,
with no dark states. According to the theory developed, we
will have two eigenvalues ξ1 and ξ2, aside from ξ0 = 0, in
the unit disk and the long-time limit of the system will be
determined by the eigenvalue which is larger in magnitude in
absolute value sense. When we vary, say τ , we can find dif-
ferent cases. When |ξ1| = |ξ2| �= 0, the relative phase of these
eigenvalues will play a special role, namely, we then expect
oscillatory behavior to persist forever. This is investigated here
with an example using the charge picture.

We consider a three-level system with the Hamiltonian

H = −γ (|0〉〈1| + |1〉〈0| + |1〉〈2| + |2〉〈1| + |0〉〈0|). (41)

Note that we have added an onsite energy −γ on the node
labeled |0〉. The spectrum of H is given by E3

i − E2
i − 2Ei +

1 = 0, where we have set γ = 1. We then find E0 
 −1.25,
E1 
 0.445, and E2 
 1.80. We prepare the system initially
in state |ψin〉 = |2〉 and we perform null measurements, ev-
ery τ units of time, on the detection state |ψd〉 = |0〉. Using
Eq. (18), there are three charges: p0 
 0.108, p1 
 0.349, and
p2 
 0.543, located at e−iE0τ , e−iE1τ , and e−iE2τ (see Fig. 3
left panels). This forms our charge picture with two station-
ary points ξ1 and ξ2 inside the unit circle. Since the energy
spectrum is nondegenerate, there are no dark states in the
system. As demonstrated in Fig. 3, varying τ we get different
charge configurations that yield different behaviors for the
measurement process.

In Fig. 4, we show the energy of the system versus n for
four choices of τ . Notice the different scales of n in these
plots. For small τ , we find Zeno dynamics, the system is lin-
gering in one state for very long time, but eventually switches
to a state that is stable in time. The transition is seen roughly
at n = 105 [see Fig. 4(a)]. In contrast, in Fig. 4(b), when
τ = 2, we find a steady state after roughly five measurements.
This corresponds to a case where the eigenvalues ξ1 and ξ2

are separated, while in the Zeno case |ξ1| 
 |ξ2| 
 1. The
energy levels E0 and E2 are now nearly quasidegenerate. We
get the Floquet dark state, whose energy is approximately
−0.75. We also see oscillatory behavior for the special choice
of τ = 4.316 97 in Fig. 4(c) or when working close to this
value, where the oscillations decay away eventually, Fig. 4(d).
To gain insights on these behaviors we go back to the charge
picture in Fig. 3.

In Fig. 3, we plot the absolute values of eigenvalues ξ1

and ξ2 and the corresponding charge configurations for τ =
0.1, 2, 4.316 97, 4. In the Zeno regime, i.e., τ → 0, all the
three charges merge [see Fig. 3(a)]. Since the charges are
closely situated, it is obvious from electrostatics that the sta-
tionary points are all coalescing in the vicinity of the charges
but in the unit disk. This is because all the charges are positive.
The eigenvalues of Ŝ are |ξ1| 
 |ξ2| 
 1. Hence, the system
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(a) (b) (c) (d)

FIG. 4. The expected energy of the three-level system versus the measurements step n for τ = 0.1 (a), τ = 2 (b), τ = 4.316 97 (c), and
τ = 4 (d). In (a), we have ξ1 ∼ ξ2 ∼ 1 and |ξ1| > |ξ2|, the number of steps it takes to reach the state |ξR

1 〉 is very large. As a comparison, in
(b), |ξ1| ∼ 1 and |ξ2| ∼ 0.4, and the transition to state |ξR

1 〉 is very fast. In (c), we have |ξ1| = |ξ2|. Hence, the energy oscillates due to the
competition between the two states. (d) Close to the oscillation point but not exactly on it, so the amplitude of oscillation decays to zero.

reaches the final state slowly since clearly both |ξ1|n and |ξ2|n
decay slowly. This behavior is generic to the Zeno limit and
it will be investigated in generality in Sec. VIII. A general
feature of the eigenvalues is found to be

|ξi| � cos(�Eτ/2) (42)

for small τ , where �E is the difference between the maximum
of the energy Emax and the minimum Emin [50]. In our case
�E 
 3.05. We see, with this lower bound, that as τ → 0 all
the eigenvalues of the survival operator approach unity (and
hence one cannot simply neglect one compared to the other,
unless n is really large). In Fig. 3(f) we plot this bound for
demonstration.

In Fig. 3(b), i.e., τ = 2, we have two charges that
are near merging [50]. This means that the phases satisfy
exp(−iE0τ ) 
 exp(−iE2τ ). From basic electrostatics, if we
have two nearby charges we expect a stationary point in their
vicinity, where the forces are balanced. Thus, once again we
see that the charge picture can be used to rationalize our
finding, and more importantly in Sec. VIII, we will present
a more general theory based on it. This leads to |ξ1| 
 1,
while |ξ2| 
 0.4. The system reaches the final state very
quickly since |ξ1| � |ξ2|. In Fig. 3(c), τ = 4.316 97, |ξ1| =
|ξ2|, which leads to the oscillation in Fig. 4(c) predicted in
Eq. (40).

A. Artificial driven atom with V-shaped energy structure

We now consider an artificial atom system with the famous
V-shaped energy level structure that allows for shelving [30]
(see Fig. 5). The system’s states are |G〉 (ground state) and
|D〉 and |B〉. Inspired by the experiment in Ref. [32], we
will investigate the case where transition amplitudes from |G〉
to |D〉 and |G〉 to |B〉 vary considerably. The system starts
in the ground state, and then conditional null measurements
are made in state |B〉. The question is where will we find
the particle, when n is large? It turns out that the particle is
shelved in state |D〉 and the amplitude of finding the particle
in the ground state diminishes with n. In some sense the fact
that we gain knowledge from measurements that the system is
not in |B〉 implies that it cannot be found in |G〉 also since |G〉
is loosely speaking the doorway to |B〉. Thus, the energy of the
system is going to increase from the energy of the ground state
to the energy of state |B〉. We now investigate this scenario in

more detail. The Hamiltonian H reads as

H = ED|D〉〈D| + EB|B〉〈B| + EG|G〉〈G|
+ γ1(|G〉〈D| + |D〉〈G|) + γ2(|G〉〈B| + |B〉〈G|). (43)

We first find the eigenenergies and eigenvectors of H us-
ing the basis {|D〉, |G〉, |B〉}. To simplify the calculations,
we set EG = 0, ED = 3, EB = 5, γ2 = 1. We keep γ1 as a
free parameter, and we will consider the limit when it ap-
proaches zero. Then the eigenvalues Ei of H are given by
E3

i − 8E2
i + (14 − γ 2

1 )Ei + 3 + 5γ 2
1 = 0. When γ1 → 0, we

have (−3 + Ei )(−1 − 5Ei + E2
i ) 
 0, which leads to E0 


−0.2, E1 
 3, and E2 
 5.2. The eigenstates of H are |Ei〉 =
N{(−1 − 5Ei + E2

i )/γ1, Ei − 5, 1}T , where N is the normal-
ization. As γ1 → 0, |E1〉 
 |D〉, a result we will use later.

We then choose γ1 = 0.01. By the definition of charges, we
have p0 = |〈B|E0〉|2 
 0.035 76, p1 = |〈B|E1〉|2 
 2.040 ×
10−6, p2 = |〈B|E2〉|2 
 0.9642. So p2 � p0 � p1, the
charges p0 and p1 are much weaker than p2. In the electro-
static language, we have two weak charges and, as a result, the
stationary points ξ1 and ξ2 will approach these weak charges
separately. With simple numerical calculations, we find the
eigenvalues of Ŝ are ξ1 
 0.0707 + 0.9975i, ξ2 = 0.9292 +
0.0742i, so |ξ1| 
 |ξ2| 
 1, and |ξ1| > |ξ2|.

We see that we have a very weak charge p1 in the system.
In this case we expect and indeed find an eigenvalue of the
survival operator that is very close to charge, but inside the
unit circle, and it is ξ1. This can be understood using basic
electrostatics, namely, for three positive charges on the unit
circle, we expect to find a stationary point close to the weak

FIG. 5. Three-level V-shaped system. We initially prepare the
system in the ground state |G〉. The matrix element of H describing
jumping between |G〉 and |D〉 (|B〉) is γ1 (γ2), where γ2 � γ1. The
detection state is the state |B〉.
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FIG. 6. From simulations, we plot the mean energy (red trian-
gles) of the V-shaped system and the probability to be in state |D〉
(green crosses) versus n. Here we choose γ1 = 0.01, γ2 = 1, and
τ = 0.5. The red line is the theoretical prediction of the mean energy
for the large-n limit from Eq. (44). The null measurements shelve the
system in state |D〉.

charge, with the remaining charges balancing the force (simi-
larly, the stationary point between Earth and Moon is closer to
the Moon). We will show this in more generality in Sec. VIII,
using perturbation theory, but for now we point out that to
leading order we expect that the corresponding eigenstate,
namely |E1〉, is selected as the stationary state of the system.
So, for a quantum particle initially in the ground state |G〉,
using Eq. (49), we have for large n

|ψ f 〉 
 einφ|ξ1〉 
 e−inE1τ |E1〉 
 e−inE1τ |D〉. (44)

Second, because we have two weak charges, i.e., both p0

and p1 are weak compared to p2, that leads to |ξ1| 
 |ξ2| as
mentioned. Therefore, for not too large n, and from Eq. (36),
both the eigenvalues contribute, and the transition to the final
state (44) is slow. Only at a certain critical large number of
measurements do we observe a transition.

As shown in Fig. 6, the expected energy of the monitored
system exhibits a transition from the zero energy of the ground
state |G〉 to the energy of state |D〉, which is 3. This transition
is found at n 
 50, which is related to the relative magnitude
of |ξ1| and |ξ2| since in this example both are close to unity as
mentioned. We also plot the probability of being in state |D〉
which exhibits a transition from zero to unity similar to that
seen in the expected energy.

As already mentioned in the Introduction, we have been
inspired by the experiment of Minev et al. [32]. There the
steering by conditional measurements was used to control
and reverse the quantum jump in mid-flight. This, in turn, is
based on concepts of quantum trajectories, well investigated in
quantum optics. There the emission events, or more generally
quantum jumps, are inherent to the dynamics of the system,
for example, a fluorescence process. In our approach, which
is different from the experiment, we impose the jumps and
the conditional steering by repeated projective measurements,
where the condition is a null measurement (i.e., nondetection).
We believe that due to the advances in single-particle manipu-
lation, the proposed method will be useful both in the steering
of single-particle systems, as shown here, but also for their
control. For example, in the quantum search problem, the goal

of the field is to speed up the search, which in turn is presented
as the time it takes for a quantum walker to reach the target
state. Then, if we detect many events of failed measurements
(like those analyzed here), we may wish to resort to control.
By that, we mean that after observing many failed detections,
the system in the search process is pushed toward a dark
state. These dark states, in systems with built-in symmetry,
are stable. This means that after the target is not detected for
a while, it will be of benefit to add control, for instance, to
restart the search process or add an external perturbation. This
approach and its effect on the quantum search process will be
investigated in more detail in the future.

Remark. The state |D〉 in this section is traditionally called
dark, indeed this term is obviously very physical. In the con-
text of this work, and based on our definition of the dark state
|δ〉, note that state |D〉 is only nearly dark. We defined dark
states as such that starting in those states the system is never
detected, while here a system initially starting in the state |D〉
can be detected, at least in principle (without conditioning
the measurements, of course). The meaning of nearly dark
is related to the set of parameters like γ1 we and others use
in these problems. The meaning of a nearly dark state is
explored below in perturbation theory in full generality using
the so-called weak charge theory (see Sec. VIII A).

VII. GLUED BINARY TREE

As another application of our general theory, we consider
the glued binary tree [84,85]. Glued trees were investigated
previously as they provide exponential speedup for quantum
search algorithms [86,87], and this was observed in a recent
experiment [88]. In contrast, we consider the effect of null
measurements on this popular model.

The glued tree is a symmetric system and hence the energy
spectrum is degenerate. For an initial state composed of de-
generate and nondegenerate energy levels of H , we show that
the null measurements drive the system into the degenerate
subspace (dark states), while the nondegenerate component
becomes irrelevant in the long-time limit. Hence, the mea-
surements select the final state of the system, which acts like a
“selection rule.” For instance, consider an initial state |ψin〉 =
(|E0〉 + |E1〉)/

√
2, where |E0〉 is a nondegenerate energy level

of the glued tree and |E1〉 is degenerate. Under the action
of null measurements, the nondegenerate |E0〉 component is
wiped out and the final state of the system is |ψ f 〉 ∼ |E1〉.

We also show that by periodic null measurements on
node |7, 1〉 (see Fig. 7), the system can be driven to an
equilibrium-steady state, where the mean energy of the system
is a constant. More interesting scenarios are found when we
tune the sampling time τ . We show that the local action (null
measurements) on the node |7, 1〉 can drive the whole system
into an oscillation mode. As shown in Figs. 9 and 12, the mean
energy of the system periodically oscillates in time and such
an oscillation is easy to tune with the parameter τ .

A. Eigenstates and eigenenergies

First, let us define a sequence of graphs Gd . Gd consists of
two balanced binary trees [84]. The total number of vertices
in Gd is 2d+1 + 2d − 2. In Fig. 7 we present the G3 tree,
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FIG. 7. Glued binary tree graph G3. The detector is set on the
state |1, 1〉. We consider different initial states.

which will serve as our example. This graph describes the
Hamiltonian of the system, namely, the nodes are the states
and the links represent the hopping amplitudes between states.
All transitions are identical, so that the Hamiltonian is given
by the adjacency matrix of the graph.

The eigenenergies and eigenstates of this model were ob-
tained in Refs. [84,85]. Here we briefly recap the solution of
the stationary Schrödinger equation. We consider a labeling
along the “columns” and “rows” of the form ( j, s) (see Fig. 7),
where j goes from 0 to 2d indicates the distance from the
left root to right root along the graph, and s goes from 0
to Nd, j − 1 is the location within a given column. Nd, j is
the number of sites in a given column j, and it is given by
Nd, j = 2 j for j � d , and Nd, j = 22d− j for j > d . Then, the
eigenstates of H are [85]

|Ek,d−v,α〉 = 1√
d − v + 1

2(d−v)∑
j=0

sin

×
[

k( j + 1)π

2(d − v + 1)

]
|scol j; α, v〉 (45)

with

|scol j; α, v〉 =
(2α+1)Nj,d−v−1∑

s=2αNj,d−v

| j + v, s〉 − | j + v, s + Nj,d−v〉√
2Nj,d−v

in which | j, s〉 denote the Hilbert space vector associated with
vertex ( j, s); and v = 0, . . . , d; and k = 1, . . . , 2(d − v) + 1.
In |scol j; α, v〉, j = 0, . . . , 2(d − v) and α = 0, . . . , 2v−1 −
1. α is an integer, so when d = 0, α = 0. The corresponding
eigenvalues are given by [85]

Ek,d−v = −2
√

2 cos

(
kπ

2(d − v + 1)

)
. (46)

B. Null measurements

To present the quantum dynamics via measurements, we
treat a specific model. We choose the G3 tree as shown in
Fig. 7, which consists of 22 nodes. So d = 3. We use Eq. (46)
and for simplicity we label the energy levels according to
E0 < E1 < E2 · · · < E10 (see Table I). The energy level E5 =
0 is eightfold degenerate and E2 = 2 and E7 = −2 are three-
fold degenerate. Other states are not degenerate. The detection
state is |ψd〉 = |1, 1〉 (see Fig. 7), the eigenstates |E1〉, |E3〉,
|E7〉, |E9〉, and |E5,i〉, where i = 4, 5, 6, 7, 8, have no overlaps
with the detected state |ψd〉, they are dark states by definition.
Then we are left with three energy levels that are threefold
degenerate, i.e., E2 = 2, E7 = −2, and E5 = 0. Using Eq. (8),
we construct from each degenerate energy subspace two dark
states. For instance, the dark states on energy level E2 are
|δ2,1〉 = √

1/6|E2,1〉 − √
5/6|E2,2〉 and |δ2,2〉 = 1/

√
6|E2,1〉 +

1/
√

30|E2,2〉 − 2/
√

5|E2,3〉. Following the same procedure,
we can also construct the dark states |δ5,1〉, |δ5,2〉, |δ8,1〉, and
|δ8,2〉 using Eq. (8), giving us all 15 dark states in the system.

1. Quantum dynamics driven by measurements

Now, based on the charge picture approach, we show dif-
ferent quantum dynamics driven by repeated measurements.
We start from the ground state of the system, namely, |ψin〉 =
|E0〉. The ground state is an eigenstate of Hamiltonian H
and nondegenerate, hence, the initial state has no overlap
with all the dark states, i.e., 〈ψin|δk, j〉 = 〈E0|δk, j〉 = 0. This
is obvious since the energy eigenstates are orthogonal with
respect one to another. For the first case, we consider τ = 1.2.
The eigenvalues ξi of the survival operator Ŝ are stationary
points of the charge field in Fig. 8. There is a unique maxi-
mum ξ f 
 −0.999 767 of the set {|ξi|} that is closest to the
unit circle (see Fig. 8). The system will approach this fixed
point when the detection number is large. From Eq. (39), the
final state is |ψ f 〉 = einφ f |ξR

f 〉, whose expected energy is E =
〈ξR

f |H |ξR
f 〉 = 0, while initially the energy is E0 
 −2.613 13.

The measurements transfer energy to the quantum system
continuously until the system reaches its equilibrium state. We
present this in Fig. 9.

For the second scenario, we choose τ = 1.25, where there
are two eigenvalues ξα 
 −0.894 962 + 0.108 282i and ξβ 

−0.894 962 − 0.108 282i that are equally close to the unit
circle (see Fig. 8). The expected energies of the corresponding
eigenstates are Eα 
 1.461 03 and Eβ 
 −1.461 03. Clearly,
now we have the quantum dynamics presented in Fig. 9.
Namely, by periodically collapsing the wave function only
on node |7, 1〉, we drive the whole quantum system and
the energy (also other observables) oscillates in time due to

TABLE I. The energy spectrum of the G3 tree. The detection state is |ψd〉 = |1, 1〉. The number of states with zero and nonzero overlap
with the detection state |ψd〉 is listed in the last two lines.

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Energy −2
√

2 cos(π/8) −√
6 −2 −√

2 −2
√

2 sin(π/8) 0 −E4 −E3 −E2 −E1 −E0

Degeneracy 1 1 3 1 1 8 1 1 3 1 1
〈ψd|Ek,i〉 = 0 0 1 0 1 0 5 0 1 0 1 0
〈ψd|Ek,i〉 �= 0 1 0 3 0 1 3 1 0 3 0 1
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FIG. 8. The classical charge pictures for the eigenvalues of Ŝ of G3 tree model when τ = 1.2 (left) and τ = 1.25 (right). As shown in
the figure, when τ = 1.2, there is only one eigenvalue ξ f that is closest to the unit circle, while at τ = 1.25, two eigenvalues ξα and ξβ that
are equally close the the unit circle are found. In the latter case we anticipate quantum dynamics in the long-time limit, while in the former
a unique steady state emerges. In this system we have 11 distinct energy levels (see Table I). One would naively expect to find 11 charges;
however, some charges vanish, namely, the detected state |1, 1〉 is orthogonal to some of the energy levels, due to symmetry. As a result, we
have 7 charges.

the local measurements. The measurement transfers energy to
the quantum system back and forth in an oscillatory way, and
the system never reaches a stationary state. These interesting
phenomena reveal the effect of the measurements and are also

FIG. 9. The expected energy of the G3 tree system versus the
measurement steps n conditioned on all the detections being null.
We prepare the system in its ground state (〈E〉 = −2.613 13), and
then perform repeated stroboscopic measurements at the state |ψd〉 =
|1, 1〉 (see Fig. 7). As demonstrated in Fig. 8 when τ = 1.2, there is
only a unique eigenvalue ξ f of Ŝ that is closest to the unit circle,
corresponding to the state |ξR

f 〉, with expected energy 〈E f 〉 = 0 (red
circles). As shown here, the energy of the system (red crosses, nu-
merical simulations) reaches the expected energy when n 
 20. The
detections pump the energy of the system and send it to the new
steady state. When τ = 1.25, there are two eigenvalues ξα and ξβ

that are equal in magnitude |ξb| = |ξa| (see Fig. 8), while they are
also the largest eigenvalues (aside from the dark states which are not
relevant due to the initial condition). Now the total energy of the sys-
tem oscillates. Our theory (cyan circles) predicts this oscillation and
perfectly matches the numerical simulations (black crosses) when n
is large.

instructive for the quantum dynamics out of equilibrium. Later
on, in Fig. 12, we show such driving can be controlled by the
periodicity τ .

2. Selection rule by measurements

Now we consider the cases that the initial state has some
overlap with the dark states. According to Eq. (38), the final
state of the system is determined by the dark states, which are
constructed from the degenerate energy levels. Hence, when
the system is driven by measurements, we expect that the
nondegenerate eigenenergies will be irrelevant in the long-
time limit. Namely, the measurement dynamically selects the
degenerate energy levels and wipes out the nondegenerate
ones, which effectively is a selection rule. In this part, we
exploit the degeneracy of H and explore the selection rule for
the degenerate states with the glued tree model.

We first consider the case that the initial state |ψin〉 =
(|E2,1〉 + |E10〉)/

√
2, which is a linear combination of the

degenerate energy level E2 and nondegenerate energy level
E10. The mean energy of the G3 tree system at the beginning is
E0 = E2/2 + E10/2 
 0.31. Conditioning the measurements
to be null, the system converges to the degenerate energy level
only and the component of the nondegenerate energy level
is eventually wiped out. So, the expected energy of system
in the final state is E = E2 = −2. In Fig. 10, our numerical
simulations show that the energy of the system is indeed E2

when n is large.
Now we add the component of another degenerate energy

level E5 to the initial state. The initial state then reads as
|ψin〉 = (|E2,1〉 + |E10〉 + |E5,1〉)/

√
3. This is a linear combi-

nation of two degenerate energy levels and one nondegenerate
energy level. Following the selection rule, the two degenerate
energy levels determine the final state of the system, and
the mean energy of the system will reach the value E = −1
eventually. If we add another nondegenerate energy level E6,
i.e., |ψin〉 = (|E2,1〉 + |E10〉 + |E5,1〉 + |E6〉)/2, this does not
change the final state, as the selection rule of the measure-
ments wipes out both the |E10〉 and |E6〉 components. We
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FIG. 10. The expected energy of the G3 tree system versus the
measurement steps n. The blue crosses are numerical simulations
for the initial state |ψin〉 = (|E2,1〉 + |E10〉)/

√
2. The selection rule

for the final energy of the system indicates that this final energy
is the same as that of state |E2,1〉 since that state belongs to a
degenerate subspace, while |E10〉 does not. The theoretical value
of E in the large-n limit is the blue line. The yellow triangles are
for the initial state |ψin〉 = (|E2,1〉 + |E10〉 + |E5,1〉)/

√
3 (here both

|E2,1〉 and |E5,1〉 are degenerate, hence the final state is different
from the previous case). We also show the mean energy for |ψin〉 =
(|E2,1〉 + |E10〉 + |E5,1〉 + |E6〉)/2 in red pentagrams. The theoretical
predictions of the mean energy E are the green line. Note that the
red and yellow curves merge in the large-n limit. This is because the
difference between these two initial conditions is an energy eigen-
state which is nondegenerate, and hence unimportant in the long-time
limit.

present the numerical simulations in Fig. 10, and the results
are consistent with our predictions.

VIII. NULL MEASUREMENTS, INSIGHTS
FROM THE CHARGE THEORY

We now provide general insights from the charge theory,
which are used to find the largest eigenvalue of Ŝ in generic
situations. The technique here presented follows, and in some
cases extends the ideas in [50,72,73], that were developed in
the context of the first detection problem. We consider cases
where the dark space is empty, simply because a system with
a nonempty dark space can be treated exactly with the tools
given in Eq. (8). So, in this section |ξi| < 1. Furthermore,
we consider cases where one or several eigenvalues of the
survival operator are close to the unit circle, and hence these
are the largest. We develop an approximate expression for
the eigenvalue(s), and also give insight into the eigenvectors.
We consider four cases: (i) a weak charge scenario, (ii) two
charges merging, (iii) triple-charge theory, and finally (iv)
quantum Zeno regime, where all the ξ ’s approach the unit
circle.

A. Weak charge theory

Assume that one of the overlaps denoted p0, associated
with energy level E0, is small, p0 
 1, and in particular much
smaller than all the others. In the electrostatic language, we
have a weak charge at exp(−iE0τ ). We find a stationary point

close to this charge, denoted ξ f 
 exp(−iE0τ ). At ξ f , the
electrostatic force vanishes because the force of the weak
charge balances all other forces. By analogy, the stationary
point of the Moon-Earth system is much closer to the Moon
than to the Earth. Using Eq. (18) together with perturbation
theory, we get [72]

ξ f ∼ e−iE0τ − ε, (47)

where

ε ∼ p0∑
k �=0 pk/(e−iτE0 − e−iτEk )

. (48)

Since p0 
 1, ε ∼ 0. The leading term of ξ f is e−iE0τ , hence,
|ξ f | ∼ 1 and |ξ f | < 1. From Eq. (39), for a system with such
a weak charge, the final state is |ψ f 〉 ∼ einφ f |ξR

f 〉. Substituting
ξ f into Eq. (19), the expression for the right eigenstate |ξR

f 〉
can be highly simplified, which leads to

|ψ f 〉 ∼ einφ f |E0〉, (49)

where φ f = −i ln(ξ f /|ξ f |) ∼ −E0τ . Equation (49) indicates
that the final state is the energy eigenstate |E0〉. The global
phase accumulated is approximately the energy E0 multiplied
by the evolution time. The repeated measurements drive the
system to this specific state. To get a deeper understanding of
this result, we go back to the definition of the weak charge
p0, where p0 = |〈ψd|E0〉|2 
 1. Actually, the “weakness” of
the charge means the overlap of the energy state |E0〉 and the
detection state |ψd〉 is nearly zero, i.e., 〈ψd|E0〉 ∼ 0. Hence,
the bright state |E0〉 is acting like a nearly dark sate, due to
the small overlap. The expected energy of the final state is
〈E〉 = 〈ψ f |H |ψ f 〉 ∼ E0.

This picture was demonstrated already in the spe-
cific V-shaped system in Sec. VI A. In particular, in
this example the weak charge p0 
 2.040 × 10−6 (note
in Sec. VI A, we denoted it p1). Using Eq. (47), we
have ε 
 1.945 × 10−6–1.077 × 10−6i, from here ξ1 

0.070 735 3–0.997 496i in excellent agreement with the ex-
act value ξ1 = 0.070 735 3–0.997 494i. Moreover, the general
equation (49) is directly demonstrated with Eq. (44).

B. Two merging charges

Another mechanism leading to the eigenvalue of Ŝ be-
ing close to the unit circle is the case when two energy
levels, denoted Ea and Eb, satisfy the resonance condi-
tion exp (−iEaτ ) 
 exp (−iEbτ ) [50]. Note that this can be
achieved by modifying τ or some other parameter of H . We
then have two charges pa and pb close to each other, both lo-
cated on the unit circle. So we expect to find a stationary point,
denoted ξ f in their neighborhood. This is because the point
of zero force is largely determined by this pair. In analogy,
the equilibrium point between two neighboring stars is deter-
mined to leading order by these and not by other distant stars.
An example was shown in Fig. 3(b), however, now we treat
the problem in generality. We need to find an approximation
for ξ f as δ → 0, where δ = (Ebτ − Eaτ )/2 mod 2π , which
measures the angular distance between the two phases. Using
Eq. (18), we find [73]

ξ f ∼ pae−iEbτ + pbe−iEaτ

pa + pb
+ O(δ2). (50)
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As shown in Eq. (50), the charges pa and pb determine the
location of the stationary point ξp, and the other charges
give only a second-order perturbation. Since exp (−iEaτ ) 

exp (−iEbτ ), |ξ f | ∼ 1. As a demonstration of Eq. (50), we
consider the charge configuration in Fig. 3(b). Using Eq. (50),
we have ξ f 
 −0.8170 + 0.5726i, while the exact value is
−0.8158 + 0.5722i. Here δ = 0.09, and the error comes from
terms which are second order in δ.

From Eq. (39), the final state of the system then is |ψ f 〉 ∼
einφ f |ξR

f 〉. Substituting ξ f into Eq. (19), we have∣∣ξR
f

〉 ∼ N (〈Eb|ψd〉|Ea〉 − 〈Ea|ψd〉|Eb〉), (51)

where N is for normalization. The eigenstate |ξR
f 〉 is a linear

combination of the energy eigenstates |Ea〉 and |Eb〉 that are
close to merging, which is the creation of the Floquet dark
state. The expected energy of the final state is

〈E〉 ∼ pbEa + paEb

pa + pb
. (52)

Following the example in Fig. 3(b), we have τ = 2 and the
merging charges are p0 
 0.108 and p2 
 0.543 correspond-
ing to the energy levels E0 
 −1.25 and E2 
 1.80. Using
Eq. (52), the mean energy of the system in the large-n limit
is E 
 −0.744. The exact mean energy is −0.7511, which is
presented in Fig. 4(b).

The global phase accumulated in the measurements is

φ f ∼ −Ea + Eb

2
τ + pb − pa

pa + pb
δ. (53)

The first term on the left-hand side is the leading part of φ f .
Like the final state, the phase is also determined by the two
merging energy levels.

C. Triple-charge theory

An interesting case is found when three charges merge on
the unit circle. In this case we will have two eigenvalues of the
survival operator Ŝ in the vicinity of these three charges, and
in that sense this example is different from those considered in
the previous two subsections. Once we have two eigenvalues
which have the same magnitude, we expect to find oscillatory
behavior, induced by the phase differences, which in turn are
controlled in principle by the measurement period τ . For sim-
plicity we consider systems with commensurate energy levels,
the three merging energy levels are E0 = 0 and E± = ±E
with phases e0 and e±iEτ = ei2πk±iδ , where k is an integer
and δ is our small parameter. This configuration of charges or
phases yields two complex eigenvalues denoted ξ± = r±eiθ± .
They are located in the vicinity of the unit circle, as ex-
pected from basic electrostatics. We denote p0 = |〈E0|ψd〉|2
and p = |〈E±|ψd〉|2. As shown in Appendix D, a third-order
expansion of Eq. (18) in δ yields the ξ+ and ξ− [72] [see
Eqs. (D1) and (D2)]. We find ξ+ = ξ ∗

− up to order O(δ2). As
mentioned, such a system will yield quantum dynamics even
in the long-time limit since other eigenvalues of the survival
operator are decaying faster, as they are smaller, which is due
to the fact that the three merging charges are situated one
next to each other. In principle, the lifetime of these quantum
oscillations depends on the other background charges that can
break symmetry (to higher order in delta) creating a situation

where one of the eigenvalues ξ+ or ξ− is actually closer to the
unit circle.

Symmetric background. For symmetric background
charges, we have r+ = r− and θ+ = −θ− and, hence,
according to our theory, the measurements induce dynamics
forever. From Eq. (40), the final state is determined by the
states |ξR

+〉 and |ξR
−〉. Using Eq. (19), we have

|ξR
+〉 ∼ N

( 〈E−|ψd〉
C − 1

|E−〉 + 〈E+|ψd〉
C + 1

|E+〉 + 〈E0|ψd〉
C |E0〉

)
,

(54)

where C = √
p0/(p0 + 2p). Similarly, |ξR

−〉 reads as

|ξR
−〉 ∼ N

( 〈E−|ψd〉
C + 1

|E−〉 + 〈E+|ψd〉
C − 1

|E+〉 + 〈E0|ψd〉
C |E0〉

)
.

(55)

Using Eq. (40), since θ+ = −θ− = θ , the final state of the
system is |ψ f 〉 = N (a1einθ |ξR

+〉 + a2e−inθ |ξR
−〉), where a1 and

a2 are overlaps with the initial state. Specially, we choose
a1 = a2, which leads to

|ψ f 〉 ∼ N{D(n)〈E−|ψd〉|E−〉 + D∗(n)〈E+|ψd〉|E+〉
− 2 cos(nθ )〈E0|ψd〉|E0〉}, (56)

where D(n) = [p0 cos(nθ ) + i
√

p0(p0 + 2p) sin(nθ )]/p and
θ is defined by ξ+ = r+eiθ+ = reiθ . Since the first-order ap-
proximation of ξ± is totally imaginary, when n 
 1/δ2, we
can express θ ∼ Aδ [A = √

p0/(p0 + 2p), see Eq. (D3)].
Random background. When the background charges are

not strictly symmetric, |ξ+| �= |ξ−|. Then, the quantum dy-
namics will decay away for very large n and the system will
go to a fixed state determined by the larger of |ξ+| and |ξ−|.
Nevertheless, the system will exhibit nontrivial dynamics in
a certain time regime because of the charge configuration we
set (the three charges we consider are symmetric). So the the-
oretical question is how long will the quantum dynamics last?
From the expressions of ξ+ and ξ−, we see that |ξ+| = |ξ−| up
to order O(δ2). The background effect comes in order O(δ3).
So, at least, the quantum dynamics will last until n ∼ 1/δ2.
When the number of measurements becomes larger than 1/δ2,
the system gradually goes to a fixed state due to the symmetry
breaking.

1. Example

To demonstrate the triple-charge theory, we use the glued
binary G3 tree example and tune the measurement time in-
terval τ . As shown in Fig. 11, when τ = 2.3 and 2.35, we
have three charges that are close to each other and far away
from other charges (the background charges). As a result,
there are two eigenvalues (ξ+ and ξ−) of the survival operator
that are near the unit circle (orange for τ = 2.3 and red for
τ = 2.35 in Fig. 11). Because of the symmetry of the system,
they also have the same absolute value, so |ξ+| = |ξ−| 
 1.
The exact numerical values, when τ = 2.3, are |ξ+| = |ξ−| =
0.9873, while using Eqs. (D1) and (D2), we have |ξ+| 

|ξ−| 
 0.9869.

The triple-charge configuration leads to persistent quantum
dynamics. For instance, the mean energy of the system is
driven periodically due to the measurements. Here, we choose
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FIG. 11. The classical charge pictures for the eigenvalues of Ŝ of the G3 tree model when τ = 2.3 (left) and τ = 2.35 (right). Here
|ψd〉 = |1, 1〉. As shown in the figure, on the east part, on and just above and below the equator, we see three charges that are close to one
another (charges are in gray, on the unit circle). As a result, there are two eigenvalues ξ+ and ξ− that are approaching the unit circle and
ξ+ = ξ ∗

− (orange for τ = 2.3 and red for τ = 2.35). The other eigenvalues of Ŝ, in the unit disk, are colored blue. They will not contribute to
the long-time limit as they are further away from the unit circle. Similar to Fig. 8, some of the charges in this system are zero, hence, while the
number of distinct energy levels is 11 (Table I) the number of nonzero charges is 7.

the initial state to be the ground state, where the effects of
the dark states can be neglected. As shown in Fig. 12, the
mean energy of the G3 system oscillates periodically with the
number of measurement steps n and our theory (lines) fits the
numerical simulations (crosses). More importantly, the oscil-
lation frequency of the mean energy changes when we change
τ . As shown in the figure, the oscillation frequency at τ = 2.3
is faster than the frequency at τ = 2.35. This follows from the
charge picture, as the relative phase, i.e., Arg(ξ+) − Arg(ξ−),
at τ = 2.3 is larger than that at τ = 2.35 (see Fig. 11). The
oscillation frequency is controlled by this relative phase, and
hence the frequency at τ = 2.3 is faster.

D. Quantum Zeno regime

As we increase the number of charges merging to the
vicinity of a point on the unit circle, more eigenvalues of the
survival operator approach the unit circle, and they are also all
close to each other. An example is the quantum Zeno regime
[89–96], where τ ∼ 0 and all phases exp(−iEkτ ) coalesce
[as an example, see Fig. 3(a)]. In the quantum Zeno regime,
due to the fast measurements, the dynamics of the monitored
system is slowed down [96] and our goal is to characterize
this behavior. In general, we have a set of eigenvalues of
the survival operator (excluding the trivial one on zero) and
we consider their absolute value |ξ1|, |ξ2|, . . . , |ξw|, which are
approaching unity as τ ∼ 0. The fastest decay mode is given
by the minimum of the set |ξmin|. Our goal is to find a rough
estimate for this eigenvalue, controlling the rate of the decay
of this component |ξmin|n [see Eq. (36)].

Basic electrostatics tells us that all the stationary points
are located in the convex hull of the charges [50], the area
of which vanishes as τ ∼ 0. We use this to our advantage and
obtain a lower bound for |ξ |:

|ξmin| � cos(�Eτ/2), (57)

FIG. 12. The mean energy of G3 tree system versus the mea-
surement steps n. Initially, the system is at its ground state. The
measurements drive the mean energy of the system periodically. The
upper plot is for τ = 2.3, where the green crosses are numerical
simulations and the orange line is the theory. The lower plot is for
τ = 2.35, and the theory (red line) perfectly matches the numerical
simulations (blue pentagrams). The oscillation frequency at τ = 2.3
is faster than the frequency at τ = 2.35 because the relative phase
of ξ+ and ξ− at τ = 2.3 is larger than the phase at τ = 2.35 (see
Fig. 11).
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where �E is the width of the energy spectrum, namely, �E =
Emax − Emin. An example of Eq. (57) is Eq. (42) for the three-
level system, which is demonstrated in Fig. 3(f). Then we let
|ξmin|nb = e−1, which leads to nb = −1/ ln[cos(�Eτ/2)]. The
lower bound of the evolution time tb = nbτ is

tb ∼ −τ

ln[cos(�Eτ/2)]
∼ 8

(�E )2τ
. (58)

From Eq. (58), the evolution of the system is repressed, and
the lower bound tb is proportional to τ−1. The width of the
energy band also affects this lower bound. The bound of the
number of measurements then is nb = tb/τ , which is pro-
portional to τ−2. So when τ ∼ 0, the relaxation is therefore
extremely slow [see example in Fig. 4(a)].

IX. EXCEPTIONAL POINTS

Previously in Sec. III C we presented a simple example of
an exceptional point of a two-level system. We now briefly
explain how similar effects can be found in larger systems. In
particular, we are searching for cases where all the eigenvalues
of survival operator ξ = 0. Then, clearly, the right-hand side
of our main Eq. (36) is equal to zero and the whole approach
is invalid. As mentioned, this corresponds to a situation where
we cannot satisfy the condition of null measurements to begin
with.

The basic question is how to construct such systems. Here
the charge picture is very useful. Consider a three-level sys-
tem. Then, if we have three charges of the same magnitude on
−120◦, 0, and 120◦ on the unit circle, clearly from symmetry
all the eigenvalues of Ŝ are zero. This is because the stationary
point of this charge configuration is in the center of the unit
disk. Assume this system has energy levels −E , 0, E , and
further assume that corresponding wave functions have the
same overlaps with the detected state (so the charges are the
same). In this case, if we choose Eτ = 2π/3 + 2πk with k
an integer, we get a charge configuration that will exhibit the
desired result. It is now rather easy to construct a Hamiltonian
that meets this demand, and we present an example below. In
fact, this method can be extended to systems beyond three- or
two-level systems rather easily.

We also note that one may have an exceptional point that is
generated from the degeneracy of a few (not all) eigenvalues
of the survival operator. Physically, this corresponds to the
phenomena where the unitary evolution and measurements
can not reach a steady state given in Eq. (39) because of
the loss of dimensionality of the survival operator. To see
that, let us consider the case where two eigenvalues ξi and
ξ j are degenerate, i.e., ξi = ξ j . Using Eqs. (20) and (25),
the right and left eigenvectors also become parallel, namely,
|ξR

i 〉 = |ξR
j 〉 and 〈ξL

i | = 〈ξL
j |. In other words, the dimension

of the survival operator is effectively reduced by one, and
there exists one state, we denote it |ξE 〉, which cannot be
expanded in the eigenbasis of Ŝ. Furthermore, |ξE 〉 is not an
eigenmode of Ŝ. Because of that, when we apply our protocol
to this state, namely NŜn|ξE 〉, even in the long-time limit, the
measurements cannot drive the system into the steady state as
in Eq. (39).

Remark. In the dark subspace, the eigenvalues exp(−iEkτ )
of the survival operator Ŝ are (gk − 1)-fold degenerate. When

gk � 3, using Eq. (8), there are two or more eigenstates |δk,i〉
of the survival operator Ŝ. As they are constructed by a Gram-
Schmidt procedure, these dark states are orthogonal. Using
Eqs. (19) and (24), for the eigenstates of Ŝ that correspond
to the eigenvalues that lie in the unit disk, i.e., 0 < |ξ | < 1,
when two ξ ’s coalesce, both left and right eigenvectors be-
come parallel. Thus, we only have one eigenvector instead of
two.

A. Example

Here we find the Hamiltonian of the three-level system
with the approach mentioned above. As mentioned, we want
the three charges to be located on angles −120◦, 0, and
120◦. This can be easily achieved by choosing equally spaced
energy levels, for instance, E0 = −γ , E1 = 0, and E2 = γ ,
where γ > 0. When τγ = 2π/3 + 2πk, we get the desired
charge configuration.

The second step is to have all three charges with
equal magnitude, i.e., p0 = p1 = p2 = 1

3 . We choose
the detection state |ψd〉 = (1, 0, 0)T . We then construct a
group of orthogonal eigenstates of H that |〈ψd|Ei〉|2 = 1

3 .
A possible choice of such eigenstates |Ei〉 is |E0〉 =
(1/

√
3,−1/

√
6, 1/

√
2)T , |E1〉 = (−1/

√
3, 1/

√
6, 1/

√
2)T ,

and |E2〉 = (1/
√

3,
√

2/3, 0)T . Such eigenstates of H have
identical overlaps with the detection state, and hence all the
charges have the same magnitude.

The last step is to find the concrete form of H . Since |Ei〉
is an eigenstate of H with eigenvalues Ei, we have H |Ei〉 =
Ei|Ei〉, which leads to

H = −γ

⎛⎜⎝ 0 −1/
√

2 1/
√

6

−1/
√

2 −1/2 −1/(2
√

3)

1/
√

6 −1/(2
√

3) 1/2

⎞⎟⎠. (59)

For a quantum system with such a Hamiltonian, when τγ =
2π/3 + 2πk, we cannot satisfy the condition of null measure-
ments. In other words, the system is detected with probability
one by the local measurements. ξ = 0 is an exceptional point
of the survival operator of order three. With the same proce-
dure, this can be generalized for larger systems.

X. SUMMARY

We have investigated the properties of the quantum sur-
vival operator Ŝ, which in turn gives the state of the system
after a large number of conditional measurements. We have
classified six types of generic behaviors:

(1) In the presence of symmetry of the Hamiltonian and
hence an energy spectrum which is degenerate, the system will
exhibit dynamics determined by the energy levels of the sys-
tems. However, only the degenerate energy levels participate,
i.e., the measurements select a subclass of states. Of course,
this is the case under the condition that initially |ψin〉 has some
overlap with the dark sector of the Hilbert space.

(2) We also find Floquet dark states that are inherently
related to periodic driving. By choosing the period τ de-
fined in Eq. (9), one can drive a system into a dark state
independent of the symmetry of a specific system. While for
effect 1 we must demand certain symmetry of the system that
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gives rise to energy degeneracy, we may use Floquet dark
states for any system. In other words, with periodic driv-
ing, we can engineer dark states for practically any quantum
system.

(3) In the absence of a dark subspace, for example, for
systems with no degeneracy, e.g., interacting or chaotic sys-
tems, and when τ is chosen in such a way that we have no
Floquet dark states, a different physical mechanism emerges.
Typically, the final state of the system is unique. This means
that in the long-time limit, we have no dynamics at all, and
we can say that the system reaches a kind of equilibrium,
induced by the periodic null measurements. This state corre-
sponds the eigenvalue of the non-Hermitian survival operator
that is closest to the unit circle. In the second part of the
paper we developed tools to identify this state and these are
based on the classical charge theory initially promoted in
Refs. [50,51].

(4) Under certain conditions, we find a pair of eigenvalues
of Ŝ which together are the largest in magnitude. However,
their magnitude is less than unity (dark states have eigenval-
ues equal unity). We find that these eigenvalues then have a
relative phase that is controlled by the rate 1/τ [see Eq. (40)].
In this case, the system exhibits oscillation controlled by the
measurements, which is promising for the quantum operation.
Such an oscillation can be achieved even for relatively large
systems, like the glued tree example. One can also easily
control the oscillation frequency and amplitude by tuning the
measurement rate, as shown in Fig. 12.

(5) In the Zeno limit, all the eigenvalues of Ŝ approach
the unit circle. This means that oscillations are effectively
undetectable, and the relaxations are slow (as is well known).
We have presented a lower bound for the eigenvalues of the
survival operator, showing their vicinity to the unit circle. In
this case, when the initial condition does not overlap with the
detected state and in the limit τ → 0, null measurements are
found with probability one, even in the absences of condition-
ing.

(6) An interesting case is a situation where all the eigen-
values of Ŝ are equal to zero. This corresponds to the
exceptional point of the non-Hermitian survival operator. The
physics in this case implies that the condition of null mea-
surements is not realizable (in that sense it is the complete
opposite of the Zeno regime). Rather, the system is detected
with probability one by the local measurements, and hence the
condition we impose is violated. Also, this effect is inherent
to the periodicity of the measurements, and cannot be found
if the measurements are at random times. The classical charge
picture was proven to be very useful here, in the sense that we
can exploit the symmetry of the charge picture to direct the
eigenvalues of Ŝ to a unique stable point in the center of the
unit disk, and hence exhibit the exceptional physics.

The theory developed here, in particular the charge theory,
makes it possible to realize the long-time behavior using an
intuitive electrostatic analogy. For example, a single weak
charge, corresponding to a weak overlap of a stationary energy
state with the detected state, or merging charges (phases) on
the unit circle, imply an eigenvalue of Ŝ which is close to
unity in magnitude, and its precise value can be estimated
in generality. Maybe more interesting is the merging of three
charges on the unit circle (see Fig. 11) since here we get two

eigenvalues of Ŝ approaching the unit charges, and then we
get the dynamical effect due to the phase difference (effect 4).
These effects were explored with the glued tree example (see
Fig. 12). Clearly, the high degree of symmetry in this case,
and the energy degeneracy of the system, imply a large dark
subspace and, hence, this type of example exhibits physical
behaviors drastically different from the simple three-level sys-
tems. As mentioned, the charge picture is used also to find a
lower bound for the Zeno limit, and helps tremendously in the
identification of exceptional points.
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APPENDIX A: MATRIX DETERMINANT LEMMA

In this Appendix, we present the details for the calculation
using the matrix determinant lemma. The formula of the ma-
trix determinant lemma is

det(A + uvT ) = (1 + vT A−1u)det(A), (A1)

where A is an invertible square matrix and u, v are column
vectors. For the eigenvalues of the survival operator Ŝ, we
have

det(ξ − Ŝ) = det[ξ − Û (τ ) + |ψd〉〈ψd|Û (τ )]. (A2)

We let A = ξ − Û (τ ), u = |ψd〉, and vT = 〈ψd|Û (τ ), which
leads to

det(ξ − Ŝ) = det[ξ − Û (τ )]〈ψd|[ξ − Û (τ )]−1|ψd〉ξ . (A3)

This is the formula we used in the main text.

APPENDIX B: CALCULATION FOR THE RIGHT
EIGENVECTORS OF SURVIVAL OPERATOR

WITH EIGENVALUES IN THE UNIT DISK

In this Appendix, we present the details for Eq. (19) in the
main text. As discussed in the main text, we expand the right
eigenstates in the bright subspace

|ξR〉 =
∑
{B}

ai|βi〉, (B1)

where ai is the index we are looking for and {B} represents the
summation in the bright subspace. Substituting Eq. (B1) into
(3), we have

Ŝ|ξR〉 =
∑
{B}

ai(1 − D)Û (τ )|βi〉 (B2)

=
∑
{B}

ai(1 − D)e−iτEi |βi〉 (B3)

= ξ
∑
{B}

ai|βi〉. (B4)

Multiplying Eqs. (B3) and (B4) by 〈β j |, we have

ξa j =
∑
{B}

aie
−iτEi〈β j |(1 − D)|βi〉. (B5)
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Following the definition of the charges, the matrix elements
on the right-hand side of Eq. (B5) can be simplified:

〈β j |(1 − D)|βi〉 =
{

1 − 〈β j |D|β j〉 = 1 − p j, i = j

−〈β j |D|βi〉 = −√
p j pi, i �= j.

(B6)

Substituting Eq. (B6) into (B5), we have∑
{B},i �= j

aie
−iτEi

√
pi = a j

[e−iτEj (1 − p j ) − ξl ]√
p j

. (B7)

Now we define bi = aie−iτEi
√

pi, so ai = bi/(e−iτEi
√

pi ). We
also define ζ j = 1 − (1 − eiτEj ξ )/p j . Equation (B7) then can
be simplified as ∑

{B},i �= j

bi = b jζ j . (B8)

For j = 1, 2, . . . ,w, Eq. (B8) is an equation set, which con-
tains w terms. We want to rewrite this equation set into the
matrix form. We define the vector B as

B† = (b∗
1, b∗

2, . . . , b∗
w ). (B9)

Then, the matrix is

M =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ζ1 1 1 . . . 1
1 ζ2 1 . . . 1
1 1 ζ3 . . . 1
...

...
...

...
...

1 1 1 . . . ζw.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (B10)

Equation (B8) then can be rewritten as

MB = 0. (B11)

Using Eq. (B11) or (B8), we have

bi = b1
ζ1 − 1

ζi − 1
. (B12)

Substituting Eq. (B12) into the expressions for bi and ζi, we
get the expression for ai:

ai = a1

√
pi

p1

e−iτE1 − ξ

e−iτEi − ξ
= a1(e−iτE1 − ξ )√

p1

√
pi

e−iτEi − ξ
.

(B13)

From Eq. (B13), we see that a2, a3, . . . , aw can be expressed
by the a1. We can choose a1 freely, and in the end it is a global

constant that can be neglected by the normalization. Here we
choose

a1 =
√

p1

e−iτE1 − ξ
, then ai =

√
pi

e−iτEi − ξ
. (B14)

Using Eq. (B1), we have

|ξR〉 =
∑
{B}

√
pi

e−iτEi − ξ
|βi〉. (B15)

Using Eq. (11), the bright states |βi〉 = P̂i|ψd〉/√pi. So, to-
gether with Eq. (B15) we have

|ξR〉 =
w∑

i=1

P̂i

e−iτEi − ξ
|ψd〉. (B16)

APPENDIX C: RELATION BETWEEN RIGHT
AND LEFT EIGENSTATES

In this Appendix we derive a relation that connects the right
eigenvectors to the left eigenvectors. Using Eqs. (20) and (25),
we find the right and left eigenstates can be related:

Û (τ )
∣∣ξR

ι

〉 = ∣∣ξL
ι

〉∗
, (C1)

where ∗ is the complex conjugate. For a two-level system, if
|ξL

ι 〉 = {a + ib, c + id}T (a, b, c, d are real numbers), then
|ξL

ι 〉∗ = {a − ib, c − id}T . Equation (C1) shows that the evo-
lution operator Û (τ ) maps the right eigenstate of survival
operator Ŝ to the corresponding left one.

APPENDIX D: TRIPLE-CHARGE THEORY

In this Appendix we present the approximate expressions
of ξ+ and ξ− for the triple-charge theory. The perturbation ap-
proach applied here is that we perform a third-order expansion
of Eq. (18) in small parameter δ. The eigenvalues ξ+ and ξ−
then read as

ξ+ = r+eiθ+ ∼ 1 + iAδ − Bδ2 + O(δ3), (D1)

ξ− = r−e−iθ− ∼ 1 − iAδ − Bδ2 + O(δ3), (D2)

where

A =
√

p0

p0 + 2p
, (D3)

B = p0 + p

2p0 + 4p
− p

(p0 + 2p)2

∑
j �=0,±

p j

1 − e−iE jτ
. (D4)
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