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Unbalanced fourth-order interference beyond coherence time
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Interferometry has been used widely in sensing application. However, the technique is limited by the finite
coherence time of the light sources when the interference paths are not balanced. Higher-order interference
effects involve intensity correlations between multiple detectors and may have the advantage over the traditional
second-order interference effect exhibited in only one detector. We discuss various scenarios with unbalanced
delays in different paths in fourth-order interference exhibited in coincidence between two detectors. We find,
in some cases, interference effect persists even when the delays are much larger than the coherence time of the
sources. We also extend the discussion to nonstationary pulsed fields, which need to consider the pulse shape
and require a different treatment. These results will be useful in remote sensing applications.
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I. INTRODUCTION

Interferometry is the major technique for optical sensing
applications [1]. It depends on the optical coherence of light to
produce phase-sensitive interference effect in order to achieve
high sensitivity and precision [2]. This requires the balance
of interferometer paths to within the coherence length of the
optical field. But this may limit the scope of applications in
remote sensing when a large imbalance of paths exists.

A traditional interference effect depends on second-order
coherence of the amplitudes of the fields and involves inten-
sity measurement by only one detector, whereas fourth-order
interference involves quantities in the fourth order of field
amplitudes and is exhibited in the correlation between in-
tensities measured by two detectors. It was well known
that fourth-order interference such as the Hong-Ou-Mandel
(HOM) interference effect [3,4] does not rely on the co-
herence time of the fields in that interference even between
independent fields may occur [5,6]. But such effect is in-
sensitive to phase change of the fields. On the other hand,
a phase-dependent fourth-order interference effect occurs in
Franson interferometer [7], which consists of two highly im-
balanced interferometers beyond coherence length [8–10].
But it was shown that the effect exists only for two-photon
quantum fields and disappears for stationary classical fields in
time-unresolved coincidence measurement [11]. The progress
on the interference with imbalanced paths was halted until
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recently when it was reported that phase dependent fourth-
order interference between two thermal fields can appear in
the time-resolved coincidence between two detectors even
when the path imbalance of the interferometer is well beyond
the coherence length of the fields [12,13]. This leads to a
huge advantage over the traditional interferometers based on
second-order interference where interference appears in one
detector and requires the path imbalance between interfering
fields to be smaller than the coherence length of the fields.

Furthermore, even though HOM interference effect is inde-
pendent of phase difference, it relies on mode match between
the two input fields for photon indistinguishability required by
quantum interference. Thus the size of the effect is sensitive
to the distortion of the wave forms of the input fields. This is
especially the case when the fields are in the form of ultrashort
pulses and can be a tool for sensing the change of the optical
paths in the medium of propagation [6,14].

In this paper, we discuss various scenarios in fourth-order
interference with different correlation between interfering
fields and unbalanced delays in different paths. We find, in
some cases, interference effect persists even when the de-
lays are much larger than the coherence time of the sources.
We also extend the discussion to nonstationary pulsed fields,
which require the overlap of interfering pulses. The paper is
organized as follows. We start by considering in Sec. II the
general schemes with stationary fields. In Sec. III, we con-
centrate on some special scenarios with different correlation
between interfering fields and different delays for unbalanced
interferometers. We consider the pulsed nonstationary fields
in Sec. IV and conclude with a discussion in Sec. V.

II. GENERAL CASE OF STATIONARY FIELDS

Let us consider the general case of fourth-order
interference between two stationary fields V10(r, t ),V20(r, t ).
The quantities involved are related to the product of four field

2643-1564/2022/4(2)/023125(7) 023125-1 Published by the American Physical Society

https://orcid.org/0000-0002-2341-368X
https://orcid.org/0000-0002-3635-1270
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023125&domain=pdf&date_stamp=2022-05-16
https://doi.org/10.1103/PhysRevResearch.4.023125
https://creativecommons.org/licenses/by/4.0/


Z. Y. OU AND XIAOYING LI PHYSICAL REVIEW RESEARCH 4, 023125 (2022)

FIG. 1. (a) General scheme of fourth-order interference between
two fields by field mixing. (b) A specific scheme of field mixing
by using beam splitters. (c) Generation of two fields with a random
phase ϕ from one field by a beam splitter.

amplitudes such as 〈V ∗
10(r1, t1)V ∗

20(r2, t2) V10(r′
1, t ′

1)V20(r′
2, t ′

2)〉.
This requires intensity correlation measurement by
coincidence between two different detectors. To achieve
this, we first mix the fields with some linear optics and send
the mixed fields to two detectors for intensity correlation
measurement (C), as shown in Fig. 1(a). The simplest way of
field mixing is by beam splitters. A typical scheme is shown
in Fig. 1(b), which will be the scheme of our discussion in
this paper. In order to concentrate on fourth-order effect and
avoid the confusion with lower order interference, that is,
the interference at each detector’s output, we assume that
there is no phase coherence between V10(r, t ),V20(r, t ), so
that 〈V10(r, t )V20(r, t )〉 = 0, 〈V ∗

10(r, t )V20(r, t )〉 = 0. In the
case of fields of independent origins, this is automatically
satisfied. On the other hand, the two fields may originate
from one field V0(r, t ) via splitting by a beam splitter:
V10(r, t ) ∝ V0(r, t ),V20(r, t ) ∝ V0(r, t )eiϕ , as shown in
Fig. 1(c). In this case, we introduce a random phase ϕ in field
V20 that averages out the second-order interference between
V10 and V20.

For simplicity without loss of generality, we assume the
fields are one dimensional so we can absorb the position
variable z with time and only consider the temporal
variable t . Then, the general format of the fourth-order
quantities are in the form of 〈V ∗

10(t1)V ∗
20(t2)V10(t ′

1)V20(t ′
2)〉.

In particular, cross terms like 〈V ∗
10(t1)V ∗

20(t2)V10(t2)V20(t1)〉
and 〈V ∗

10(t1)V ∗
20(t1)V10(t2)V20(t2)〉 result in fourth-order

interference.
In order to obtain the interference terms mentioned above,

we introduce various delays T1, T2, T ′
1 , T ′

2 to account for dif-
ferent times of t1, t2, t ′

1, t ′
2. Different values of T1, T2, T ′

1 , T ′
2

lead to different scenarios of interference. For example, when
T1 = T ′

1 , T2 = T ′
2 , this scheme is simply a Hong-Ou-Mandel

interferometer for two fields V10,V20. When V10,V20 originate
from V0 as shown in Fig. 1(c), this scheme was shown [4] to
be able to measure the coherence time of V0.

For the general scheme in Fig. 1(b), the fields at two detec-
tors can be expressed as

V (t ) = [V10(t + T1) + V20(t + T2)]/2,

V ′(t ) = [V10(t + T ′
1 ) − V20(t + T ′

2 )]/2. (1)

The coincidence measurement is related to 〈I (t )I ′(t + τ )〉
with

I ≡ |V (t )|2 ∝ |V10|2 + |V20|2 + V ∗
10V20 + V ∗

20V10,

I ′ ≡ |V ′(t + τ )|2 ∝ |V ′
10|2 + |V ′

20|2 − V ∗
10

′V ′
20 − V ∗

20
′V ′

10,

(2)

where V10 ≡ V10(t + T1), V20 ≡ V20(t + T2), V ′
10 ≡ V10(t +

T ′
1 + τ ), and V ′

20 ≡ V20(t + T ′
2 + τ ). Expanding 〈I (t )I ′(t +

τ )〉 and keeping in mind the random phase eiϕ , we have

〈I (t )I ′(t + τ )〉 ∝ 〈(|V10|2 + |V20|2)(|V ′
10|2 + |V ′

20|2)〉
−〈(V ∗

10V20 + V ∗
20V10)(V ∗

10
′V ′

20 + V ∗
20

′V ′
10)〉, (3)

where, because of the random phase eiϕ , the unpaired cross
terms like 〈|V10|2V ∗

20V10〉, etc., are zero. Expanding Eq. (3), we
have

〈I (t )I ′(t + τ )〉 ∝ 〈I10I ′
10〉 + 〈I20I ′

20〉 + 〈I10I ′
20〉 + 〈I20I ′

10〉
−(〈V ∗

10V20V
∗

20
′V ′

10〉 + c.c.) − (〈V ∗
10V20V

∗
10

′V ′
20〉 + c.c.), (4)

where c.c. means complex conjugate. Obviously,
〈V ∗

10 V20V ∗
20

′V ′
10〉 and 〈V ∗

10V20V ∗
10

′V ′
20〉 are the interference terms.

Again, because of the random phase eiϕ , term 〈V ∗
10V20V ∗

10
′V ′

20〉
and its complex conjugate are normally zero. The nonzero
term can be explicitly written as

〈V ∗
10V20V

∗
20

′V ′
10〉 = 〈V ∗

10(t + T1)V20(t + T2)

×V ∗
20(t + T ′

2 + τ )V10(t + T ′
1 + τ )〉. (5)

The evaluation of the nonvanishing interference term
in Eq. (5) requires the knowledge of the statistics of
field fluctuations. For example, Gaussian statistics of
thermal fields will break the four-term average into
a two-term average: 〈V ∗

10V20V ∗
20

′V ′
10〉th = 〈V ∗

10V20〉〈V ∗
20

′V ′
10〉 +

〈V ∗
10V

′
10〉〈V20V ∗

20
′〉 + 〈V ∗

10V
∗

20
′〉〈V20V ′

10〉. But we cannot go fur-
ther for general fields without some approximations. Next,
we will consider those approximations that lead to different
scenarios in fourth-order interference.

III. VARIOUS SCENARIOS

A. Scenarios with different field correlations

The easiest approximation is to assume that there is no
correlation between V10 and V20 fields. Then, Eq. (5) becomes

〈V ∗
10V20V

∗
20

′V ′
10〉 = 〈V ∗

10(t + T1)V10(t + T ′
1 + τ )〉

× 〈V20(t + T2)V ∗
20(t + T ′

2 + τ )〉
= I10I20γ11(τ − �T1)γ ∗

22(τ − �T2), (6)

with I j0 ≡ 〈|Vj0(t )|2〉, �Tj ≡ Tj − T ′
j , and

γ j j (τ ) ≡ 〈V ∗
j0(t )Vj0(t + τ )〉/I j0 ( j = 1, 2) (7)

as the second-order coherence functions of V10,V20, respec-
tively. With this, Eq. (4) becomes

〈I (t )I ′(t + τ )〉 ∝ I2
10[1 + λ1(τ )] + I2

20[1 + λ2(τ )]

+2I10I20[1 − |γ11γ22| cos(ϕ11 − ϕ22)], (8)
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FIG. 2. Schemes of fourth-order interference for application in
astronomy.

where λ j ≡ 〈I jI ′
j〉/I2

j0 − 1 ( j = 1, 2) is the normalized au-
tointensity correlation, describing the intensity fluctuations.
|γ j j |, ϕ j j are the magnitude and phase of γ j j .

This scenario occurs when V10 and V20 come from indepen-
dent sources such as two celestial objects in the sky. ϕ11 − ϕ22

contains information to resolve these two objects as in two-
photon amplitude astronomy [15].

Another scenario is when V20 is from an ultrastable coher-
ent source or coherent state, that is, V20 = α. In this case, V20

can be thought of as a weak local oscillator and it was first
discussed in the context of single-photon nonlocality [16]. An
application is in optical stellar interferometry for astronomy
[17]. We treat the case in the following.

The goal of stellar interferometry is to measure the nor-
malized second-order coherence function [2] γ (r1, r2, τ ) ≡
〈V ∗(r1, t )V (r2, t + τ )〉/

√
〈|V (r1, t )|2〉〈|V (r2, t )|2〉 of the

stellar optical field V (r, t ) at two locations r1, r2. Knowledge
of γ (r1, r2, τ ) for a large separation of r1, r2 will lead
to high angular resolution by a Fourier transformation
[17]. Denote the incoming field at the two locations as
V (t ) ≡ V (r1, t ), V̄ (t ) ≡ V (r2, t ), which are equivalent to
V1(t + T1),V1(t + T ′

1 ) with different delays in Fig. 1(b).
We mix them with local oscillator fields denoted by α1, α2,
respectively, which are split from a common stable source
of α (equivalent to V20 in Fig. 1), as shown in Fig. 2. So the
fields at the detectors are

V (t ) = [V (t ) + α1]/
√

2, V ′(t ) = [V̄ (t ) + α2]/
√

2. (9)

The delay of wave front between the two detectors is included
in positions r1, r2. The intensity correlation measurement
gives

〈I (t )I ′(t + τ )〉 = 〈|V (t )|2|V ′(t + τ )|2〉
∝ 〈|V (t )|2|V̄ (t + τ )|2〉 + I|α2|2 + Ī|α1|2
+|α1α2|2 + 〈V ∗(t )V̄ (t + τ )〉α1α

∗
2

+〈V (t )V̄ ∗(t + τ )〉α∗
1α2

= I Ī[1 + λ̄(τ )] + |α1α2|2 + [I|α2|2 + Ī|α1|2]

×[1 + ξ |γ (τ )| cos(ϕγ + �φα )], (10)

where ξ ≡ 2|α1α2|
√

I Ī/(I|α2|2 + Ī|α1|2), with I ≡
〈|V |2|〉, Ī ≡ 〈|V̄ |2|〉, γ (τ ) ≡ γ (r1, r2, τ ), eiϕγ ≡ γ /|γ |,
�φα ≡ φα2 − φα1 , and 1 + λ̄(τ ) ≡ 〈|V (t )|2|V̄ (t + τ )|2〉/I Ī .

In deriving Eq. (10), we assume α1,2 has stable phases and the
incoming fields V, V̄ have random phases. Normally, stellar
fields have I = Ī and are of thermal nature, so λ̄(τ ) = |γ (τ )|2.
Setting |α1|2 = |α2|2 = I = Ī in Eq. (10), we have

〈I (t )I ′(t + τ )〉 ∝ I2[4 + |γ |2][1 + V cos(ϕγ + �φα )], (11)

where V ≡ 2|γ (τ )|/[4 + |γ (τ )|2].
With stable local oscillators α1, α2, we can measure com-

plex quantity γ (τ ) from the two-photon interference fringe
to achieve stellar interferometry in astronomy. Note that this
scheme is similar to the homodyne measurement technique
in stellar interferometry but the photon counting technique is
used here to avoid the shot noise problem [18]. However, this
method requires time resolution of the detectors better than
coherence time in order to measure γ (τ ) and thus limits the
bandwidth, in a similar way to intensity interferometry [19].
On the other hand, intensity interferometry can be modified
by involving fourth-order interference to not require time res-
olution of the detectors. This is a scenario to be discussed later
[Sec. IIIB, scenario (iv)].

B. Scenarios with different delays

All random variables have some correlation time beyond
which the fields are not related anymore. So, depending on the
relationship between T1, T2, T ′

1 , T ′
2 as compared to coherence

time Tc of the fields and resolving time TR of detectors, we
can make some approximations and have different scenarios
of fourth-order interference, which give rise to different ap-
plications. We categorize them as follows.

(i) T1 ∼ T2 and T ′
1 ∼ T ′

2 , but |(T1, T2) − (T ′
1 , T ′

2 )| 
 Tc, TR.
This is exactly the scenario depicted in Fig. 1(b). In this case,
quantities V ∗

10(t + T1)V20(t + T2) and V ∗
20(t + T ′

2 + τ )V10(t +
T ′

1 + τ ) are well separated in time beyond any correlation time
of the fields so that they are independent and we have

〈V ∗
10(t + T1)V20(t + T2)V ∗

20(t + T ′
2 + τ )V10(t + T ′

1 + τ )〉
≈ 〈V ∗

10(t + T1)V20(t + T2)〉
×〈V ∗

20(t + T ′
2 + τ )V10(t + T ′

1 + τ )〉
= 
12(�T )
∗

12(�T ′), (12)

where �T ≡ T2 − T1, �T ′ ≡ T ′
2 − T ′

1 , and 
12(�T ) ≡
〈V ∗

10(t + T1)V20(t + T2)〉. Notice that this term is normally
zero because we assume that there is no coherence between
V10 and V20 or we introduce a random phase between them
in the case of common origin so that 
12(�T ) = 0. But, in
the latter case, the random phase is canceled in the product
of 
12(�T )
∗

12(�T ′), as long as the phase changes slowly
within the time period of |T1 − T ′

1 |. So, we will keep this term
for the case when V10 and V20 are from a common origin as
shown in Fig. 1(c). Moreover, because |(T1, T2) − (T ′

1 , T ′
2 )| 


Tc, TR, there is no intensity correlation between unprimed
quantities and primed quantities, that is, 〈Ii0I ′

j0〉 ≈ 〈Ii0〉〈I ′
j0〉 =

Ii0I j0. So, with the definition of γ12 ≡ 
12/
√

I10I20, the overall
coincidence measurement result is

〈I (t )I ′(t + τ )〉 ∝ I2
10 + I2

20 + 2I10I20

− I10I20[γ12(�T )γ ∗
12(�T ′) + c.c.]

= I2
10 + I2

20 + 2I10I20{1 − |γ12(�T )γ ∗
12(�T ′)|

× cos[ω(�T − �T ′) + �ϕ]}. (13)
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FIG. 3. Schemes of fourth-order interference between two fields
with (a) T1 ∼ T ′

1 and T2 ∼ T ′
2 , but |(T1, T ′

1 ) − (T2, T ′
2 )| 
 Tc, TR [sce-

nario (ii)], and (b) T1 ∼ T ′
2 and T2 ∼ T ′

1 , but |(T1, T ′
2 ) − (T2, T ′

1 )| 

Tc, TR [scenario (iii)].

This gives rise to fourth-order interference. Notice that the
interference fringe does not depend on τ .

(ii) T1 ∼ T ′
1 and T2 ∼ T ′

2 , but |(T1, T ′
1 ) − (T2, T ′

2 )| 

Tc, TR. This scenario is depicted in Fig. 3(a). Similar to sce-
nario (i), we have

〈V ∗
10(t + T1)V20(t + T2)V ∗

20(t + T ′
2 + τ )V10(t + T ′

1 + τ )〉
≈ 〈V ∗

10(t + T1)V10(t + T ′
1 + τ )〉

×〈V ∗
20(t + T ′

2 + τ )V20(t + T2)〉
= 
11(�T1 + τ )
∗

22(�T2 + τ ), (14)

where �T1 ≡ T ′
1 − T1, �T2 ≡ T ′

2 − T2, and 
 j j (�Tj ) ≡
〈V ∗

j0(t + Tj )Vj0(t + T ′
j )〉.

There is no need for random phase eiϕ in this scenario
since the second-order coherence 
12 = 0 for |(T1, T ′

1 ) −
(T2, T ′

2 )| 
 Tc, TR. So, the overall coincidence measurement
result is

〈I (t )I ′(t + τ )〉 ∝ I2
10(1 + λ1) + I2

20(1 + λ2) + 2I10I20

−I10I20[γ11(�T1 + τ )γ ∗
22(�T2 + τ ) + c.c.]

= I2
10(1 + λ1) + I2

20(1 + λ2)

+2I10I20{1 − |γ11(�T1 + τ )γ22(�T2 + τ )|
× cos[ω(�T1 − �T2) + �ϕ]}, (15)

where λ j ≡ 〈I j0I ′
j0〉/I2

j0 − 1 ( j = 1, 2) describes the intensity
fluctuation of each field. This again shows fourth-order inter-
ference. A special case is when T ′

1 = T1, T ′
2 = T2 and two BSs

before the detectors merge into one. This is an unbalanced
Mach-Zehnder interferometer (MZI) if the two fields are from
the splitting of one field [Fig. 1(c)] or a classical version of
the HOM interferometer if the two fields are independent. In
this case, we have

〈I (t )I ′(t + τ )〉 ∝ I2
10(1 + λ1) + I2

20(1 + λ2) + 2I10I20

−I10I20[γ11(τ )γ ∗
22(τ ) + c.c.], (16)

where the interference is in the form of a dip as the delay
�T ≡ |T1 − T2| or detector time delay τ is scanned. Note
that, for thermal field of the same kind, we have λ1 = λ2 =
|γ11(τ )|2 = |γ22|2 and I10 = I20 ≡ I0. Then Eq. (16) becomes

〈I (t )I ′(t + τ )〉 ∝ 4I2
0 , (17)

showing no interference because the bunching effect of the
thermal fields cancels the HOM destructive interference ef-
fect. This is only true for stationary thermal fields. In the
case of nonstationary pulsed thermal fields, the situation is
different because of the requirement of pulse overlap (see
later).

(iii) T1 ∼ T ′
2 and T2 ∼ T ′

1 , but |(T1, T ′
2 ) − (T2, T ′

1 )| 

Tc, TR. This scenario is depicted in Fig. 3(b) and we have

〈V ∗
10(t + T1)V20(t + T2)V20(t + T ′

2 + τ )V ∗
10(t + T ′

1 + τ )〉
≈ 〈V ∗

10(t + T1)V20(t + T ′
2 + τ )〉

×〈V20(t + T2)V ∗
10(t + T ′

1 + τ )〉
= 
12(�T̄ ′

1 + τ )
∗
21(τ − �T̄ ′

2 ), (18)

where �T̄ ′
1 ≡ T ′

2 − T1, �T̄ ′
2 ≡ T2 − T ′

1 . Similar to scenario
(i), this is for the case of two fields with a common origin.
But, in this case, we cannot have random phase eiϕ because,
otherwise, the term above will be zero. On the other hand,
since |(T1, T ′

2 ) − (T2, T ′
1 )| 
 Tc, TR, there is no second-order

interference in D1 and D2 in any case so there is no need for
the random phase. So, the result of coincidence measurement
is

〈I (t )I ′(t + τ )〉
∝ I2

10 + I2
20 + 2I10I20

−I10I20[γ12(�T̄ ′
1 + τ )γ ∗

21(τ − �T̄ ′
2 ) + c.c.]

= I2
10 + I2

20

+2I10I20{1 − |γ12(�T̄ ′
1 + τ )γ ∗

21(τ − �T̄ ′
2 )|

× cos[ω(�T̄ ′
1 + �T̄ ′

2 ) + �ϕ]}. (19)

This scenario is similar to the case of a classical Franson
interferometer for thermal fields [13].

Both the results in scenarios (ii) and (iii) depend on τ . So,
a time-resolved coincidence measurement is required, which
means TR � Tc. But interference in these two scenarios will
disappear if TR 
 Tc, or the detector’s response is too slow to
resolve the details of the field fluctuations. This was pointed
out in Ref. [11] for the classical Franson interferometer. How-
ever, this condition leads to the following scenario.

(iv) TR 
 Tc. Because of the slowness of the detectors, the
result of coincidence is an average over detectors’ resolving
time TR: Rc = (1/TR)

∫
TR

dτ 〈I (t )I ′(t + τ )〉. This scenario was
discussed in Ref. [4] where it was argued that all higher order
correlations are averaged out due to slow detectors. The same
argument applies here and the result of coincidence measure-
ment is exactly the same as Eq. (13), that is,

Rc = 1

TR

∫
TR

dτ 〈I (t )I ′(t + τ )〉

∝ I2
10 + I2

20 + 2I10I20 − I10I20[γ12(�T )γ ∗
12(�T ′) + c.c.].

(20)
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Note that although Eq. (13) for scenario (i) and Eq. (20) here
have the same form, they have different meaning: Eq. (13) is
for 〈I (t )I ′(t + τ )〉 but is independent of τ , whereas Eq. (20)
is after the average over τ . Furthermore, they are derived
under different conditions: scenario (i) requires |(T1, T2) −
(T ′

1 , T ′
2 )| 
 Tc, TR but makes no assumption about TR and

Tc since the result is independent of τ , whereas scenario
(iv) here requires TR 
 Tc but does not assume anything
for T1, T2, T ′

1 , T ′
2 except that nonzero interference terms in

Eq. (20) require |�T |, |�T ′| � Tc, which also applies to
Eq. (13) for scenario (i). A special case of scenario (iv) is
when T1 = T ′

1 , T2 = T ′
2 or |�T | = |�T ′|. Under this condi-

tion, Eq. (20) becomes

Rc ∝ I2
10 + I2

20 + 2I10I20[1 − |γ12(�T )|2], (21)

where the fourth-order interference is in the form of a dip
as the delay �T is scanned. This case is exactly the Mach-
Zehnder interferometer scheme presented in Ref. [4], which
can be used to measure |γ12| and the coherence time of an
incoming field independent of the photon statistics of the
incoming field.

The scenario above can be applied to stellar intensity in-
terferometry [19] when V10 and V20 are the two fields at two
separate locations. Although it can only measure |γ12(�T )|2,
similar to stellar intensity interferometry, there is no need for
time resolution of the detectors and it is suitable for broadband
observation.

IV. CASE OF FIELDS IN PULSE TRAINS

For a nonstationary field V1(t ) in the form of a quasi-
continuous wave (quasi-cw) train of pulses, the situation
somehow becomes relatively simple because the single pulse
is usually much faster than the response of the detectors so
that the result is a time integral of the single pulse profile. For
this case, the field can be written in general as

V1(t ) =
∑

j

A j f (t − j�t ), (22)

where f (t ) is the normalized single pulse profile with a pulse
width δt , which we assume is the same for all pulses in the
train, Aj is the amplitude of the jth pulse, and �t (
 δt ) is
the interval between two adjacent pulses. Here, we consider
only one polarization and can treat the field as a scalar field.
The instantaneous intensity is then

I1(t ) = |V1(t )|2 =
∑

j,k

A∗
j f ∗(t − j�t )Ak f (t − k�t )

=
∑

j

|Aj f (t − j�t )|2, (23)

where the cross terms are zero because pulse width δt is much
smaller than the pulse separation �t so that there is no overlap
between different pulses. The photocurrent from the detector
illuminated by this field is then

i1(t ) =
∫

dt ′k(t − t ′)I1(t ′)

=
∑

j

|Aj |2
∫

dt ′k(t − t ′)| f (t ′ − j�t )|2

=
∑

j

|Aj |2k(t − j�t ), (24)

where k(t ) is the detector’s response function and we assume
that single pulse width of f (t ) is much narrower than the
detector’s response function k(t ) so that we can pull k(t ) out
of the integral. The average photocurrent over a long time of
T (
 �t ) is then

〈i1〉 = 1

T

∫
T

dt i1(t ) = QRp
1

N

N∑
j=1

|Aj |2

= QRp〈|Aj |2〉 j, (25)

where Q ≡ ∫
dt k(t ) is the total charge produced in the de-

tector for one pulse, Rp is the pulse repetition rate, and
N = [T/�t] = RpT is the number of pulses in time T . 〈〉 j

is the average over the N pulses. For later calculation, we
need to evaluate autocorrelation of the photocurrent within a
coincidence window of TR. The time average is given by

R11 = 1

T

∫
T

dt
∫

TR

dτ i1(t )i1(t + τ )

= 1

T

∫
T

dt
∫

TR

dτ
∑
i, j

|Ai|2k(t − i�t )

× |Aj |2k(t + τ − j�t )

= 1

T

∫
T

dt
∫

TR

dτ
∑

j

|Aj |4k(t − j�t )

× k(t + τ − j�t )

= RpQ2〈|Aj |4〉 j, (26)

where we assume the detectors can resolve different pulses so
that TR < �t and k(t − i�t )k(t + τ − j�t ) = 0 if i 
= j.

Suppose there is a second field V2(t ) in a pulse train with
the same pulse separation �t :

V2(t ) =
∑

j

B jg(t − j�t ), (27)

where the amplitude of each pulse is denoted as Bj and the
pulse profile is g(t ). The coincidence measurement between
the two fields is described by the coincidence rate:

R12 = 1

T

∫
T

dt
∫

TR

dτ i1(t )i2(t + τ )

= RpQ2〈|Aj |2|Bj |2〉 j, (28)

whose derivation is similar to Eq. (26).
Now, let us inject the two fields into the unbalanced in-

terferometers shown in Figs. 1 and 3. We consider again the
different scenarios of delays as in the stationary case. But
we write the delays in terms of pulse separation �t : T1 =
N1�t + d1/c, T2 = N2�t + d2/c, T ′

1 = N ′
1�t + d ′

1/c, T ′
2 =

N ′
2�t + d ′

2/c, with d1, d2, d ′
1, d ′

2(< c�t ) being the extra path
delay between two adjacent pulses.

With random phase relation between V1 and V2, similar
to Eq. (4) in the stationary case, the coincidence measure-
ment between the two outputs of the interferometer is related
to eight terms corresponding to two autocorrelation terms
〈I1I ′

1〉, 〈I2I ′
2〉, two cross-correlation terms 〈I1I ′

2〉, 〈I2I ′
1〉, and

four interference terms. Our discussion of these terms needs
to involve detection processes for the case of pulse trains.
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For the four intensity correlation terms, their contributions to
coincidence measurement can be evaluated in a similar way to
Eqs. (26) and (28) and have the form of

R11′ = RpQ2〈|Aj+N1 |2|Aj+N ′
1
|2〉 j,

R22′ = RpQ2〈|Bj+N2 |2|Bj+N ′
2
|2〉 j,

R12′ = RpQ2〈|Aj+N1 |2|Bj+N ′
2
|2〉 j,

R1′2 = RpQ2〈|Aj+N ′
1
|2|Bj+N2 |2〉 j . (29)

The contributions from the four interference terms are
more complicated to evaluate. Using Eqs. (22) and (27) for
V1,V2, we have

∫
dt ′k(t − t ′)V ∗

1 (t ′ + T1)V2(t ′ + T2)

=
∫

dt ′k(t − t ′)
∑
i, j

A∗
i f ∗(t ′ + T1 − i�t )

×Bjg(t ′ + T2 − j�t )

=
∫

dt ′k(t − t ′)
∑
i, j

A∗
i f ∗[t ′ + d1/c − (i − N1)�t]

×Bjg[t ′ + d2/c − ( j − N2)�t]

= β(�d/c)
∑

j

A∗
j+N1

Bj+N2 k(t − j�t ) (30)

and

∫
dt ′k(t + τ − t ′)V ∗

2 (t ′ + T ′
2 )V1(t ′ + T ′

1 )

=
∫

dt ′k(t + τ − t ′)
∑
i, j

B∗
i g∗(t ′ + T ′

2 − i�t )

×Aj f (t ′ + T ′
1 − j�t )

=
∫

dt ′k(t + τ − t ′)
∑
i, j

Ai f [t ′ + d ′
1/c − (i − N ′

1)�t]

×B∗
j g

∗[t ′ + d ′
2/c − ( j − N ′

2)�t]

= β∗(�d ′/c)
∑

j

B∗
j+N ′

2
Aj+N ′

1
k(t + τ − j�t ) (31)

as parts of the contributions in the two detectors from the
interference terms. Here, β(�d/c) ≡ ∫

dt f ∗(t )g(t + �d/c)
with �d ≡ d2 − d1 and �d ′ ≡ d ′

2 − d ′
1.

The time average of the contribution of the first two inter-
ference terms to the overall coincidence is then

R1221 = RpQ2β(�d/c)β∗(�d ′/c)

×〈A∗
j+N1

Bj+N2 B∗
j+N ′

2
Aj+N ′

1
〉 j + c.c. (32)

Similarly, the contribution of the last two interference terms is

R1212 = RpQ2β(�d/c)β(�d ′/c)

×〈A∗
j+N1

Bj+N2 A∗
j+N ′

1
Bj+N ′

2
〉 j + c.c. (33)

From Eqs. (28), (32), and (33), we sum up all the contribu-
tions to obtain the overall coincidence rate for the two outputs
of the interferometer:

Rc = RpQ2
{〈|Aj+N1 |2|Aj+N ′

1
|2〉 j + 〈|Bj+N2 |2|Bj+N ′

2
|2〉 j

+〈|Aj+N1 |2|Bj+N ′
2
|2〉 j + 〈|Aj+N ′

1
|2|Bj+N2 |2〉 j

− [
β(�d/c)β∗(�d ′/c)

×〈A∗
j+N1

Bj+N2 B∗
j+N ′

2
Aj+N ′

1
〉 j + c.c.

]

−[
β(�d/c)β(�d ′/c)

×〈A∗
j+N1

Bj+N2 A∗
j+N ′

1
Bj+N ′

2
〉 j + c.c.

]}
. (34)

Compared to the stationary case in Eq. (4), we find extra
factors of β(�d/c), β(�d ′/c) in the interference terms. Since
by Cauchy’s inequality we have |β(τ )|2 = | ∫ dt f ∗(t )g(t +
τ )|2 �

∫
dt | f (t )|2 ∫

dt |g(t + τ )|2 = 1, this factor requires
the overlap of the pulses from the two input fields at each
detector and thus arises from mode match of the temporal
profiles of the two fields. It gives rise to the degree of indistin-
guishability for interference.

Besides the two mode matching factors, the pulsed case is
the same as the stationary case and gives rise to the same three
scenarios (i–iii). But we do not have the scenario (iv) since we
already assume �t > TR.

The dependence of interference terms on the mode match
factor can be used in remote sensing to probe the change of
the temporal profile when one of the fields passes through
a medium, which can cause the change in f (t ) or g(t ) and
thus β(τ ), which is related to the visibility of interference.
In fact, this was recently demonstrated with an unbalanced
Mach-Zehnder interferometer to characterize the influence of
dispersion on the temporal modes of the pulses [20]. This
corresponds to scenario (ii) with T1 = T ′

1 , T2 = T ′
2 or �T =

�T ′ 
 Tc, TR.

V. SUMMARY AND DISCUSSION

We discussed in this paper various scenarios in fourth-
order interference where path differences between inter-
fering fields are much larger than their coherence length.
We find phase-sensitive interference fringes may occur
in a number of scenarios even though there exist large
path differences beyond coherence length. The unbalanced
nature of these interference phenomena should find ap-
plications in remote optical sensing by interferometric
technique.

Although fourth-order correlations are considered, the visi-
bility of interference still depends on second-order correlation
functions. Especially, some scenarios require time-resolved
two-photon coincidence measurement within the coherence
time [scenarios A and B(ii) and B(iii)]. This indicates that
these phenomena are in essence originated from second-order
coherence either between the two interfering fields or within
each field itself. Since the coherence time gives the size of
the coherent wave packet in the stationary case, the require-
ment of time resolution is equivalent to the temporal mode
match factor of β(�d ) in the pulsed case. In some sense,
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the size of the coherent wave packet in the stationary case
is equivalent to the size of the temporal mode in the pulsed
case.

On the other hand, fourth-order correlations do contribute
to the results by adding to the baseline in the form of intensity
fluctuations in some cases [quantity λ in Eqs. (8) and (15)].

Their effect is to reduce the visibility of interference, as shown
in Eq. (11).
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