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Response strengths of open systems at exceptional points
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Open quantum and wave systems exhibit exotic degeneracies at exceptional points in parameter space that have
attracted considerable attention in various fields of physics, including optics and photonics. One reason is the
strong response of open systems at such degeneracies to external perturbations and excitations. We introduce two
characteristics of exceptional points that quantify the response in terms of energy eigenvalues and eigenstates,
intensity, and dynamics. The concept is verified for several physically relevant examples. This work provides a
new perspective on the physics of exceptional points.
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I. INTRODUCTION

Various aspects of open systems are often very well de-
scribed by a non-Hermitian effective Hamiltonian [1,2], e.g.,
atoms in optical potentials [3,4], microwave cavities [5], one-
dimensional nanostructures [6], nuclear physics [7], optical
microcavities [8–10], parity-time-symmetric electronics [11],
and coupled laser arrays [12]. The non-Hermiticity or nonself
adjointness of the Hamiltonian Ĥ0 �= Ĥ†

0 implies that the en-
ergy eigenvalues can be complex-valued with the imaginary
part determining a decay or growth rate. Furthermore, if the
Hamiltonian is nonnormal, meaning that [Ĥ0, Ĥ†

0 ] �= 0, then
its (right) eigenstates are in general mutually nonorthogonal.
The nonorthogonality can be strong near exceptional points
(EPs) in parameter space [13–17], where at least two eigen-
states become collinear. EPs have been observed in numerous
experiments, e.g., in microwave cavities [18–21], optical mi-
crocavities [22–25], coupled atom-cavity composites [26],
photonic lattices [27], semiconductor exciton-polariton sys-
tems [28], and ultrasonic cavities [29].

A simple and informative example of a linear operator at
an EP is the 2 × 2 matrix

Ĥ0 =
(

E0 A0

0 E0

)
, (1)

which for A0 �= 0 has only one eigenvector (1, 0)T, so the ge-
ometric multiplicity is 1; the superscript T marks the transpose
of the vector. Its eigenvalue is EEP = E0 ∈ C with an algebraic
multiplicity of 2. The special case A0 = 0 is a conventional de-
generacy, also called diabolic point (DP) [30], where only the
eigenvalues degenerate but two orthogonal eigenvectors can
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be chosen, e.g., (1, 0)T and (0, 1)T. Here both the geometric
and the algebraic multiplicity are 2.

One characteristic property of an EP is its order n � 2. At
an EP of order n (EPn), exactly n eigenvalues and the cor-
responding eigenstates coalesce. The geometric multiplicity
is 1 while the algebraic multiplicity is n. When a nonnormal
Hamiltonian Ĥ0 at an EPn is subjected to a small perturbation
of nondimensional strength ε > 0,

Ĥ = Ĥ0 + εĤ1, (2)

then the resulting energy (or frequency) splittings are gener-
ically proportional to the nth root of ε [13], which for
sufficiently small perturbations is larger than the linear scaling
near a DP. Shortly after it had been suggested to exploit these
larger splittings at EPs for sensing applications [31], several
experiments have proven the feasibility of EP-based sensors
[32–40]; a review of recent progress can be found in Ref. [41].
To continue the example in Eq. (1) we add the perturbation
Hamiltonian

Ĥ1 =
(

C1 A1

B1 C1

)
(3)

to Ĥ0 as in Eq. (2) leading to the change of energy eigenvalues

Ej − EEP = √
ε
√

A0B1 + O(ε), (4)

where the positive sign of the square root corresponds to
E1 and the negative to E2. The splitting between these two
eigenvalues is proportional to

√
ε for small ε, as expected for

an EP of second order. Notice that A0 is the only parameter
of the unperturbed Hamiltonian (1) that determines the size
of the splitting. This quantity has therefore been called the
“strength” of the EP [42].

The aim of the present paper is to generalize the concept
of the “strength” of an EP to n × n Hamiltonians at an EPn,
where the order n can be two or larger. For this we introduce
two response strengths which describe the response of a given
quantum system at an EP in at least four different situations:
(i) the spectral response to perturbations, (ii) the eigen-
state response to perturbations, (iii) the intensity response to
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excitations, and (iv) the dynamic response to initial deviations
from the EP eigenstate.

The outline of the paper is as follows. Section II intro-
duces some necessary mathematical preliminaries. In Sec. III
we discuss the response of quantum systems at an EP to
perturbations. In Sec. III A we derive an upper bound for
the change of the eigenenergies and introduce the spectral
response strength. The relation to pseudospectra is covered
in Sec. III B. An upper bound for this response strength in
passive systems is derived in Sec. III C. In Sec. III D we show
that the quantification of the eigenstate response to perturba-
tions requires a second response strength. Sections IV and V
reveal that the spectral response strength also quantifies the
intensity response to excitations and a certain type of dynamic
response. Section VI illustrates the concept for a number of
physically relevant examples. A summary is given in Sec. VII.

II. MATHEMATICAL PRELIMINARIES

This section aims at giving a basic introduction to some
mathematical concepts to set the background for this article.

A. Matrix norms

Physicists are familiar with vector norms, or more pre-
cisely with the vector 2-norm ||ψ ||2 = √〈ψ |ψ〉 of a vector
|ψ〉 based on the usual inner product in complex vector space.
Matrix norms are much less familiar to physicists. A norm
||Â|| is a mapping of a matrix Â to the nonnegative real
numbers. The defining properties of the matrix norm, see, e.g.,
Ref. [43], are for all matrices Â, B̂ and complex numbers α (i)
||Â + B̂|| � ||Â|| + ||B̂||, (ii) ||αÂ|| = |α|||Â||, (iii) ||Â|| = 0
if and only if Â = 0, and (iv) ||ÂB̂|| � ||Â|| ||B̂||. The nonneg-
ativity of ||Â|| follows from (i) and (ii).

On top of these defining properties we require the matrix
norm to be compatible with the vector 2-norm and to be
unitarily invariant. A matrix norm is said to be compatible
with the vector 2-norm if for all matrices Â and vectors |ψ〉

||Âψ ||2 � ||Â|| ||ψ ||2. (5)

A matrix norm is said to be unitarily invariant if for all
matrices Â and all unitary matrices Û and V̂

||Û ÂV̂ || = ||Â||. (6)

Prominent examples of matrix norms fulfilling Eqs. (5) and
(6) are the Frobenius norm

||Â||F :=
√

Tr(Â†Â) (7)

with the trace Tr and the spectral norm

||Â||2 := max
||ψ ||2=1

||Âψ ||2. (8)

As usual, the same notation is used for the spectral norm and
the vector 2-norm, but the meaning is always clear from the
context. Both the Frobenius and the spectral norm can be
expressed by the singular values σ1 � σ2 � . . . � 0 of the
considered matrix Â as

||Â||F =
√∑

j

σ 2
j and ||Â||2 = σ1. (9)

From the last relations it is evident that

||Â||2 � ||Â||F, (10)

with the equality for rank-1 matrices, since the rank of a
matrix is equal to the number of nonzero singular values. In
addition, the spectral norm is even the smallest norm that is
compatible with the vector 2-norm. This beneficial statement
follows by a comparison of Eqs. (5) and (8).

B. Jordan vectors

We consider in this article an n × n-Hamiltonian Ĥ0 at
an EP of order n with eigenvalue EEP ∈ C and eigenstate
|ψEP〉. To establish a basis in the n-dimensional general-
ized eigenspace n − 1 more vectors are needed. The basis
can be provided by the linearly independent Jordan vectors
| j1〉, | j2〉, . . . , | jn〉 defined by the Jordan chain (see, e.g.,
Ref. [44])

(Ĥ0 − EEP1)| j1〉 = 0, (11)

(Ĥ0 − EEP1)| jl〉 = | jl−1〉 ; l = 2, . . . , n, (12)

where 1 denotes the identity. Only | j1〉 is an eigenstate of the
Hamiltonian, which is | j1〉 = |ψEP〉. The other Jordan vectors
are often called generalized eigenvectors. These vectors are
not uniquely determined and can be redefined as

| j′1〉 = c1| j1〉 (13)

| j′2〉 = c1| j2〉 + c2| j1〉 (14)

...

| j′n〉 = c1| jn〉 + c2| jn−1〉 + . . . + cn| j1〉, (15)

where c1, . . . , cn are arbitrary complex numbers with c1 �= 0.
In the following we use this freedom to require

〈 j1| j1〉 = 1, (16)

〈 jn| jl〉 = 0 for l = 1, . . . , n − 1, (17)

where here and henceforth we suppress the ′.

III. RESPONSE TO PERTURBATIONS

A. Spectral response

In this section we consider the response of a system at
an EP to perturbations. Similar concepts can be found in the
mathematical literature, e.g., in Refs. [45–47]. However, our
approach is more elementary and presented in physical terms,
such as the Green’s function, which is useful also for later
sections. Our starting point is the eigenvalue equation of the
Hamiltonian (2)

(Ĥ0 + εĤ1)|ψ j〉 = Ej |ψ j〉 (18)

with eigenvalues Ej and eigenvectors |ψ j〉 normalized to
unity, i.e., ||ψ j ||2 = 1. Equation (18) can be written as

|ψ j〉 = εĜ(Ej )Ĥ1|ψ j〉 (19)

with the Green’s function (resolvent) of the unperturbed
Hamiltonian

Ĝ(E ) := (E1 − Ĥ0)−1. (20)

023121-2



RESPONSE STRENGTHS OF OPEN SYSTEMS AT … PHYSICAL REVIEW RESEARCH 4, 023121 (2022)

Taking the vector norm on both sides of Eq. (19) and using the
normalization of the eigenvector gives

1 = ε||Ĝ(Ej )Ĥ1ψ j ||2. (21)

Exploiting the compatibility of the matrix norm to the vector
norm (5) twice we get the inequality

1 � ε||Ĝ(Ej )|| ||Ĥ1||. (22)

In the following, we consider the n × n Hamiltonian Ĥ0 to
be at an EPn with eigenvalue EEP and restrict ourselves to an
n-dimensional Hilbert space H. In this generalized eigenspace
the matrix

N̂ := Ĥ0 − EEP1 (23)

is nilpotent of index n; hence N̂n = 0 but N̂n−1 �= 0.
According to Refs. [13,48] the Green’s function near an

EPn is

Ĝ(E ) = 1

E − EEP
+ Ĝ2

(E − EEP)2
+ . . . + Ĝn

(E − EEP)n
(24)

with the definition

Ĝk := N̂k−1. (25)

For the convenience of the reader, an elegant derivation is
included in Appendix A. We consider only the nth-order
contribution of the Green’s function which is the dominant
contribution if (i) the energy Ej is sufficiently close to EEP for
small perturbation strength ε and (ii) the generic situation with
[cf. Eq. (21)]

ĜnĤ1|ψ j〉 �= 0 (26)

applies. Plugging this leading-order contribution into the in-
equality (22) gives

|Ej − EEP|n � ε||Ĥ1|| ||Ĝn||. (27)

This inequality gives an upper bound for the energy splitting
|Ej − EEP| near an EPn. There is a large body of literature
in mathematics on perturbation bounds for eigenvalues of
nonnormal matrices. In the nondegenerate case this is the cele-
brated Bauer-Fike theorem [49], which has the same structure
as Eq. (27) except for the exponent n and ||Ĝn|| replaced by
the spectral condition number. For the degenerate case, i.e.,
at an EP, most of the works provide bounds in terms of the
eigenvectors [50], with some exceptions, e.g., Refs. [45,46].
In the later references similar inequalities as (27) had been
derived. However, their results are less explicit and more
difficult to handle than the one presented here.

The bound given by Eq. (27) can be seen also as the spec-
tral radius of Ĥ − EEP1. It factorizes into two parts; the first
part depends only on the perturbation strength ε and the per-
turbation Hamiltonian Ĥ1. In contrast, the second part depends
via Eqs. (23) and (25) only on the unperturbed Hamiltonian.
We call it the spectral response strength associated to the EP

ξ := ||Ĝn||2. (28)

Here we have specified the norm to be the spectral norm.
The spectral norm is privileged because it is the smallest
norm compatible with the vector 2-norm. It therefore gives

the tightest bounds. Inequality (27) turns into the important
result

|Ej − EEP|n � ε||Ĥ1||2 ξ . (29)

As the spectral norm is unitarily invariant (6), the nonnegative
number ξ is invariant under a unitary similarity transformation
of Ĥ0. This is an indispensable property as ξ and the right-
hand side (RHS) of the inequality (29) should be unaffected by
a unitary change of basis. Moreover, if one were misapplying
Eq. (28) to a DPn then the unitarily invariance would ensure
the correct result ξ = 0. For an EP, ξ is always larger than
zero.

The unit of ξ is Joulen−1 for quantum problems and 1/sn−1

for optical problems (where h̄ = 1). It is therefore clear that
one should not compare the spectral response strengths for
EPs of different order.

Even though the spectral norm and the Frobenius norm
give different values for a general matrix Â, see Eq. (10), in
the case of Â = Ĝn they give exactly the same values, i.e.,

||Ĝn||2 = ||Ĝn||F. (30)

To see this we first note that N̂ is a nilpotent matrix with
index of nilpotency n and one-dimensional kernel. Hence
the dimension of the kernel of N̂n−1 is n − 1. As a conse-
quence, Ĝn = N̂n−1 has rank 1 and therefore only one nonzero
singular value. With Eqs. (9) this proves Eq. (30). We con-
clude that the response strength ξ can be computed with
both the spectral norm and the Frobenius norm leading to
exactly the same numerical values. This is a valuable obser-
vation as the Frobenius norm is much easier to compute; see
Eq. (7).

Note that ||Ĥ1||2 �= ||Ĥ1||F in general. Thus for Ĥ1 in
Eq. (29) the spectral norm has to be used in order to get
the tightest bound. However, the philosophy here is not to
compute the spectral response for given perturbation Ĥ1 but
to quantify the response strength of the system at the EP
to generic perturbations. For this purpose it is sufficient to
employ the Frobenius norm.

Finally it is remarked that the presented theory works
only if the order of the EP, n, and the dimension d of the
Hilbert space H (and hence the matrix dimensions d × d of
the Hamiltonian) are equal. If d > n one first has to project
the vectors in H onto the relevant subspace of dimension n,
thereby reducing the Hamiltonian to an n × n matrix.

B. Relation to pseudospectra

In this subsection we connect the response strength ξ

to the notion of pseudospectra. Pseudospectra are a tool to
describe the behavior of nonnormal matrices subjected to
perturbations. A comprehensive description and overview can
be found in the classical monograph [51]. Given a positive
number ε̃, the ε̃ pseudospectrum of a nonnormal matrix Ĥ0

can be defined as the subset of the complex plane

�ε̃ := {E ∈ C : ||(E1 − Ĥ0)−1|| > 1/ε̃} (31)

with arbitrary matrix norm ||·||. The pseudospectrum of Ĥ0

contains the spectrum of Ĥ0, as ||(E1 − Ĥ0)−1|| diverges at
the eigenvalues of Ĥ0. A recent application to optical systems
is discussed in Ref. [52]. There are other, equivalent ways

023121-3



JAN WIERSIG PHYSICAL REVIEW RESEARCH 4, 023121 (2022)

to introduce the pseudospectrum [51] which have also been
applied to optical systems [53,54].

As in the previous subsection we consider an EP of order
n, use the Green’s function (20) and its expansion at the EP in
Eq. (24), and restrict ourselves to the leading-order contribu-
tion. Choosing the spectral norm and applying the definition
of ξ in Eq. (28) we arrive at

�ε̃ = {E ∈ C : n
√

ε̃ξ > |E − EEP|}. (32)

Hence the response strength ξ determines the radius n
√

ε̃ξ

of the pseudospectrum disk (the so-called ε̃-pseudospectral
radius [51]) around the EP of order n, which is equivalent to
inequality (29) if ε̃ is identified with ε||Ĥ1||2. In this case, our
definition (28) agrees with the Hölder condition number of the
eigenvalue EEP [47].

C. Passive systems

In this subsection we reveal the existence of an upper
bound for ξ in passive systems. Physically, a system is passive
if there is no gain. Mathematically, it means that the decay
operator

�̂ := i(Ĥ0 − Ĥ†
0 ) (33)

is not only Hermitian but also positive semidefinite; see, e.g.,
Ref. [55] (for caveats see Ref. [56]). We write this equation to-
gether with Eq. (23) as

N̂ − N̂† = −i(�̂ − β1) (34)

with the definition β := −2Im EEP. As nilpotent matrices both
N̂ and N̂† are traceless [43]. Therefore,

Tr�̂ = nβ, (35)

where again n is the order of the EP. For a positive semidefinite
matrix Tr�̂ � 0 and hence β � 0.

We first deal with an EP2. We square both sides of Eq. (34),
employ N̂2 = 0 = N̂†2 and the cyclic property of the trace to
obtain

Tr(N̂†N̂ ) = 1

2
Tr

[
(�̂ − β1)2

]
. (36)

The left-hand side (LHS) is, for n = 2 according to Eqs. (28)
and (30), the response strength ξ squared. The positive
semidefiniteness of �̂ imposes an upper bound to the RHS
of Eq. (36). The maximum value is given when �̂ is a rank-1
matrix. In this case, all eigenvalues of �̂ are zero except one,
which, according to Eq. (35), assumes the value 2β. The RHS
of Eq. (36) is 1

2 (β2 + β2) = β2. We conclude that ξ � ξub

with the upper bound

ξub = 2|Im EEP|. (37)

This upper bound is a restriction for the spectral response
strength of passive systems at an EP2 and therefore for the
size of the energy splitting under perturbation. Having in mind
that 2|Im EEP| is the linewidth of the spectral peak at the EP
it becomes clear that Eq. (37) represents a limitation for the
resolvability of the splitting. This is of particular importance
for EP-based sensors.

We remark that ξ = ξub when the rank of �̂, which can be
interpreted as the number of available decay channels, is unity.

Examples of single-decay-channel systems are tight-binding
chains with a single lossy site [57] and doorway states in
nuclear physics [58].

Next, we study the case of an EP of the third order, n =
3. Here we take the fourth power of both sides of Eq. (34),
exploit N̂3 = 0 = N̂†3 and the cyclic property of the trace to
obtain

4Tr(N̂†2N̂2) + 2Tr(N̂†N̂N̂†N̂ ) = Tr
[
(�̂ − β1)4]. (38)

Again, the RHS is bounded from above due to the positive
semidefiniteness of �̂, and the maximum value is approached
when �̂ is a rank-1 matrix. In this case, all eigenvalues of �̂

are zero except one, which, according to Eq. (35), attains the
value 3β. As a consequence, the RHS of Eq. (38) is (16 + 1 +
1)β4 = 18β4. For the LHS we exploit the inequality

Tr(N̂†N̂N̂†N̂ ) � Tr(N̂†2N̂2). (39)

This inequality can be proven by inserting the two auxiliary
matrices X̂ := N̂†N̂ and Ŷ := N̂N̂† into the Frobenius inner
product [43]

〈Â, B̂〉F := Tr(Â†B̂) (40)

leading to 〈X̂ , Ŷ 〉F = Tr(N̂†2N̂2) and 〈X̂ , X̂ 〉F =
Tr(N̂†N̂N̂†N̂ ) = 〈Ŷ , Ŷ 〉F; the last step takes advantage of
the cyclic property of the trace. From the Cauchy-Schwarz
inequality

|〈Â, B̂〉F|2 � 〈Â, Â〉F〈B̂, B̂〉F (41)

follows the inequality (39), which we use to recast Eq. (38) as

6Tr(N̂†2N̂2) � Tr[(�̂ − β1)4] � 18β4. (42)

With Eqs. (28) and (30) we reach the result

ξub = 4
√

3|Im EEP|2. (43)

This upper bound holds for passive systems at an EP3. The
additional step involving the inequality (39) may cause ξub to
be a nonsharp upper bound. This guess will be proven correct
later in Sec. VI.

D. Eigenstate response

Here we derive a response strength that describes the re-
sponse of the eigenstates to perturbations. More precisely, we
are interested in the resulting component |
ψ j〉 orthogonal to
the original vector |ψEP〉. Hence the ansatz for the eigenstates
of the perturbed Hamiltonian is

|ψ j〉 = |ψEP〉 + |
ψ j〉 (44)

with

〈ψEP|
ψ j〉 = 0 (45)

and ||
ψ j ||2 small. We write

Ej = EEP + n
√

ε
Ej . (46)

The ansatz for the eigenstates (44) and eigenvalues (46) is
plugged into the eigenvalue equation (18) of the Hamiltonian
Ĥ . We use the eigenvalue equation of the unperturbed Hamil-
tonian Ĥ0|ψEP〉 = EEP|ψEP〉 and keep only the lowest-order
terms leading to

N̂ |
ψ j〉 = n
√

ε
Ej |ψEP〉 (47)
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where we have exploited Eq. (23). A comparison of Eqs. (11)
and (12) reveals that

|
ψ j〉 = n
√

ε
Ej | j2〉 + c| j1〉 (48)

with the Jordan vectors | j1〉 = |ψEP〉 and | j2〉. The constant c
has to be adjusted such that condition (45) is fulfilled. This
gives c = − n

√
ε
Ej〈 j1| j2〉. Note that for n > 2 the constant

c does not normally vanish because of the chosen normaliza-
tion and orthogonalization conditions (16) and (17). This is
different from other works in the literature [44,59,60].

From Eq. (48) follows

||
ψ j ||2 = n
√

ε|
Ej |
√

|| j2||22 − |〈 j1| j2〉|2. (49)

With Eq. (29) we get another important result,

||
ψ j ||n2 � ε||Ĥ1||2 ζ , (50)

where we have introduced the eigenstate response strength

ζ := (|| j2||22 − |〈ψEP| j2〉|2
)n/2

ξ . (51)

The nonnegative response strength ζ describes the response of
the eigenstates to perturbations. Its unit is Joule−1 (s in optics).
The strength ζ is not only invariant with respect to a unitary
similarity transformation of Ĥ0 but also under the redefinition
of Jordan vectors in Eqs. (13) and (14).

In the special case n = 2 the two response strengths are
not independent. In Appendix B it is shown that ||Ĝn||F =
1/|| jn||2. With n = 2 and Eqs. (17), (30), and (51) it follows

ξζ = 1. (52)

The upper bound of ξ for passive systems discussed in
Sec. III C turns to a lower bound of ζ . For n > 2, however,
such a conclusion cannot be drawn.

IV. RESPONSE TO EXCITATIONS

So far we have discussed the response to perturbations. In
this section, we consider the response to time-harmonic exci-
tations in terms of the norm (intensity in the optical context)
of the resulting state. We take into account the inhomogeneous
Schrödinger equation

ih̄
d

dt
|ψ〉 = Ĥ0|ψ〉 + e−iωt P|p〉 (53)

with excitation power P � 0, excitation frequency ω ∈ R, and
the excitation vector |p〉 normalized to unity. In quantum me-
chanics, such an inhomogeneous Schrödinger equation may
appear unnatural at first sight, but it can be used within the
framework of mean-field theory; see, e.g., Ref. [61]. In clas-
sical optics such an equation is often used (with h̄ = 1) to
describe the excitation of the system by an attached waveguide
[10,24,62,63].

We are interested here in a steady-state behavior of (the
norm of) the state |ψ〉 in the limit of long times. This long-
time limit is in general only finite if all eigenvalues of Ĥ0 have
a nonpositive imaginary part. This condition is obviously met
by passive systems. But also nonpassive systems can fulfill
this condition. If so they may have interesting transient dy-
namics [53,54]. In the following we assume that the long-time

limit of |ψ〉 is finite. In this case it is given by the particular
solution of Eq. (53) in terms of the Green’s function (20)

|ψ (t )〉 = Ĝ(h̄ω)e−iωt P|p〉. (54)

Once more, we consider the Hamiltonian Ĥ0 to be at an EPn

with eigenvalue EEP. Assuming the generic situation

Ĝn|p〉 �= 0 (55)

we restrict ourselves to the nth-order contribution of the
Green’s function (24) yielding

||ψ ||2 = P

|h̄ω − EEP|n ||Ĝn p||2. (56)

For a matrix norm ||·|| that is compatible with the vector 2-
norm [Eq. (5)] holds

||Ĝn p||2 � ||Ĝn|| ||p||2. (57)

Choosing again the spectral norm and using the normalization
||p||2 = 1 and the definition of ξ in Eq. (28), it follows for the
intensity response the important result

||ψ ||2 � P
1

|h̄ω − EEP|n ξ . (58)

The first factor depends only on the excitation and is, as ex-
pected, proportional to the excitation strength P. The second
factor depends on both the excitation (frequency ω) and the EP
(eigenvalue EEP). Note that the resulting spectral line shape
is not Lorentzian, see, e.g., Refs. [64–66]. The third factor
is the spectral response strength associated to the EP, ξ . Its
appearance might be surprising at first, but note that both the
spectral response and the intensity response are mediated by
the Green’s function of the unperturbed Hamiltonian. Inequal-
ity (58) is invariant under a unitary change of basis and is
consistent with the results for special systems at an EP2 in
Refs. [62,67].

It has to be emphasized that in the derivation of inequality
(58) the limitation to the highest-order contribution of the
Green’s function in the expansion (24) is possibly not suffi-
cient, as h̄ω is real and cannot approach the complex energy
EEP. In such a situation, the next-order contribution can be
significant and the inequality (58) may not be fulfilled. For
given eigenvalue EEP the best-case scenario is obviously the
resonant case, i.e., h̄ω = Re EEP.

Note that an analogous inequality as inequality (58) can be
derived for noisy excitations. The best starting point for such a
calculation is the pump operator in Ref. [68]. The calculation
for the Frobenius norm is straightforward and not shown here.

It is worth mentioning that ξ in Eq. (58) plays a similar role
as the Petermann factor quantifying the mode nonorthogonal-
ity in open quantum and wave systems; see, e.g., Ref. [69].
However, there are crucial differences. First, while ξ is defined
only at the EP, the Petermann factor is defined everywhere
except at the EP, where it diverges to infinity [70]. Second, ξ

describes the n-dimensional generalized eigenspace of the EP;
the Petermann factor describes single eigenstates. Third, ξ de-
fines an upper bound for the response, whereas the Petermann
factors determine directly, in the context of intensity response,
the strength of the response.

023121-5



JAN WIERSIG PHYSICAL REVIEW RESEARCH 4, 023121 (2022)

We conclude that the spectral response strength also quan-
tifies the intensity response of quantum systems at an EP to
harmonic excitations.

V. DYNAMIC RESPONSE TO INITIAL DEVIATIONS FROM
THE EP EIGENVECTOR

In this section we show that the long-time response to
initial deviations from the EP eigenvector can be expressed by
the spectral response strength ξ . The Hamiltonian Ĥ0 is again
at an EPn with eigenvector |ψEP〉 and eigenvalue EEP. We ex-
amine the nonunitary time-evolution operator Û (t ) = e− i

h̄ Ĥ0t

mapping the initial state |ψ (0)〉 in the generalized eigenspace
of the EP to the time-evolved state |ψ (t )〉 = Û (t )|ψ (0)〉.
From the nilpotency of N̂ follows

e− i
h̄ N̂t =

n−1∑
j=0

1

j!

(
− i

h̄
N̂t

) j

. (59)

Using Eq. (23) we can write the time-evolution operator as

Û (t ) = e−iωEPt
n−1∑
j=0

(−it ) j

j!h̄ j N̂ j (60)

with complex frequency ωEP := EEP/h̄. For the special ini-
tial state |ψ (0)〉 = |ψEP〉 we get |ψ (t )〉 = e−iωEPt |ψEP〉 =:
|ψEP(t )〉. For a generic initial state |ψ (0)〉 �= |ψEP〉 in the
generalized eigenspace we can assume

Ĝn|ψ (0)〉 �= 0. (61)

With the definition of Ĝk in Eq. (25), the long-time behavior
is given by

Û (t ) = e−iωEPt (−it )n−1

(n − 1)!h̄n−1 Ĝn. (62)

Again, we consider a matrix norm ||·|| that is compatible with
the vector 2-norm; see Eq. (5). Hence

||ψ (t )||2 � ||Û (t )|| ||ψ (0)||2, (63)

where the initial state is supposed to be normalized to unity.
As before, we confine ourselves to the spectral norm. Recall-
ing the definition of ξ in Eq. (28) we finally get for large t

||ψ (t )||2
||ψEP(t )||2 � |t |n−1

(n − 1)!h̄n−1 ξ . (64)

Hence also the upper bound of the long-time intensity
response to initial deviations from the EP eigenvector is de-
termined by ξ . Inequality (64) is, together with Eqs. (28) and
(B3), consistent with Ref. [71].

Although this is not directly related to the present work,
it is mentioned that the spectral norm and the Frobenius
norm had also been used to determine lower bounds for the
resources needed for the construction of a given nonunitary
time evolution [72,73].

FIG. 1. Sketch of a microring coupled to a waveguide with
coupling rate γ ; see Refs. [67,76]. The semi-infinite waveguide is
terminated on the LHS by a mirror with field reflection coefficient
r. The induced fully asymmetric backscattering of CW and CCW
propagating waves leads to an EP2.

VI. EXAMPLES

A. Whispering-gallery microcavities with fully asymmetric
backscattering

Our first example is the Hamiltonian (1), which, for in-
stance, describes whispering-gallery microcavities with fully
asymmetric backscattering in a two-mode approximation
of clockwise (CW) and counterclockwise (CCW) propagat-
ing waves [8,24,42,66,67,74–77]. In a traveling-wave basis
[(1, 0)T for CCW and (0, 1)T for CW], E0 is the frequency
of the two propagating waves and A0 is the coefficient for the
backscattering of a CW propagating wave into the CCW prop-
agating wave. A possible realization introduced in Ref. [76]
is sketched in Fig. 1. A CW traveling wave that couples to
the waveguide with the coupling rate γ � 0 is reflected at
the mirror with the field reflection coefficient r � 0 and can
therefore couple back into the microring where it propagates
in the CCW direction. This model has been experimentally
realized using a microsphere [66,77] and it has been proposed
to use this model for EP-based optical amplifiers [67]. In the
latter work the backscattering coefficient in the Hamiltonian
(1) has been calculated to be

A0 = −2iγ reiφ, (65)

where φ is an additional phase originating from reflection and
propagation in the waveguide. There is no backscattering into
the other sense of rotation provided that coupling between
waveguide and microring is small enough. For A0 �= 0 the
system is at an EP2 as the only eigenvector is (1, 0)T. This
corresponds to a chiral state, which is a purely CCW propagat-
ing wave. Chirality can be seen as another general property of
EPs which characterizes a preferred sense of rotation in mode
space [78,79] or real space [8,42,74].

A straightforward calculation of the spectral response
strength in Eq. (28) using Eqs. (23), (25), and (30) yields

ξ = |A0|. (66)
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Hence the spectral response strength is the absolute value
of the backscattering coefficient. A system at the DP with
A0 = 0 has a zero spectral response strength. For the partic-
ular example in Ref. [67] (Fig. 1) we combine Eq. (65) and
Eq. (66) to find ξ = 2γ r. Hence the spectral response strength
is expressed by the two physical quantities of the setup, the
coupling rate γ and field reflection coefficient r. To increase
the response at the EP one therefore has to increase either r
or γ . However, the former cannot be increased beyond 1 and
increasing the latter also broadens the spectral linewidth and
at some point may introduce additional backscattering which
spoils the fully asymmetric backscattering of CW and CCW
propagating waves.

For the perturbation Hamiltonian (3) one can confirm by
direct calculation that the inequality (29) is indeed fulfilled.
The equality holds for C1 = 0 and |A1| � |B1|.

For the special Hamiltonian (1) it has been shown in
Ref. [55] that if the system is passive then

|A0| � 2|Im EEP|, (67)

with EEP = E0. This inequality together with Eq. (66) fully
agrees with the upper bound ξub in Eq. (37). It is interesting to
compare this to the experimental data in Ref. [32] on an EP2 in
a microtoroid perturbed by two nanotips. Here the linewidth
is 2|Im EEP| ≈ 2 × 107s−1 and the backscattering coefficient
is |A0| ≈ 2 × 107s−1. It can be seen that the spectral response
strength ξ = |A0| reaches the upper bound in Eq. (37). We
conclude that the experiment in Ref. [32] is already optimized
for the passive system under study. It shows the strongest
possible backscattering and therefore the strongest possible
spectral response strength. The latter can only be further en-
hanced by introducing optical gain into the system (which has
been implemented in Ref. [32]).

From Eq. (52) it can be read that the eigenstate response
strength is ζ = 1/|A0|. This result can be confirmed for this
system by an elementary calculation of the eigenvector change
perpendicular to the EP eigenvector under the perturbation (3)
in first-order

|
ψ j〉 = √
ε

√
B1

A0

(
0
1

)
, (68)

where the sign of the square root labels the two vectors. Hence
the change of the eigenstates under perturbation is small if
the backscattering coefficient is large. That means a large
backscattering coefficient stabilizes the state in the sense that
is more robust against, e.g., fabrication tolerances. This can be
of relevance for unidirectional lasing [24] and orbital angular
momentum lasing [80] based on an EP.

The limiting case A0 → 0 is a second-order DP. Here the
eigenstate response strength ζ diverges. This is analog to
the divergences in perturbation theory in quantum mechanics,
which can be cured by degenerate-state perturbation theory.

The Green’s function (20) of the unperturbed Hamiltonian
(1) can be calculated without effort (see also Ref. [65])

Ĝ(E ) = 1

E − EEP
+ 1

(E − EEP)2

(
0 A0

0 0

)
, (69)

which is in accordance with the general expansion (24). Ob-
viously, if A0 �= 0 and E approaches EEP the second term on

the RHS is the dominant one. This fact has been exploited
in Secs. III and V when we discussed the response to pertur-
bations and the dynamic response. However, for the intensity
response to harmonic excitations in Sec. IV the energy E =
h̄ω is real-valued and therefore can approach EEP only in the
special case Im EEP = 0. In the case Im EEP � 0 the closed
approach is for h̄ω = Re EEP, i.e., on resonance. In this case,
Eq. (69) can be written as

Ĝ(h̄ω) = 1

|Im EEP| + A0

|Im EEP|2
(

0 1
0 0

)
. (70)

Hence the second term is only dominant if |A0| 
 |Im EEP|.
But this is out of reach for passive systems, cf. Eq. (67).

Notice that the condition for the generic situation in
Eq. (55) can be broken in the case of the Green’s func-
tion (69) by exciting only the CCW propagation direction.
This is understandable as in this case there is no asymmetric
backscattering, so the nonnormality of Ĥ0 is not probed.

A short calculation shows that the time evolution operator
corresponding to the Hamiltonian (1) is given by

Û (t ) = e−iωEPt

[
1 − itA0

h̄

(
0 1
0 0

)]
. (71)

We can see that the spectral response strength in Eq. (66)
determines the long-time behavior as summarized in Eq. (64).

B. Parity-time-symmetric dimer

A further example is the parity-time-symmetric dimer with
Hamiltonian

Ĥ0 =
(

ω0 + iα g
g ω0 − iα

)
. (72)

The real-valued quantity ω0 is the frequency, α � 0 is the
gain/loss coefficient, and g � 0 is the coupling strength. This
system can be realized, for instance, by two coupled waveg-
uides [81] or resonators [33]. It is parity-time symmetric
as it is invariant under the combined action of parity (ex-
change of waveguide/resonators) and time-reversal (exchange
of gain and loss) operations; see Ref. [82] for a recent re-
view on parity-time-symmetric systems. The eigenvalues of
the Hamiltonian (72) are given by (see, e.g., the Methods
section of Ref. [33])

Ej = ω0 ±
√

g2 − α2. (73)

The eigenvalues are degenerate for g = α. If α �= 0 this de-
generacy is a second-order EP with a single eigenvector
(1,−i)T/

√
2. In this case the spectral response strength (28)

is

ξ = 2g. (74)

In experiments on two coupled microring resonators the cou-
pling strength has been measured to be g ≈ 1012s−1 [33].
The response strength is, therefore, for this experiment ξ ≈
2 × 1012s−1. Note that this is several orders larger than in
our example in the previous subsection. However, it is not
straightforward to compare the response strength at two EPs
in totally different experimental settings because of a different
frequency scale and different kinds of perturbations.
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One reason for a relatively large ξ is that this system is
not passive. Hence the upper bound in Eq. (37) does not
apply and ξ can become arbitrarily large when the coupling
strength g (and accordingly the gain/loss coefficient α) is
increased. Correspondingly, the eigenstate response strength
can become arbitrarily small, as ζ = 1/(2g); see Eq. (52).
With the coupling strength in Ref. [33] we get ζ ≈ 5 × 10−13s
for this experiment.

The problem discussed in the last subsection concerning
the Green’s function in Eqs. (69) and (70) does not apply here
as the imaginary part of EEP is zero and the system is not
passive.

C. Parity-time-symmetric trimer

In both previous examples of second-order EPs, the eigen-
state response strength ζ is simply related to ξ by Eq. (52).
This is different in the next example of the parity-time-
symmetric trimer (see, e.g., Ref. [60]),

Ĥ0 =
⎛
⎝ω0 + iα g 0

g ω0 g
0 g ω0 − iα

⎞
⎠. (75)

Again, ω0 is the real-valued frequency, α � 0 is the gain/loss
coefficient, and g � 0 is the coupling strength. The character-
istic equation of the eigenvalue problem of Ĥ0 is

(Ej − ω0)
(
α2 − 2g2 + (Ej − ω0)2

) = 0, (76)

with j = 1, 2, 3. Adjusting α to be
√

2g generates a third-
order degeneracy, which is an EP3 as discussed, for instance,
in the Methods section of Ref. [33].

The calculation of the response strengths in Eqs. (28) and
(51) here is more lengthy but still straightforward, and one
finally gets

ξ = 4g2 and ζ = 1

2g
. (77)

In experiments on three coupled microring resonators con-
stituting an EP3, the coupling strength has been measured
to be g ≈ 9 × 1011s−1 [33]. Hence ξ ≈ 3.2 × 1024s−2 and
ζ ≈ 5.6 × 10−13s. We observe from Eqs. (77) that the simple
relation between the two response strengths, derived for the
special case of n = 2, in Eq. (52) does not hold here. But still,
a large spectral response implies a weak eigenstate response
and vice versa. Note that in this example, as well as in the next
one, ξ and ζ are related by the trivial fact that the considered
model possesses only one free relevant parameter.

D. Fully asymmetric hopping model

We look at a generalization of the Hamiltonian (1)

Ĥ0 =

⎛
⎜⎜⎜⎜⎝

E0 A0 0 . . . 0
0 E0 A0 . . . 0
0 0 E0 . . . 0
...

...
...

. . .
...

0 0 0 . . . E0

⎞
⎟⎟⎟⎟⎠. (78)

This n × n Hamiltonian can also be understood as the nonpe-
riodic, fully asymmetric limiting case of the Hatano-Nelson
model of a cylindrical superconductor [83]. This Hamiltonian

describes a unidirectional hopping in a nearest-neighbor tight-
binding chain with complex hopping parameter A0. For A0 �=
0, the Hamiltonian is at an EPn with eigenvalue EEP = E0. The
calculation of the response strengths is here relatively simple
even for arbitrary n,

ξ = |A0|n−1 and ζ = 1

|A0| . (79)

Solving the eigenvalue problem of the decay operator �̂ in
Eq. (33) for the case n = 3 gives one zero eigenvalue and two
further eigenvalues −2Im EEP ± √

2|A0|. Stipulating �̂ to be
positive semidefinite for a passive system leads to Im EEP � 0
and

|A0|2 � 2|Im EEP|2. (80)

With ξ = |A0|2 from Eq. (79) this is consistent with the upper
bound in Eq. (43).

E. Random Hamiltonians at and near EPs

Finally, we present an entire class of examples based on
a random matrix approach. Using MATLAB we numerically
construct a Hamiltonian Ĥ0 at an EPn with eigenvalue EEP

via a similarity transformation Ĥ0 = Q̂ĴQ̂−1. Here Ĵ is an
n × n matrix at an EPn in Jordan normal form [Eq. (78) with
E0 = EEP and A0 = 1] and Q̂ is, in general, a nonunitary
n × n matrix consisting of complex random numbers where
real and imaginary parts are uniformly distributed in the in-
terval [−1/2, 1/2]. We call such a constructed Ĥ0 a “random
Hamiltonian at an EP” even though its matrix elements are
not completely random but have to conspire such that the
Hamiltonian is at an EP. Where needed, the perturbation Ĥ1

is chosen to be an n × n matrix consisting of complex random
numbers with real and imaginary parts being drawn from a
uniform distribution on [−1/2, 1/2].

To study the spectral response to perturbations, we numeri-
cally compute the eigenvalues Ej of Ĥ = Ĥ0 + εĤ1 and insert
them into the nonnegative quantity

x := max(|Ej − EEP|)
(ε||Ĥ1||2 ξ )1/n

, (81)

which, according to inequality (29), should be smaller or
equal unity. Figure 2 shows a histogram resulting from 107

realizations of Hamiltonians in our random matrix approach
for the case n = 3. While the precise shape of the distribution
may depend on the chosen ensemble of random Hamiltonians,
it can be clearly seen that (i) x � 1 which demonstrates the
validity of the inequality (29), (ii) the majority of the realiza-
tions are located well above x = 0.5, and (iii) the upper bound
given by the response strength ξ seems to be sharp.

Next, we use the random Hamiltonians Ĥ0 at an EP as
a stress test of the upper bound ξub of the spectral response
strength ξ in passive systems. From a total of 109 realizations
we select those that have a positive semidefinite decay opera-
tor �̂, see Eq. (33), which are around 1.8 × 106. We introduce
the quantity R as the ratio of the largest and the second-largest
eigenvalue of �̂. Large values of R indicate an approximate
satisfaction of rank�̂ = 1. As argued in Sec. III C, ξ is maxi-
mized if rank�̂ = 1. The upper bound is given in Eq. (37) for
n = 2 and Eq. (43) for n = 3. Figure 3 shows a histogram

023121-8



RESPONSE STRENGTHS OF OPEN SYSTEMS AT … PHYSICAL REVIEW RESEARCH 4, 023121 (2022)

FIG. 2. Probability density function of the dimensionless spec-
tral response x defined in Eq. (81) computed from 107 realizations of
random Hamiltonians at an EP3; see the main text. The parameters
are EEP = −i0.5 and ε = 10−7. Note the logarithmic scale on the
vertical axis.

of the distribution of the normalized ξ and R for random
Hamiltonians at an EP3. The numerical data clearly confirm
that ξ � ξub with Eq. (43), but we can also see that it is not
a sharp bound (ξ/ξub < 0.572 ≈ 1/

√
3) as suspected from

the presence of the additional step based on the inequality
(39) in the derivation of the bound. Moreover, Fig. 3 reveals
a correlation between ξ and R, which indicates that if �̂

approaches a rank-1 matrix for large R, ξ exhibits its largest
values, precisely confirming our expectation.

Now, we compute numerically the eigenvectors |ψ j〉 of
Ĥ = Ĥ0 + εĤ1 and plug them into the nonnegative quantity

y := max(||
ψ j ||2)

(ε||Ĥ1||2 ζ )1/n
. (82)

FIG. 3. Probability density function of the dimensionless ratio
ξ/ξub with upper bound ξub from Eq. (43) and the logarithm of the
dimensionless ratio R of the largest and the second-largest eigen-
value of the decay operator �̂ [Eq. (33)]. The computation is based
on 1.8 × 106 realizations of random Hamiltonians at an EP3 with
positive semidefinite �̂. The energy eigenvalue is EEP = −i0.5. Note
the logarithmic scale on the vertical axis.

FIG. 4. Probability density function of the logarithm of ξ (ξ in
units of Joule2) and ζ (ζ in units of 1/Joule) computed from 107

realizations of random Hamiltonians at an EP3; EEP = −i0.5.

Interestingly, from Eq. (49) together with Eq. (51) follows the
prediction y = x, i.e., the dimensionless eigenstate response
equals the dimensionless spectral response in Eq. (81). Hence
the numerical results for 107 realizations of random Hamilto-
nians at an EP3 (not shown) look as in Fig. 2.

We have seen that there is an anticorrelation of ξ and ζ

in the case of EP2 dictated by Eq. (52) and also for the EP3

single-parameter examples in Secs. VI C and VI D. In general,
however, there is no such anticorrelation. This is demonstrated
in Fig. 4 with a histogram of values ξ and ζ for random
Hamiltonians at an EP3. Hence in general one cannot state
that a large ξ implies a small ζ and vice versa.

Next, we validate the upper bound for the intensity re-
sponse to harmonic excitations. We compute the long-time
limit |ψ〉 from Eq. (54) and the response strength ξ from
Eq. (28) for random Hamiltonians Ĥ0 at an EPn, random
excitation vectors |p〉 normalized to unity, and given excitation
frequency ω and excitation power P. We consider the nonneg-
ative quantity

z := ||ψ ||2|h̄ω − EEP|n
Pξ

, (83)

which, according to inequality (58), should be smaller or
equal unity. Figure 5 shows a histogram resulting from 107

realizations of random excitation vectors and random Hamil-
tonian at an EP for the case n = 3. The resonant case h̄ω =
Re EEP is considered. In the upper panel we observe that for
|h̄ω − EEP| = 0.5 the upper bound is violated; around 17% of
realizations give z > 1. The reason is that in the expansion of
the Green’s function in Eq. (24) the highest-order term is not
dominant because h̄ω ∈ R does not come close to the complex
eigenvalue EEP. For much smaller |h̄ω − EEP| (the value 0.005
is chosen in the lower panel of Fig. 5) the highest-order term
becomes dominant and, hence the upper bound is fulfilled,
z � 1.

We have also applied the random matrix approach to ver-
ify inequality (64) which quantifies the dynamic response to
initial deviations from the EP eigenstate. Again, the random
Hamiltonian Ĥ0 is at an EP of order n = 3. The initial state
is chosen randomly and is then normalized to unity. The
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FIG. 5. Probability density function of the dimensionless inten-
sity response z [Eq. (83)] computed from 107 realizations of random
Hamiltonians at an EP3; ω = 0. The energy eigenvalue is EEP =
−i0.5 (upper panel, the range has been restricted to z � 6) and
EEP = −i0.005 (lower panel).

numerics (not shown) are fully consistent with the bound (64)
and indicate that the bound is sharp.

VII. SUMMARY

We have introduced two quantities ξ and ζ that characterize
a general n × n Hamiltonian at an EP of arbitrary order n. The
spectral response strength ξ quantifies not only the spectral
response to perturbations but also the intensity response to
excitations and the dynamic response to initial deviations
from the EP eigenvector. The eigenstate response strength
ζ quantifies the eigenstate response to perturbations. While
in the special case of second-order EPs the two response
strengths are related by ζ = 1/ξ , no such relationship exists
for higher-order EPs. Hence both response strengths are in
general independent.

For passive systems ξ is bounded from above. For EPs of
order n � 3 an upper bound has been derived. This bound is
of particular relevance for EP-based sensors as it limits the
resolvability of energy and frequency splittings.

The findings have been illustrated by a number of physi-
cally relevant examples. Moreover, the obtained bounds have
been systematically tested with a random matrix approach.

The matrix norm that enters the definition of ξ and ζ has to
be compatible with the vector 2-norm and unitarily invariant.
Apart from these conditions the norm can be freely chosen.
However, the tightest bound for the various responses is given
by the spectral norm, so this is the natural choice. However,
if one is interested only in the quantities ξ and ζ then the
Frobenius norm can be used as well as it leads to exactly the
same numerical values which facilitates an easy computation.

The spectral response strength ξ can be very beneficial for
the design of higher-order EPs in particular for sensing appli-
cations. The maximal amount of energy splitting, a quantity
that is essential for the sensitivity of such a device, is directly
quantified by ξ . In this context it is interesting to combine
our approach with the concept of exceptional surfaces. Each

point on such a surface embedded in a higher dimensional
parameter space corresponds to an EP. When the system is
perturbed tangential to the surface the system stays on an EP,
whereas a perturbation perpendicular to the surface leads to
a deviation from the EP and therefore to an enhanced energy
splitting. Exceptional surfaces have been suggested [76,84] as
a possibility to remove the harmful consequences of fabrica-
tion intolerances. Here one could use the response strength
ξ to systematically search for high-response regions on the
exceptional surface.

A small eigenstate response strength ζ means that the
energy eigenstate at the EP is rather robust under perturba-
tion of the system. This kind of robustness at EPs was so
far unappreciated. Without knowing one has possibly already
taken advantage of it in the case of unidirectional lasing [24]
and orbital angular momentum lasing [80]. Both examples are
based on an EP2. The new characteristic ζ helps to study this
robustness also for higher-order EPs.
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APPENDIX A: GREEN’S FUNCTION NEAR AN EP

This Appendix provides a short and elegant derivation of
the Green’s function Ĝ(E ) near an EP of order n in Eq. (24).
Starting from the definition of the Green’s function in Eq. (20)
we write

(E − EEP)Ĝ(E ) − (Ĥ0 − EEP1)Ĝ(E ) = 1, (A1)

where EEP is the eigenvalue of Ĥ0 at the EP. We move the
second term to the RHS of the equation, utilize the definition
of N̂ in Eq. (23), and divide by E − EEP leading to

Ĝ(E ) = 1

E − EEP
+ N̂

E − EEP
Ĝ(E ). (A2)

Next, this expression is plugged into the Ĝ(E ) on the RHS of
the equation which gives

Ĝ(E ) = 1

E − EEP
+ N̂

(E − EEP)2
+ N̂2

(E − EEP)2
Ĝ(E ). (A3)

We repeat this iterative scheme until the generated series is
truncated by the nilpotency of N̂ with the index of nilpotency
being n. With definition (25) one obtains the result in Eq. (24).

APPENDIX B: RELATION BETWEEN ||Ĝn|| AND THE
NORM OF THE JORDAN VECTOR | jn〉

In this Appendix we derive a relation between ||Ĝn||F and
the norm of the Jordan vector | jn〉. From Eqs. (12) and (23)
follows N̂n−1| jn〉 = | j1〉 which together with the definition of
Ĝk in Eq. (25) leads to

〈 jn|Ĝ†
nĜn| jn〉 = 〈 j1| j1〉. (B1)
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With the normalization (16) the RHS of this equation is unity.
With the orthogonalization (17) the LHS can be written as
trace over Ĝ†

nĜn using an orthonormal basis with one element
being the unit vector

|un〉 = | jn〉
|| jn||2 . (B2)

Recalling the definition of the Frobenius norm (7) the result
finally is

||Ĝn||F = 1

|| jn||2 . (B3)

It is to emphasized that this is true only if the normalization
and orthogonalization conditions (16)-(17) are employed.
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