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Majorana chiral spin liquid in a model for Mott insulating cuprates
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The large thermal Hall conductivity recently detected in Mott insulating cuprates has been attributed to chiral
neutral spin excitations. A quantum spin liquid (QSL) with Majorana excitations, Chern number ±4 and large
thermal Hall conductivity is found to be an excited state of a frustrated Heisenberg model on the square lattice.
Using a Majorana mean-field theory and exact diagonalizations, we explore two possible routes to achieve this
chiral QSL, an orbital magnetic-field effect and spin-orbit couplings as present in cuprates. In particular, we
show how only the orbital magnetic field allows this topological phase to be the ground state, while it remains
an excited state of the Majorana mean field under the Dzyaloshinskii-Moriya terms. A large quantized low-
temperature thermal Hall effect can be induced in our model of Mott insulating cuprates by the orbital effect of
an applied magnetic field.
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I. INTRODUCTION

The pseudogap phase of the cuprates continues to provide
unexpected behavior. Thermal Hall experiments have recently
found a surprisingly large thermal Hall conductivity [1]. As
doping is reduced below the critical doping δ < δ∗, a negative
thermal Hall conductivity signal is observed, which becomes
the largest when reaching the Mott insulator δ ≈ 0. The large
absolute values and T dependence of the thermal Hall con-
ductivity in the undoped cuprate, La2CuO4, is very similar to
observations in several spin liquid frustrated materials such as
volborthite [2] or α-RuCl3 [3]. The half quantization thermal
Hall effect [4] observed in α-RuCl3 is interpreted in terms of
Majorana edge modes arising in the Kitaev spin liquid under
an external magnetic field. It is then an open question whether
the Mott and pseudogap phases of cuprates host unconven-
tional neutral chiral excitations which can lead to the observed
large thermal Hall effect.

Phonons have been identified as the relevant heat carriers
in the thermal Hall effect observed in the pseudogap [5,6]
and Mott insulating phases [7] of cuprates. The large values
of the thermal Hall conductivity indicates that phonons have
nonzero chirality whose origin is yet to be explained. Since
magnetic impurity effects and magnons have been discarded,
a possible scenario is that the paramagnetic phase of cuprates
is a quantum spin liquid (QSL) [8–14] with a nonzero chirality
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that is imprinted on the phonons through the spin phonon cou-
pling. An intriguing theoretical possibility, which we explore
here, is the presence of a chiral QSL with Majorana fermions
as elementary excitations similar to the Kitaev QSL relevant
to α-RuCl3.

Various chiral QSLs with either bosonic [15] or fermionic
spinons [16,17] have been proposed in previous theoreti-
cal works of the thermal Hall effect in cuprates. The chiral
bosonic spinons [15] and the π -flux phase of fermionic
spinons [17] occurring in a Heisenberg model on the square
lattice with additional interactions can lead to a large thermal
conductivity as observed in cuprates. Similarly, electrons in a
d-density wave state [18] induce a large thermal Hall effect
as observed in doped Mott insulators. An alternative scenario
for an enhanced thermal Hall response in the Mott insulating
cuprates is their proximity to a mixed state with coexisting
Néel and topological order [16]. Finally, it has been shown
how the loop currents proposed in the pseudogap phase induce
lattice distortions [6] which can effectively generate a phonon
thermal Hall effect consistent with observations.

Here, we show an alternative scenario for the enhanced
thermal response in Mott insulating cuprates based on a chiral
spin liquid state with Majorana excitations. Using a Majorana
representation of the J1-J2 Heisenberg model on the square
lattice, we find that a chiral spin liquid state breaking
time-reversal symmetry with Majorana excitations emerges
spontaneously. Such state which we denote as Majorana π -
QSL has a large associated Chern number ν = ±4, leading
to absolute values of the thermal Hall conductivity of the
order ∼k2

B/h̄ as experimentally observed. However, this chiral
spin liquid state is only an excited state of the system: the
well-known Néel, collinear and/or nonchiral disordered states
being favored for different ranges of magnetic frustration.
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Extending the Heisenberg model to account for the presence
of an external magnetic field through the orbital effect and/or
for a Dzyaloshinskii-Moriya (DM) spin-orbit (SO) coupling,
we explore whether the π -QSL becomes the absolute (GS) of
the system or not. Considering several compatible choices of
DM vectors, we show how the π -QSL is lowered in energy by
the DM but always remains an excited state of the system.
Only the orbital magnetic field is able to turn the π -QSL
into the absolute GS, consistent with observations where the
magnetic field is essential to externally trigger the transition.
Hence the magnetic-field orbital term can drive the model for
Mott insulating cuprates into the Majorana π -QSL phase with
the large thermal Hall effect as observed experimentally.

II. MODEL AND METHODS

The simplest relevant model to describe the magnetic prop-
erties of undoped cuprates is the J1-J2 S = 1/2 Heisenberg
model on the square lattice:

HH = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j, (1)

where the first sum runs over nearest-neighbor sites and the
second over next-nearest neighbors.

Electrons can couple to an external magnetic-field B
through their orbital motion. A strong coupling expansion of
the Hubbard model to O(t3/U 2) leads to the additional chiral
term [19]:

Hφ = Jφ

∑
�

Ti jk = Jφ

∑
�

Si · (S j × Sk ), (2)

where � denotes a triangle lying in the square plaquettes of
area A with vertices i jk taken in an anticlockwise direction
[see Fig. 1(a)]. The three-spin-exchange coupling is Jφ =
− 24t2t2

1
U 2 sin(2πφ/φ0), with φ = BA/2 and φ0 = hc/e the flux

quantum.
A second important ingredient is the SO coupling effect

through the DM interaction [20–22] defined as

HDM =
∑
〈i, j〉

Di j · (Si × S j ), (3)

where Di j are DM vectors. The compatible vectors Di j are
generically defined by 4 unit vectors �di with i = 1, 2, 3, 4
pointing in the different bond directions of a 4-site unit cell,
as given in Fig. 1(b). We consider in this work several cases
to explore the possibility of SO coupling to lead to a chiral
liquid state: SO compatible with cuprates like YBCO, LSCO-
LTO, LSCO-LTT as defined in Ref. [15], or SO corresponding
to Rashba-like and Dresselhaus-like couplings [23] (see Ap-
pendix D for details).

Finally, we also consider a Zeeman effect term:

Hz = −�B
∑

i

�Si, (4)

in order to explore possible nontrivial competition with the
DM SO coupling. Our analysis included in Sec, V shows how
adding the Zeeman does not change qualitatively the physics
predicted by the DM alone.

FIG. 1. Majorana chiral QSL state in the J1-J2 Heisenberg model
on a square lattice. (a) and (b) Bond conventions used for the orbital
magnetic-field term and the DM interactions. (c) The bond patterns
of the MMFT lowest energy QSL, the π -QSL. The arrows indicate
that the bond average phase is +π/2 (−π/2) in the same (opposite)
direction of the bond. An overall flux of ±π pierces each four-site
plaquette. (d) Excitation spectra of the gapless π -QSL for J2 = 0
(red) and of the gapped π -QSL arising for J2 	= 0 (J2 = J1/2 in this
plot). The Brillouin zone with high-symmetry points is displayed as
an inset.

We introduce the Majorana representation of the spins
consisting on four Majorana fermion operators c, bx, by, bz

per site as used by Kitaev [24] to exactly solve a highly
spin anisotropic model (see Appendix A) on the honeycomb
lattice. In this representation, the spin operators are Sα

i =
i
2 bα

i ci, where α = x, y, z. A three-channel mean-field decou-

pling of the interaction terms Sα
i Sβ

j in the Hamiltonian yields
to

+ 1
4

[〈
bα

i ici
〉
bβ

j ic j + 〈
bβ

j ic j
〉
bα

i ici − 〈
bα

i ici
〉〈

bβ
j ic j

〉]
− 1

4

[〈
bα

i ibβ
j

〉
ciic j + 〈ciic j〉bα

i ibβ
j − 〈

bα
i ibβ

j

〉〈ciic j〉
]

+ 1
4

[〈
bα

i ic j
〉
bβ

j ici + 〈
bβ

j ici
〉
bα

i ic j − 〈
bα

i ic j
〉〈

bβ
j ici

〉]
, (5)

where the first three terms are associated with magnetic or-
ders while the next three with spin liquid formation. With
such decoupling, our Majorana mean-field theory (MMFT)
[25] allows to analyze on equal footing QSLs(〈Si〉 = 0) as
well as magnetically ordered states. To do so, as done in
Ref. [25], we solve numerically the set of self consistent
equations, together with a physical constraint connected to
the number of particles per site that our theory has to
fulfill.

III. CHIRAL QSL WITH MAJORANA EXCITATIONS

The J1-J2 Heisenberg model on the square lattice sustains
a chiral QSL state with Majorana fermion excitations (see
Appendix A for energy analysis). Among the possible QSL
ansätze, the π -flux QSL ansatz or π -QSL from now on,
shown Fig. 1(c) has the lowest energy in a finite range of J2,
consistent with Lieb’s theorem [27]. The eight corresponding
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FIG. 2. (a) Thermal Hall conductivity of the π -QSL on the
square lattice. The T dependence of κxy/T in units of k2

B/h̄ is shown
for different J2/J1. The π -QSL leads to large absolute values of
κxy/T ∼ −k2

B/h̄ as T → 0 and an intermediate T dependence [26],

κxy/T ∝ e− T
T0 , consistent with observations in undoped cuprates.

From such exponential fit to the J2 = J1/3 theoretical results we
obtain a T0 ≈ 18 K (assuming J1 ∼ 0.1 eV), very close to exper-
imental values, T expt

0 ≈ 16−18 K for La2CuO4 and Sr2CuO2Cl2.
(b) Dependence of the chirality of the π -QSL state with Jφ obtained
from MMFT. Dependence of the Chern number of the π -QSL state
with Jφ for all J2.

Majorana bands – there are two sites per unit cell [28], labeled
A and B – are given by ±3γ (k),±γ (k) (triply degenerate)
with

γ (k) = J1

2

√
c2

1(sin2 kx + cos2 ky) +
(

2
J2

J1
c2 cos kx sin ky

)2

,

where we have defined c1 = 〈ciA ic jB〉 = 〈bα
iA

ibα
jB
〉 and c2 =

〈ciA ic jA〉 = 〈bα
iA

ibα
jA
〉. For J2 = 0, all these bands touch at the

two Dirac points (0,±π/2) in the Brillouin zone as shown
in Fig. 1(d), the π -QSL is gapless in this case. Moreover,
it minimizes the total energy with E = −0.3442J1 which is
lower than the 0-flux QSL energy. The ±π Berry phases at the
Dirac cones can lead to nontrivial topology if the gap opens
in a nontrivial manner. Indeed, this occurs when turning on a
J2 	= 0, as shown in Fig. 1(d). The gap opening lowers slightly
the energy from E = −0.3442J1 (|c1| = 0.4790) for J2 = 0
to E = −0.3443J1 (|c1| = 0.4777, |c2| = 0.0516) for J2 =
0.5 and to E = −0.3726J1 (|c1| = 0.4189, |c2| = 0.2700) for
J2 = J1. Moreover, a direct calculation of the topological
invariant Chern number ν on the occupied Majorana bands
[25] (with negative energy) shows that this state is a gapped
topological π -QSL with ν = ±4.

In Fig. 2(a) we show the thermal Hall conduc-
tivity of the π -QSL obtained from the expression
[29]

κxy

T
= k2

B

h̄

1

8(kBT )3

∫
dε

(ε − μ)2

cosh2[β(ε − μ)/2]
σxy(ε), (6)

where σxy(ε) = −∑
nk �z

n(k)θ (ε − εn(k)). Note that the
r.h.s. of Eq. (6) is half of the standard expression used

for fermionic spinons since in our MMFT approach, ther-
mal energy is transported by the Majoranas. In the limit

T → 0, we have κxy/T = −πk2
B

12h̄

∑
n∈filled νn → −2( πk2

B
6h̄ ) since

each of the four occupied bands carries a Chern number
νn = +1. Hence the thermal Hall effect is integer quan-

tized in units of ( πk2
B

6h̄ ) which is strong evidence of a chiral
QSL. In comparison, the thermal Hall effect of the Kitaev

Z2 spin liquid under weak magnetic fields is 1
2 ( πk2

B
6h̄ ), i.e.,

it is half quantized since there is a single Majorana edge
mode carrying heat. Although the overall absolute values
of κxy/T are consistent with observations (see Appendix B
for a detailed comparison) there is no experimental evidence
for the integer quantization of κxy/T at least down to the
lowest temperatures of T ∼ 8 K reached. As temperature
is raised and thermal excitations of the Majorana fermions
occur, there is a cancellation between Chern numbers of the
bands above and below zero energy and κxy/T → 0. Overall
the T dependence predicted is consistent with experimen-
tal observations in the undoped cuprate La2CuO4. Although
the magnitude of κxy/T is also consistent with experiments,
there is no evidence for the quantization of κxy/T predicted
here.

The gapped π -QSL found in the J1-J2 Heisenberg model
for J2 	= 0 is doubly degenerate since there are two possible
senses of the bond amplitudes or chiralities, 〈Ti jk〉 	= 0, with
the same energy. Hence the Chern number of the π -QSL
can have two values, ν = ±4, depending on the sign of the
chirality as shown in Fig. 2(b). It may seem that spontaneous
symmetry breaking can occur since any infinitesimal Jφ →
0± selects either the ν = 4 or the ν = −4 π -QSL solution.
However, our MMFT stability analysis below reveals that the
π -QSL is only an excitation of the pure J1 − J2 Heisenberg
model. Under a finite Jφ , the π -QSL with the favorable sign
of the chirality for the orientation of the applied B, becomes
the GS of the system. This is consistent with experiments on
the cuprates which find no thermal Hall effect when no mag-
netic field is applied implying no spontaneous time-reversal
symmetry-breaking GS.

IV. ORBITAL MAGNETIC FIELD EFFECT

We have performed fully self-consistent MMFT calcu-
lations on the J1-J2-Jφ model. The Majorana mean-field
decoupling of the three-spin term is described in detail in
Appendix C. The resulting phase diagram shown in Fig. 3
displays Néel, stripe, and spin disordered phases. For Jφ = 0
we qualitatively recover the phase diagram of the J1-J2

Heisenberg model on the square lattice. Subject of an intense
research activity since the discovery of cuprate superconduc-
tivity, recent state-of-the-art numerical works [30–33] find a
gapless QSL and a valence bond solid around J2/J1 ∼ 0.5.
Our MMFT is partially consistent with this since it predicts
a spin disordered valence bond crystal (VBC) phase sand-
wiched between the magnetically ordered Néel and collinear
phases. Note that, at the mean field level, all VBCs like the
columnar or the staggered phases, as well as possible res-
onating plaquette phases [28] are degenerate all consisting
of disconnected singlets. On the other hand, under sufficient
strong Jφ , the MMFT finds that the π -QSL becomes the
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FIG. 3. Phase diagrams of the Jφ and D models obtained from
MMFT for cluster of 2 × 32 × 32 sites. Left: Orbital magnetic field,
Jφ , model. The intermediate phase (blue region) is the π -flux QSL
with topological Chern number of ν = ±4. Right: DM, D model. For
any choice of the DM couplings, a spin disordered phase is stabilized
and a continuous transition to the respective classical magnetic state
is observed (arrow).

GS in a broad region of the J2-Jφ phase diagram. Although
nonphysical large Jφ values are needed, it is well known
that mean-field theory overestimates broken symmetry states.
Indeed, we show below how quantum fluctuation effects
strongly suppress the critical Jφ at which the π -QSL emerges
in the phase diagram.

V. SO COUPLING EFFECT

We now analyze the effect of the DM interaction parame-
terized by the D vectors. In this section, we discuss the phase
diagram of the J1-J2-D model in the presence of a SO coupling
that forces the spin rotations to be coupled with real-space
symmetry transformations. The DM term is defined as

HDM =
∑
〈i, j〉

�Di j · (�Si × �S j ), (7)

where �Di j are the DM vectors. We consider three DM vec-
tor choices compatible with YBCO, LSCO-LTO, LSCO-LTT
cuprates, and two DM vector choices realizing Rashba-like
and Dresselhaus-like SO as observed in the electronic sys-
tems considered by [23]. The corresponding �di vectors as
displayed in Fig. 1 are defined as (i) YBCO with �d1 = �d3 =
(d, 0, 0) and �d2 = �d4 = (0,−d, 0), (ii) LSCO-LTO with �d1 =
−�d3 = (d, 0, 0) and �d2 = −�d4 = (0,−d, 0), (iii) LSCO-LTT
with �d1 = −�d3 = (0, d, 0) and �d2 = −�d4 = (0, d, 0), (iv)
Rashba with �d1 = �d3 = (0, d, 0) and �d2 = �d4 = (−d, 0, 0)
and (v) Dresselhaus with �d1 = �d3 = (0,−d, 0) and �d2 =
�d4 = (−d, 0, 0). The effect of the DM term can be considered
by employing the MMFT as described in Appendix D. Three
important features can be inferred from the phase diagram
of Fig. 3. First, the π -QSL is always a stable ansatz of our
MMFT. Second, the VBC is always lower in energy than the
π -QSL, whatever the choice of the DM vectors. Finally, the
π -QSL is also always lowered with respect to D indicating
that the effect of SO coupling is positive, in the sense that it
continues to favor it even though it is an excited state (see
Appendix D).

To further understand the role of the DM term, we have
solved the J1 − J2 − D Hamiltonian by using exact diago-

FIG. 4. Density map of the gap �E on a ternary plot satisfying
J1 + J2 + D = 1 obtained by ED on the 16-site cluster. The more
white the density, the smaller the gap. Five phases are observed:
The Néel, the disordered and the collinear phases from the original
J1 − J2 model that largely extend in the phase diagram, an ordered
phase driven by D called magnetic DM, and a trivial and possibly
disordered intermediate phase dubbed the DM state, delimited by
frontiers of zero gap (white lines).

nalizations (EDs) on a 16 site cluster and the MMFT for
the case compatible with YBCO compounds. In Fig. 4, we
show a ternary plot with the constraint J1 + J2 + D = 1, of
the first gap obtained by ED. We immediately see five distinct
domains separated by zero gap lines (white regions). Along
the D = 0 line, we recover the Néel region (close to J1 = 1),
the intermediate disordered phase (0.4 < J2 < 0.6) and the
collinear phase at higher J2. We have characterized these
phases by calculating the quantum fidelity |〈ψref|ψ0〉| in the
whole parameter space by starting from four reference states
|ψref〉 chosen deep in their corresponding expected parameter
regions (see Appendix D).

To conclude this section, we want to briefly discuss the role
of the Zeeman term in our model. While it is known that the
combination of SO coupling and the presence of an external
magnetic field can induce a scalar spin chirality, it is not the
case here. We have added the Zeeman term Hz = −�B ∑

i
�Si in

the Hamiltonian and have checked for both ED and MMFT
the effect of the magnetic field for the different DM vectors
considered. As an example, we show in Fig. 5 the energy
gap obtained by ED along lines of the ternary phase diagram,
J1 = J2 and J2 = D with the constraint J1 + J2 + D = 1 and
for various �B = B�uz. As it can been seen, the physical pic-
ture remains unchanged for the J2 = D scan, and only the
phase boundaries are slightly shifted with respect to �B and
eventually the magnetic orders are destroyed by magnetic
polarization when B is strong enough e.g. on the gray curve
at B = 0.8. For J1 = J2 though, a stronger effect is observed
at B = 0.4 where a gap closing appears in the disordered
region. Our numerical analysis cannot find clear signatures of
topological order so we conclude that this phase is trivial.
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FIG. 5. Role of the Zeeman term Hz = −�B ∑
i
�Si on the system

with DM interaction (YBCO in this case) for two scans with the
constraint J1 + J2 + D = 1: J1 = J2 (up panel) and J2 = D (down
panel). The strength of the magnetic-field B is 0.0 (green), 0.2 (red),
0.4 (blue), 0.6 yellow, and 0.8 (gray).

VI. RELATION OF MMFT WITH FERMIONIC
SPINON MEAN-FIELD THEORIES

The MMFT we have used leads to the exact solution of
the highly anisotropic Kitaev model [24]. Then the question
arises: Does it make any sense to apply the MMFT to very
different models such as the isotropic frustrated Heisenberg
model on a square lattice (with additional interactions) ex-
plored here? The answer to this question is given, in part, by
Kitaev [24], who noted that mean-field states with the decou-
plings of the type of Eq. (5) could actually occur in frustrated
Heisenberg antiferromagnets (AFs) and have energies lower
than competing magnetically ordered states. Our work goes
in this direction and finds that indeed the Majorana π -QSL
state is the GS of the J1 − J2 − Jφ model in certain parameter
range. This means that competing interactions on the spins,
even on a square lattice, can allow for Majorana collective
modes.

So let us compare our MMFT results with previous alter-
native mean-field theories [16,17] in which the spin operator
is decoupled in terms of Abrikosov fermions instead: Si =
1
2 f †

iασ α fiα . In contrast to our MMFT π -QSL, the spinon π -
flux state introduced in Ref. [17] leads to a zero thermal Hall
effect on the half filled square lattice in the T → 0 limit.
This is due to a cancellation of the spin-up and spin-down
counterpropagating spinon edge states. As we have shown,
our π -QSL state has a large thermal Hall effect. On the other
hand the spinon mean-field approach of Ref. [16], which

considers the orbital magnetic-field effect, leads to a chiral
spin liquid in which spin-up and spin-down spinon edge states
circulate in the same direction leading to a large thermal Hall
effect with the same absolute values as found in our Majorana

π -QSL: |κxy/T | = π
3

k2
B
h̄ . In essence our eight Majorana bands

correspond to the four spinon bands of Ref. [16]. Since each
spinon band has νn = ±1 and only two are occupied at half

filling |κxy/T | = πk2
B

6h̄

∑
n∈filled νn = π

3
k2

B
h̄ as we find with the

MMFT. Hence the large thermal Hall effect observed can be
equally described in terms of fermionic spinon or Majorana
excitations. Although the two approaches may seem equiva-
lent regarding the thermal Hall effect, they lead to different
types of physical excitations. This suggests that other ex-
perimental probes apart from thermal Hall experiments are
needed to search for Majoranas in Mott insulating cuprates
and to be able to distinguish them from spinon excitations.
It is worth adding that, despite many years of intense re-
search, there is no conclusive evidence of the existence of
spinons in two-dimensional (2D)quantum magnets. Hence it
remains an experimental challenge how to unambiguously
determine the nature of the elementary quasiparticles in these
systems.

Additionally we note that, typically, such mean-field
Abrikosov fermion theories do not fully solve the associated
self-consistent equations and compare the energy of the π -flux
chiral spin liquid ansatz with other competing states. Hence it
is unclear if the spinon version of the π -flux chiral spin liquid
is the actual GS of the system. In contrast, our full energy
analysis does show how the Majorana π -QSL is indeed the
lowest energy state of the J1 − J2 − Jφ Heisenberg model in
certain parameter range.

VII. BEYOND MMFT

We now explore quantum fluctuation effects not contained
in the MMFT using ED techniques. There has been intense
research activity around the Heisenberg model on the square
lattice. The bare J1 − J2 Heisenberg model on the square
lattice displays a spin disordered region between the mag-
netically ordered Néel and collinear state around [34,35]
J2/J1 ∼ 0.5. The character of such intermediate disordered
state remains controversial with the most recent work [30–33]
finding a QSL for 0.4 � J2/J1 < 0.5 and a VBC for 0.5 <

J2/J1 < 0.6. Several studies have found a chiral QSL of the
Kalmeyer-Laughlin [36] type [37,38] in J1 − J2 Heisenberg
model. In contrast, under the combined effect of a DM and
a Zeeman term, an AF state with nonzero Berry curvature
occurs [15,39].

An important question is whether the π -QSL can occur
beyond the MMFT approach. In Fig. 6 we show the quantum
fidelity |〈ψref|ψ0〉| where |ψ0〉 is the GS for a given set of
parameters and |ψref〉 is a reference state at known limiting
values of the parameters (see caption of Fig. 6 and Appendix F
for more details). For Jφ = D = 0, we identify the Néel and
collinear phases a well as a possible disordered phase around
J2 ∼ 0.5 − 0.7. We also find that the phases shown in Fig. 6
arising between the Néel and collinear phase under Jφ or under
D are quite different. ED calculations of the spin structure
factor (see Appendix E) and spin chirality 〈Ti jk〉 suggest that,
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FIG. 6. Phase diagrams of the Jφ and D models (illustrated for
YBCO) obtained from ED calculations on a 4 × 4 cluster based on a
quantum fidelity analysis. The more intense the color, the closest to 1
the fidelity. Three reference states are used: (i) The pure Néel at point
J2 = Jφ = D = 0 (yellow); (ii) the collinear state J2 = 1, Jφ = D = 0
(red); and (iii) the intermediate phases at J2 = 0.65, Jφ = 1.0, D = 0
(blue), and J2 = 0.6, Jφ = 0, D = 1 (green). Left: Orbital magnetic
field, Jφ model presenting an intermediate topological QSL. Right:
DM, D model and its first-order transition to a DM state driven by D.

while the intermediate phase is spin disordered (blue region)
and chiral, 〈Ti jk〉 	= 0, in the Jφ model, in the D-model it
is nonchiral, 〈Ti jk〉 = 0 and possibly also spin disordered as
discussed below (green region). It however has to connect
with the pure D limit at which magnetic order induced by D
eventually sets in. Based on the consistent comparison of the
ED phase diagram of Fig. 6 and the MMFT phase diagram of
Fig. 3, we associate the (blue) spin disordered phase region
with the MMFT π -QSL and the (green) magnetic DM with
MMFT DM magnetically ordered phase.

Within the intermediate spin disordered phase of the Jφ

model, close to the Néel phase, we find a topological QSL.
This QSL is chiral [40,41] characterized by a nonzero Chern
number, ν = 1, associated with a two-fold degenerate GS well
separated from a continuum of excited states, as reported
previously [37]. Interestingly this phase survives down to very
low Jφ for J2 ∼ 0.6 as shown in Fig. 6. In the D-model, the
evidence for a distinct and possibly spin disordered phase is
corroborated by calculations combining the quantum fidelity,
the gap and the spin structure factor. Indeed, in contrast to
the orbital magnetic-field case, the spin phase induced by D
is clearly delimited by a gap closing associated with level
crossings (see Appendix D) suggesting, to the best of our
knowledge, a novel intermediate phase induced by SO cou-
pling. We let the analysis of this phase as a future work.

Chiral QSLs have been found to be exact GSs of S = 1/2
spin models containing the orbital effect of the magnetic field,
Hφ , on the square [37,40,41] and the triangular lattice [42]. A
non-Abelian QSL can also be stabilized by Hφ in a S = 1 spin
model on the triangular lattice [43,44]. Also a chiral QSL has
been found in the triangular lattice with four-spin terms [45]
as well as in spin models of Kagomé Mott insulators [46–49].
Thus the MMFT could help determining the nature of these
chiral QSLs.

VIII. CONNECTION WITH CUPRATE MATERIALS

In cuprates [50] t1 ∼ 0.45 eV, U ∼ 8 eV, J1 ∼ 0.1 eV, and
t2 ∼ 0.35t1 (YBCO), t2 ∼ 0.15t1 (LSCO) so that J2/J1 ∼ 0.12

(YBCO), and J2/J1 ∼ 0.023 (LSCO). Since DM is only of
a few meV, D/J � 0.1, we would predict that the system
under no magnetic field is in the Néel phase as indeed is
observed in undoped cuprates. If a magnetic field of B ∼ 10 T
is applied to the system, the flux term, Jφ/J1 ∼ 10−4 − 10−3

would be tiny. Based on the phase diagrams obtained here,
in such parameter range appropriate for cuprate materials,
J2/J1 ∼ 0.1 and Jφ → 0, the system would be immersed in
the Néel phase and so no thermal Hall effect would be ex-
pected based on our analysis. However, since the MMFT
finds (see Appendix A) that the π -QSL can coexist with the
Néel AF, the π -QSL amplitude in the GS can still lead to
a large thermal Hall effect under Jφ . Such hybrid π -QSL +
Néel AF state may also account for the anomaly observed
around (π, 0) in the magnon dispersion of square lattice AFs
[51] which could result from the decay of S = 1 magnons
into a continuum of Majorana excitations associated with the
π -QSL.

We note that a more complete model for the cuprates would
include the four-spin terms arising at O(t4/U 3) in a large
U/t expansion of the Hubbard model [52]. For instance, in
the triangular lattice [19,45] these terms stabilize a gapless
QSL with an spinon Fermi surface. Since such term is t/U
smaller than the three-spin term, we believe that our π -QSL
chiral state remains stable under this additional perturbation.
However, including these higher-order terms in our MMFT
is beyond the scope of the present work and so this question
remains open.

IX. CONCLUSIONS

We report a novel chiral QSL state with Majorana ex-
citations and Chern number ν = ±4 which occurs as an
excited state of the Heisenberg model on the square lat-
tice. MMFT predicts that this Majorana π -QSL becomes the
GS under sufficiently large Jφ consistent with a topological
chiral QSL found in ED. The thermal Hall conductivity of
this Majorana π -QSL is quantized with large absolute val-
ues |κxy/T | ∼ (k2

B/h̄) as T → 0. Our analysis then indicates
that a large low-temperature thermal Hall effect consistent
with observations in Mott insulating cuprates can be induced
in the J1 − J2 Heisenberg model by the orbital effect of an
applied magnetic field. The DM present in cuprates plays a
secondary role, eventually lowering critical Jφ’s toward more
physically realistic values, so does the combination of the
Zeeman term with DM, which is shown to only change the
boundaries of the phase diagrams without providing nontrivial
features.
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APPENDIX A: MMFT OF THE HEISENBERG
MODEL ON A SQUARE LATTICE

We first provide the details of the MMFT performed on the
J1 − J2 Heisenberg model on a square lattice. We introduce
the Majorana representation of the spin operators [24]

Sα
i = i

2
bα

i ci, (A1)

where α = x, y, z.
It is worth comparing the MMFT with the more widely

used Abrikosov fermion theories as previously noted [53].
This expression can be derived by expressing the Abrikosov
fermion representation of the spin operator in terms of
Majorana fermions

Sα
i = 1

2 f †
iσ τα

σσ ′ fiσ ′ = 1
4

(
ibα

i ci − ibβ
i bγ

i

)
, (A2)

where α, β, γ are cyclic indices for x, y, z,so, for example,
Sx

i = 1
4 (ibx

i ci − iby
i b

z
i ). The single occupancy constraint of the

Abrikosov fermions
∑

α f †
iα fiα = 1 is equivalent to bx

i by
i b

z
i ci =

1 which implies that ibα
i ci = −ibβ

i bγ

i . Substituting the con-
straints in the Eq. (A2) we recover the spin operators (A1).
Hence by introducing the spin operators Sα

i = i
2 bα

i ci in the
Hamiltonian the constraint is automatically taken into ac-
count. It can be shown how a mean-field decoupling of the
Kitaev model written in terms of (A1) recovers the exact
GS energy. This is in contrast with a conventional mean-
field Abrikosov fermion decoupling of the Kitaev model in
which the single occupancy constraint would only be treated
on average

∑
α〈 f †

iα fiα〉 = 1 leading to a ground-state energy
which is a factor of four smaller than the exact energy of
the Kitaev model [53] leading to the wrong conclusion that
a magnetically ordered state wins over the Kitaev QSL.

Hence our approach performs a mean-field decoupling of
the Heisenberg interaction terms expressed using Eq. (A1) and
additionally imposes the set of constraints,

bz
i ci = by

i b
x
i ,

by
i ci = bx

i bz
i , (A3)

bx
i ci = bz

i b
y
i ,

on average by introducing three Lagrange multipliers, λi, i =
x, y, z. Including these constraints in the MMFT has proved
essential [25] to naturally account for the opening of a topo-
logical gap in the Kitaev model under a uniform magnetic
field as first found by Kitaev [24]. As discussed above, this is
not equivalent to a mean-field decoupling using an Abrikosov
fermion representation since the single occupancy constraint
would be incorporated only on average. In particular, QSL
states in the Abrikosov fermion picture would be unfavored
with respect to magnetically ordered phases [53].

Any bilinear of spins Sα
i Sβ

j can be mean-field Hartree-Fock
decoupled as

+ 1
4

[〈
bα

i ici
〉
bβ

j ic j + 〈
bβ

j ic j
〉
bα

i ici − 〈
bα

i ici
〉〈

bβ
j ic j

〉]
− 1

4

[〈
bα

i ibβ
j

〉
ciic j + 〈ciic j〉bα

i ibβ
j − 〈

bα
i ibβ

j

〉〈ciic j〉
]

+ 1
4

[〈
bα

i ic j
〉
bβ

j ici + 〈
bβ

j ici
〉
bα

i ic j − 〈
bα

i ic j
〉〈

bβ
j ici

〉]
,

(A4)

where the first three terms are associated with magnetic order-
ing while the rest with spin liquid formation. This decoupling
is performed on the Heisenberg terms of the Hamiltonian
(α =β). The constraints in Eq. (A3) are enforced at the mean-
field level through the set of Lagrange multipliers, {λi}. Since
there is no contribution from the last three terms we neglect
them in our present analysis.

In order to be able to describe collinear phases, four-site
unit cells are used in actual calculations. Here we describe the
implementation of the MMFT equations assuming a two-site
unit cell allowing for Néel and/or π -flux QSL states. The di-
agonalization of the Hamiltonian is performed in momentum
space by first performing a Fourier transform of the Majo-
ranas,

ca
j =

√
2

Nc

∑
k

eikR j ca(k), (A5)

where we have used here, for convenience, the notation c0
j =

c j, c1
j = bx

j, c2
j = by

j, c3
j = bz

j . On the other hand, the operators
in momentum space, ca(k), satisfy ca(k) = ca†(−k) due to
the property ca

i = ca†
i which leads to standard fermionic an-

ticommutation relation {ca†(k), cb†(k′)} = {ca(k), cb(k′)} =
0, {ca(k), cb†(k′)} = δabδ(k − k′). We have

HMMF(k) =
(

HAA(k) HAB(k)

HBA(k) HBB(k)

)
,

where A, B are the two sublattices in which the original lattice
is divided. Since the spin operators are expressed through four
Majorana fermions {c, bx, by, bz}, each block, Hab with a, b =
A, B is a 4 × 4 matrix.

The Hamiltonian block associated with sites in the same
sublattice, a = A, B, reads

Haa(k) =

⎛
⎜⎜⎜⎜⎜⎝

H00
aa (k) − i

4λax − i
4λay − i

4λaz

i
4λax Hxx

aa (k) i
4λaz − i

4λay

i
4λay − i

4λaz Hyy
aa (k) i

4λax

i
4λaz

i
4λay − i

4λax Hzz
aa(k)

⎞
⎟⎟⎟⎟⎟⎠,

where

H00
aa (k) = − iJ2

4

∑
〈〈ia ja〉〉

∑
α

〈
ibα

ia bα
ja

〉
eik·δia ja

Hαα
aa (k) = − iJ2

4

∑
〈〈i j〉〉

〈
icia c ja

〉
eik·δia ja , (A6)

with α = x, y, z.
The Hamiltonian block associated with the A − B interac-

tion reads

HAB(k) =

⎛
⎜⎜⎜⎜⎝

H00
AB(k) 0 0 0

0 Hxx
AB(k) 0 0

0 0 Hyy
AB(k) 0

0 0 0 Hzz
AB(k)

⎞
⎟⎟⎟⎟⎠,
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FIG. 7. Dependence of properties of various MMFT solutions with J2. From top to bottom: AF moment (M), energy per site (E) absolute
value of π -QSL amplitude (|〈ciic j〉|)), and Chern number (|ν|) are shown for the hybrid π -QSL (blue solid lines). The energies of the spin
disordered VBC (red solid line) and the pure (M = 0) π -QSL (black solid line) are also shown for comparison. J1 = 1 in this plot.

where

H00
AB(k) = − iJ1

4

∑
〈iA jB〉

∑
α

〈
ibα

iA bα
jB

〉
eik·δiA jB

Hαα
AB (k) = − iJ1

4

∑
〈iA jB〉

〈
icα

iA cα
jB

〉
eik·δiA jB . (A7)

The self-consistent loop proceeds as follows. A random
guess of variational parameters 〈icα

ia
cα

jb
〉, 〈ibα

ia
bα

jb
〉 is injected

in HMMF (k) and the Hamiltonian diagonalized. The set of
Lagrange multipliers {λi} is fixed by the single occupancy
constraint in Eq. (A3) using a least-squares minimization.
Finally, we find a new set of variational parameters obtained
from the mean-field GS which is a Slater determinant con-
structed from the filled orbitals of the mean-field Hamiltonian.
These three steps are repeated until convergence with the
desired tolerance is reached.

We now analyze the π -flux solution to the J1-J2 Heisenberg
model discussing the role played by Néel AF. We also explore
other possible quantum spin disordered solutions such as the

VBC. We focus on the 0 < J2 < 0.5 regime which is sufficient
for our purposes.

1. π-QSL solution

For the π -flux QSL bond pattern shown in Fig. 1 of the
main text, the Majorana mean-field Hamiltonian is

H00
AA(k) = J2

∑
α

〈
bα

iA ibα
jA

〉
cos(kx ) sin(ky)

Hαα
AA (k) = J2

〈
ciA ic jA

〉
cos(kx ) sin(ky),

H00
AB(k) = i

J1

4

∑
α

〈
bα

iAibα
jB

〉
(−2i sin(kx ) + 2 cos(ky))

Hαα
AB (k) = i

J1

4
〈ciAic jA〉(−2i sin(kx ) + 2 cos(ky)), (A8)

where 〈ciA ic jB〉 = 〈bα
iA

ibα
jB
〉 > 0, and 〈bα

iA
ibα

jA
〉 = 〈ciA ic jA〉 < 0

with α = x, y, z for the flux pattern in Fig. 1 which has a
Chern number of ν = −4. Also we have H00

BB(k) = −H00
AA(k)

and Hαα
BB (k) = −Hαα

AA (k).
The resulting Majorana dispersions can be obtained analyt-

ically, ±3γ (k),±γ (k) (triply degenerate), with

γ (k) = J1

2

√
c2

1(sin2(kx ) + cos2(ky)) +
(

J2

J1

)2

(2c2 cos(kx ) sin(ky))2, (A9)

where c1 = 〈ciAic jB〉 = 〈bα
iA

ibα
jB
〉, c2 = 〈ciA ic jA〉 = 〈bα

iA
ibα

jA
〉.

These are the expressions quoted in the main text.
The dependence of the π -QSL energy with J2/J1 is

shown in Fig. 7. The energy is almost constant in the range

shown: E (J2 = 0) = −0.3442, E (J2 = 0.5) = −0.3443. The
lowering of the energy with J2 due to the opening of
the topological gap is evident, for instance, E (J2 = 1) =
−0.372675.
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2. π-QSL + Néel AF

An important aspect of the physics of undoped cuprates
though, which we have ignored up to now, is Néel AF. For
J2 = 0 we expect a Néel state in the square lattice. We have
searched for hybrid π -flux QSL + Néel AF solutions. In-
deed a nonzero AF moment is present for 0 < J2 < 0.43 as
shown in Fig. 7. For J2 < 0.25 the Néel-AF is fully saturated,
M = 0, 5, and so the energy follows the classical linear depen-
dence with J2: ENéel = −0.5 + 0.5J2 (taking J1 = 1) shown in
Fig. 7. In contrast, for 0.24 < J2 < 0.43, a π -QSL + Néel AF,
i.e., a state having M < 0.5 and |〈cic j〉| 	= 0 arises. A topolog-
ical transition occurs at J2 ∼ 0.43 where Néel AF fades away
and the pure π -QSL with |ν| = 4 wins. Figure 7 indeed shows
how the energy of the π -QSL+Néel AF converges to the
energy of the pure π -QSL a J2/J1 at sufficiently large J2/J1.

Although our MMFT π -QSL + Néel AF is always gapped,
the gap for J2 < 0.43 associated with the Néel order is trivial
while the gap for J2 > 0.43 in the π -QSL phase is topological
with Chern number, |ν| = 4. Hence even though a hybrid π -
flux QSL + Néel AF actually occurs in the MMFT equations,
such state is nontopological; in fact, only the pure π -QSL is
topological. However, this could be an artifact of the MMFT
in which broken symmetry states are treated classically.

The hybrid π -QSL + Néel AF state is not the lowest
energy state in the whole 0 < J2/J1 < 0.5 range. The spin
disordered VBC consisting of singlets between n.n. spins has
an energy per site of EV BC = −0.375 J1 for any J2/J1 since the
singlets are effectively decoupled. As shown in Fig. 7 the VBC
state wins for J2/J1 > 0.25, actually the onset of the hybrid
π -QSL + Néel AF state occurs. Although our total energy
analysis suggests that a direct transition from a Néel AF to
a VBC occurs around J2 ∼ 0.25J1, it also indicates that a
π -QSL + Néel AF is a possible self-consistent solution of the
MMFT. Theories beyond the Majorana mean-field treatment
including quantum fluctuations may stabilize a coexistent π -
QSL + Néel AF state with nontrivial topological properties.

APPENDIX B: DETAILS ON THE TEMPERATURE
DEPENDENCE OF THERMAL HALL CONDUCTIVITY

In the main text we have stated that the thermal Hall
conductivity can be fitted in a broad temperature range
to a exponential form κxy/T ∝ e−T/T0 . Such exponential
forms are observed experimentally in an intermediate
temperature range [5]. Here we provide details about
these fits. Our theoretical calculations can be nicely
fitted to the following expressions: κxy/T ∼ A + Be−T/T0

as shown in Fig. 8. For J2/J1 = 1/3 the fit is κxy/T ∼
−0.02508 − 1.02225e−T/0.015, for J2/J1 = 0.5 the fit is
κxy/T ∼ −0.0905446 − 1.13263e−T/0.029, and for J2/J1 = 1
the fit is κxy/T ∼ −0.0821182 − 1.41715e−T/0.08045. Using
appropriate parameters for the cuprates J1 ∼ 0.1eV would
lead to the temperature scales T0(J2/J1 = 1/3) ∼ 18K,
T0(J2/J1 = 1/2) ∼ 35K , and T0(J2/J1) ∼ 93.4 K.

We can compare our theoretical MMFT results with the 2D
thermal conductivity obtained from experiments. Experimen-
tal data of La2CuO4 and Sr2CuO2Cl2 have been found to have
the T dependence κ

expt
xy /T ∼ (−0.0132 − 3.234e−T/T expt

0 ) ×
10−9 mW

K2 with T expt
0 ∼ 17K . The theoretical curve with clos-

FIG. 8. Exponential temperature dependence of the thermal Hall
conductivity. Fits of our calculated MMFT thermal Hall conductivity
to κxy/T ∼ A + Be−T/T0 are shown.

est T0 corresponds (taking J1 ∼ 0.1 eV) to J2/J1 = 1/3
(T0 ∼ 18 K) and has the dependence κxy/T ∼ (−0.01618 −
1.2073e−T/T0 ) × 10−9 mW

K2 . Since the cuprates are typically in
the low J2/J1 parameter regime, we conclude that our MMFT
predictions for κxy are consistent with available experimental
data.

APPENDIX C: THREE-SPIN MAGNETIC ORBITAL TERM

We now apply the MMFT to the magnetic orbital contribu-
tion considered in the main text:

Hφ = Jφ

∑
�

Si · (S j × Sk ), (C1)

where the sum is taken over all triangular plaquettes of the
square lattice.

This kind of three-spin term has been discussed in the
context of bosonic and fermionic spinon theories of the Hub-
bard model in the large-U limit [15,17,19]. Actually fermionic
mean-field theories provide an exact solution of the large-N
limit of the model as has been shown in the SU(N) Heisen-
berg model [54]. In order to make direct contact with these
approaches, we apply the MMFT decoupling directly onto the
large-N expression for the chiral three-spin terms. Our start-
ing point is the full expression of the three-spin contribution
expressed in terms of Abrikosov fermions [19]:

Si · (S j × Sk ) = − i

4
(Pi jk − P†

i jk ), (C2)

where Pi jk = ( f †
iσ fiσ ′ )( f †

jσ ′ f jσ ′′ )( f †
kσ ′′ fkσ ) exchanges three

fermions around the triangular plaquette. Note that the
Einstein notation for the sums over spin indices is assumed
in this section for simplicity. The mean-field treatment of
this contribution consists of contracting only the fermionic
operators with the same spin, which leads to the large-N
expression

Si · (S j × Sk ) = − i

4
[( f †

jσ ′ fiσ ′ )( f †
kσ ′′ f jσ ′′ )( f †

iσ fkσ )

− ( f †
kσ

fiσ )( f †
jσ ′′ fkσ ′′ )( f †

iσ ′ f jσ ′ )]. (C3)
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FIG. 9. Three-spin magnetic orbital interactions.

The fermions satisfy f †
iα fiα = 1. It can be shown that even for

the not so large value N = 2 the contractions neglected do
not qualitatively change the physics. Defining χi j = f †

jα fiα the
mean-field Hamiltonian, Hφ reads

HMF
φ = i

Jφ

4

∑
�

[χi j〈χ jk〉〈χki〉 − 〈χik〉〈χk j〉χ ji

+〈χi j〉χ jk〈χki〉 − 〈χik〉χk j〈χ ji〉
+ 〈χi j〉〈χ jk〉χki − χik〈χk j〉〈χ ji〉
− 2(〈χi j〉〈χ jk〉〈χki〉 − 〈χik〉〈χk j〉〈χ ji〉)], (C4)

where the sum is over all triangular plaquettes with vertices
i jk.

Performing a Majorana transformation,

fi↑ = 1
2

(
ci − ibz

i

)
, f †

i↑ = 1
2

(
ci + ibz

i

)
fi↓ = 1

2

(
by

i − ibx
i

)
, f †

i↓ = 1
2

(
by

i + ibx
i

)
, (C5)

leads to the decomposition in terms of the Majoranas

f †
iα f jα = 1

4

(
cic j − icib

z
j + ibz

i c j + bz
i b

z
j + by

i b
y
j

− iby
i b

x
j + ibx

i by
j + bx

i bx
j

)
. (C6)

We consider mean-field solutions with nonzero bond fluxes
i.e., 〈χi j〉 = ±iRi j with Ri j ∈ R leading to the terms

〈χ jk〉〈χki〉 f †
iα f jα − 〈χik〉〈χk j〉 f †

jα fiα

= ± 1
4 RjkRki

[
(cic j − c jci ) + (

bx
i bx

j − bx
jb

x
i

)
+ (

by
i b

y
j − by

jb
y
i

) + (
bz

i b
z
j − bz

jb
z
i

)]
, (C7)

where the final overall sign in front depends on the final
bond flux orientation. Hence the final Hamiltonian, HMF

φ , will
only contain diagonal contributions. Since HMF

φ as well as
the Heisenberg Hamiltonian is diagonal in the Majoranas, we
have that

Ri j = 1

4

(
〈cic j〉 +

∑
α

〈
bα

i bα
j

〉)
. (C8)

The eight three-spin plaquettes renormalizing the Heisen-
berg exchange couplings between an A spin and its nearest-
neighbor B and also its next-nearest-neighbor B spin are

shown in Fig. 9. While the three-spin terms

S1 · (S4 × S2 + S3 × S4 + S8 × S7 + S7 × S5) (C9)

are involved in the 1−4 and 1−7 n.n.n. couplings, the terms

S1 · (S6 × S3 + S5 × S6 + S2 × S9 + S9 × S8) (C10)

renormalize the n.n.n. 1−6 and 1−9 exchange couplings. On
the other hand, the terms

S1 · (S3 × S2 + S3 × S4 + S6 × S3 + S5 × S3 + S2 × S8

+ S9 × S8 + S8 × S7 + S8 × S5)

renormalize the n.n. 1−3 and 1−8 couplings, while

S1 · (S2 × S9 + S2 × S8 + S4 × S2 + S3 × S2

+ S5 × S6 + S5 × S3 + S7 × S5 + S8 × S5), (C11)

the n.n. 1−2 and 1−5 couplings.
The three-spin terms evaluated on zero-flux mean-field

solutions such as a zero-flux QSL or a VBC solution lead
to cancellations so that 〈HMF

χ = 0〉. Hence to illustrate the
effect of the three-spin terms we evaluate HMF

χ on a π -QSL
bond pattern. Introducing the corresponding MMFT bond
amplitudes 〈ciic j〉 and 〈bα

i ibα
j 〉 in Ri j we find the complete

mean-field Hamiltonian (including the Heisenberg contribu-
tion)

H00
AA(k) =

(
J2

∑
α

〈
bα

iA ibα
jA

〉 + JφR2
1

)
cos(kx ) sin(ky)

Hαα
AA (k) = (

J2
〈
ciA ic jA

〉 + JφR2
1

)
cos(kx ) sin(ky),

H00
AB(k) = i

4

(
J1

∑
α

〈
bα

iAibα
jB

〉 + JφR1R2

)

× (−2i sin(kx ) + 2 cos(ky))

Hαα
AB (k) = i

4
(J1〈ciAic jA〉 + JφR1R2)(−2i sin(kx ) + 2 cos(ky)),

(C12)

where Ri j = R1 for nearest-neighbor and Ri j = R2 for next-
nearest-neighbor bonds. We also have H00

BB(k) = −H00
AA(k)

and Hαα
BB (k) = −Hαα

AA (k). From the mean-field Hamiltonian
derived in Eq. (C12), it is evident that the three-spin terms
just modify the bare Heisenberg amplitudes of the π -QSL
solution. It is worth noting that even a pure Hφ model with
infinitesimally small nonzero Jφ will induce a π -QSL on the
square lattice.

APPENDIX D: DETAILS ON SO COUPLING EFFECTS

For each set of DM vectors defined in the main text, we
have systematically compared the energies of the two most
relevant ansatze found by the MMFT, namely the VBC state
and the π -QSL state. This is displayed in Fig. 10.

Three important features can be noted. First, the π -QSL
is always a stable anstaz of our MMFT. Second, the VBC is
always lower in energy than the π -QSL, whatever the choice
of the DM vectors. Finally, the π -QSL is also always lowered
with respect to D indicating that the effect of SO coupling is
positive, in the sense that it continues to favor it even though
it is an excited state.
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FIG. 10. Comparison of the energy of the VBC and the π -QSL ansatze for the five compatible DM vector choices. The π -QSL always
remains an excited state with respect to the VBC one, but the effect of D is to lower its energy hence indicating a positive effect of SO coupling
onto this state.

In Fig. 4, we have shown the five distinct domains sep-
arated by zero gap lines (white regions). As said, in order
to characterize these phases we have calculated the quantum
fidelity |〈ψref|ψ0〉| in the whole parameter space by starting
from 4 reference states |ψref〉 chosen deep in their correspond-
ing expected parameter regions. They are indicated by black
points in Fig. 11 for each of the four panels, and the value
of the quantum fidelity, ranging from 0 to 1, scales from
white (0) to full colored (1) hexagons respectively. Strikingly,
already on such a limited cluster, the fidelity gives strong
indications about the phase boundary locations. For instance,
from the overlap with the pure Néel state obtained at J1 = 1,
we find that the Néel region extends in the lower right part
of the ternary plot (yellow points). A very small, yet finite,
fidelity can be found in the DM region as J1 decreases, but
considering that the Néel region is unambiguously character-
ized by a fidelity close to one then, along the J2 = 0 line,
the Néel region ends around J1 � 0.4. What is remarkable

here is that the Néel, the DM and the collinear regions are
well separated even when the transition is second order (no
level crossings). As previously mentioned, starting from a
different reference state allows us to span entire regions of
this model with close-to-one fidelities. This is in particular
the case for the intermediate region (blue centered domain
of the upper-left panel of Fig. 11) delimited by a frontier of
zero energy gap as can be observed in Fig. 5. This region
(the blue one in Fig. 11) is gapped and possibly magnetically
disordered since the spin structure factor, S(Q), is rather fea-
tureless displaying only weak structures as shown in Fig. 12.
We have denoted this intermediate phase the DM state in the
main text. Finally, at large D, the system enters a fourth phase
which is magnetically ordered. This can be interpreted as a
quantum version of the magnetic DM state obtained with the
MMFT approach. To the best of our knowledge, the interme-
diate possibly disordered DM state has never been reported
so far.
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FIG. 11. Quantum fidelity computed by ED for 4 different reference sites (black points). A quantum fidelity of 1 corresponds to full colored
point while a zero one corresponds to white hexagons. Four clear regions can be clearly identified, as mentioned in Fig. 5. The disordered phase
of the raw J1 − J2 model cannot be clearly identified in such a small cluster, but clearly appears in the gap of Fig. 5 (extended white region).

APPENDIX E: MAGNETIC ORDER FROM ED

The various magnetic orders in the models considered are
investigated by evaluating the ED static spin structure factor:

S(Q) = 1

N

∑
i j

eiQ·(Ri−R j )〈Si · S j〉, (E1)

where N is the number of sites of the cluster.
In Fig. 12 we compare the S(Q) calculated on a 4 × 4

cluster for different parameters of the J1 − J2 − D and J1 −
J2 − Jφ models. The Néel and collinear phases display a large
clear structure at their corresponding (π, π ) and (π, 0) order-
ing wave vectors, respectively. This behavior is in contrast to
the structureless S(Q) of the possible spin disordered phase
(around J2/J1 = 0.6) or the weak structure around (π, 0)

((π, π/2)) of the Jφ (D) dominated phase. The fact that these
three last phases display comparable value of S(Q) indicate
that they are disordered or very weakly magnetically ordered.

APPENDIX F: MAGNETIC ORBITAL MODEL
ED PHASE DIAGRAM

Repeating the same calculation of the quantum fidelity for
the Jφ model allows for deriving the complete ternary phase
diagram with constraint J1 + J2 + Jφ = 1. This is displayed
in Fig. 13.

At the opposite of the pure DM model, the orbital magnetic
effect does not possess first-order transitions to a fourth and
intermediate phase, but only continuous transitions between
the three limiting cases, Néel (yellow), Collinear (red) and
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FIG. 12. Effect of Jφ and D on magnetic order of the Heisenberg
model on the square lattice. The spin structure factor, S(Q), obtained
from ED on a 4 × 4 cluster is shown along the path in the first
Brillouin zone of Fig. 1 of the main text. We compare the S(Q) in the
Néel, J2/J1 = 0, Jφ = D = 0 (blue line) collinear, J2/J1 = 1, Jφ =
D = 0 (black line), spin disordered, J2/J1 = 0.6, Jφ = D = 0 (pink
line), J2/J1 = 0.6, Jφ = 1, D = 0 (orange line) and D-state J2/J1 =
0.6, D = 1 (green line). S(Q) is only evaluated at the points shown
so the lines are just guides for the eye.

pure disordered state (blue). This shows that, even close in
their formal expression, the SO and the orbital magnetic effect
behave differently.

FIG. 13. Ternary phase diagram of the Jφ model obtained from
quantum fidelities based on three reference points located at the
corners (the three colors).
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