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Quantum Gaussian process state: A kernel-inspired state with quantum support data
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We introduce the quantum Gaussian process state, motivated via a statistical inference for the wave function
supported by a data set of unentangled product states. We show that this condenses down to a compact and
expressive parametric form, with a variational flexibility shown to be competitive or surpassing established
alternatives. The connections of the state to its roots as a Bayesian inference machine as well as matrix product
states, also allow for efficient deterministic training of global states from small training data with enhanced
generalization, including on application to frustrated spin physics.
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I. INTRODUCTION

From the simulation of quantum phase transitions to mod-
eling the qubits of quantum computers, accurately describing
the quantum state of a many-body system is central to many
fields. With the exact quantum state suffering from an ex-
ponential curse of dimensionality due to its superposition of
all “classical” configurations of particles, the field is driven
by computationally tractable and accurate representations of
these states. Traditional parameteric models are motivated by
spanning certain physical features of a correlated state, such
as the Jastrow [1] or correlator product state (CPS) [2–5].
However while these are polynomially compact representa-
tions, it is not straightforward to systematically improve the
expressiveness of these models. Recently, the field of machine
learning (ML) has brought about a new perspective on wave-
function models. By virtue of these states inheriting model
properties as universal approximators, they have allowed sys-
tematic control over their flexibility and expressiveness to be
a central tenet in their construction. This enables an auto-
matic construction of correlated many-body features of the
state, analogous to the extraction of characterizing features
in e.g. object selection in image recognition. In many-body
physics, these models have overwhelmingly taken the form
of neural quantum states (NQS) of various architectures, in-
cluding feed-forward, recurrent, convolutional, and restricted
Boltzmann machines [6–34].

This family of systematically improvable quantum states
was recently enlarged with an alternate paradigm of ML-
inspired model construction. “Kernel methods” encompass
Gaussian process regression, kernel ridge regression and sup-
port vector machines, and are characterized by linear models
after projection into a high-dimensional nonlinear feature
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space [35]. In these approaches, data points explicitly support
the model definition, along with a kernel function, which
represents the covariance between different configurations in
the prior distribution, and defines an inner product between
configurations in this high-dimensional space of features. By
writing a quantum state as a probablistic Gaussian process and
defining an appropriate kernel function between many-body
configurations, the “Gaussian process state” (GPS) was intro-
duced in Ref. [36] as a systematically improvable quantum
state. This has a simple functional form, which benefited from
an underlying Bayesian interpretation for a sparse learning of
the state, as well as a rigorous mathematical underpinning of
regularization and generalization characteristics [37].

In this paper, we show how the data, which defines this
model can be provided as unentangled product states rather
than classical configurations, which results in a sharp increase
in the flexibility and rate of convergence of the model. This
provides a systematically improvable state with a simple func-
tional form, which is fully defined by data on a continuously
varying manifold, rather than requiring a set of discretely
varying classical data configurations. Furthermore, desirable
characteristics are inherited from its root as a kernel method,
including a Bayesian interpretation, well-defined procedures
for regularization, and rigorous mathematical underpinning of
generalization properties and optimization strategies. We will
also show how this state can also be viewed from a tensor
network or neural network perspective. The confluence of
these multiple perspectives on this state—as a matrix prod-
uct state, neural quantum state, and a Bayesian probablistic
model—enable a number of opportunities for this unique
parametrization, which we will demonstrate for a series frus-
trated and unfrustrated magnetic lattice models.

II. FROM CLASSICAL TO QUANTUM DATA
IN GAUSSIAN PROCESS STATES

We represent the original GPS as an exponential of the
mean of a Gaussian process, as

�(x) = exp

(∑
{x′}

wx′k(x, x′)

)
, (1)
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where �(x) is the predicted probability amplitude on many-
body test configuration x, with the model supported by a set
of M many-body “classical” configurations {x′}. These many-
body configurations, x and x′, define specific local Fock states
for each degree of freedom in the system. The presence of
these “support” configurations in the definition contrasts with
other ML-inspired ansatz, as this support set of configurations
explicitly enter the state definition, resulting in an directly
data-driven approach [36]. The weights of these support con-
figurations are given by wx′ , with the kernel function between
these support and test configurations given by k(x, x′). This
kernel function characterizes the similarity between test and
support configurations, by implicitly summing the total num-
ber of coincident occupations between the two configurations
over all plaquettes of sites of any possible shape and size
[36]. This efficient resumming of all correlated features into
a compact kernel function (a manifestation of the “kernel
trick” in machine learning terminology) ensures that there
is no limit on the modeled correlation range or rank, even
with a single support configuration, and the state can be made
systematically more complete by increasing the set of support
configurations. The definition of the GPS thus depends both
on continuous parameters (the weights wx′ for each support
configuration, as well as a small number of additional hyper-
parameters defining the kernel function) as well as discrete
variables giving the many-body support configurations se-
lected from the full Hilbert space basis.

Assuming a discrete many-body system of L sites with
a D-dimensional local Hilbert space on each site, the (non-
symmetrized) GPS kernel, which quantifies the similarity of
configurations x and x′ over all plaquettes is found as

k(x, x′) =
L∏

i=1

e
−(1−δxi ,x

′
i
)/ f (i)

. (2)

The delta function δxi,x′
i

evaluates to one if the local Fock
state of site i is the same in both configurations (i.e., xi = x′

i),
and zero otherwise. A distance-dependent discrete function
characterized by a small number of hyperparameters f (i) is
chosen to provide additional flexibility, and modifies the fit to
preferentially weight a desired rank or range of implicit pla-
quettes of correlated features. These hyperparameters can be
variationally optimized, or fit to data in a principled Bayesian
approach via maximization of the marginal likelihood of the
model [37]. A drawback of the GPS formulation is the re-
quirement to define the set of discrete support configurations
over the same computational lattice, requiring a combined
discrete-continuous optimization of the state. Previously, this
was solved via a Bayesian supervised learning of the state
[38–40], again using the marginal likelihood and a sparse
prior on candidate support configurations in order to select
a compact set of configurations [37]. This could then be com-
bined with a variational optimization of the weights and/or
hyperparameters of the model, if the desired state was not
known in advance [36].

However, in this paper we generalize the state and avoid
the requirement to select a discrete set of support configu-
rations, by instead defining the support set as unentangled
product states, φx′ = ⊗L

i=1 φ
(i)
x′ resulting in a fully parametric

and continuous model. This allows us to simultaneously and

variationally optimize all parameters characterizing the sup-
port configurations, which turns the problem of finding the
best representation of a (typically unknown) target state into
a fully continuous optimization problem. For a spin system
(D = 2), such support states of the model are chosen to be
(unnormalized) local superpositions of the Ŝz eigenstates on
each site, as

φx′ =
L⊗

i=1

(α↑,x′,i|↑i〉 + α↓,x′,i|↓i〉). (3)

The use of x′ is now simply a label for the “quantum” support
point of the model, rather than a discrete “classical” many-
body configuration, and therefore we now refer to it as a scalar
quantity. The kernel is now modified, by replacing δxi,x′

i in
Eq. (2) (a “classical” overlap of the configurations) by the
continuous coefficient of the training product states αxi,x′,i.
These values define the component of the state φ

(i)
x′ on site

i, and therefore the overall overlap of a test configuration
with the support point. This approach directly defines the
kernel function with respect to the support point labeled by
x′ according to

kx′ (x) =
L∏

i=1

e−(1−αxi ,x
′ ,i )/ f (i), (4)

specified by the coefficients α.
By reexpressing the functional form with respect to the

parameters εxi,x′,i = w
1/L
x′ e−(1−αxi ,x

′ ,i )/ f (i), the weights and hy-
perparameters of the kernel can be further subsumed into the
definition of the ansatz as a form of “kernel learning”, giving
the final model a simple functional form of

�(x) = exp

(
M∑

x′=1

L∏
i=1

εxi,x′,i

)
. (5)

This model is entirely parameterized by the D×M×L tensor
of complex-valued variational parameters εxi,x′,i. We define
this as a “quantum” Gaussian process state (qGPS), to distin-
guish it from the use of simple spin configurations as support
points of the previous model (which we continue to denote
as the GPS). We denote the parameter M as the support di-
mension of the model, which was previously the dimension of
the support configuration set, and is the only hyperparameter,
which needs to be chosen to fully specify the parametric class
spanned by the qGPS. For a fixed M, any GPS can be spanned
by an equivalent qGPS, with the qGPS having significant
additional variational flexibility. Furthermore, the qGPS is
systematically improvable to exactness as M is increased.

Viewing the qGPS as a simple parameteric variational
ansatz, it is an exponentiated multilinear estimator for each
configurational amplitude. This exponential form ensures
product separability of the weighted features in the model
prediction of each amplitude, and therefore size extensivity
of resulting energies. It can be expanded as a power series
to express the qGPS state a weighted sum over all possible
products from the set of M unentangled states, with each
term in the sum introducing additional entanglement in the
qGPS. The state can therefore be viewed as an infinite (albeit
parameterized) linear combination of nonorthogonal product
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states, i.e., we can represent the qGPS amplitudes as

�(x) =
∞∑

l=0

(∑M
x′=1

∏L
i=1 εxi,x′,i

)l

l!
. (6)

We therefore expect this state to be able to express volume-
law scaling entanglement in a similar way as neural quantum
states [41,42] although leave detailed theoretical and numeri-
cal studies of this entanglement scaling of the qGPS for future
investigations. This perspective also allows connection to the
field of matrix product states (MPS), where the qGPS can
be considered as a exponentiated MPS where all the individ-
ual site matrices are constrained to be diagonal (and hence
commutative and invariant to site ordering or lattice dimen-
sionality) [43,44]. This connection inspires a deterministic
DMRG-style sweep algorithm for supervised learning with
this state, which will be described in Sec. IV.

While it has been known in the ML community that Gaus-
sian processes can in general map to infinitely wide neural
networks [45], the qGPS state can, for D = 2, be exactly and
constructively mapped to a four-layer deep feed-forward neu-
ral network, with specific activation functions and constraints
on the connectivity between layers (see Appendix A for de-
tails). Relating this back to the construction of the original
kernel function as a sum over plaquette occupations provides
a path to a rigorous and physically motivated architecture of
a NQS. However, a further powerful perspective on this state
relies on returning to a Bayesian view, which provides new
tools to tackle robust and tractable optimization, regulariza-
tion and generalization of the resulting state [46,47]. These
are fundamental to the practical applicability of the qGPS, and
have been found to be key bottlenecks in the applicability of
other highly flexible NQS states to challenging many-body
problems (as opposed to their variational flexibility) [19,22],
which is also a context we return to in Sec. IV.

III. VARIATIONAL QGPS

We first consider the overall expressibility of the qGPS
ansatz and single-parameter improvability via variational
Monte Carlo optimization, as implemented in the NetKet
package [48,49], with further technical details on the state
symmetrization and optimization details provided in Appen-
dices B and C [48,50,51]. We optimize the ground state of the
J1-J2 Heisenberg model of L spins, given by

Ĥ = J1

∑
〈i, j〉

Ŝi · Ŝ j + J2

∑
〈〈i, j〉〉

Ŝi · Ŝ j, (7)

where J1 denotes nearest-neighbor coupling, and J2 is
the frustration-inducing next-nearest-neighbor interaction.
Numerically exact benchmarks are only available at sign-
problem-free unfrustrated points in the phase diagram where
J2 = 0 or 1D, with general frustrated systems still an open
problem of significant interest [2,19,23–25,31,52]. Figure 1
considers the 1D J2/J1 = 0 model, where the Marshall sign
rule is imposed to constrain the exact sign structure [53].
This ensures that the qGPS has only to fit the magnitude
of the configurational amplitudes. We find that this fitting is
possible to essentially arbitrarily high accuracy, with excel-
lent results even when the model is defined with respect to
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FIG. 1. Relative energy error for the ground state of the unfrus-
trated 1D Heisenberg model as chain length increases, compared to
exact DMRG results [54]. Shown are qGPS results with support
dimensions M = 1 and M = 3, as well as the variational energy
of a single projectively symmetrized product state, and the Jastrow
ansatz.

only a single quantum support product state. In this limit, the
number of parameters in the model is the same as a single
unentangled product state, but with an energy error many
orders of magnitude less than this simple (symmetrized) state
definition. This is due to the exponential form generating an
infinite linear combination of product states, which involve all
different powers of the individual site occupations, and giving
rise to significant entanglement, which is missing in a single
product state. Furthermore, we find that relative energy errors
are remarkably consistent as the chain length increases to 150
sites, providing appropriately extensive energies with a fixed
support dimension.

We demonstrate the systematic improvement in express-
ibility of the state with increasing support dimension of the
qGPS in the results of Fig. 2 for a 10×10 2D lattice. Here, a
support dimension of one gives a relative energy error of ε ∼
2×10−3 (improving on the Gutzwiller projected mean-field
[13,52] and CPS descriptions [2]), which can be decreased
to ∼4×10−4 (M = 20). This accuracy is competitive or sur-
passes the accuracy of recent NQS results for this model
across different network architectures [6,13,24].

It has become clear in a number of studies that learning the
sign information for NQS architecture is far more challenging
than the amplitude information [19,22,24,34], and we now
address this for a qGPS description. The lack of numerically
exact methods for frustrated 2D lattices means that we study
the 6×6 lattice, where exact diagonalization is still feasible,
and has become the de facto testbed for this problem [13,22].
In Fig. 3, we consider J2/J1 = 0, but where the Marshall sign
rule (MSR) is no longer imposed and must be learned by the
qGPS, and the highly-frustrated J2/J1 = 0.5 point where there
is no simple rule for the sign of the state. In these results,
we apply a projective symmetrization of the qGPS, rather
than symmetrizing the kernel, which we find to result in a
more robust optimization in cases where sign information is
also required [23] (see Appendix B for more details). For the
J2/J1 = 0 results, the errors at low M are larger than when
the MSR is imposed a priori in Fig. 2 (notwithstanding the
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FIG. 2. Relative energy errors for the qGPS for the 10×10
Heisenberg model (defined by 200×M complex variational param-
eters) as the support dimension (M) is increased, compared to the
unbiased results from the stochastic series expansion [55]. Also
shown are energy errors from various other ansatzes in the literature
(grey-dotted-horizontal lines). From top to bottom the comparison
results correspond to a fermionic Gutzwiller-projected mean field
description [13,52], CPS [2], and multiple NQS values from the
literature with different architectures—NQS A (3200 complex var.
parameters) [6], NQS B (5145 real var. parameters) [24], NQS C
(3838 complex var. parameters) [13].

difference in lattice size and symmetrization). However for
larger M, the results are comparable, and for M = 64 even
surpass the best state-of-the-art accuracy for variational de-
scriptions in the literature of this unfrustrated point, showing
that the MSR can be learned within the ansatz without addi-
tional difficulty.

A key research frontier for ML-inspired variational states
concerns the ability to learn nontrivial sign structure, re-
quired for Fermionic states or at points of significant magnetic
frustration, shown in the lower plot of Fig. 3. For NQS repre-
sentations, a relative energy error of ∼4×10−3 for the 6×6
lattice at this frustrated J2/J1 = 0.5 point has been suggested
as a “universal bottleneck”, regardless of architecture flexi-
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FIG. 3. Relative energy errors of the 6×6 J1 − J2 Heisenberg
model as the projectively symmetrized qGPS support dimension (M)
is increased compared to exact diagonalization [56]. Results shown
for J2/J1 = 0 (top), as well as the highly frustrated case J2/J1 = 0.5
(bottom), without the Marshall sign rule imposed. Literature NQS
values are obtained from Refs. [13] (green), [34] (purple), and [23]
(red).

bility [22], although this was recently improved via imposing
symmetries of the state projectively [23] and by introduction
of a specific optimization protocol [34]. We find that the qGPS
is able to reduce the error from this standard NQS accuracy at
M = 32 by a factor of roughly three, however, further signif-
icant improvements on increasing M do not materialize. This
suggests that despite obtaining state-of-the-art results from the
simple qGPS model with a single improvable parameter, a
similar bottleneck exists. In Ref. [19] it was recently made
clear that this was not a result of insufficient variational flex-
ibility, but rather the optimization. More specifically, it was
the ability of properties of the model from a small selection of
“training” configurations as chosen in VMC, to appropriately
generalize across the Hilbert space in order to optimize global
properties of the state such as the sign structure. From a ML
supervised learning perspective, this can alternatively be seen
as an issue of appropriate regularization, to avoid overfitting
in the optimization based on a small configurational sample.

The perspective of supervised learning for a given quantum
state is closely related to the challenges of optimization of an
ansatz in the context of VMC, where the state is unknown in
advance. In both cases it is required to find the best possible
description of the target state, only based on the wave function
information from a small fraction of the full Hilbert space of
configurations. Moreover, it is also possible to formulate an
optimization scheme for VMC, which is based on iterative
supervised learning of states [46,47]. Analyzing the ability to
learn a general model of the target state from data might thus
also be helpful in order to understand and improve optimiza-
tion techniques in the context of VMC.

IV. BAYESIAN SUPERVISED LEARNING WITH qGPS

It is this issue for which the qGPS may provide a route
forwards, due to a combination of its rigorous Bayesian
perspective for principled regularization, as well as its con-
nections to MPS. We consider supervised learning of a given
state from a small set of configurational amplitude training
data, which has previously been clearly shown to highlight
the general problem of NQS state optimization in frustrated
systems [19]. In order to define a Bayesian learning scheme
helping to compress a state given by a limited set of data,
we can leverage the connection of the qGPS to its roots as
an exponentiated mean of a Gaussian process by casting the
qGPS model back into a form where the weights and the
kernel function of the model are explicitly exposed, allowing
standard techniques of Bayesian inference and learning to be
defined. In particular, using a set of parameters εxi,x′,i, we can
represent the kernel-symmetrized qGPS in a form equivalent
to Eq. (1), as

�(x) = exp

(
M∑

x′=1

∑
d

εd,x′,I k̃(I )
x′,d (x)

)
, (8)

with d labeling all possible local basis states (i.e., d ∈ {↑,↓}
in the spin models considered here) of a single chosen refer-
ence site, I . The weights of the exponentiated kernel model
εd,x′,I are therefore the variational parameters associated with
this arbitrarily chosen reference site, and those variational
parameters not associated with the reference site I , define the
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kernel function, which defines the coupling of the reference
site with the rest of the system, as

k̃(I )
x′,d (x) =

∑
S

δS[x]I ,d ·
L∏

i 
=I

εS[x]i,x′,i. (9)

This definition includes an optional sum over any discrete
symmetry operations we want to impose, S , giving rise to the
kernel-symmetrized qGPS model (see Appendix B for details
on the symmetrization of the qGPS). Because the (natural)
log-amplitudes of the state are linear in the effective weights
of the model for a given reference site (i.e., the parameters
εd,x′,I )—a key property of kernel methods in ML—it is possi-
ble to apply standard methodology of kernel ML to the task
of inferring the weights from given wave function data in
a controlled fashion with principled regularization [37]. By
sweeping the choice of the reference site I , iteratively across
the lattice and correspondingly updating the values εd,x′,I , the
qGPS representation can then be iteratively and determinis-
tically learnt from a given training data set. Importantly, we
can define a rigorous statistical model to introduce appropriate
regularization of the learning procedure at each reference site
I . This will allow for statistically rigorous inference of the
per-site variational parameters, while also ensuring effective
generalization of these parameters to describe amplitudes out-
side the known training data. This is achieved via a standard
Bayesian modeling assumptions, in which we calculate a
posterior probability distribution (whose mean provides the
best estimate for the regularized reference site weights) via
application of Bayes’ theorem. This combines a Gaussian
model for the likelihood of the log-wave-function data with
respect to the model, with another Gaussian distribution for
the prior probability distribution for the weights in the ab-
sence of data. The maximization of the resulting posterior
distribution then gives the most probable model parameters
based on the given training data (accounting for the chosen
prior and likelihood). Furthermore, we can follow a standard
type-II maximum likelihood scheme in order to find suitable
hyperparameters defining the prior and the likelihood distri-
butions by maximizing the marginal likelihood, obtained by
marginalizing the posterior over all possible models for the
weights of site I .

This Bayesian inference approach used at each step of the
iterative sweeping to find the optimal values of εd,x′,I for a
given data set is analogous to the approach developed for
supervised learning with the classical GPS, which is presented
in detail in Ref. [37]. Following that scheme and denoting
the logarithm of the target wave-function amplitude for a
many-body configuration x (i.e., a training data point) as φx,
we model the likelihood of the log-wave-function amplitude
of the a qGPS model as a normal distribution, with mean given
by the output of the kernel model,

fx =
M∑

x′=1

∑
d

εd,x′,I k̃(I )
x′,d (x). (10)

In contrast to the works of Refs. [36,37], here the param-
eters are in general complex-valued, requiring appropriate
modifications [57,58]. This is achieved by assuming that the
real and imaginary part of the log-amplitudes are indepen-

dent, normally distributed, real random variables, with the
same variance, given by the training-configuration-specific
parameter σ 2

x /2. The likelihood for a single log-wave-function
amplitude φx, thus takes the form of a complex normal
distribution with mean fx, variance σ 2

x , and a vanishing
pseudovariance. The likelihood probability density for each
training configuration is therefore defined as

p
(
φx|ε(I ), σ 2

x

) = (
πσ 2

x

)−1
exp

(
−|φx − fx|2

σ 2
x

)
, (11)

where ε(I ) denotes the vector of the weights, i.e., a flattened
vector of the parameters εd,x′,I associated with the reference
site I . If multiple data points are contained in a data set, the
likelihood for the data is obtained by taking a product of the
likelihoods across the different data points. Again following
the approach introduced for the classical GPS [36,37], it is
important to enforce that the model has an approximately
constant, configuration-independent variance in the prediction
of the actual amplitudes (σ̃ 2) rather than in the likelihood
distribution for the log-amplitudes. This can be achieved via
ensuring that each training configuration has its own specific
choice of variance in the likelihood for the log-amplitudes, σ 2

x ,
as featured in Eq. (11), given by

σ 2
x = ln

(
1 + σ̃ 2

|�(x)|2
)

. (12)

In addition to the likelihood, a further model is introduced,
which defines the prior distribution for the weights of the
qGPS. This forms the expected distribution of the weight pa-
rameters prior to accounting for any specific training data. We
follow a standard approach of modeling the prior as a product
of Gaussian distributions centered at zero. Their variance is
controlled by an additional hyperparameter α(I ), which defines
the inverse variance of the Gaussian prior, p(ε(I )|α(I ) ), for the
current weights, and is allowed to be different between sites.
The extension to complex-valued variables is again achieved
by using a complex Gaussian distribution with a real-valued
variance, and vanishing pseudovariance. By application of
Bayes’ theorem, the desired posterior probability distribution
for the weights can then be inferred based on the likelihood
over all the training data, and the prior distribution for the
weights. Applying Bayes’ theorem, the posterior probability
distribution for the weights, p(ε(I )|φ, σ̃ 2, α(I ) ), evaluates to

p(ε(I )|φ, σ̃ 2, α(I ) ) = p(φ|ε(I ), σ̃ 2) × p(ε(I )|α(I ) )

p(I )
ML

, (13)

with φ representing the vector of Ntr training log-amplitudes
over the data set. The normalization

p(I )
ML = p(φ|σ̃ 2, α(I ) ) =

∫
dε(I ) p(φ|ε(I ), σ̃ 2) × p(ε(I )|α(I ) )

(14)
is known as the marginal likelihood. Importantly, due to the
specific modeling choices, both the posterior distribution as
well as the (log) marginal likelihood can be obtained in closed
form and are found to be Gaussian distributed [35,40,59]. The
variance of the posterior distribution is given by

�(I ) = (K(I )†BK(I ) + α(I )1)−1, (15)
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where B denotes a diagonal matrix for which the diagonal
elements are given by the inverse likelihood variances for all
training configurations, 1/σ 2

x . The kernel matrix K(I ) consists
of the elements K (I )

x,(x′,d ) = k̃(I )
(x′,d )(x), i.e., the Ntr×(MD) dif-

ferent kernel functions evaluated for all configurations of the
training set with the second-dimension indexing all compound
indices (x′, d ). The mean of the posterior, thus also defining
the most probable weights according to the regularized mod-
eling assumptions, is given by

μ(I ) = �(I )K(I )†Bφ. (16)

These define the optimal learned weight parameters for site
I , which depend on the training data as well as two hyperpa-
rameters σ̃ 2 (a global parameter) and α(I ) (a site-dependent
parameter). It is key for the regularization and generalization
properties of the qGPS model to optimize suitable hyper-
parameters α(I ) and σ̃ over the course of the training, for
which we follow a type-II maximum likelihood approach [40].
This is based on the maximization of the marginal likelihood
p(I )

ML with respect to the hyperparameters. Maximization of the
marginal likelihood is known to find good trade-offs between
small training errors and the level of regularization, which is
applied in order to also generalize the qGPS well outside the
training data [35,40]. Updates to the quantities of interest can
be computed faster for changes in α(I ) than for adjustments
of σ̃ 2 because the matrices K(I )†BK(I ) do not need to be
recomputed. In our approach, we therefore consider the (log)
marginal likelihood optimization separately for α(I ) and σ̃ 2.
In particular, at each fitting step for a selected reference site in
the sweeping, we first converge the site-specific value of α(I )

via maximizing the (log) marginal likelihood, with the update
equation,

α(I ) →
∑

i

(
1 − α(I )�

(I )
i,i

)
|μ(I )|2 . (17)

This form is based on the update equations used in the context
of relevance vector machines [38,59]. After the converged
value of α(I ) is found for the current reference site, we also
update the global (site-independent) hyperparameter σ̃ 2. This
update for σ̃ 2 is performed by applying a single gradient
ascent step with a fixed step size η to Eq. (D6), to optimize the
logarithm of this “noise” hyperparameter ln(σ̃ 2). The update
of σ̃ 2 can therefore be expressed as

σ̃ 2 → eln(σ̃ 2 )+η
dp(I )

ML
dσ̃2 σ̃ 2

. (18)

The explicit form for the marginal likelihood as well as its
derivative with respect to σ̃ 2 is given in Appendix D where
more details are provided. After the optimal weights are found
in closed form for the current site via Eq. (16), and the noise
parameter is updated with a single step as described above, we
advance to the next site in the lattice where the Bayesian infer-
ence and optimization is repeated, starting from the updated
value of σ̃ 2. The overall optimization algorithm comprises
iterative sweeps across the lattice where each sweep infers
the optimal local qGPS parameters together with a marginal
likelihood maximization at each site of the lattice for appro-
priate regularization hyperparameters. In order to track the
convergence of the overall scheme, we define the mean log

Algorithm 1 A Bayesian sweeping algorithm for supervised learn-
ing with qGPS.

repeat
for all sites I do

Set up kernel matrix K(I ) for site I [Eq. (9)]
Maximize ln(p(I )

ML ) with respect to α(I ) [Eq. (17)]
Update εd,x′,I with mean of posterior, μ(I ) [Eq. (16)]
Update σ̃ 2 based on gradient ascent step [Eq. (18)]

end for
until λ = ∑L

I=1 ln(p(I )
ML ) converges

marginal likelihood for a sweep across the lattice as

λ = 1

L

L∑
I=1

ln
(
p(I )

ML

)
. (19)

Here p(I )
ML denotes the marginal likelihood obtained for the

Bayesian inference at site I evaluated after optimization of
the parameter α(I ). Sweeps across the lattice are then iterated
until convergence of the mean log marginal likelihood λ is
observed, at which point the qGPS has been fully trained on
the given data. Due to the Bayesian inference on a site-by-site
basis, this algorithm does not require any additional (cross)
validation and all available training data can directly be used
to fit the model. At convergence of this algorithm, summarized
in Algorithm 1, we have an optimized posterior distribution
for the weights of each site (which fully defines the qGPS), as
well as an optimized single, global noise hyperparameter σ̃ 2,
and a set of site-specific hyperparameters α(I ), which define
the inverse variance of the prior for the weights on each site
I . It is reasonable that the variance of the likelihood of the
model should be independent of site, while the α(I ) parameters
are not, since they control the ease at which the weights on
a site can fluctuate. Its optimal value therefore depends on
the kernel function defining the environment of the site, and
should therefore be allowed to vary with site.

The explicit statistical perspective of this sweeping algo-
rithm contrasts to previous approaches to supervised learning
of quantum states, which generally involve simple minimiza-
tion of scalar-valued loss functions, such as the squared error
to fit the model to the (log)-amplitudes (equivalent to a uni-
form prior), with simple heuristics such as early-stopping to
avoid overfitting. The proposed regularization avoids overfit-
ting to the chosen training data and improves generalization
ability, with the marginal likelihood of the model having pre-
viously been shown to be an excellent proxy for regularizing
the fit of quantum states [36,37]. The perspective of the se-
quential, closed-form optimization of local parameters, in the
presence of the environmental features defined by the kernel,
bears striking resemblance to the density matrix renormaliza-
tion group algorithm for matrix product states and we expect
further synergies between these approaches to be able to be
exploited.

To demonstrate the ability to overcome the generaliza-
tion issues for frustrated sign-structures, we compare the
Bayesian-regularized sweep fit of the qGPS model to a simple
least squares fit in a supervised learning context. Using the
same system and similar numerical setup to Ref. [19], we
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FIG. 4. Overlap between the true ground state and a qGPS model obtained by fitting to the ground state of the 2D J1-J2 model on a 4×6
square lattice. Blue squares represent the “ideal” fit, where the squared error is minimized with respect to the all ∼2.7×106 configurations of
the target state. The other two curves show the values obtained by fitting to a restricted subset comprising just ∼1% or ∼2% of all ground-state
amplitudes, randomly and uniformly sampled from the full Hilbert space. The results are shown from the Bayesian learning scheme (orange
circles), as well as a minimization of the squared error over the training data with ADAM and standard validation approaches [60,61] (green
triangles). Both training approaches were repeated with 10 different random training set selections and indicate the mean overlap of the fit
qGPS over these training sets. The shaded areas of the violin plots indicate the density and spread of optimized fit results across the different
training selections. Technical details on the training are given in Appendix D. (a) Supervised learning using a qGPS with M = 5 for different
values of J2/J1 using ∼1% of the Hilbert space as training data. The grey region indicates the frustrated parameter regime of the system and
(b) Supervised learning using a qGPS with different values of M at the point of high frustration (J2/J1 = 0.5). Top (bottom) panel corresponds
to a training set of ∼ 1%(∼ 2%) of the full Hilbert space size.

consider a 2D 24-site Heisenberg model where exact ground-
state amplitude training data is selected as a small random
sample of some small fraction of the space of all configu-
rations. The full qGPS wave-function model is then trained
either via a simple least squares fit to this training data, regu-
larized by keeping 20% of the data as a validation set to deter-
mine stopping criteria, or via the Bayesian approach, requiring
no separate validation set to minimize the out-of-sample er-
ror. This latter approach instead regularizes the fit through
hyperparameters, which maximize the marginal likelihood of
the model at each step. This balances the minimization of
the in-sample error while also describing the target state well
outside the training configurations. We also compare to an op-
timization of the qGPS over the entire space of configurations,
which illustrates the overall expressibility of the model.

In Fig. 4(a), a fit of the qGPS state with M = 5 on the
entire Hilbert space (complete training data) demonstrates ex-
cellent expressibility of the model for all levels of frustration.
However, also key is the ability to faithfully describe the state
over small, randomly chosen training samples in the frustrated
regime, using the Bayesian regularization together with the
maximization of the marginal likelihoods (results averaged
over independent training samples). For the reported setup,
in which training is performed on either 1% or 2% of the
full set of configurations, this approach shows a dramatic
improvement in the ability to represent the global state from
incomplete configurational samples compared to a direct min-
imization of the least squares error, which is regularized by
early-stopping based on a validation set error. These latter

results are qualitatively similar to Ref. [19], where a similar
approach is taken to show regularization errors in the sign
structure fitting of NQS, with a particular failure at the maxi-
mally frustrated point of J2/J1 = 0.5. Of particular note is the
fact that the sweeping approach with Bayesian regularization
is significantly less dependent on the specific training set,
with only a small scatter of overlaps with the true ground
state based on the different training sets, even in the highly
frustrated regime.

Figure 4(b) shows the same learning setup, but focused
just at this maximally frustrated point at J2/J1 = 0.5 and
considering increasing qGPS mode complexity as the support
dimension M is increased. It is expected that with increas-
ing support dimension, the importance of the regularization
becomes more significant because the greater model express-
ibility can lead to overfitting of the limited training data more
easily. The data obtained with a simple minimization of the
squared error on the training set, only regularized by early
stopping, indeed results in a broad spread of obtained model
qualities in the limit of larger support dimensions at deteriora-
tion of the result for both training set sizes. While the data
points are in reasonable agreement with the overall model
expressivity for the smallest considered support dimension
(M = 1), the results are significantly less consistent when M
is increased. For both training set sizes of 27 042 (top) and
54 083 (bottom) configurations, corresponding to ∼1% and
∼2% of the full space of configurations, the direct minimiza-
tion approach mostly fails to reproduce the target state well in
this limit of the most complex model. On the other hand, with
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the Bayesian sweeping the learned description reliably con-
verges close to the limit of the model expressibility, with the
spread across different random realizations even decreasing,
as M increased, directly demonstrating that the fit is appropri-
ately regularized even for descriptions of these complex sign
structures. Although the direct minimization of the squared
error gives slightly better results for M = 1, and for the larger
training set also at M = 2, in which case the limited model
complexity automatically provides sufficient regularization,
the presented results indicate a clear advantage of the super-
vised learning of more expressive models with the presented
Bayesian sweeping approach. With this demonstrated statis-
tical approach with built-in principled regularization for the
modeling of a quantum state expected to represent a signifi-
cant benefit to the qGPS formulation, we envisage this as an
important tool for inferring wave functions from limited ac-
cessible data. Furthermore, given the established connections
of this generalization problem to the optimization difficulties
identified with representing complex global sign structures
via variational Monte Carlo with from expressive ansatzes
[19], in the future we aim to combine the Bayesian approach
with variational optimization, for an efficient approach for the
learning of unknown states [46,47].

V. CONCLUSIONS

For the systems in this paper, the qGPS demonstrates ex-
cellent overall expressibility and accuracy. However perhaps
more importantly, it also offers tantalizing evidence that it
can overcome the numerical and practical bottlenecks of these
ML-inspired highly flexible quantum states, by demonstrating
that its Bayesian formulation can efficiently regularize the
global states for practical optimization in the inevitable case
of optimizing the global state from data on highly restricted
samples. This Bayesian regularization and DMRG-inspired
algorithm must now be extended to the optimization of an
unknown quantum state [46,47], as well as finding application
in quantum state tomography [62]. These new connections
between Bayesian ML and quantum many-body systems en-
abled by the simple qGPS model offer a clear alternative route

to bring these fields together, demonstrating state-of-the-art
accuracy in challenging many-body problems with further ex-
tensions to more general Hamiltonians and Fermionic systems
underway [8,63].
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APPENDIX A: REPRESENTING A qGPS
AS A NEURAL NETWORK

The unsymmetrized qGPS with functional form as pre-
sented in Eq. (5) of the main text associates an amplitude to a
many-body configuration x according to

�(x) = exp

(
M∑

x′=1

L∏
i=1

εxi,x′,i

)
. (A1)

For spin-1/2 systems, where the local Hilbert space dimen-
sion is D = 2 and local occupancies take values d ∈ {↑,↓
}, this expression can easily be brought into an equivalent
form which resembles a specific architecture of feed forward
deep neural network model with four layers. This can be
useful from both a conceptual framework, in order to see
constructive equivalences between classes of states and dif-
ferent perspectives on (for example) how entanglement can
efficiently emerge, as well as a practical utility in implement-
ing the qGPS in codebases designed for neural networks. The
precise form of this neural network architecture is given by

�(x) = exp

(
M∑

x′=1

exp

(
L∑

i=1

ln(ε↑,x′,iγ (x̃i ) + ε↓,x′,iγ (−x̃i ))

))
. (A2)

The values x̃i correspond to the visible input layer of the
neural network, where ↑ and ↓ local states on site i are
associated with the variables 1 and −1 respectively. The γ

denotes the activation function associated with the first layer,
which takes the form of a rectified linear unit (ReLU), as
γ (x̃i ) = max(0, x̃i ).

Overall, the neural network representation of the qGPS
comprises four feed-forward layers where not all layers are
fully connected. The input neurons x̃i represent the test con-
figuration as it is usually done the context of neural quantum
states, i.e. they encode the local occupancy as a single num-
ber proportional to the corresponding Ŝz eigenvalue of the
local occupancy. A key difference in perspective between

the qGPS and a NQS is that the site occupations enter as
explicit variables in the NQS, while in a qGPS they enter
as simple indices to different variational parameters (similar
to how the local site information enters a matrix prod-
uct state). The first layer in the above construction ensures
that we can transform between these perspectives, allowing
the input variables of the NQS representation to be used
as an index into the variational parameters. To do this, it
requires 2×L neurons in the first layer with the ReLU ac-
tivation. Indexing the neurons of the first layer by pairs
( j, k) with j = 1 . . . L and k ∈ {↑,↓}, the weights connecting
the visible units with the first layer are therefore given by
δi, j · (δk,↑ − δk,↓).
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This first layer feeds into the second layer of M×L neurons
(indexed by support index x′ and site index i) with this layer
having an activation function of the natural logarithm, and
weights being the variational parameters, εi,x′,k , if both neu-
rons are associated with the same site index, or zero otherwise.
The third layer is composed of M neurons, with the weights
between second and third layer set to one if both connecting
neurons refer to the same support index and to zero otherwise.
This is combined with an exponential activation function. The
final output layer all have the same weight of one, with another
exponential as the final activation function.

APPENDIX B: SYMMETRIZATION OF qGPS

In practice, it is often helpful to directly include symme-
tries of the system into the ansatz in order to improve the
accuracy of the description and the reliability of the method.
There are two approaches to this symmetrization, which have
also both been investigated in the context of NQS. If the
target state approximated by the qGPS is fully symmetric
with respect to symmetry operations (i.e., it corresponds to
the trivial representation), then we can simply adapt the
kernel-symmetrization procedure as it was also applied for the
classical GPS [37]. This is achieved by replacing the kernel
function in the model by a sum over the kernel functions with
respect to all configurations that are symmetrically equivalent
to the test configuration. This “kernel-symmetrized” qGPS,
evaluated for a particular test configuration x, is therefore
given by the model

�(x) = e
∑

x′
∑

S
∏

i εS[x]i ,x
′ ,i . (B1)

The inner sum includes all symmetry operations S that we are
symmetrizing with respect to, and S[x] is the test configura-
tion x transformed according to these symmetry operations.
Unless stated otherwise, we always consider the qGPS to
be symmetrized according to this kernel-symmetrization, ef-
fectively corresponding to a product of the ansatz over all
symmetrically equivalent copies of the test configuration. If
the symmetry operations include all translations across the
lattice, as is the case in the setup considered here, then the
kernel-symmetrized model can be rationalized in a similar
fashion to the construction of NQS with convolutional filters
in the network architectures. This effectively ensures the same
correlation features at each site of the lattice. The kernel-
symmetrization of the model can also directly be used for the
Bayesian sweeping for supervised learning of the state from
data as introduced in Sec. IV of the main text. In each single
step of the sweep, in which the data is fitted with a fixed
reference site, all the configurational occupancies are then
taken into account at once and the sweeping across the lat-
tice effectively corresponds to a sweep through symmetrized
correlation plaquettes of different length scales evaluated for
all positions of the lattice at the same time.

In addition to the kernel-symmetrization scheme, we can
also apply a projective symmetrization approach to sym-
metrize our representation. This has recently been shown to
significantly help with the optimization of NQS ansatz in
order to better capture sign information of the state [23,25].
Rather than symmetrizing the kernel function in our ansatz
(equivalent to taking a product over all symmetrically equiva-

lent copies of the test configuration), the projective approach
applies a sum over the nonsymmetrized qGPS amplitudes for
the symmetrically equivalent configurations, according to

�(x) =
∑
S

e
∑

x′
∏

i εS[x]i ,x
′ ,i . (B2)

In all the results presented in this paper, we consider qGPS
ansatzes symmetrized according to one of the two approaches.
We always include translational symmetries, the point group
symmetries of the lattice, as well as the spin inversion sym-
metry into the considered set of symmetry operations.

If no sign information needs to be captured by the model,
we found that the kernel symmetrization approach generally
gives better results than the projective symmetrization. The
ansatz then gives, for the studied Heisenberg model, com-
petitive accuracies, even in the limit of rather small support
dimension M (see Figs. 1 and 2 of the main text). However,
if the model also needs to model sign information, e.g., if
the Marshall sign rule is not imposed or in frustrated models
where the exact sign structure is not known, we achieved
the overall best results for the studied 6×6 J1-J2 square lat-
tice model using the projectively-symmetrized ansatz. This
observation is exemplified in Fig. 5, reporting the relative
ground-state energy errors achieved with both symmetrization
schemes for this setup at J2/J1 = 0 and J2/J1 = 0.5 against
the support dimension M.

In the unfrustrated limit at J2/J1 = 0, the overall en-
ergy errors obtained with the kernel symmetrized approach
(indicated by orange squares), mostly fluctuate around ap-
proximately ∼2×10−2. This is significantly worse than the
errors presented for the examples where the exact sign struc-
ture was imposed explicitly, although the Marshall sign rule
can (at least theoretically) be represented for this model (up
to a global phase) exactly by a qGPS with support dimension
M = 1. Although, a sharp drop of the relative energy error to
∼4×10−4 can be observed for the ansatz with M = 32 and
M = 64 in the figure, it therefore appears that the results are
partially influenced by issues with the optimization of the state
(rather than only by its expressibility).

In the limit of small support dimensions, M =1 and M =2,
the projectively symmetrized ansatz (data points indicated
by blue circles in the figure) gives slightly worse results
than the kernel symmetrization. However, for larger sup-
port dimensions, this scheme yields a much more systematic
improvement of the description, with relative energy errors
decreasing to almost 10−4 for M = 64. A similar relationship
between the performance of the kernel symmetrization as
compared to the projective symmetrization can be seen in the
bottom part of the figure, showing the results for the frus-
trated regime at J2/J1 = 0.5. While the description accuracy
obtained with kernel-symmetrization of the ansatz overall
barely increases with increasing bond dimension (apart from
a steep increase for the model with M = 64), the curve for
the projectively symmetrized state is much clearer, giving the
variationally lower energies between the two approaches for
all M > 4. Nonetheless, it is not entirely clear from the data
to what extent the obtained results for J2/J1 = 0.5 could be
dominated by optimization issues rather than shortcomings of
the ansatz functional form.
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FIG. 5. Accuracies achieved with different approaches to sym-
metrization of the qGPS ansatzes (without Marshall sign rule
imposed) for the ground state of two-dimensional spin-1/2 6×6 J1-J2

system, as a function of the support dimension M. Displayed values
correspond to relative energy errors with respect to results obtained
with exact diagonalization [56]. The top figure shows the results
for the standard Heisenberg system (J2/J1 = 0.0) and the bottom
shows the J2/J1 = 0.5 system. Blue circles correspond to a kernel
symmetrized qGPS ansatz [Eq. (B1)] with orange squares indicating
the projectively symmetrized qGPS ansatz [Eq. (B2)]. Reference
literature NQS results for comparison are shown with horizontal-
green-dashed lines for Ref. [13] and red dotted line for the best NQS
results for this system from Ref. [23].

The observed relative performance of the two different
symmetrization schemes is in keeping with the literature on
NQS representations for these systems. Approaches related
to directly symmetrizing the network in the NQS before
applying the final exponentiation (equivalent to our kernel
symmetrization scheme), overall gives improved accuracy in
regimes where the sign structure can either be directly im-
posed [13] or learned efficiently [24]. However, near the point
of maximum frustration at around J2/J1 ∼ 0.5, a loss of ac-
curacy was observed for such NQS representations, which
have also been attributed to problems with the optimization
of the state [19,22]. Recently, a fully projective symmetriza-
tion approach was also applied to NQS descriptions, which
helped overcoming the optimization issues and significantly
improved the achieved level of accuracy in the frustrated
regime [23,25,28].

In the context of the qGPS, it can be seen that the pre-
ferred symmetrization scheme seems to depend on the studied
system and choice of support dimension. Ultimately it would
be desirable to define an optimal choice of symmetrization,
which can be reliably applied to all systems of interest. In

order to introduce such a generally applicable scheme in the
future, it will also be crucial to understand how these two
symmetrization approaches scale up to larger systems. Investi-
gations on the one-dimensional Heisenberg model show that,
at least in the limit of small support dimensions, the kernel
symmetrization has a more consistent level of accuracy as
the system grows in size (as shown in Fig. 1 of the main
text), and therefore might be better suited for the study of
larger systems. However, combinations of the two approaches,
as have previously been used in NQS studies, may also be
advantageous.

APPENDIX C: SIMULATION DETAILS
IN VARIATIONAL OPTIMIZATION

All results presented in this paper were obtained using the
NetKet software package [48,49]. Where the qGPS is directly
and variationally optimized, the parameters of the model were
updated using the standard stochastic reconfiguration (SR)
approach [50]. In the SR, the variational parameters of the
model are updated at each optimization step according to

p(k) = p(k−1) − τ (S−1 · grad(E )), (C1)

where p(k) is the vector of parameters after the kth parameter
update, τ defines a step size, and grad(E ) denotes the gradient
of the variational energy with respect to the parameters. The
overlap matrix, S, whose inverse is multiplied with the energy
gradient in the update equation can be understood as a pre-
conditioner for a gradient descent based minimization of the
variational energy and typically helps with the convergence of
the optimization algorithm. As it is common practice, we add
a constant shift c to the diagonal elements of S in all our VMC
calculations in order to stabilize the inversion of the overlap
matrix.

The overlap matrix and the energy gradient can be cast in
terms of expectation values, which can be stochastically sam-
pled from batches of configurations with Markov chain Monte
Carlo sampling. To achieve this, operators Ô j , which encode
the derivatives of the log-wave-function amplitudes with re-
spect to the variational parameter p j , are introduced. More
specifically, these log-amplitude derivatives are the eigenval-
ues of the introduced operators Ô j , which are diagonal in the
computational basis and are formally defined as

〈x|Ô j |y〉 = δx,y
d ln (�(x))

d p j
. (C2)

The element of the energy gradient corresponding to parame-
ter p j then evaluates to

grad j (E ) = 〈Ô∗
j Ĥ〉 − 〈Ĥ〉〈Ô∗

j 〉, (C3)

and the elements of the overlap matrix are given by the ex-
pression

S j,k = 〈Ô∗
j Ôk〉 − 〈Ô∗

j 〉〈Ôk〉. (C4)

For the VMC results presented in this work, the final qGPS
representation was obtained by iteratively applying the up-
dates according to Eq. (C1) to the parameters of the model. We
chose a default update step size of τ = 0.02. Although it is in
principle possible to use real parameters if no sign information
needs to be described by the model, we always chose the
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parameters to be complex valued. Expectation values were
evaluated via standard Markov chain Monte Carlo sampling
where the number of sampled configurations was increased
during the optimization. Presented results always refer to a
final evaluation of the variational energy (with an increased
number of samples) for the final qGPS model. The final qGPS
parameters were taken to be those that resulted in the smallest
sum of the sampled variational energy and estimated error
from the last 40 optimization steps.

Since parameter updates can sometimes result in numerical
issues such as overflows or instabilities, we always revert
to the previous parameter values if invalid values (such as
overflows) are observed in the sampling or in the evaluation
of the expectation values after an update. The update step size
is then decreased and the diagonal shift increased by a factor
of two, before the parameter updates are recomputed with
these adjusted values. This adjustment of the parameters is
iterated until a set of numerically feasible parameters is found
in the update at which point the step size and diagonal shift are
reset back to their default values. Nonetheless, we found that
numerical instabilities and suboptimal optimization trajecto-
ries might still be observed in the optimization of the ansatz
depending on the initialization of the parameters as well as
the specifics of the algorithm. Similar numerical instabilities
in the optimization also appear to be common when optimiz-
ing NQS architectures [22,24]. Devising general, universally
applicable methods and approaches to optimize such highly
expressive model in a stable and reliable way, could and
should be a key element for future research. In the following,
we present the numerical details of our VMC calculations,
which were specific to the considered systems.

The results for the 1D Heisenberg model presented in
Fig. 1 of the main text were obtained with incorporation of
the Marshall sign rule into the Hamiltonian (i.e., no sign
information needs to be described) [10,24,53]. The prod-
uct state results were obtained using a single product state
parametrization, which was symmetrized with respect to the
same symmetries as the qGPS, by summing together the
amplitudes of all symmetrically equivalent configurations.
This ansatz therefore corresponds to a kernel-symmetrized
qGPS ansatz with M = 1 where the final exponentiation is not
applied (effectively corresponding to a projective symmetriza-
tion of the state). The parameters εd,x′,i were initialized as
random phase factors with phases normally distributed about
zero, with standard deviation of 0.02 and unit magnitude. Also
shown are results from a two-body Jastrow ansatz as imple-
mented in NetKet (with the same symmetries imposed as for
the other ansatzes except for the spin inversion symmetry),
for which we applied the same optimization protocol as for
qGPS and product state ansatz. Figure 2 of the main text
shows the results for the 2D 10×10 Heisenberg model ground
state with the kernel-symmetrized qGPS. Again, the problem
was transformed to incorporate the Marshall sign rule so that
the qGPS model only needs to describe the magnitude of the
wave function and not its sign structure. The specific details
of the VMC simulation are mostly the same as for the one-
dimensional setting. The parameters were again initialized as
random phase factors were the associated phases are drawn
from a normal distribution located at zero. We chose the value

of the standard deviation as 0.02 for bond dimensions smaller
than or equal to M = 10 and as 0.01 otherwise.

The data points presented in Figs. 1 and 2 of the main
text correspond to calculations where the amplitudes of the
modelled target state all have the same sign. For calculations
on the two-dimensional square lattice of 6×6 sites, we did
however not employ the transformation encoding the Marshall
sign rule, either in the frustrated or unfrustrated points. There-
fore, the amplitudes of the modelled target state comprised a
sign structure for both considered values of J2. The obtained
results are shown in Fig. 3 in the main text as well as in
Fig. 5 in Appendix B. The figure in the main text only shows
the results obtained with the projectively symmetrized ansatz
whereas the Appendix also includes the results obtained for
this system with the kernel-symmetrized model.

The parameters of the ansatzes were again initialized with
random phase factors. The phases were drawn from a normal
distribution around zero with a standard deviation of 0.05 for
the projectively symmetrized ansatzes and with a standard
deviation of 0.02 for the kernel symmetrized ansatz. Only the
magnitudes of the initial parameters associated with one site
were for the kernel symmetrized ansatz not chosen to be equal
to one. The magnitudes of these initial parameters were drawn
from the same normal distribution as the phases. The more
expressive ansatzes for this frustrated system with support
dimension M = 64 were optimized with 3000 optimization
steps using an initial number of samples of ∼10 100. This
number of samples was then increased every 40 iterations
by 100 up to a total number of ∼18 000 samples for the last
40 optimization steps. For these calculations with the largest
support dimension, we also chose an initial default diagonal
shift of c = 0.02 (as compared to a fixed value of c = 0.01 for
calculations on less expressive ansatzes and other systems),
which was decreased by a factor of 0.97 whenever the number
of samples was increased.

For the kernel symmetrized ansatz it is possible to only
exponentiate ratios of wave-function amplitudes, which is
intrinsically numerically stable. For the projectively sym-
metrized ansatz however, it is necessary to evaluate a sum over
exponentiated expressions, which requires care for numerical
stability. We therefore also included a term into our model,
which rescaled the magnitudes of all qGPS models according
to �(x) → �(x)×e−b. By updating the bias, −b, after each
optimization step, the overall scale of the amplitudes can be
controlled. This does not change the general expressibility of
the model but it can help to avoid numerical issues caused by
amplitudes becoming too large. We set the bias b to the maxi-
mum real component of the log-amplitudes sampled from the
configurations in the previous update step. This enforces the
magnitudes of the wave-function amplitudes to be approxi-
mately between zero and one.

APPENDIX D: IMPLEMENTATION DETAILS
OF THE SUPERVISED LEARNING WITH qGPS

In this section, we outline the technical details for the
supervised learning with the qGPS for which results are pre-
sented in Fig. 4 of the main text. We considered a setup very
similar to the one presented in Ref. [19]. In particular, we
studied the task of learning a qGPS representation from the

023126-11



YANNIC RATH AND GEORGE H. BOOTH PHYSICAL REVIEW RESEARCH 4, 023126 (2022)

exact ground state data of two-dimensional J1-J2 models on a
4×6 site square lattice. The learning was done by training the
model based on the exact wave function data associated with
27 042 and 54 083, randomly selected basis configurations,
corresponding to ∼1% and ∼2% of the full Hilbert space size.
We considered two different approaches to achieve this goal.

The first approach considered, conceptually similar to the
approaches used for the optimization of the NQS as presented
in Ref. [19], is based on standard techniques from the field
of machine learning. It consists of the minimization of the
squared error of the amplitudes predicted by the qGPS model
� with respect to the target amplitudes �target for the config-
urations in the training set. This means the parameters of the
qGPS are found by minimizing the loss function

L =
Ntr∑
{x}

|�(x) − �target (x)|2, (D1)

where {x} denotes the set of all training configurations. The
loss function can be minimized using different optimizers,
here we considered the ADAM optimization scheme [60]. As
it is the standard for such learning approaches, we split the
training set into multiple small batches in each minimization
epoch, which were sequentially used to compute the param-
eter updates. Further regularization of the fit was achieved
by holding back 20% of the training configurations, which
are used to estimate the error outside of the data used for
the fit (out-of-sample error). This validation set was used to
determine at which optimization step the ideal generalization
of the model beyond the training data was obtained. This early
stopping regularization can help to prevent overfitting of the
training data. Nonetheless, the overfitting of the training data
still emerged as a key problem in this approach, especially for
the target state in the frustrated regime where J2/J1 ∼ 0.5, as
found in the NQS literature [19].

As an alternative to the standard minimization of the
squared error, we introduce an alternative approach to learn
a qGPS representation from given data. This approach is very
specific to the functional form of the qGPS and it explicitly
exploits the fact that it can be reformulated as a form of
exponentiated kernel model. The aim is to learn the variational
parameters one site at a time with rigorous Bayesian inference
techniques. The qGPS is then learned in an iterative way by
repeatedly sweeping across the lattice, similar to a DMRG
optimization. As this approach is based on iterative Bayesian
inference for each site, it can help with learning the qGPS in a
robust and reliable way for many different settings. The main
concepts of this Bayesian sweeping approach are outlined in
the main text of the manuscript and we present the specific
implementation details in the following. Key to the Bayesian
learning scheme considered here is that the qGPS model can
be rewritten as a kernel model of the form

�(x) = exp

(
M×D∑
m=1

ε (I )
m k̃m(x)

)
. (D2)

The introduced weights ε (I )
m correspond to the parameters

εd,x′,I of the original model where the compound index m =
(x′, d ) includes all pairs of indices d and x′ for the selected
site. The kernel function k̃m(x) is obtained via a symmetriza-

tion of the parameters on all other sites, as shown in Eq. (9) of
the main text and is given by

k̃m(x) =
∑
S

δS[x]I ,d ·
L∏

i 
=I

εS[x]i,x′,i. (D3)

This kernel function can be interpreted as a comparison be-
tween a test configuration x and an artificial (not directly
specified) quantum support configuration labeled by m. Alter-
natively it can also be understood as a specific renormalized
basis representation, mapping the configuration x to a feature
defined by k̃m(x). We adapt Bayesian learning techniques to
learn the vector of weights, ε(I ), based on the available log-
wave-function training data (specified by the set of training
configurations {x} and the vector containing the associated
log-wave-function amplitudes, φ). This is mostly similar to
the approach presented in Refs. [36,37]. Specifically, we
model the likelihood of the log-wave-function data as a nor-
mal distribution around the predicted log-amplitude of the
qGPS with a data dependent variance, σ 2

x (σ̃ 2), as specified
in Eqs. (11) and (12) of the main text. The prior distribu-
tion of the weights is also assumed to be normal with zero
mean and a variance characterised by an additional per-site
hyperparameter α(I ). Since the weights and the amplitudes are
in this work generally considered to be complex valued, all
probability distributions used for the Bayesian inference are
probability distributions of complex random variables [57].
The descriptions for real random variables can however easily
be extended by replacing the probability distributions with
specific complex equivalents [58]. The central elements of
the Bayesian inference for complex-valued random variables
as used in this work are outlined in the following. Note that
we use the symbol † to refer to the hermitian conjugate of a
matrix.

Under the stated modeling assumptions, both the poste-
rior distribution for the weights ε(I ) as well as the (log)
marginal likelihood obtained with the given training data can
be expressed in closed form. As presented in the main text
[Eqs. (16) and (15)], the posterior is a Gaussian distribution
with mean

μ(I ) = �(I )K(I )†Bφ (D4)

and variance

�(I ) = (K(I )†BK(I ) + α(I )1)−1. (D5)

The logarithm of the marginal likelihood can be expressed as
[37,59]

ln
(
p(I )

ML

) = M × D × ln(α(I ) ) −
∑
{xtr}

ln
(
πσ 2

xtr

)
+ ln (det(�(I ) )) − φ†Bφ + μ(I )†(�(I ) )−1μ(I ).

(D6)

The hyperparameters α(I ) and σ̃ are updated by iteratively
maximizing the log marginal likelihood. We first update the
parameter α(I ) according to the update equation [Eq. (17) of
the main text]

α(I ) →
∑

i

(
1 − α(I )�

(I )
i,i

)
|μ(I )|2 . (D7)
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This form is based on the update equations used in the context
of relevance vector machines [38,59]. Afterwards, we apply a
single gradient ascent step to the logarithm of the parameter
σ̃ 2 resulting in the update [Eq. (18) of the main text]

σ̃ 2 → eln(σ̃ 2 )+η
dp(I )

ML
dσ̃2 σ̃ 2

. (D8)

The derivative of the marginal likelihood with respect to σ̃ 2 is
given by

d p(I )
ML

d σ̃ 2
= tr(B′B−1 − K(I )†B′K(I )�(I ) ) − φ†B′φ

− μ(I )†K(I )†B′K(I )μ(I ) + 2φ†B′Kμ(I ), (D9)

with a diagonal matrix B′ with diagonal elements

B′ = d
(
1
/
σ 2

xtr

)
d σ̃ 2

= − 1

σ 4
xtr

(|�(x)|2 + σ̃ 2)
. (D10)

This derivative can be used for the gradient ascent updates to
the noise hyperparameter σ̃ 2 as outlined in the main text.

Figure 4 of the main text shows the mean overlap with the
target states averaged across different random training sets,
obtained with the Bayesian inference described above and a
more traditional least squares error minimization with valida-
tion. The plot also contains the overlap with the target states
when fitting the model on the data of the complete Hilbert
space for reference. The mean overlaps were calculated by
repeating each of the two training schemes with ten different
random training sets (using the same random realizations in
both approaches). The figure also visualizes the spread of the
obtained overlaps for the different random training sets with
violin plots. In order to set an appropriate overall scale of
the training amplitudes, we renormalize them for all of the
approaches so that the log-amplitudes of the training set have
zero mean [37]. Moreover, in each approach, we initialized
the qGPS with random values for the model parameters εxi,x′,i.
The real and imaginary parts of the initial parameters were
all drawn from Gaussian distributions with zero mean and a
standard deviation of 0.5.

In the simple least squares minimization approach, we took
20% of the whole training data (picked at random) as a valida-
tion set and trained the model by fitting on the remaining 80%
of the training data. The parameters of the model were updated
with the ADAM optimizer using randomly chosen batches of
64 configurations. The last batch in each optimization epoch

was smaller so that each data point was only considered once
in an epoch. After each epoch, we evaluated the mean squared
error for the validation set and stopped the optimization if
no improvement in the validation set error was observed over
10 000 successive epochs or the optimization was leading to
numerical instabilities. We used the ADAM optimizer as im-
plemented in the numpy-ml package [61] using two different
learning rates of 10−3 and 10−4 together with default values
for the other optimization parameters. Those parameters for
which the validation error after an epoch was the smallest
across all iterations and both learning rates then defined the
final model. In some instances, the optimized model could
not be evaluated over the full data set due to numerical issues
(thus indicating very significant overfitting problems). In these
cases we included a data point with vanishing overlap into the
statistics visualized in Fig. 4.

In the iterative Bayesian learning approach, we initialized
all α(I ) values with a value of 2. The noise parameter σ̃ 2,
which corresponds to the fixed variance of the likelihood of
the inferred amplitudes, was initially set to the mean squared
error of the initial model across the training set. Afterwards,
its logarithm, ln(σ̃ 2), was updated after the optimization at
each site by applying gradient ascent steps with respect to the
log marginal likelihood, with a step size of η = 10−5. At early
stages of the optimization, σ̃ 2 can sometimes grow to very
large values, where the data is not yet described well by the
learned model. Such a very large noise parameter can prevent
the algorithm from appropriately learning from the given data.
We therefore never let the noise parameter σ̃ 2 increase beyond
its initial value, which should represent an upper bound. The
sweeps across the lattice were done in the same order for every
sweep, scanning across the lattice one row after the other.

Finally, the results from fitting on the complete training set
were obtained from minimizing the full squared error with
a quasi Newton optimizer (BFGS). These calculations were
initialized by either first running 1000 epochs with the ADAM
minimization scheme on the full data set with a learning rate
of 10−3 and adapting the best parameters out of these 1000
epochs (if M � 2), or by first running 10 Bayesian sweeps
w.r.t. the full data set across the lattice as described above
(if M > 2). While the Bayesian sweeping algorithm might be
improved by additional adjustments to the specific details of
the algorithm in the future, the obtained results already indi-
cate a great potential of this approach for learning appropriate
models of quantum states from randomly sampled training
data in a reliable, generalizable and robust way.

[1] R. Jastrow, Many-body problem with strong forces, Phys. Rev.
98, 1479 (1955).

[2] F. Mezzacapo, N. Schuch, M. Boninsegni, and J. I.
Cirac, Ground-state properties of quantum many-body sys-
tems: Entangled-plaquette states and variational Monte Carlo,
New J. Phys. 11, 083026 (2009).

[3] H. J. Changlani, J. M. Kinder, C. J. Umrigar, and G. K.-L.
Chan, Approximating strongly correlated wave functions with
correlator product states, Phys. Rev. B 80, 245116 (2009).

[4] E. Neuscamman, C. J. Umrigar, and G. K.-L. Chan, Optimiz-
ing large parameter sets in variational quantum Monte Carlo,
Phys. Rev. B 85, 045103 (2012).

[5] F. Mezzacapo and M. Boninsegni, Ground-state phase dia-
gram of the quantum J1 − J2 model on the honeycomb lattice,
Phys. Rev. B 85, 060402(R) (2012).

[6] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[7] X. Gao and L.-M. Duan, Efficient representation of quantum
many-body states with deep neural networks, Nat. Commun. 8,
662 (2017).

[8] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada,
Restricted Boltzmann machine learning for solving strongly
correlated quantum systems, Phys. Rev. B 96, 205152 (2017).

023126-13

https://doi.org/10.1103/PhysRev.98.1479
https://doi.org/10.1088/1367-2630/11/8/083026
https://doi.org/10.1103/PhysRevB.80.245116
https://doi.org/10.1103/PhysRevB.85.045103
https://doi.org/10.1103/PhysRevB.85.060402
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1103/PhysRevB.96.205152


YANNIC RATH AND GEORGE H. BOOTH PHYSICAL REVIEW RESEARCH 4, 023126 (2022)

[9] Z. Cai and J. Liu, Approximating quantum many-body wave
functions using artificial neural networks, Phys. Rev. B 97,
035116 (2018).

[10] G. Carleo, Y. Nomura, and M. Imada, Constructing exact rep-
resentations of quantum many-body systems with deep neural
networks, Nat. Commun. 9, 5322 (2018).

[11] K. Choo, G. Carleo, N. Regnault, and T. Neupert, Symmetries
and Many-Body Excitations with Neural-Network Quantum
States, Phys. Rev. Lett. 121, 167204 (2018).

[12] X. Liang, W.-Y. Liu, P.-Z. Lin, G.-C. Guo, Y.-S. Zhang, and
L. He, Solving frustrated quantum many-particle models with
convolutional neural networks, Phys. Rev. B 98, 104426 (2018).

[13] K. Choo, T. Neupert, and G. Carleo, Two-dimensional frus-
trated J1−J2 model studied with neural network quantum states,
Phys. Rev. B 100, 125124 (2019).

[14] A. Borin and D. A. Abanin, Approximating power of machine-
learning ansatz for quantum many-body states, Phys. Rev. B
101, 195141 (2020).

[15] J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network so-
lution of the electronic Schrödinger equation, Nat. Chem. 12,
891 (2020).

[16] D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C.
Foulkes, Ab initio solution of the many-electron Schrödinger
equation with deep neural networks, Phys. Rev. Research 2,
033429 (2020).

[17] J. Kessler, F. Calcavecchia, and T. D. Kühne, Artificial neural
networks as trial wave functions for quantum Monte Carlo, Adv.
Theor. Sims. 4, 2000269 (2021).

[18] T. Vieijra, C. Casert, J. Nys, W. De Neve, J. Haegeman, J.
Ryckebusch, and F. Verstraete, Restricted Boltzmann Machines
for Quantum States with Non-Abelian or Anyonic Symmetries,
Phys. Rev. Lett. 124, 097201 (2020).

[19] T. Westerhout, N. Astrakhantsev, K. S. Tikhonov, M. I.
Katsnelson, and A. A. Bagrov, Generalization properties of neu-
ral network approximations to frustrated magnet ground states,
Nat. Commun. 11, 1593 (2020).

[20] L. Yang, Z. Leng, G. Yu, A. Patel, W.-J. Hu, and H. Pu, Deep
learning-enhanced variational Monte Carlo method for quantum
many-body physics, Phys. Rev. Research 2, 012039(R) (2020).

[21] R. Zen, L. My, R. Tan, F. Hébert, M. Gattobigio, C. Miniatura,
D. Poletti, and S. Bressan, Transfer learning for scalability
of neural-network quantum states, Phys. Rev. E 101, 053301
(2020).

[22] M. Bukov, M. Schmitt, and M. Dupont, Learning the ground
state of a non-stoquastic quantum Hamiltonian in a rugged
neural network landscape, SciPost Phys. 10, 147 (2021).

[23] Y. Nomura, Helping restricted Boltzmann machines with
quantum-state representation by restoring symmetry, J. Phys.:
Condens. Matter 33, 174003 (2021).

[24] A. Szabó and C. Castelnovo, Neural network wave func-
tions and the sign problem, Phys. Rev. Research 2, 033075
(2020).

[25] Y. Nomura and M. Imada, Dirac-Type Nodal Spin Liq-
uid Revealed by Refined Quantum Many-Body Solver Using
Neural-Network Wave Function, Correlation Ratio, and Level
Spectroscopy, Phys. Rev. X 11, 031034 (2021)

[26] O. Sharir, A. Shashua, and G. Carleo, Neural tensor contrac-
tions and the expressive power of deep neural quantum states,
arXiv:2103.10293.

[27] T. Vieijra and J. Nys, Many-body quantum states with exact
conservation of non-Abelian and lattice symmetries through
variational Monte Carlo, Phys. Rev. B 104, 045123 (2021).

[28] C. Roth and A. H. MacDonald, Group convolutional neural
networks improve quantum state accuracy, arXiv:2104.05085.

[29] M. Y. Pei and S. R. Clark, Compact neural-network quantum
state representations of Jastrow and stabilizer states, J. Phys. A:
Math. Theor. 54, 405304 (2021).

[30] S. R. Clark, Unifying neural-network quantum states and cor-
relator product states via tensor networks, J. Phys. A: Math.
Theor. 51, 135301 (2018).

[31] F. Ferrari, F. Becca, and J. Carrasquilla, Neural Gutzwiller-
projected variational wave functions, Phys. Rev. B 100, 125131
(2019).

[32] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and J. I.
Cirac, Neural-Network Quantum States, String-Bond States,
and Chiral Topological States, Phys. Rev. X 8, 011006 (2018).

[33] C.-Y. Park and M. J. Kastoryano, Expressive power of
complex-valued restricted Boltzmann machines for solving
non-stoquastic Hamiltonians, arXiv:2012.08889.

[34] A. Chen, K. Choo, N. Astrakhantsev, and T. Neupert, Neural
network evolution strategy for solving quantum sign structures,
Phys. Rev. Research 4, L022026 (2022).

[35] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (MIT Press, Boston, 2005).

[36] A. Glielmo, Y. Rath, G. Csányi, A. De Vita, and G. H. Booth,
Gaussian Process States: A Data-Driven Representation of
Quantum Many-Body Physics, Phys. Rev. X 10, 041026 (2020).

[37] Y. Rath, A. Glielmo, and G. H. Booth, A Bayesian inference
framework for compression and prediction of quantum states,
J. Chem. Phys. 153, 124108 (2020).

[38] M. E. Tipping, The relevance vector machine, in Adv. Neural
Inf. Process. Syst. 12, edited by S. A. Solla, T. K. Leen, and K.
Müller (MIT Press, Boston, 2000), pp. 652–658.

[39] M. E. Tipping, A. C. Faul et al., Fast marginal likelihood
maximisation for sparse Bayesian models, in Proceedings of
the Ninth International Workshop on Artificial Intelligence and
Statistics (PMLR, 2003).

[40] M. E. Tipping, Bayesian inference: An introduction to princi-
ples and practice in machine learning, in Advanced Lectures on
Machine Learning (Springer, Berlin, 2004), pp. 41–62.

[41] D.-L. Deng, X. Li, and S. Das Sarma, Quantum Entanglement
in Neural Network States, Phys. Rev. X 7, 021021 (2017).

[42] X.-Q. Sun, T. Nebabu, X. Han, M. O. Flynn, and X.-L. Qi, En-
tanglement features of random neural network quantum states,
arXiv:2203.00020.

[43] R. Orús, A practical introduction to tensor networks: Matrix
product states and projected entangled pair states, Ann. Phys.
349, 117 (2014).

[44] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[45] R. M. Neal, Bayesian learning for neural networks, Ph.D. thesis,
University of Toronto, 1995.

[46] D. Kochkov and B. K. Clark, Variational optimization in the AI
era: Computational graph states and supervised wave-function
optimization, arXiv:1811.12423.

[47] D. Kochkov, T. Pfaff, A. Sanchez-Gonzalez, P. Battaglia, and
B. K. Clark, Learning ground states of quantum Hamiltonians
with graph networks, arXiv:2110.06390.

023126-14

https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1038/s41467-018-07520-3
https://doi.org/10.1103/PhysRevLett.121.167204
https://doi.org/10.1103/PhysRevB.98.104426
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.101.195141
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1002/adts.202000269
https://doi.org/10.1103/PhysRevLett.124.097201
https://doi.org/10.1038/s41467-020-15402-w
https://doi.org/10.1103/PhysRevResearch.2.012039
https://doi.org/10.1103/PhysRevE.101.053301
https://doi.org/10.21468/SciPostPhys.10.6.147
https://doi.org/10.1088/1361-648X/abe268
https://doi.org/10.1103/PhysRevResearch.2.033075
https://doi.org/10.1103/PhysRevX.11.031034
http://arxiv.org/abs/arXiv:2103.10293
https://doi.org/10.1103/PhysRevB.104.045123
http://arxiv.org/abs/arXiv:2104.05085
https://doi.org/10.1088/1751-8121/ac1f3d
https://doi.org/10.1088/1751-8121/aaaaf2
https://doi.org/10.1103/PhysRevB.100.125131
https://doi.org/10.1103/PhysRevX.8.011006
http://arxiv.org/abs/arXiv:2012.08889
https://doi.org/10.1103/PhysRevResearch.4.L022026
https://doi.org/10.1103/PhysRevX.10.041026
https://doi.org/10.1063/5.0024570
https://doi.org/10.1103/PhysRevX.7.021021
http://arxiv.org/abs/arXiv:2203.00020
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/arXiv:1811.12423
http://arxiv.org/abs/arXiv:2110.06390


QUANTUM GAUSSIAN PROCESS STATE: A … PHYSICAL REVIEW RESEARCH 4, 023126 (2022)

[48] G. Carleo, K. Choo, D. Hofmann, J. E. Smith, T. Westerhout,
F. Alet, E. J. Davis, S. Efthymiou, I. Glasser, S.-H. Lin et al.,
Netket: A machine learning toolkit for many-body quantum
systems, SoftwareX 10, 100311 (2019).

[49] F. Vicentini, D. Hofmann, A. Szabó, D. Wu, C. Roth,
C. Giuliani, G. Pescia, J. Nys, V. Vargas-Calderon, N.
Astrakhantsev, and G. Carleo, NetKet 3: Machine learning tool-
box for many-body quantum systems, arXiv:2112.10526.

[50] S. Sorella, Generalized Lanczos algorithm for variational quan-
tum Monte Carlo, Phys. Rev. B 64, 024512 (2001).

[51] C.-Y. Park and M. J. Kastoryano, Geometry of learning neural
quantum states, Phys. Rev. Research 2, 023232 (2020).

[52] W.-J. Hu, F. Becca, A. Parola, and S. Sorella, Direct evidence
for a gapless Z2 spin liquid by frustrating Néel antiferromag-
netism, Phys. Rev. B 88, 060402(R) (2013).

[53] W. Marshall and R. E. Peierls, Antiferromagnetism, Proc. R.
Soc. Lond. A 232, 48 (1955).

[54] M. Fishman, S. R. White, and E. M. Stoudenmire, The
iTensor software library for tensor network calculations,
arXiv:2007.14822.

[55] A. W. Sandvik, Finite-size scaling of the ground-state parame-
ters of the two-dimensional Heisenberg model, Phys. Rev. B 56,
11678 (1997).

[56] H. J. Schulz, T. A. L. Ziman, and D. Poilblanc, Magnetic
order and disorder in the frustrated quantum Heisenberg an-
tiferromagnet in two dimensions, J. Phys. I France 6, 675
(1996).

[57] L. J. Halliwell, Complex Random Variables (Casualty Actuarial
Society E-Forum, Fall, 2015).

[58] R. K. S. Hankin, The complex multivariate Gaussian distribu-
tion, R. J. 7, 73 (2015).

[59] T. Fletcher, Relevance vector machines explained, https://
tristan-fletcher-fdxe.squarespace.com/s/RVM-Explained.pdf
(2010), last accessed 26 Oct. 2022.

[60] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, in Proceedings of the 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, edited by Y. Bengio and Y. LeCun (2015).

[61] D. Bourgin, numpy-ml, https://github.com/ddbourgin/numpy-
ml.

[62] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Neural-network quantum state tomography,
Nat. Phys. 14, 447 (2018).

[63] K. Choo, A. Mezzacapo, and G. Carleo, Fermionic neural-
network states for ab-initio electronic structure, Nat. Commun.
11, 2368 (2020).

023126-15

https://doi.org/10.1016/j.softx.2019.100311
http://arxiv.org/abs/arXiv:2112.10526
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevResearch.2.023232
https://doi.org/10.1103/PhysRevB.88.060402
https://doi.org/10.1098/rspa.1955.0200
http://arxiv.org/abs/arXiv:2007.14822
https://doi.org/10.1103/PhysRevB.56.11678
https://doi.org/10.1051/jp1:1996236
https://doi.org/10.32614/RJ-2015-006
https://tristan-fletcher-fdxe.squarespace.com/s/RVM-Explained.pdf
https://github.com/ddbourgin/numpy-ml
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1038/s41467-020-15724-9

