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Work relation for determining the mixing free energy of small-scale mixtures
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In thermodynamically characterizing a mixture comprising a finite number of molecules, we consider two
kinds of protocol for producing a mixture from a pure substance. The first is a single alchemical operation,
whereas the second is a series of processes with feedback control in information thermodynamics and conven-
tional mixing with semipermeable membranes. A comparison of the two numerically determined free-energy
changes provides a combinatorial factor that indicates the indistinguishability of the molecules and an alternative
Jarzynski equality. The comparison also uncovers a work relation for determining the mixing free energy without
using semipermeable membranes. We demonstrate a numerical calculation of applying the work relation to a
mixture of argon and krypton. The mixing free energy clearly shows the characteristics of liquid–vapor transition.
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I. INTRODUCTION

Solutions exhibit a variety of fascinating phenomena. Var-
ious combinations of solutes and solvents have been explored
to create properties useful in scientific and industrial appli-
cations. Free energy and entropy are central quantities that
characterize the properties of solutions [1,2]. Thermodynamic
measurements have been performed intensively to quantita-
tively determine these quantities, and the accumulated results
have been integrated into a huge database [3]. In small-scale
solutions, thermodynamic measurement is in its early stage of
development [4–7] although recent micromanipulation tech-
niques have shed light on the nontriviality of small scales,
including the anomalous diffusion of macromolecules and
stabilization of protein folding by aggregation [8–11]. In cell
sciences, liquid–liquid phase separation with the coexistence
of dilute and concentrated solutions has been intensively
studied from the viewpoint of biological functions [12–17].
Thermodynamic quantification is necessary to understand
such interesting phenomena. Numerical experiments may be
powerful for the study of small systems. This paper thus pro-
poses an effective numerical method for the thermodynamic
measurement of small-scale solutions.

Thermodynamics of small systems was proposed in the
1960s on the basis of statistical mechanics [18]. In the past
two decades, stochastic thermodynamics has been studied
intensively, aiming for a physical understanding of molec-
ular machines [19–22]. The change in free energy has
been formulated as the Jarzynski or Crooks work relation
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consistently with the second law of thermodynamics [21,22].
Using these relations, the change in free energy for the
binding of biomolecules is determined by micromanipulation
[23,24]. Furthermore, information thermodynamics has been
formulated by combining stochastic thermodynamics and in-
formation theory [25,26], allowing us to approach biological
phenomena from the perspective of information processing
[27].

For the numerical calculation of free energy, several meth-
ods have been and are being developed [28,29]. Recently,
alchemical free energy calculation is often used in the nu-
merical study of biomolecules and drug discovery [30–37],
which is an extension of the Kirkwood’s charging formula
for determining chemical potential [38]. The change in free
energy is measured from the work required to substitute some
parts of a large molecule alchemically; i.e., by changing mi-
croscopic parameters of the molecule. Extending the idea, we
may create a solution from a pure substance. We then ask if
the work relations are applicable to estimate the free energy of
the solution. We face two problems. The first problem is the
indistinguishability of molecules. To create a solution alchem-
ically, we need to choose some molecules to be manipulated
from the indistinguishable molecules. Such a procedure is not
involved in the usual alchemical method because it is designed
for a single molecule. The problem may be related to the va-
lidity of the factorial in classical statistical mechanics adopted
by Gibbs to recover extensivity [39,40]. We here note that
ln N! is asymptotically equal to ln NN and therefore these two
quantities are not distinguished in the thermodynamic limit.
When dealing with small-scale solutions, their difference may
appear.

The second problem is the quantity to be determined. The
important quantity is the mixing free energy rather than the
free energy for solutions. The mixing free energy, which
involves excess chemical potentials or activity coefficients,
corresponds to the work required for quasistatic mixing. It
determines properties of a solution, such as equilibrium con-
stants and solubility. However, theories for estimating the
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mixing free energy are limited to rather dilute solutions
[41–43]. A simpler numerical method applicable to the gen-
eral mole fraction and valid regardless of the system size
would be valuable. We thus propose a method for molecular
dynamics simulations that estimates the mixing entropy of
finite-size systems by combining the alchemical method with
stochastic thermodynamics and information thermodynamics.

This paper is organized as follows. In Sec. II, we describe
the setup of the system. In Sec. III, we address the problem of
the conventional work relations when creating a solution from
a pure substance and propose (9) as an alternative Jarzyn-
ski equality for determining the free energy of the solution.
Section IV is devoted to showing (9). We obtain theoretically
(20) and numerically Fig. 4 from which we lead to combi-
natorial factor in (9). We then proceed to the second part
of the Paper. In Sec. V, we formulate a work relation for
determining the mixing Gibbs free energy of isotope mixtures
and in Sec. VI extend the relation to general mixtures. The
result is (42), which is estimated as (43) or (45). Using (45) in
a molecular dynamics simulation, we determine the mixing
Gibbs free energy for a mixture of argon and krypton in
Sec. VII. The result clearly shows the characteristics of the
liquid–vapor transition. Section VIII is devoted to concluding
remarks. All details of the model and the protocols for numer-
ical examination are described in Appendices A and B. The
numerically determined free energies are examined carefully
in Appendices C and D. Appendix E compares our results with
those of statistical mechanics. Parameters for the numerical
experiments in Sec. VII are specified in Appendix F.

II. SETUP

We deal with classical systems of N molecules packed in
a rectangle container of volume V . The container may be
spatially partitioned by walls or semipermeable membranes.
The walls or membranes are rigid and transparent to heat and
their positions do not fluctuate. The surrounding environment
is at a constant temperature T . For simplicity, we limit the
type of molecule to be monoatomic in this paper, but our
proposed methods can be extended to more general molecules
as discussed in Sec. VIII. We write the Hamiltonian of the
system as

H (�; α) =
N∑

i=1

p2
i

2mi
+ �({ri}; α�), (1)

where � = ({ri}, {pi}) with the position ri and momentum
pi for the ith molecule, and ({ai}) is an abbreviation of
(a1, a2, . . . , aN ). mi is the mass of the ith molecule and the
potential � comprises the interaction among molecules and
the interaction between molecules and walls or membranes
of the container, which are parameterized by the set α�. α is
the set of parameters in the Hamiltonian, α = ({mi},α�). See
Appendix A for an example of α and H (�; α).

Suppose that an external operator changes the value of α in
the period 0 � t � τ . For a protocol α̂ = (α(t ))t∈[0,τ ], where
α0 = α(0) and α1 = α(τ ), the work done by the external
operator is written as

Ŵ (�̂) =
∫ τ

0
ds

dα

ds
· ∂H (�(s); α)

∂α

∣∣∣∣
α=α(s)

, (2)

where �̂ = (�(t ))t∈[0,τ ] is a trajectory in the phase space. We
assume below that the system is in equilibrium at α0 for t � 0.

III. PROBLEMS OF THE WORK RELATION
IN MICROSCOPIC OPERATIONS

We first consider macroscopic operations such as changing
the volume of the container and the positions of membranes.
Thermodynamic work corresponds to an ensemble average of
the work over trajectories �̂, which we write as 〈Ŵ 〉. The
difference in the Helmholtz free energy satisfies

�F � 〈Ŵ 〉, (3)

where �F = F (T,α1, N ) − F (T,α0, N ). The equality holds
in the quasistatic limit τ → ∞. The work relation (3) is refor-
mulated as the Jarzynski equality [21]

�F = −kBT ln〈e−βŴ 〉, (4)

where β = (kBT )−1 with the Boltzmann constant kB. With
(4), the free energy becomes measurable in mesoscopic sys-
tems of finite N applicable to single-molecule manipulations,
and moreover, the free-energy change can be identified from
finite speed operations regardless of whether the system
reaches equilibrium at t = τ .

We next consider microscopic operations called alchemical
processes, which changes the attributes of molecules, such as
the mass and size. Alchemical methods are usually used to
estimate the effect of substituting some groups into a large
single molecule [30,31]. We note that an alchemical method
itself is not necessarily limited to single molecules but can be
applied to multimolecule systems so as to create a mixture
from a pure substance. Our first question is then whether the
work relation (4) can be used in determining the Helmholtz
free energy of the mixture created from the pure substance.

The important quantity that determines the thermodynamic
properties for the mixture is the mixing free energy �mixG
rather than the free-energy difference between the mixture
and the pure substance. This corresponds to the work required
for quasistatic mixing at constant temperature and constant
pressure, which is the sum of the mixing entropy �mixS and
the enthalpy change in mixing. The mixing free energy gives
the equilibrium constant and can be used as a variation func-
tion with which to identify the equilibrium state through its
minimization. We then ask the second question of whether
there exists a work relation that can be used to determine
�mixG.

IV. WORK RELATION FOR MICROSCOPIC OPERATIONS

We consider a mixture of two species A and B, whose
numbers of molecules are n and N − n, respectively. We
write the Helmholtz free energy for a pure substance of A as
FA(T,V, N ) and that for the mixture as FAB(T,V, n, N − n).
To answer the first question, we focus on the free-energy
difference between these two

�F ≡ FAB(T,V, n, N − n) − FA(T,V, N ), (5)

and ask what is the work relation that can be used to obtain
�F in the alchemical process.

023119-2



WORK RELATION FOR DETERMINING THE MIXING FREE … PHYSICAL REVIEW RESEARCH 4, 023119 (2022)

FIG. 1. Schematic figure of the alchemical process for creating
the mixture of distinguished molecules to determine �(#)F in (7).

We put N molecules of species A in a container and index
all N molecules in order; i.e., i = 1, 2, . . . , N . After relaxing
the system to equilibrium, we change the attributes of the first
n molecules, 1 � i � n, alchemically as they become another
species B as depicted in Fig. 1. The resulting system is similar
to a typical two-component mixture except that all molecules
are indexed. We call the molecules a distinguished mixture.
Although real molecules are never indexed, the present proce-
dure may be useful in numerical experiments.

We write the work for completing the alchemical process
as Ŵ(#)(�̂). Applying (4), we can determine the free energy
FAB# (T,V, n, N − n) for the distinguished mixture of A and B
as

�(#)F ≡ FAB# (T,V, n, N − n) − FA(T,V, N ), (6)

�(#)F = −kBT ln〈e−βŴ(#)〉. (7)

In the subsection below, we show numerically that �F �=
�(#)F ; i.e.,

FAB(T,V, n, N − n) �= FAB# (T,V, n, N − n), (8)

which means that the alchemical process in Fig. 1 does not
provide the free energy for the mixture. From the thermody-
namic argument in the following subsections with numerical
examinations, we conclude that the formula that gives the true
free-energy change (5) is

�F = −kBT ln

[
N!

n!(N − n)!
〈e−βŴ(#)〉

]
, (9)

which we propose as the Jarzynski work relation valid for gen-
eral alchemical processes. Applying the Jensen’s inequality,
(9) is written as

�F � 〈Ŵ(#)〉 − kBT ln

[
N!

n!(N − n)!

]
. (10)

The equality holds in the quasistatic limit. The combinato-
rial factor in (9) may seem natural considering the treatment
of the indistinguishability of molecules in statistical me-
chanics. However, from a thermodynamic point of view, the

FIG. 2. Operation protocol for obtaining FAB by thermodynamic
processes (i), (ii), and (iii). Refer to Table I for a summary of
respective processes. The red arrow indicates not an experimental
protocol but a difference between a pure substance A and a mixture
of A and B. Process (i) requires a feedback control to fix the number
n of molecules in the right chamber.

combinatorial factor remains open. Below, we will nu-
merically show the validity of (9) using thermodynamic
measurements.

To show (9), we design a protocol comprising three pro-
cesses as schematically illustrated by the three black arrows in
Fig. 2 and summarized in Table I. Process (i) is the insertion
of a wall partition that divides the container into two. This
insertion is performed under feedback control as explained in
Sec. IV A, and the corresponding work relation is therefore
given by information thermodynamics [25,26]. In process (ii),
we change the species of all molecules in the left chamber
and replace the wall partition with two ideal semipermeable
membranes. We then shift each semipermeable membrane to
mix the two substances in process (iii). We specify respective
formulas of the work relation in Sec. IV B and Sec. IV C.

With these respective formulas, we numerically determine
the respective free-energy changes �(i)F , �(ii)F , and �(iii)F .
The total change should be �F in (5):

�F = �(i)F + �(ii)F + �(iii)F. (11)

The right-hand side of (11) is thermodynamically definite
without the difficulty of the distinguishability of molecules. In
Sec. IV E, we compare �F with the alchemical free-energy
change FAB# − FA determined according to (7), which con-
cludes the validity of (9) within numerical error.

TABLE I. Summary of processes schematically illustrated in Figs. 1 and 2. We use the subscripts A, B, and AB to specify the quantities
for the pure substance A, the pure substance B, and their mixture, respectively.

Process Operation �F

(i) Partition with feedback control FA(T, v, n) + FA(T,V − v, N − n) − FA(T,V, N )
(ii) Alchemy the left side molecules FB(T, v, n) − FA(T, v, n)
(iii) Mix by shifting the membranes FAB(T,V, n, N − n) − FA(T,V − v, N − n) − FB(T, v, n)
(#) Alchemy the molecules 1 � i � n FAB# (T,V, n, N − n) − FA(T,V, N )
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A. Formula for �(i)F

In process (i), we spontaneously partition the container into
two by inserting a rigid wall with a negligible thickness, where
the volumes of the left and right chambers are v and V − v.
Let � be the microstate at the time of partitioning and nv (�) be
the number of molecules in the left chamber of volume v. The
probability distribution ρv (n) for the number n of molecules
in the left chamber is written as

ρv (n; T,V, N ) =
∫

d� δnv (�),nρeq(�), (12)

where ρeq(�) is the canonical distribution before the partition
and δi, j is the Kronecker delta.

We perform feedback control to insert a wall only when
nv (�) = n. The work required for the spontaneous insertion
depends on �, which we write as Ŵ(i)(�). The change in the
free energy satisfies

e−β�(i)F =
∫

d� δnv (�),ne−βŴ(i) (�)ρeq(�). (13)

The relation (13) is a version of the Jarzynski work rela-
tion putting δnv (�),n in the integral because we perform the
work only when n = nv (�). Equation (13) belongs to the
generalized Jarzynski relation derived in information thermo-
dynamics, which is formulated for general feedback controls
[25].

We design the interaction between the inserted wall and
each molecule such that

Ŵ(i)(�) = 0. (14)

This can be satisfied when each molecule acts as a point of
mass with respect to the inserted wall. We choose this particu-
lar setting because �F , which is a quantity to be determined,
is independent of the properties of the inserted wall.

Substituting (14) into the relation, we obtain

�(i)F = −kBT ln ρv (n; T,V, N ). (15)

Hereafter, we abbreviate ρv (n; T,V, N ) as ρv (n). The validity
of (15) is examined from the perspective of statistical me-
chanics in Appendix E. We are now able to determine �(i)F
without performing the insertion. One should simply count
the number of molecules in the region corresponding to the
left chamber from time to time and determine ρv (n).

Note that the protocol (i) is common regardless of the
species of the initial pure substance or the composition of the
final mixture. �(i)F is expressed by a general form with an
error of o(ln N ). See (28) and Appendix C.

B. Work relation for �(ii)F

We next consider �(ii)F , which corresponds to the differ-
ence between two pure substances as

�(ii)F = FB(T, v, n) − FA(T, v, n), (16)

where FB is the Helmholtz free energy for the substance B. We
apply an alchemical process to determine �(ii)F . We change
all molecules in the left chamber to other species according
to the same protocol. We emphasize that we do not need
to consider whether process (ii) is a microscopic or macro-
scopic operation because all molecules in the left chamber are

FIG. 3. Mixing process using two semipermeable membranes.
�(iii)F is calculated from the work required to shift the two semiper-
meable membranes.

changed in the same manner. We add that there are several
numerical ways to determine �(ii)F , and that the values of FA

and FB may be referenced from a database [3].
The process (ii) is expressed by the change in the Hamil-

tonian, and we thus define the required work Ŵ(ii) for each
trajectory according to (2). The free-energy change in the
process (ii) is calculated using the usual Jarzynski equality
(4) as

�(ii)F = −kBT ln〈e−βŴ(ii)〉. (17)

�(ii)F corresponds to the free-energy change for the total
system because this process does not affect the free energy of
the right chamber. At constant volume, the pressure in the left
chamber may be changed by process (ii) and different from
that of the right chamber in general.

Before proceeding to the next process, we replace the wall
partition inserted in (i) with two semipermeable membranes.
The thickness of the two membranes is the same as that of
the wall partition. Assuming that the two membranes do not
interact with each other, the replacement does not require
thermodynamic work or affect the free energy of the system.
We assume that each membrane is ideal as it does not interact
with the other and allows one molecule species to pass without
interaction but completely blocks the other molecule species
from passing via a repulsive force.

C. Work relation for �(iii)F

Process (iii) corresponds to a standard mixing process of
two pure substances, which appears in textbooks on thermo-
dynamics [44,45] for the demonstration of mixing entropy
�mixS and mixing free energy �mixG. Upon shifting each
semi-permeable membrane slowly as shown in Fig. 3, the two
substances mix together between the two membranes. When
each membrane reaches the left or right boundary wall, the
container is filled with the mixture of the two substances.

Before we go further, we emphasize that this mixing
process makes for a difficult computation involving huge com-
putational resources. This is because the speed of the shift
of the membranes should be much lower than the velocity
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of molecules, whereas the distance between each membrane
and each boundary wall is macroscopic. When we perform
alchemical protocols such as the process in Fig. 1 and process
(ii) in Fig. 2, the required time step is approximately O(N0)
in calculating the work Ŵ per trajectory. Meanwhile, process
(iii) requires, at least, O(N ) time steps per trajectory. This
number could be more, such as O(N2), because we need to
relax the system close to equilibrium after each slight shift
of the membranes even though we use the Jarzynski equality.
Such a high-cost calculation is hard to complete with a large
enough system, and this is likely the reason that process (iii) is
not usually used in the numerical investigation of the mixing
entropy. Only when the system is as small as N � 100 can
we perform process (iii) in determining �(iii)F with good
accuracy as described below.

Suppose the work required to shift a membrane to the
left boundary is Ŵ L

(iii)(�̂) and that required to shift another
membrane to the right is Ŵ R

(iii)(�̂). The free-energy change in
process (iii) is estimated to be

�(iii)F = −kBT ln
〈
e−β(Ŵ L

(iii)+Ŵ R
(iii) )

〉
. (18)

As noticed for process (ii), the initial pressures may not be
balanced between the left and right chambers in general, and
therefore, process (iii) may not be quasistatic even in the
thermodynamic limit. Because we are adopting the Jarzynski
work relation, such problems do not affect the estimate of the
free-energy change.

D. Difference between FAB# and FAB

From (15), (17), and (18), we obtain

�F = −kBT ln
[
ρv (n)

〈
e−βŴ(ii)

〉〈
e−β(Ŵ L

(iii)+Ŵ R
(iii) )

〉]
, (19)

which is a thermodynamically valid formula for the free-
energy difference (5) between the pure substance A to the
mixture of A and B. We note that the left-hand side of (19)
does not depend on v, whereas the respective quantities on
the right-hand side are determined for a given v. Thus, the
dependence on v should be canceled out by multiplying the
three quantities.

Combining (19) with (7), we have

β(FAB − FAB# ) = − ln
ρv (n)

〈
e−βŴ(ii)

〉〈e−β(Ŵ L
(iii)+Ŵ R

(iii) )〉
〈e−βŴ(#)〉 . (20)

We emphasize that the right-hand side of (20) comprises
quantities measurable in numerical thermodynamic experi-
ments. By measuring these quantities numerically, we obtain
an answer to the first question raised in Sec. III, whether
FAB = FAB# or FAB �= FAB# .

E. Numerical results for the right-hand side of (20)

To numerically estimate the right-hand side of (20), we
perform molecular dynamics simulations for two types of
model mixtures. One is a mixture comprising two isotopes
of a monoatomic molecule, where the masses of the species
A and B are set as m and m + �m, respectively. The other is
a mixture comprising monoatomic molecules that are differ-
ent in size. The radius of the species A is r0, whereas that
of B is r0 + �r0. The details of the models are described

FIG. 4. β(FAB − FAB# ) as the right-hand side of (20) for three
types of mixture: a mixture of isotopes with different masses (×,
blue) and two mixtures of two types of molecule of different size (◦,
purple; 
, red). The dashed-black line shows − ln[N!/n!(N − n)!]
and the dotted-green line shows n ln n/N + (N − n) ln(N − n)/N . (a)
β(FAB − FAB# ) as a function of n/N for N = 50 with changing n and
(b) β(FAB − FAB# ) as a function of N when n/N = 0.5. Error bars are
not plotted as they would be smaller than the data point.

in Appendix A, and the explicit protocols are specified in
Appendix B. Numerical results on �(i)F , �(ii)F , and �(iii)F
are presented in Appendices C and D.

Figures 4(a) and 4(b) are simultaneous plots of the numeri-
cal results for the right-hand side of (20) for the two mixtures.
We find that all data converge to a black dashed line; i.e.,

ln
ρv (n)〈e−βŴ(ii)〉〈e−β(Ŵ L

(iii)+Ŵ R
(iii) )

〉
〈e−βŴ(#)〉 = ln

N!

n!(N − n)!
(21)

over a wide range of n/N and N for fixed V and β. The volume
v for the left chamber is chosen as v = V n/N as it gives
the most probable value for n. We emphasize that the plots
in Figs. 4 contain the data for completely different mixtures
and various values of �m/m and �r0/r0. Therefore, the con-
vergence strongly suggests the universality of the functional
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form (21). Combining (20) with (21), we conclude (8); i.e.,
FAB �= FAB# , and more precisely,

β(FAB − FAB# ) = − ln
N!

n!(N − n)!
. (22)

Combining (7) and (22), we obtain the Jarzynski equality (9).
The system sizes, 20 � N � 100, in the numerical ex-

periments are small enough to distinguish ln N! from its
asymptotic form N ln N . In Figs. 4(a) and 4(b), we show a
dotted line corresponding to the asymptotic of (22), n ln n

N +
(N − n) ln N−n

N , estimated using Stirling’s formula. The dotted
line does not coincide with the numerical results; i.e.,

β(FAB − FAB# ) �= − ln
NN

nn(N − n)N−n
. (23)

Once we obtain (9) and (22), we may recognize the combi-
natorial factor as the manifestation of the indistinguishability
of molecules in statistical mechanics. Historically, the fac-
torial N! was introduced to statistical mechanics by Gibbs
to recover extensivity [39,40] and then became convincing
owing to the consistency with quantum mechanics. However,
the factorial N! remains experimentally unverified in classical
systems because ln N! is hardly distinguishable from N ln N
in the macroscopic limit. The nonequality (23) denies the
possibility that N ln N is the factor to recover the extensivity
in classical systems. Moreover, our numerical result suggests
that one may derive the indistinguishability of molecules for
classical systems by deriving the relation (21) theoretically.

V. NUMERICAL METHOD OF CALCULATING
�mixG FOR AN ISOTOPE MIXTURE

When the pressure and volume are kept constant in process
(iii), we have �(iii)F = �mixG. Such a situation occurs for
isotope mixtures as explained below, and we can calculate
�mixG from the numerical scheme to use the relation (18).
This may be part of the answer to the second problem raised
in Sec. III. However, we note that the calculation is rather
impractical as discussed in the previous sections. We thus pro-
pose another scheme to calculate �mixG without performing
the macroscopic operations as process (iii). In this section,
we concentrate on a mixture of isotopes, which is a simpler
example for finding a formula for �mixG, and we then extend
the method to other mixtures in the next section.

Below, we limit v as

v = n

N
V, (24)

which gives a natural choice of n corresponding to the most
probable value.

A mixture of isotopes comprises two substances different
only in their mass. The interaction potential �({ri}) is com-
mon between the pure substances and the resulting mixture.
The pressure p is kept constant over all processes shown in
Table I while the system is at constant volume. It is thus
possible to regard that all processes at constant volume are
performed at constant pressure, which results in �G = �F
for all processes. Moreover, because the internal energy of
the system U = 〈H〉 never changes, we have �S = −�F/T .

Process (iii) then corresponds to a usual mixing process
with

�mixG = �(iii)F, (25)

�mixS = −�(iii)F/T . (26)

We note that the processes in Fig. 2 form a cycle once
we identify the operation depicted by the red arrow, whose
free-energy difference is given by (9) with the alchemical
operation in Fig. 1. Thus, substituting (9), (15), and (17) into
�(iii)F = �F − �(i)F − �(ii)F , we obtain the mixing Gibbs
free energy for two isotopes as

�mixG = −kBT ln

[
N!

n!(N − n)!ρv (n)

〈e−βŴ(#)〉
〈e−βŴ(ii)〉

]
. (27)

The right-hand side of (27) comprises numerically accessible
quantities whose computational cost is much lower than the
cost for performing (18).

The relation (27) is further simplified using

ln ρv (n = Nv/V ) = − 1
2 ln N + o(ln N ), (28)

which is derived in Appendix C. Combining the estimate
(28) with Stirling’s formula, ln N! = N ln N − N + 1

2 ln N +
o(ln N ), we have

ln
N!

n!(N − n)!ρv (n)
= �mixSideal

kB
+ o(ln N ), (29)

where �mixSideal = −kB[n ln n/N + (N − n) ln(N − n)/N] is
the mixing entropy for ideal solutions. Substituting (29) into
(27), we arrive at

�mixG = −T �mixSideal − kBT ln
〈e−βŴ(#)〉
〈e−βŴ(ii)〉 + o(ln N ). (30)

Formula (30) indicates that �mixG is accessible only by the
two alchemical processes. Here, we comment that, in the
case of isotopes, the two ensemble averages in the second
term of the right-hand side are always equal and �mixG =
−T �mixSideal + o(ln N ). Furthermore, because the mixing en-
thalpy �mixH = 0, we have

�mixS = kB ln
NN

nn(N − n)N−n
+ o(ln N ). (31)

It is straightforward that

�mixS �= kB ln
N!

n!(N − n)!
. (32)

Thus, the mixing entropy of isotopes does not correspond
to the combinatorial entropy but rather behaves as the ideal
mixing entropy �mixSideal even at N = 20 far from the ther-
modynamic limit. For general mixtures, the functional form
of the mixing entropy is not necessarily to be (31), whereas
the formula (30) remains valid. It provides a new method of
obtaining the mixing free energy �mixG as explained in the
next section.

VI. GENERALIZATION TO REAL SOLUTIONS

We now extend the formulas (27) and (30) from the mixture
of isotopes to general real solutions. In Sec. VI A, we set
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up the system and its Hamiltonian at constant pressure and
explain the version of the Jarzynski work relation for constant
pressure. In Sec. VI B, we propose the formulas (42), (43),
and (45) for �mixG with two types of alchemical work Ŵ(ii)

and Ŵ(#) and restate them as the relations for the activity
coefficients in (50).

A. Setup at constant pressure

When a certain wall of the container is replaced with a
movable wall at constant pressure of p, the system’s Hamil-
tonian changes to

Hp(�,V ; α) = H (�; α) + pV. (33)

Note that the pressure p is a fixed constant, whereas the
volume V becomes a microscopic variable for the Hamil-
tonian. A trajectory in phase space is given by (�̂, V̂ ) =
(�(t ),V (t ))t∈[0,τ ]. When a set of parameters α is used, the
required work is written as

Ŵ (�̂, V̂ ) =
∫ τ

0
ds

dα

ds
· ∂H (�(s); α)

∂α

∣∣∣∣
α=α(s)

, (34)

where Ŵ is determined by the Hamiltonian H (�) and not by
Hp(�,V ) because the second term pV in (33) does not depend
on α at fixed p. Similarly to the system at constant volume, the
work in macroscopic operations or single-molecule manipula-
tions leads to the Jarzynski work relation

�G = −kBT ln〈e−βŴ 〉, (35)

where �G is the change in the Gibbs free energy
G(T, p,α, N ). 〈·〉 is the average over trajectories (�̂, V̂ )
starting from equilibrium states at constant pressure, which
corresponds to the usual ensemble average in numerical ex-
periments starting after a sufficient relaxation.

B. Formulas for mixing free energy and activity coefficients

Following the previous argument, we consider a cycle at
constant pressure shown in Fig. 5, which is similar to the cycle
in Fig. 2 at constant volume.

Performing all processes at constant pressure of p, the
cycle in Fig. 5 leads to

�G = �(i)G + �(ii)G + �(iii)G, (36)

where

�G ≡ GAB(T, p, n, N − n) − GA(T, p, N ). (37)

Operationally, �G is the free-energy difference due to the
alchemical process that changes the pure substance of A into
the mixture of A and B as depicted by the red arrow in Fig. 5.
Referring to formula (9), we expect that

�G = −kBT ln

[
N!

n!(N − n)!
〈e−βŴ(#)〉

]
, (38)

where Ŵ(#) is defined on the system of the distinguishable
molecules according to the alchemical process illustrated in
the left figure of Fig. 6.

To perform process (i) in Fig. 5, let L be the length of
the container and choose X as the position to insert a wall
partition. We then observe the number n in the region of

FIG. 5. Cycle at constant pressure designed in parallel to the
cycle at constant volume in Fig. 2.

x < X and define ρX (n) in parallel to (12) with the canonical
distribution ρeq(�) at constant pressure. The change in Gibbs
free energy for process (i) is formulated as

�(i)G = −kBT ln ρX (n) (39)

similarly to (15). The estimate (28) is also valid for the most
probable value of n; i.e., n = NX/L. Alchemical process (ii) at
constant pressure is shown in the right figure of Fig. 6, where
the right chamber is omitted. Equation (35) leads to

�(ii)G = −kBT ln〈e−βŴ(ii)〉. (40)

Protocol (iii) at constant pressure is exactly the mixing process
for the two pure substances A and B; i.e.,

�(iii)G = �mixG. (41)

FIG. 6. Two alchemical processes to be calculated in the deter-
mination of �mixG using formula (42), (43), or (45).
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Substituting (38), (39), (40), and (41) into (36), we have
the formula for the mixing free energy as

�mixG = −kBT ln

[
N!

n!(N − n)!ρX (n)

〈e−βŴ(#)〉
〈e−βŴ(ii)〉

]
. (42)

Obviously, formula (42) for general mixtures is consistent
with (27) for isotope mixtures, and it is therefore considered
to be a general work relation giving the mixing free energy
�mixG. Once we obtain (42), a similar transformation from
(27) to (30) is possible, which leads to

�mixG = −T �mixSideal − kBT ln
〈e−βŴ(#)〉
〈e−βŴ(ii)〉 + o(ln N ). (43)

Recalling (7), the Gibbs free-energy change in the alchemical
process for the distinguished molecules in the right figure of
Fig. 6 is written as

�(#)G = GAB# − GA = −kBT ln〈e−βŴ(#)〉. (44)

Substituting (40) and (44) into (43), we obtain

�mixG = −T �mixSideal − �(ii)G + �(#)G + o(ln N ). (45)

We emphasize that �mixG is determined just from two al-
chemical processes in Fig. 6. Compared with the calculation
of the mixing free energy along process (iii), the numerical
cost to calculate (43) or (45) is low.

Mixing changes the thermodynamic properties of each
substance. This change is represented by excess chemical
potential; i.e., the deviation of chemical potential from that of
each pure substance. Letting the mole fraction of the mixture
be c ≡ n/N , the excess chemical potential is written as

βμex
A (T, p, c) = ln c + ln γA, (46)

βμex
B (T, p, c) = ln(1 − c) + ln γB, (47)

with the activity coefficients γA(T, p, c) and γB(T, p, c).
When γA = γB = 1, the mixture is ideal; i.e, a molecule of
substance A does not interact with a molecule of B. Therefore,
the values of ln γA and ln γB represent the intrinsic properties
of the mixture that result from the interaction of the two
pure substances. For the total mixture, the effect of mixing
is summarized by the mixing Gibbs free energy �mixG,

�mixG = nμex
A + (N − n)μex

B . (48)

Summarizing (46), (47), and (48), we have

�mixG + T �mixSideal = kBT [n ln γA + (N − n) ln γB]. (49)

Thus, (43) and (45) lead to a relation for the activity coeffi-
cients as

n ln γA + (N − n) ln γB = − ln
〈e−βŴ(#)〉
〈e−βŴ(ii)〉 + o(ln N )

= β(�(#)G − �(ii)G) + o(ln N ).

(50)

The estimates of activity coefficients are a major issue in the
research of mixtures, especially from the point of chemical
engineering. The relation (50) may offer a new method of
estimating the activity coefficients for various mixtures and

FIG. 7. Snapshots of the particle distribution for the mixture of
argon (purple) and krypton (green). The three-dimensional space
inside the container is projected onto the xy plane. Upper, middle,
and bottom figures are for cKr = 0.3, 0.5, and 0.65, respectively. The
middle figure clearly shows the separation of liquid from vapor.

solutions, which involves only a molecular dynamics simula-
tion with two types of alchemical process.

VII. NUMERICAL DEMONSTRATION OF �mixG
FOR A MIXTURE OF ARGON AND KRYPTON

We present an example of �mixG determined from the
molecular dynamics simulation for a mixture of argon and
krypton at constant temperature and constant pressure. The
mixture is modeled as three-dimensional Lennard-Jones liq-
uids. We use the LAMMPS package in this demonstration.
See Appendix F for details. The molecules are packed in a
cuboid box whose volume can fluctuate while keeping an as-
pect ratio of 21:5:5 to fix the value of pressure. The container
is periodic in y and z directions whereas two boundary walls
are set perpendicularly to the x axis.

We choose the values of temperature and pressure as T =
163.15 K and p = 4 MPa, at which liquid–vapor transition is
observed with an increasing molar fraction cKr = NKr/N of
the krypton [46]. The total number of molecules is N = 500,
and the characteristics of the liquid–vapor transition are ob-
served in numerical experiments. Figure 7 shows snapshots
of the system’s configuration after sufficient relaxation for
cKr = 0.3, 0.5, and 0.65. The volume differs greatly among
the three values of cKr. The number density at cKr = 0.65
is approximately 5 times that at cKr = 0.3, and dense and
dilute regions coexist at cKr = 0.5. Such behaviors clearly
exhibit the characteristics of liquid–vapor transition. We also
examine the compressibility κT ≡ − 1

〈V 〉 ( ∂〈V 〉
∂ p )T , which can be

written as

κT = 〈V 2〉 − 〈V 〉2

kBT 〈V 〉 . (51)

As shown in Fig. 8, the compressibility decreases and ap-
proaches zero when cKr is larger than 0.55, which indicates
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FIG. 8. Compressibility κT for the mixture comprising argon and
krypton as a function of the molar fraction cKr of krypton.

the behavior of liquid. For cKr smaller than almost 0.35,
the mixture behaves as a gas, with the compressibility being
larger than that of liquid. We see that the compressibility
grows more around 0.35 < cKr < 0.55. This is due to the
coexistence of liquid and gas, for which the volume fluctu-
ates largely. These observations are generally consistent with
the results of a previous study on argon–krypton mixtures
[46].

With the above observations, we proceed to the determi-
nation of �mixG. Because the LAMMPS package does not
contain the Jarzynski work relation, we calculate �(#)G and
�(ii)G by the free-energy perturbation method [47] and sub-
stitute them into (45). In the calculations, we take the initial
pure substance as being argon.

The resulting mixing free energy �mixG is shown in Fig. 9.
The curve has a double-well shape and is convex upwards

FIG. 9. �mixG for the binary mixture of argon and krypton with
N = 500 determined using (45). Molecular dynamics simulations are
performed with a unit time of 4.0 fs. The typical relaxation time is
sufficiently shorter than 1.0 ns. The alchemy operation producing
the target mixture from the pure argon gas is divided into 20 steps
to apply the free-energy perturbation method for the calculations of
�(#)G and �(ii)G. For each step, the system relaxes in 1.0 ns. The
number of samples is 25 000. Here, 1 kcal/mol = 4.184 kJ/mol in
SI unit.

in the approximate range of 0.35 < cKr < 0.55, which is
consistent with the range in which the liquid–vapor coexis-
tence is observed in the compressibility κT . We thus conclude
that the functional shape of �mixG well characterizes the
liquid–vapor transition for the argon–krypton mixture. Our
formula, (42), (43), or (45), actually works as a quantitative
method for determining the mixing Gibbs free energy.

Note that ln N is 1% of N at N = 500 used in this demon-
stration, where thermodynamic properties may deviate from
those in the thermodynamic limit. Indeed, the upward convex-
ity in �mixG is not expected in the thermodynamic limit from
the second law of thermodynamics; i.e., the upward convex
region should be flattened by increasing the system size N .
The coexistence states may become more unstable at small
N than in the thermodynamic limit owing to the enhanced
fluctuations. Such finite size effects could be studied in terms
of �mixG as an interesting future topic.

VIII. CONCLUDING REMARKS

We extended the scope of the work relation from macro-
scopic operations or single-molecule manipulations to micro-
scopic operations producing a mixture from a pure substances.
To this end, we numerically derived the relation (21), in
which the combinatorial factor N!/n!(N − n)! was led from
molecular dynamics simulations for classical molecule sys-
tems as shown in Figs. 4. The free energy of the mixture
determined by the work relation (9) or (38) is regarded as
that measured in the standard reference by taking the free
energy of the initial pure substance as the standard value in
databases. The free energy in the standard reference makes it
possible to compare thermodynamic properties among several
mixtures. We then proposed a variant of the work relation
for determining the mixing Gibbs free energy characterizing
thermodynamic properties for the mixture. This variant is
formulated as (42), (43), or (45) by combining two alchemical
processes in Fig. 6 and is connected to the excess chemical
potential and activity coefficients for each substance in the
mixture. We demonstrated the calculation of the mixing free
energy for the mixture of argon and krypton, which clearly
shows the characteristics of the liquid–vapor transition even
in a small system of N = 500.

We emphasize that formulas (42), (43), and (45) offer ef-
fective methods of numerically determining the mixing free
energy. The advantages of the method are the generality of
the subjected mixture, accessibility to the free energy, and
low cost of the numerical computation. Although we explored
the method by limiting ourselves to a mixture of monoatomic
molecules without electrical charges, the method would be
applicable to various solutions with a general mole fraction,
system size, species of molecules, and type of interaction. For
instance, the extension of the method to diatomic or poly-
atomic molecules is straightforward if the number of atoms for
each molecule in the mixture is the same; e.g., a mixture of O2

and N2 or CO2 and H2O. To deal with a mixture comprising
two species with the different numbers of atoms, we need to
take care of the indistinguishability of atoms in the molecules.
We may avoid the difficulty by choosing the species of
the initial pure substance as the larger molecule. We apply
the alchemical process to cut the larger molecules into the
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same size as the smaller molecules and to change them into the
target molecules. Respective alchemy tricks can be considered
in accessing the mixing free energy for the respective target
mixture.

Many solvation studies assume solutions to be dilute and
apply the continuum limit approximation to the solvent [41].
Our method is free from such approximations and the reli-
ability of the obtained mixing free energy depends on the
reliability of the interaction potentials used, whose designs
have been intensively studied for the development of molecu-
lar dynamics simulations [48]. We here mention methods of
estimating the mixing free energy and activity coefficients.
For ionic solutions of less ionic strength, the Debye-Hückel
theory and its extension are effective [43,49]. For real solu-
tions with general concentrations, heuristic approaches can be
used to obtain an approximate perspective of the solutions. For
instance, a method estimates activity coefficients using empir-
ical models that require thermodynamic parameter inputs to
be determined in other experiments. Another method uses ap-
proximate partition functions by imposing simpler interaction
potentials with which the partition function becomes acces-
sible [49–51]. There, the reliability of the obtained values is
rather obscure owing to the heuristic assumptions.

We next remark on a fundamental point raised by the nu-
merical experiments of this paper. Our observations revealed
the combinatorial factor as shown in (21) and Figs. 4. This
would be interpreted naturally as coming from the factorial
N! contained in the microcanonical or canonical distribution,
and may be universal over the choice of two substances.
Because we adopted small system sizes, N! was explicitly
distinguished from another possible factor as NN . Let us recall
that the factorial was initially introduced into classical statisti-
cal mechanics to satisfy the extensivity of free energy [39,44].
This was attributed to the indistinguishability of molecules,
which was convincing owing to the consistency with quantum
mechanics, although it led to the Gibbs paradox from a clas-
sical point of view. The Gibbs paradox has been argued until
now as a fundamental problem; e.g., the interpretation of the
distinguishability from the fluctuation theorem [52] and the
ability to distinguish quantum systems [53,54]. We emphasize
that our numerical experiments reveal the combinatorial fac-
tor only from the thermodynamic measurements of classical
systems without making any assumption connected to quan-
tum mechanics. This may be related to the fact that colloidal
particle systems are accessible using a framework of statistical
mechanics [55]. The indistinguishability of molecules may be
derived by dealing with the right-hand side of (21) theoreti-
cally for classical systems, which may shed new light on the
Gibbs paradox.

Our numerical observations for isotopes with small N re-
veal that the functional form of the mixing entropy is (31)
instead of (32), which is consistent with the mixing entropy
for ideal mixtures derived from statistical mechanics. We here
note that (29) does not only result from the combinatorial
factor. It is not ln[N!/n!(N − n)!] but requires the contribution
of �(i)F from information thermodynamics. Combinatorial
entropic effects due to the combination may be related to the
stability of binding states of two biomolecules or absorption
states of small objects [56], for which the informative contri-
bution may play a role.
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APPENDIX A: MODEL

We consider two-dimensional systems, where N molecules
are in a container of a rectangle box with dimensions of
Lx × Ly and a periodic boundary condition in the y direction.
The position of the ith molecule, 1 � i � N , is ri = (xi, yi )
with 0 � xi � Lx and 0 � yi < Ly. Two fixed walls are placed
at (0, y) and (Lx, y), and two movable membranes are at
(XL(t ), y) and (XR(t ), y). The mass and radius of the ith
molecule are mi and ri

0, and the thickness of each wall and
membrane is σw. We set σw as almost vanishing compared
with the radius of the molecules. We then define the system’s
Hamiltonian as

H (�; α) =
N∑

i=1

|pi|2
2mi

+ �
({ri};

{
ri

0

}
, XL, XR, λ

)
, (A1)

where λ is a parameter that denotes the existence of the
inserted membranes. α is the set of parameters in the Hamil-
tonian; i.e.,

α = ({mi}, {ri
0

}
, XL, XR, λ

)
. (A2)

We write the total potential of the system as

�
({ri};

{
ri

0

}
, XL, XR, λ

)
=

N∑
i=1

∑
j<i

φ
(|ri − r j |; ri

0 + r j
0

)

+
N∑

i=1

φ
(
xi; ri

0 + σw
) +

N∑
i=1

φ
(
Lx − xi; ri

0 + σw
)

+λ

[
n∑

iL=1

φ(XR − xiL ; σw) +
N∑

iR=n+1

φ(xiR − XL; σw)

]
.

(A3)

All the pair interactions between two objects are given by the
Weeks-Chandler-Andersen (WCA) potential,

φ(r; σ ) =
{

4ε
[(σ

r

)12
−

(σ

r

)6]
+ ε, (r < 2

1
6 σ )

0, (r � 2
1
6 σ )

(A4)

where r is the distance for the interacting pair and σ is the
parameter given for respective pairs.

The first term of (A3) is the interaction between two
molecules, and the second and third terms are the interactions
between the molecules and walls of the container. The fourth
and fifth terms of (A3) correspond to the interaction between
the semipermeable membranes and molecules. iL and iR are
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the indices for labeling molecules observed in the left and
right chambers, respectively. Note that the membranes detect
the molecules as points with mass. This was designed to
reduce the excluded volume effect due to the insertion of the
semipermeable membrane to zero.

We perform a molecular dynamics simulation with a
Langevin thermostat having temperature T . Each molecule
evolves according to

ṗi = −∂H

∂ri
− γ (xi )

mi
pi +

√
2γ (xi )kBT ξi(t ), (A5)

with ṙi = pi/mi, where γ (xi ) = 1 in the region 0 < xi <

0.1Lx and 0.9Lx < xi < Lx while γ (xi ) = 0 in 0.1Lx � xi �
0.9Lx. ξi(t ) = (ξ x

i (t ), ξ y
i (t )) is Gaussian white noise that sat-

isfies 〈ξ a
i (t )〉 = 0 and 〈ξ a

i (t )ξ b
j (t ′)〉 = δi, jδa,bδ(t − t ′), where

a and b are x or y. We take kBT = 2.0ε, which is far above the
Alder transition temperature.

APPENDIX B: PROTOCOLS AND WORKS

We take two examples of a mixture of two components.
The first example is a mixture of isotopes, where the two
components have distinct mass. One component is of m while
another is of m + �m. The second example is a mixture
with molecules of different size, where the diameter of each
component is parameterized by r0 or r0 + �r0. We take m =
1 and r0 = 2−1/6 in numerical calculations demonstrated in
Appendices C and D.

We first consider the protocol to produce the mixture of dis-
tinguishable molecules. The N molecules are totally indexed
from i = 1 to N and relaxed to equilibrium with λ = 0. In the
first example, we change m with r0 fixed as

mi(t ) = m + �m
t

τ(#)
, (B1)

for 1 � i � n. τ(#) is the operation time of the protocol. Ac-
cording to formula (2), the work required in the change of
mass m is written as

Ŵ m
(#) = − �m

2τ(#)

n∑
i=1

∫ τ(#)

0
dt

∣∣∣∣ pi(t )

m(t )

∣∣∣∣
2

. (B2)

We can take τ(#) as being very short and even τ(#) → 0 when
we use the Jarzynski relation (4). In the second example, we
change r0 for the molecules with m fixed as

ri
0(t ) = ri

0 + �r0
t

τ(#)
, (B3)

where 1 � i � n. The required work is

Ŵ r0
(#) = �r0

τ(#)

n∑
i=1∫ τ(#)

0
dt

∂�({ri(t )}; {ri
0}, 0, 1, 0)

∂ri
0

∣∣∣∣
{ri

0}={ri
0(t )}

. (B4)

When we consider a dilute fluid, we can take the period of
operation as τ(#) → 0.

We next describe the protocol used to determine �(i)F ,
�(ii)F and �(iii)F . For process (i), we put N molecules in the
container with λ = 0 and relax the system in equilibrium. At

each moment t after the relaxation, we observe the number of
the molecules nv (�(t )) in the region corresponding to the left
chamber; i.e., x < v/Ly. From this observation, we construct
the probability density ρv (n). We then obtain �(i)F according
to (15).

In process (ii), we deal with the system with λ = 1 as it
is separated by the wall. We choose an arbitrary value of n
and put n molecules in the left chamber having volume v, and
N − n molecules in the right chamber having volume V − v.
In this paper, we choose n = Nv/V because the left and right
systems become almost equivalent. We label molecules in
the left and right chambers as iL and iR, respectively, where
1 � iL � n and n + 1 � iR � N . We relax this combined sys-
tem to equilibrium. Note that the procedures up to here are
common for all mixtures that we want to examine. We then
start alchemical process (ii). In the first example, we set
the initial mass of all molecules as mi = m. We change the
mass of the left n molecules while fixing that of the right
molecules as

miL (t ) = m + �m
t

τ(ii)
, miR (t ) = m, (B5)

for 0 � t � τ(ii). In t � τ(ii), the masses are fixed as m + �m
and m in left and right chambers, respectively. The work
required for this change is

Ŵ m
(ii) = − �m

2τ(ii)

n∑
iL=1

∫ τ(ii)

0
dt

∣∣∣∣ piL (t )

miL (t )

∣∣∣∣
2

. (B6)

In the second example, we set the initial radius of all
molecules as r0 and then change the radius in the left
chamber as

riL
0 (t ) = r0 + �r0

t

τ(ii)
, riR

0 (t ) = r0, (B7)

for 0 � t � τ(ii), and then fix the radiuses. The required work
is

Ŵ r0
(ii) =

�r0

τ(ii)

n∑
iL=1

∫ τ(ii)

0
dt

∂�
({ri(t )}; {ri

0}, v
Ly

, v
Ly

, 1
)

∂riL
0

∣∣∣∣∣
{riL

0 }={riL
0 (t )}

.

(B8)

We equilibrate the system for an interval tr sufficiently
longer than the system’s relaxation time. We then proceed to
protocol (iii), which is the hardest process in the computation.
Note that the pressure will be different between the left and
the right chambers, especially in the second example. Such
a difference may be a cause of irreversibility; however, this
does not matter in principle for the use of the Jarzynski work
relation.

We start to move the two membranes at time t1 = τ(ii) + tr ,
which is expressed as

XL(t ) = v

Ly

(
1 − t − t1

τ(iii)

)
, (B9)

XR(t ) = V

Ly
− V − v

Ly

(
1 − t − t1

τ(iii)

)
(B10)
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for t1 < t < t1 + τ(iii), in which the operation time τ(iii) is as
long as

τ(iii) ∼ max

(
v

riL
0 (t1)

,
V − v

riR
0

)
(B11)

to avoid numerical errors and/or divergence. The works along
this protocol are

Ŵ L
(iii) = − v

Ly

1

τ(iii)

∫ t1+τ(iii)

t1

dt

× ∂�
({ri(t )}; {ri

0(t1)
}
, XL, XR(t ), 1

)
∂XL

∣∣∣∣
XL=XL (t )

(B12)

and

Ŵ R
(iii) = V − v

Ly

1

τ(iii)

∫ t1+τ(ii)

t1

dt

× ∂�
({ri(t )}; {ri

0(t1)
}
, XL(t ), XR, 1

)
∂XR

∣∣∣∣
XR=XR (t )

.

(B13)

APPENDIX C: GENERAL ESTIMATE OF �(i)F

Figure 10(a) shows an example of the distribution ρv (n)
for v = V/2 when N = 50. It clearly shows that ρv (n) is
approximated well by a Gaussian distribution exhibited by a
line. We calculate �(i)F by (15) from numerically determined
ρv (〈n〉). As shown in Fig. 10(b) for 20 � N � 100, �(i)F
exhibits a logarithm of N , which will be common over species
of the initial substance, as explained below.

Once we choose the values of v, V , and N , we natu-
rally expect the mean number of the molecules in the left
chamber to be 〈n〉 = Nv/V . We here assume v = O(V ) and
V − v = O(V ). The probability distribution ρv (n) is generally
written as

ρv (n) = 1

Cv (N )
exp

[
−N

∞∑
k=2

ak

k!

(
n

N
− 〈n〉

N

)k
]
, (C1)

Cv (N ) = N
∫ 1

0
dc exp

[
−N

∞∑
k=2

ak

k!
(c − 〈c〉)k

]
, (C2)

where ak is a constant of O(N0) and c = n/N . Substituting
n = 〈n〉 into the above general form, we have

ln ρv (〈n〉) = − ln Cv (N ). (C3)

A standard procedure for large N leads to an estimate as

Cv (N ) =
√

N

(√
2π

a2
+ o(N− 1

2 )

)
, (C4)

which yields

ln ρv (〈n〉) = − 1
2 ln N + o(ln N ). (C5)

Therefore, especially for n = 〈n〉 = Nv/V , (15) is rewritten
as

β�(i)F = 1
2 ln N + o(ln N ) (C6)

FIG. 10. (a) Distribution of the number of molecules ρv (n) for
N = 50. The line indicates the Gaussian distribution with 〈n〉 = N/2
and σ (n) = 0.42

√
N . (b) �(i)F resulting from the numerically de-

termined ρv (n) at n = Nv/V for 20 � N � 100. The line indicates
β�(i)F = 1

2 ln N as (C6). To obtain each point, ρv (n = Nv/V ) is
determined from 50 000 samples for V = 30Nr2

0 and v = V/2 in both
(a) and (b).

from (C5). Note that this formula holds universally for any
mixture. The numerical results are presented in Fig. 10(b),
which shows a good agreement with (C6) depicted as a line.

APPENDIX D: NUMERICAL RESULTS ON RESPECTIVE
FREE-ENERGY CHANGES

We here demonstrate numerical estimates of respective
free-energy changes to clarify their N dependence.

We focus on small values of N as N � 100, where ln N!
largely deviates from N ln N . The difference is estimated us-
ing Stirling’s formula as

ln N! − N ln N = −N + 1
2 ln N + o(ln N ). (D1)

From this formula with n = O(N ), we have

ln
N!

n!(N − n)!
−

[
n ln

n

N
− (N − n) ln

N − n

N

]

= 1

2
ln

N

n(N − n)
+ o(ln N ), (D2)
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FIG. 11. Free-energy changes �(i)F , �(ii)F , and �(iii)F for the
change in mass m → 2m as a function of N . The volume v for the
left chamber is chosen as v = V n/N , where V = 6Nr2

0 and n/N =
0.5. Lines are estimates of (D4), (D5), and (D6) from statistical
mechanics.

whose right-hand side is O(ln N ) and ignored at sufficiently
large N . This indicates that identifying the contribution of
O(ln N ) for each free-energy difference makes the finite size
effect on N clear. We therefore make numerical estimates up
to O(ln N ) for each free-energy difference. We fit the numeri-
cal results in the functional form as

β�(ii,iii,#)F = aN + b ln N, (D3)

where the first term on the right-hand side corresponds to the
extensive contribution remaining in the thermodynamic limit.
The second term is important to the purpose of this paper.

For numerical estimates of �(ii)F and �(iii)F , we choose
n/N = v/V = 0.5 and set V = 6Nr2

0 for the mixture of iso-
topes, whereas V = 30Nr2

0 for the mixture of the different size
molecules. We calculate 5000 samples for each protocol.

Figure 11 shows the respective free-energy changes in the
protocol m → 2m, where the mixture comprises isotopes. The
operation times are τ(ii) = 400τMD and τ(iii) = 30 000τMD,
where τMD ≡ 2r0

√
m/ε. As seen, both �(ii)F and �(iii)F in-

crease linearly with N , which become far superior to �(i)F at
N = 100. The fitting parameters a and b are summarized in
Table II. We find that the coefficient b is sufficiently small to
ignore the contribution of O(ln N ). Thus, the contribution of
O(ln N ) in �F comes only from �(i)F , which indicates the
importance of �(i)F to estimate free energy in the finite-size
systems.

TABLE II. Values of fitting parameters a and b in (D3) when
changing the mass as m → 2m for n molecules. n = 0.5N , V = 6Nr2

0

and v = 0.5V . Operation times τ(ii) and τ(iii) are depicted in the last
columns.

Process a b Operation time

(ii) −0.346 ± 0.001 0.003 ± 0.018 400τMD

(iii) −0.700 ± 0.001 0.069 ± 0.019 30000τMD

(#) −0.349 ± 0.005 0.033 ± 0.010 400τMD

FIG. 12. Free-energy changes �(i)F , �(ii)F , and �(iii)F for the
change in radius r0 → 2r0 as a function of N . The volume v for
the left chamber is chosen as v = V n/N , where V = 30Nr2

0 and
n/N = 0.5.

When the isotopes are an ideal gas, we can directly
calculate the respective free-energy change using statistical
mechanics. We derive in Appendix E

β�(i)F = 1

2
ln N + o(ln N ), (D4)

β�(ii)F = −N

2
ln 2 + o(ln N ), (D5)

β�(iii)F = −N ln 2 + o(ln N ). (D6)

We show these estimates as the lines in Fig. 11. Even though
we adopt a finite radius with r0 �= 0, numerical results fit well
to these theoretical results for the ideal isotopes.

Figure 12 displays numerical results for the protocol
r0 → 2r0. We remark �(ii)F �= �(#)F as demonstrated in
Table III. This is an important difference from the isotopes
with �(ii)F = �(#)F . The difference between �(ii)F and
�(#)F may indicate that the deviation of the mixture from
the ideal one and characterize the nontrivial thermodynamic
properties of the mixture.

APPENDIX E: FREE-ENERGY CHANGES FOR IDEAL
SOLUTIONS OF ISOTOPES DERIVED FROM

STATISTICAL MECHANICS

The free energy for the solution of two ideal isotopes can
be calculated theoretically according to statistical mechanics.

TABLE III. Values of fitting parameters a and b in (D3) when
changing the radius as r0 → 2r0 for n molecules. n = 0.5N , V =
6Nr2

0 and v = 0.5V . Operation times τ(ii) and τ(iii) are depicted in the
last columns.

Process a b Operation time

(ii) 0.066 ± 0.001 −0.060 ± 0.004 2050τMD

(iii) −0.700 ± 0.007 −0.046 ± 0.120 15000τMD

(#) 0.058(6) ± 0.000(1) −0.040 ± 0.002 2050τMD
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The partition function for pure substance A or B is calculated
as

ZA(V, N ) = (2πkBT mV )N

N!
, (E1)

ZB(V, N ) = ( 2πkBT (m + �m)V )N

N!
, (E2)

whereas that of the mixture of A and B is

ZAB(V, n, N − n) = (2πkBTV )N mn(m + �m)N−n

n!(N − n)!
. (E3)

Since βF = − ln Z , we have the respective differences of the
free energy as

β�F = −n ln
m + �m

m
− ln

N!

n!(N − n)!
, (E4)

β�(ii)F = −n ln
m + �m

m
, (E5)

β�(iii)F = n ln
n

N
+ (N − n) ln

N − n

N
. (E6)

Note that the right-hand side of (E6) is nothing but the mixing
entropy for the ideal solution −kB�mixSideal. This is because
process (iii) for the isotope mixture does not change the
internal energy and pressure of the system, which leads to
�(iii)F = −T �mixSideal.

Recalling that �(i)F = �F − �(ii)F − �(iii)F , (E4), (E5),
and (E6) yield

β�(i)F = − ln
N!

n!(N − n)!
− n ln

n

N
− (N − n) ln

N − n

N
.

(E7)

Equation (E7) agrees with the estimate (28) or (C5). Applying
Stirling’s formula to (E7), we obtain

β�(i)F = 1

2
ln N + 1

2
ln

2πn(N − n)

N2
+ o(N0). (E8)

This is consistent with (28) because the second term of
the right-hand side is o(ln N ) when n/N and (N − n)/N are
O(N0).

Let us calculate �(i)F directly. The probability that one
molecule of ideal gas exists in a region of volume v is v/V ,
and the probability of finding n molecules in the region of
volume v is thus given by a binomial distribution,

ρv (n) =
( v

V

)n(V − v

V

)N−n N!

n!(N − n)!
. (E9)

Substituting this form of ρv (n) with n = Nv/V into (15), we
obtain (E7). This agreement convinces us of the validity of
(15) as the formula of �(i)F .

APPENDIX F: MODEL FOR THE MIXTURE
OF ARGON AND KRYPTON

The interaction of any two molecules, argon or krypton, is
given by the Lennard-Jones potential,

φ(r; ε, σ ) =
{

4ε
[(σ

r

)12
−

(σ

r

)6]
, (r < rc)

0, (r � rc)
(F1)

where rc is the cutoff length. The parameters of φ are
set as reported in [57]; for the argon pair, σAr = 3.401 Å
and εAr = 0.2321 kcal/mol, whereas σKr = 3.601 Å, εKr =
0.3270 kcal/mol for the krypton pair. Here, kcal is defined
by the thermochemical calorie as 1 kcal/mol = 4.184 kJ/mol.
For the pair of argon and krypton, the Lorentz–Berthelot law
is assumed as is usual for the Lennard–Jones binary mix-
ture [58,59], σArKr = (σAr + σKr )/2 = 3.501 Å and εArKr =√

εArεKr = 0.2755 kcal/mol. We set the cutoff length as
rc = 3σKr. The masses of argon and krypton are mAr =
39.95 g/mol and mKr = 83.80 g/mol.

The molecules are packed in a cuboid box, which is pe-
riodic in y and z directions whereas two soft-core walls with
σw = σAr/2 are set as they are perpendicular to the x axis. The
aspect ratio of the container is kept at 21 : 5 : 5.

The numerical simulation is performed at constant temper-
ature and constant pressure using the LAMMPS molecular
dynamics package. The temperature and pressure are con-
trolled by the Nose-Hoover chain and Martyna-Tobias-Klein
barostat, respectively [60].
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