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SU(2) hyper-clocks: Quantum engineering of spinor interferences for time and frequency metrology
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In 1949, Ramsey’s method [Phys. Rev. 76, 996 (1949)] of separated oscillating fields was elaborated boosting
over many decades metrological performances of atomic clocks and becoming the standard technique for
very high-precision spectroscopic measurements. A generalization of this interferometric method is presented
replacing the two single coherent excitations by arbitrary composite laser pulses. The rotation of the state vector
of a two-level system under the effect of a single pulse is described using the Pauli matrices basis of the
SU(2) group. It is then generalized to multiple excitation pulses by a recursive Euler-Rodrigues-Gibbs algorithm
describing a composition of rotations with different rotation axes. A general analytical formula for the phase shift
associated with the clock’s interferometric signal is derived. As illustrations, hyper-clocks based on three-pulse
and five-pulse interrogation protocols are studied and shown to exhibit nonlinear cubic and quintic sensitivities
to residual probe-induced light shifts. The presented formalism is well suited to optimize composite phase shifts
produced by tailored quantum algorithms in order to design a new generation of optical frequency standards and
robust engineering control of atomic interferences in atomic, molecular, and optical physics with cold matter and
antimatter.
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I. INTRODUCTION

The method of separated oscillating fields was introduced
by Ramsey in 1949 to improve frequency resolution of spec-
troscopic measurements and collect information about the
internal structure of atoms and molecules [1–3]. Today, under-
standing how to improve the robustness of spectroscopy with
coherent radiation by reducing or eliminating laser probe-
induced systematics still remains a central goal in the broad
and important field of robust atomic sensors from stringent
tests of fundamental physics to quantum metrology with opti-
cal clocks and matter-wave interferometry [4].

Ramsey derived in 1950 the first original quantum-
mechanical description of a spin-1/2 interferometric res-
onance with two separated coherent pulses by using a
Schrödinger wave-function description [2] later extending the
analysis to phase jumps, pulse shapes, and amplitudes [5,6].
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Ramsey’s method became the standard technique in atomic
physics based on microwave and laser spectroscopy and in
quantum metrology with atomic beams [7] and cold atomic
fountains [8] to measure transition frequencies between par-
ticle states with very high precision [9]. After 70 yr, Ramsey
interferometry is still a powerful tool to investigate matter-
light interaction with a few particles, such as in modern
cavity QED experiments on Schrödinger’s cats with Ryd-
berg’s atoms [10–12], in quantum information with trapped
ions [13] or with superconducting qubits [14].

Nevertheless, the architecture of the two-pulse Ramsey
interferometer as shown in Fig. 1 has remained untouched
until 2010 when an improvement for clock spectroscopy
was proposed [15,16] and experimentally applied to a single
trapped ion [17]. A Ramsey sequence of two coherent laser
pulses is used with a precompensation of the estimated light
shift including a third intermediate pulse which is inserted
to act, such as a spin-echo compensation of field amplitude
error [15,16,18,19]. After the experimental success of the
hyper-Ramsey protocol to drastically reduce by four orders
of magnitude the residual light shift on the single-ion 171Yb+

octupole clock transition [20], more robust generalized hyper-
Ramsey three-pulse protocols have been discovered against
laser pulse-induced frequency shifts [21] including decoher-
ence effect [22–24]. Naturally, the question arises if there is
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FIG. 1. Generalized Ramsey’s method of separated oscillating
fields with angle-axis representation. Single pulses (or sets of com-
posite pulses) around a single Ramsey free evolution phase as δT
are introduced by effective pulse areas θ̃p and θ̃q where p ≡ 1′–3′ . . .,
q ≡ 1–3 · · · with arbitrary rotation axis orientations n̂p and n̂q around
the m̂ axis. Single or composite laser pulse parameters are including
laser phase ϕp, ϕq, field excitation �p, �q, pulse duration τp, τq,
and a frequency detuning δp = δ ∓ �p, δq = δ ∓ �q including the
uncompensated part of the light-shift �p, �q during pulses [15]. Any
residual light shift is inducing a weak distortion of the angle-axis
orientation relative to the intermediate free evolution zone.

a way to extend interrogation protocols to any sets of arbi-
trary composite pulses around a single free evolution time
in a symmetrical fashion. The first positive answer including
composite laser pulses was provided through a Cayley-Klein
parametrization of rotation spinors [25]. An extended model
based on multiple hyper-Ramsey-Bordé building blocks with
two-level operators and quantization of motion has been re-
cently developed where arbitrary composite optical pulses
are used not only to shield quantum clock interferences
against residual light shift, but also to protect atomic matter
waves against laser probe-induced frequency shifts at ultra-
cold temperature [4]. A complementary approach to Ref. [4],
extending [25], would be strongly helpful in designing new
sequences of laser pulses to compensate for their systematic
errors in pulse detuning, relative phase, and/or pulse area
through various robust quantum control techniques [26–30].

The purpose of this paper is to present an alternative
formalism to Refs [4,16,25] allowing a convenient deriva-
tion of generalized hyper-Ramsey clock interferences and
atomic phase shifts with arbitrary composite pulses and axis
orientation. Exponentials of Pauli matrices [31] are used
to decompose a complex transition amplitude following an
initial suggestion by Rabi et al. [32]. Multiple interactions
between the two-level system (or qubit) and laser pulses
will be treated as a composition of spinor rotations on a
Bloch sphere. Furthermore, a recursive algorithm based on the
Euler-Rodrigues-Gibbs geometrical transformation for dual
axis rotation composition [33–37] is extended to qubit rotation
allowing a systematic exploration and optimization of more
elaborated interrogation protocols with multiple laser pulses.

The recursive algorithm has been inspired by composite
pulses developed originally in NMR [38–40] where com-
position of two rotations with quaternion computation rules
[41,42] have already been applied to facilitate geometrical

analysis and the role of symmetry in the design of composite
pulse action on nuclear spin ensembles [43,44]. More re-
cently, the Schrödinger equation has been reexplored within
a quaternionic representation of a Pauli spinor of an electron
[45], and a quaternionic derivation of the Ramsey transition
probability has been presented [46] providing an alternative
way to compute composite rotations on the Bloch sphere.

The paper is organized as follows: in Sec. II, we introduce
a vectorial representation of spinor matrix components asso-
ciated with complex transition amplitudes. Then, a compact
expression of the composite phase shift associated with quan-
tum interferences with multipulses is given in Sec. III. From
a quantum engineering perspective, the best tailoring ap-
proach of atomic interferences is tracked to produce by pulse
engineering methods, such as quantum control [47,48], an op-
timization of some targeted performances, i.e., frequency shift
and signal amplitude of optical clocks to make more robust
to important variations of relevant experimental parameters.
Finally, exact expressions of atomic phase shifts are derived.
Here, we are mainly focusing on specific laser pulse protocols
on three-pulse and five-pulse schemes related to the design of
hyper-Ramsey composite phase shifts for ultrarobust optical
clocks [16,25,49]. Such hyper-clocks produce various highly
nonlinear, flexible, and robust compensation of the residual
light shift with a different sensitivity to laser probe intensity
fluctuation [50]. SU(2) hyper-clocks are a class of optical
qubit clocks based on composite laser pulse protocols aimed
at reducing laser probe-induced frequency shifts by several
orders of magnitude improving the accuracy of optical clocks.

II. VECTORIAL REPRESENTATION OF GENERALIZED
HYPER-RAMSEY SPINOR COMPONENTS

A. Pauli-spin decomposition

The model is based on a SU(2) Pauli-spin decomposition of
generalized hyper-Ramsey resonances and phase shifts. Exact
expressions are derived for spinor components of a unitary
interaction matrix describing coherent interaction between a
qubit and laser excitation pulses. The time-dependent atomic
wave-function �(t ) = Cg(t )|g〉 + Ce(t )|e〉 is interacting with
two pulses labeled by p and q and separated by a single
free evolution time T as reported in Fig. 1, inducing a qubit
rotation composition as [32]

�(t ) = eĩθq (̂nq·−→σ )eiθm (m̂·−→σ )eĩθp (̂np·−→σ )�(0)

= q
pC�(0). (1)

The Pauli vector is defined by −→σ = σxx̂ + σyŷ + σẑz. Rota-
tion axis definitions corresponding to Eq. (1) are introduced
by n̂p = −→n p/‖−→n p‖, m̂ = −→m /‖−→m ‖, and n̂q = −→n q/‖−→n q‖.
Rotation angles and angular velocities are defined by θ̃p =
‖−→n p‖τ/2, θ̃m = ‖−→m ‖T/2, and θ̃q = ‖−→n q‖τ/2 with Carte-
sian unit vector coordinates −→n p = (npx , npy , npz ), −→m =
(mx, my, mz ), and −→n q = (nqx , nqy , nqz ) [39,40]. The 2 × 2 ma-
trix components q

pCu,u′ are written as

q
pC =

(q
pCgg

q
pCge

q
pCeg

q
pCee

)
, (2)
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where u, u′ = g, e. Relations between the components of the
unitary interaction matrix correspond to the SU(2) group,
namely, q

pCgg = {q
pCee}∗, q

pCge = −{q
pCeg}∗, and |qpCgg|2 +

|qpCge|2 = 1.
Any general unitary operator corresponding to a rotation of

a qubit around a rotation axis n̂l with a rotation angle ϑ̃l (l =
p, q) is evaluated by the exponential Pauli-spin decomposition
[31,51],

eiϑ̃l (̂nl ·−→σ ) = σ0 cos ϑ̃l + i(̂nl · −→σ ) sin ϑ̃l , (3)

with the identity Pauli matrix σ0 and satisfying the vectorial
identity relation [51],

(n̂p · −→σ ) · (̂nq · −→σ ) = (̂np · n̂q )σ0 + i(̂np × n̂q) · −→σ . (4)

The computational procedure calculates the transition prob-
ability for a reorientation of the qubit state u into a state
u′. It is simply given by q

pPuu′ = |qpCuu′ |2 where each spinor
component of the unitary matrix is expressed as [19,21,24,25]

q
pCuu′ = q

pC̃
+
uu′eiq

p�̃
+
uu′ eĩθm +q

p C̃−
uu′eiq

p�̃
−
uu′ e−ĩθm . (5)

The phase-shift difference between components q
pC̃±

uu′ is intro-
duced as

q
p�̃uu′ = q

p�̃
+
uu′ − q

p�̃
−
uu′ . (6)

Envelopes q
pC̃±

uu′ are themselves expressed with a complex
modulus as [52,53]

q
pC̃

±
uu′ = 1

2 (cos θ̃p cos θ̃q) q
pC

±
√

1 + tan2
(q

p
�̃±

uu′
)
, (7)

and
q
pC

± =σ0 ± m̂ · −→σ ± [q

pN̂− × m̂
] · −→σ − q

pN̂m̂
• . (8)

Atomic phase-shifts �̃uu′ (±) associated with q
pC̃±

uu′ are also
evaluated with Pauli-spin matrices and are expressed with a
complex argument [52,53],

tanq
p �̃±

uu′ ≡
q
pN̂+ · [−→σ ± m̂σ0] + q

pN̂× · [−→σ ∓ m̂σ0]

σ0 ± m̂ · −→σ ± [q

pN̂− × m̂
] · −→σ − q

pN̂m̂•
, (9)

where,
q
pN̂+ ≡ n̂p tan θ̃p + n̂q tan θ̃q,

q
pN̂− ≡ n̂p tan θ̃p − n̂q tan θ̃q,

q
pN̂× ≡ n̂p tan θ̃p × n̂q tan θ̃q,

q
pN̂m̂

• ≡ (̂np · n̂q)m̂,−→σ tan θ̃p tan θ̃q, (10)

with a reduced variable,

(̂np · n̂q)m̂,−→σ = (σ0 ∓ m̂ · −→σ )(̂np · n̂q)

± [(m̂ · n̂p )̂nq + (m̂ · n̂q )̂np] · −→σ . (11)

Frequency shifts of atomic interferences produced by the laser
probe excitation scheme are described by Eq. (9) where the
influence of the light shift is to change simultaneously the
rotation axis orientation and the effective Rabi frequency
as shown in Fig. 1. This equation contains a dot-product
(scalar) term as N̂• and a cross-product (vectorial) term as
N̂× that are effectively related to a composition rule of two
unit quaternions [39,41,42] and to the Euler-Rodrigues-Gibbs

(ERG) formula for three-dimensional rotation composition
[33–35,37]. Pauli-spin matrices σx,y,z as well as the identity
matrix σ0 are used as Hilbert-space pointers to individually
address each q

p�̃
±
uu′ component associated with diagonal and

off-diagonal elements of the spinor matrix [54]. All q
pCuu′

components of a rotated qubit by Ramsey spectroscopy with
composite pulses can be analytically derived using the Pauli-
spin model presented above.

B. ERG transformation rules and recursive algorithm

Turning to a generalized hyper-Ramsey resonance with an
arbitrary number of composite pulses, left and right single
Pauli-spin qubits from Fig. 1 should be now replaced by
composite qubits as follows:

eĩθp (̂np·−→σ ) ≡
−→∏p

l=1′

eĩθl (̂nl ·−→σ ),

eĩθq (̂nq·−→σ ) ≡
←−∏q

l=1

eĩθl (̂nl ·−→σ ), (12)

where each arrow indicates the direction to develop the multi-
pulse product with growing indices.

In order to track analytically the resulting phase shift as-
sociated with composite interferences, a recursive algorithm
is presented based on iteration of the ERG transformation
applied to composite pulses from the left and right sides of
the two-pulse interferometer. The ERG transformation rules,
acting on unit vector coordinates, for a given set of l ∈ {p, q}
(− for p and + for q) composite pulses are given by

cos θ̃l �→ cos θ̃l cos θ̃l+1
[
1 −l+1

l N̂0
•
]
,

n̂l tan θ̃l �→
l+1
l N̂+ ± l+1

l N̂×
1 −l+1

l N̂0•
, (13)

with l+1
l N̂0

• ≡ n̂l · n̂l+1 tan θ̃l tan θ̃l+1.
These rules applied on q

pCuu′ components, used as a
quantum-processing algorithm, are iterated p − 1 and q − 1
times when running with an ensemble of {p, q} pulses (see the
Appendix for an example). A different recursive algorithm has
been developed in Ref. [4] related to a Möbius transformation
in conformal mapping [55], for instance, see the reference
note in Ref. [56]. A complete geometrical representation of
the qubit dynamics is achieved through Feynman-Vernon-
Hellwarth coordinates to visualize composite rotations on a
Bloch sphere [57]. A straightforward extension of generalized
hyper-Ramsey resonances and phase shifts to a higher quan-
tum J spin made of composite qubits with equally energy
spaced levels (hyper-qudit clock) is provided by application
of the Majorana formula [58–60] or by using a polynomial
matrix expansion of spin rotation [61].

III. COMPOSITE PHASE-SHIFT OPTIMIZATION

A. Analytical formula

The Pauli-spin model is now tested in cases when com-
posite pulses are used in Ramsey interferometry. As a
demonstration, a few composite phase shifts are derived
following our recursive algorithm. The quantization axis is
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FIG. 2. Hyper-clock protocol classification following Pascal’s
triangle for binomial coefficient representation. Appropriate laser
phase jumps of π are inserted as subscripts within specific laser
pulses. Pulse areas are here indicated in integer units of a 90◦ refer-
ence pulse following the time length of each single pulse. The qubit
free rotation denoted δT is placed either between the first two pulses
or between the last two pulses of HR3π and HR5π protocols.

oriented along the z axis as m̂ = (0, 0, 1) for laser pulsed qubit
spectroscopy. Normalized unitary rotation axis parameters can
be introduced as n̂lx ≡ �l

ωl
cos ϕl , n̂ly ≡ �l

ωl
sin ϕl , and n̂lz ≡ δl

ωl

(l ∈ {p, q}), respectively, related to complex Rabi field fre-
quency on the x, y plane and frequency detuning along the
z axis [62]. We, therefore, define the effective Rabi field as
ωl =

√
δ2

l + �2
l .

In selected interrogation schemes reported in Fig. 2, dis-
persive error signals of spinor interferences are produced by
subtracting two recorded transition probabilities q

pPgg with ad-
ditional laser phase-steps ±ϕl opposite in sign and applied on
required pulses to produce dispersive curves or interferences
[5,21],

�E = q
pPgg(+ϕl ) − q

pPgg(−ϕl ). (14)

Whereas addressing the q
pCgg matrix element with Pauli ma-

trices, the atomic phase-shift expression for a generalized
hyper-Ramsey interference with {p, q} composite pulses, can
always be decomposed into two contributions,

q
p�̃

+
gg = arctan

[
()p

z + ()q
z

1 − ()p
z ()q

z

]
,

q
p�̃

−
gg = arctan

[
()p

y ()q
x − ()p

x ()q
y

()p
x ()q

x + ()p
y ()q

y

]
. (15)

Few elements ()p,q
x,y,z will be given later. Note that q

p�̃
±
gg can be

recast into a single canonical expression as [52]

q
p�̃

+
gg ∓q

p �̃−
gg = arctan

[
tanq

p �̃+
gg ∓ tanq

p �̃−
gg

1 ± tanq
p �̃+

gg tanq
p �̃−

gg

]
. (16)

Various interrogation protocols are now investigated. Two-
pulse, three-pulse, and five-pulse protocols are shown in the
diagram of Fig. 2; they can be identified by the rotation an-
gle of each pulse, expressed in terms of an integer multiple
of 90◦.

FIG. 3. Two dispersive error signals, calculated from Eq. (14),
are plotted versus the clock frequency detuning. (a) HR3π protocol
as 90′◦

±π/2 � δT � 180◦
π 90◦, (b) HR5π protocol as 90′◦

±π/2 � δT �
360◦

π 540◦360◦
π 90◦. The reference Rabi frequency for all pulses is

� = π/2τ (�τ ≡ 90◦ area in degrees) where the pulse duration
reference is τ = 3/16 s, and the free evolution time is T = 2 s.

Using this approach, pulses are classified as Ramsey
[1:1] (R, blue), hyper-Ramsey [1:2:1] (HR3π , green) and
high-order hyper-Ramsey [1:4:6:4:1] (HR5π , red) protocols
following Pascal’s triangle for binomial coefficient represen-
tation. They can be symmetrically read from left to right or
from right to left in the diagram of Fig. 2. This classification
is used to identify pulse protocols which make the optical
clock sensitive only at high-order levels to the probe laser
frequency shifts where the degree of sensitivity scales with the
number of pulses. This is also remnant to the Taylor expansion
of some leading coefficients of pulse parameters from the
theoretical analysis of Refs. [16,23]. The free rotation of the
qubit denoted δT has to be positioned between the first two
pulses (or the last two pulses) of each configuration. If not,
other protocols are generated with a different interferometric
line shape and sensitivity to the residual light shift (see, for
example, two additional examples of spinor interferences with
four pulses shown in Fig. 6 from the Appendix).

The two-pulse R protocol (p = 1′, q = 1) was proposed
in 1949 [1]. The hyper-Ramsey interrogation scheme (p =
2′, q = 1 or p = 1′, q = 2) originally presented in 2010, de-
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FIG. 4. two-dimensional diagrams of the hyper-Ramsey clock
frequency shift (a) 2

1′�̃gg/(2πT ) and (b) 4
1′�̃gg/(2πT ) versus uncom-

pensated part of a residual light-shift �/2π along the horizontal axis
and pulse area �τ along the vertical axis (see also Ref. [21]). The
only fixed parameter is the free evolution time as T = 2 s. Amplitude
of the clock frequency shift is indicated by a color graded scale from
−2 to 2 mHz on the right side. White regions correspond to values
out of range. The reference pulse is �τ = α × π/2 where α is the
parameter tuned along the vertical axis multiplying all single pulse
areas within a composite pulse protocol. Phase shifts are evaluated
mod ±kπ, k ∈ N (see also Ref. [25]). Arrows are pointing pulse
area values for a maximum central fringe amplitude (black) or a
high-order sensitivity to the accumulated phase shift (red).

noted as the HR3π protocol, is based on a sequence of three
laser pulses [16]. It relies on replacing the first or the second
Ramsey pulse by a combination of two pulses (a composite
pulse) including an additional laser phase-step of π . The se-

FIG. 5. Central error signal interference frequency-shift
q
p�̃gg/(2πT) versus residual uncompensated part of the light shift

(a) for Ramsey (R) protocol (1
1′�̃gg with blue dashed-dot line),

HR3π protocol (2
1′�̃gg with a continuous green line), and HR5π

protocol (4
1′�̃gg with a red short-dotted line). (b) Zoom of clock

frequency shifts emphasizing the linear dependence ∝�/�, the
cubic dependence ∝ (�/�)3 and the quintic dependence ∝ (�/�)5

versus residual uncompensated part of the light-shift �/2π . Same
laser parameters as in Fig. 3 with a fixed pulse area parameter α = 1
for all curves.

quence of five laser pulses (p = 4′, q = 1 or p = 1′, q = 4) is
a new high-order HR5π protocol including at this time a set of
more elaborated composite pulses as 360◦

π 540◦360◦
π replacing

the intermediate 180◦
π pulse. For both cases HR3π and HR5π ,

the interference signal calculated using Eq. (14) is shown in
Figs. 3(a) and 3(b) versus the clock detuning. The three-pulse
protocol generating hyper-Ramsey interferences [Fig. 3(a)]
has been successfully applied on the single-ion 171Yb+ oc-
tupole clock demonstrating a relative accuracy of 3 × 10−18

[20]. The composite phase shift related to these configura-
tions is denoted q

p�̃gg. To derive the analytical expression of
the corresponding clock frequency-shift q

p�̃/(2πT ), the ERG
transformation rules are iterated up to three times generating
required ()p,q

x,y,z elements with l = 1′–3′; l = 1–3 ∈ {4′, 4}.
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FIG. 6. Examples of dispersive error signals based on 2
2′Cgg,

calculated with Eq. (A13)and applying the ERG transformation
through Eq. (A16). (a) 90′◦

±π/290′◦ � δT � 270◦, (b) 90′◦
±π/290′◦ �

δT � 180◦
π 90◦. The Rabi frequency for all pulses is � = π/2τ where

the pulse duration reference is τ = 3/16 s, and the free evolution
time is T = 2 s.

B. Two-dimensional map optimization
of composite pulse protocols

As applications, we consider relevant phase-shifts 1
1′�̃gg,

2
1′�̃gg, and 4

1′�̃gg. Corresponding two-dimensional (2D)
diagrams reconstructing the clock frequency-shifts
2
1′�̃gg/(2πT ) and 4

1′�̃gg/(2πT ) versus the residual light
shift and pulse area are shown in Figs. 4(a) and 4(b). We
choose the amplitude of the frequency shift to be indicated
by a color graded scale between −2 and 2 mHz values as in
Ref. [24].

A careful investigation of these diagrams allows us to ex-
tract some key parameters optimizing the robustness of the
clock frequency shift associated with HR3π and HR5π proto-
cols. We are able to explore wide regions of several multiple
values of the laser pulse area where the single pulse area refer-
ence is introduced as �τ = α × π/2 (≡90◦). The error signal
amplitude is always maximized for odd values and vanishing
for even values of this α parameter. By increasing the pulse
area tuning parameter α, the related light-shift correction is
increasing quadratically with the Rabi frequency but can still

be fully compensated by adjusting the laser frequency step
[15]. The clock-frequency-shift compensation can be made
more robust by slightly shifting the pulse area parameter from
α = 1, 3 (black arrow) to α = 4/3, 8/3 (red arrows) for the
HR3π protocol [black and red arrows are pointing to different
pulse area values reported in Fig. 4(a)] These particular pulse
areas are strongly upgrading the compensation of the clock
frequency shift up to two or three orders of magnitude but
are associated with a relative reduction in the central fringe
amplitude by ∼30%. As an example, injecting a residual
light shift of �/2π ∼ 200 mHz with a free evolution time
of T = 2 s using the HR3π protocol, the composite clock
frequency-shift 2

1′�̃gg/(2πT ) drops from 1.3 mHz (for α = 1)
to −0.043 mHz (for α = 4/3) and even −2.5 μHz (for α =
8/3) if adjusting carefully the light-shift precompensation.
Injecting the same initial residual light-shift with the HR5π

protocol gives a clock frequency-shift 4
1′�̃gg/(2πT) about 0.11

mHz (for α = 1) collapsing to 1.5 μHz (for α = 3) with no
reduction in the signal amplitude.

We note that these specific values of the pulse area are
steering the clock frequency shift to locking points offering
a better compensation of the systematics synchronized with
the laser probe intensity fluctuation when a pulse area modifi-
cation of a few percent as �θ/θ ≡ �α/α < ±5% is tolerated
[identified by violet and pink color graded regions in Figs. 4(a)
and 4(b) where an abrupt flip is observed between positive and
negative clock frequency-shift values of similar amplitude].
As a difference to the HR3π scheme, the HR5π protocol gets
exceptional pulse area values where the fringe interference
contrast is maximum, and the clock frequency shift exhibits
a higher-order dependence to the residual light shift [black
and red arrows are pointing to the same pulse area values
denoted as exceptional points reported in Fig. 4(b)]. Our new
HR5π protocol is simultaneously optimizing the error signal
amplitude and the robustness of quantum interferences against
probe-induced uncompensated residual light shifts.

Clock frequency shifts of quantum interferences versus
the residual light shift are finally simulated and reported in
Figs. 5(a) and 5(b) with a reference pulse fixed to �τ = π/2
(≡90◦) following the horizontal axis of Fig. 4 taking α = 1.
Whereas the Ramsey clock frequency shift is a linear function
of the residual light shift affecting the quantum states, the
cubic sensitivity from a three-pulse scheme turns to collapse
to a high-order quintic sensitivity to residual light shifts under
a five-pulse protocol as reported in Fig. 5(b).

The required elements needed to calculate 1
1′�̃gg are

given by

()1′
x = n̂1′

x
tan θ̃1′ , ()1

x = n̂1x tan θ̃1,

()1′
y = n̂1′

y
tan θ̃1′ , ()1

y = n̂1y tan θ̃1,

()1′
z = n̂1′

z
tan θ̃1′ , ()1

z = n̂1z tan θ̃1. (17)

By applying Eq. (16), the original Ramsey clock frequency
shift reduces to

1
1′�̃gg = ϕ1 − ϕ1′ + δ1′

ω1′
tan θ̃1′ + δ1

ω1
tan θ̃1

= ϕ1 − ϕ1′ + φ1′ + φ1, (18)

in accordance with Refs.[19,25,49].
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The required elements needed to calculate 2
1′�̃gg or 1

2′�̃gg are as follows:

()2′
x = n̂1′

x
tan θ̃1′ + n̂2′

x
tan θ̃2′ + (̂

n1′
z
n̂2′

y
− n̂1′

y
n̂2′

z

)
tan θ̃1′ tan θ̃2′

1 − (
n1′

x
n2′

x
+ n1′

y
n2′

y
+ n1′

z
n2′

z

)
tan θ̃1′ tan θ̃2′

,

()2′
y = n̂1′

y
tan θ̃1′ + n̂2′

y
tan θ̃2′ + (̂

n1′
x
n̂2′

z
− n̂1′

z
n̂2′

x

)
tan θ̃1′ tan θ̃2′

1 − (
n1′

x
n2′

x
+ n1′

y
n2′

y
+ n1′

z
n2′

z

)
tan θ̃1′ tan θ̃2′

,

()2′
z = n̂1′

z
tan θ̃1′ + n̂2′

z
tan θ̃2′ + (̂

n1′
y
n̂2′

x
− n̂1′

x
n̂2′

y

)
tan θ̃1′ tan θ̃2′

1 − (
n1′

x
n2′

x
+ n1′

y
n2′

y
+ n1′

z
n2′

z

)
tan θ̃1′ tan θ̃2′

, (19)

and

()2
x = n̂1x tan θ̃1 + n̂2x tan θ̃2 − (̂

n1z n̂2y − n̂1y n̂2z

)
tan θ̃1 tan θ̃2

1 − (
n1x n2x + n1y n2y + n1z n2z

)
tan θ̃1 tan θ̃2

,

()2
y = n̂1y tan θ̃1 + n̂2y tan θ̃2 − (̂

n1x n̂2z − n̂1z n̂2x

)
tan θ̃1 tan θ̃2

1 − (
n1x n2x + n1y n2y + n1z n2z

)
tan θ̃1 tan θ̃2

,

()2
z = n̂1z tan θ̃1 + n̂2z tan θ̃2 − (̂

n1y n̂2x − n̂1x n̂2y

)
tan θ̃1 tan θ̃2

1 − (n1x n2x + n1y n2y + n1z n2z ) tan θ̃1 tan θ̃2
. (20)

By fixing θ2′ ≡ 0 into Eq. (19) whereas inserting n̂1y = n̂2y ≡
0 in Eq. (20), the hyper-Ramsey clock frequency shift be-
comes identical to Ref. [19].

Required elements needed to calculate 4
1′�̃gg or 1

4′�̃gg are
rapidly increasing in size and are not given here. They can be
derived applying two times the ERG transformation rules on
Eqs. (19) and (20) (see the Appendix section for analytics).
This five-pulse protocol has been also derived with the other
recursive algorithm [56] following Ref. [4] confirming the
accuracy of the plots reported in Figs. 5(a) and 5(b).

IV. CONCLUSION

A SU(2) formulation of hyper-Ramsey interferences with
composite phase shifts has been presented. Hyper-clock in-
terrogation protocols and their interferometric dependence to
a light shift have been classified by analogy with Pascal’s
triangle representation of doublet, triplet, and quintet splitting
patterns from spin-spin interaction in proton NMR multiplet
spectroscopy [63]. Such a representation may ease the search
for new and more efficient interrogation protocols of ultranar-
row optical clock transitions whereas offering a framework
to derive analytically the phase shifts associated with arbi-
trary laser pulses, showing the remarkable intrinsic robustness
introduced in quantum metrology by hyper-qubit clocks. In
the present paper, a five-pulse protocol is discovered to be a
high-order version of the hyper-Ramsey three-pulse scheme
demonstrating a quintic sensitivity to residual probe-induced
light shifts with a maximum signal amplitude.

The Pauli-spin model, complementary to analytical tools
introduced in Ref. [4] describing hyper-Ramsey-Bordé
matter-wave interferometry, uses another recursive algorithm
connected to rotation composition rules of unit-quaternions
(or versors) algebra in a four-dimensional space [41]. Natural
extension to SU(3) composite phase shifts via three-level state
interferences (hyper-qutrit clock) may be also explored [64]
using a compact representation of Gell-Mann spin matrices
[65–67]. Composite phase shifts would certainly be an ad-

vantage to qudit multiple rotations exposed to detrimental AC
Stark shifts for robust quantum computation [68]. The next
generation of quantum clocks will irrevocably bring a relative
level of accuracy below 10−18 through very long coherence
times [69–71], probably supported by robustness against noise
with programmable quantum circuit technologies [72,73],
quantum nondemolition measurements [74,75] and state en-
tanglement [76]. At this future level of accuracy, hyper-clocks
with an optimal control of composite phase shifts should
reduce the influence of laser-probe-intensity fluctuations [50]
whereas offering an additional toolbox for a fine-tuning con-
trol of the optical clock frequency in trapped multi-ion clocks
[77] and in optical lattice clocks [78].

This paper in parallel with Ref. [4] should serve as quan-
tum engineering methods to explore cooperative composite
pulse protocols [24,79] dedicated to robust control algorithms
upgrading performances of optical frequency standards [80],
quantum computation with qubits and qudits immune to light
shift [68,81], robust quantum sensing [82], and pushing fur-
ther high-precision laser spectroscopy with cold molecules
[83] and cold anti-matter [84].
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APPENDIX

1. building block for tanq
p
˜�±

uu′

In this Appendix, the decomposition of Eq. (9) from the
main text is explicitly provided with Cartesian axis coordi-
nates n̂px,y,z , n̂qx,y,z , and m̂x,y,z. The interferometric composite
phase-shift numerator and denominator can be explicitly de-
veloped using the Pauli matrices. For the diagonal phase shift,
we obtain the numerator components to build {tanq

p �̃±
gg}N ,

n̂p · (−→σ ± m̂σ0) = n̂pz ± (
m̂xn̂px + m̂yn̂py + m̂zn̂pz

)
,

n̂q · (−→σ ± m̂σ0) = n̂qz ± (
m̂xn̂qx + m̂yn̂qy + m̂zn̂qz

)
,

(̂np × n̂q) · (−→σ ∓ m̂σ0) = n̂px n̂qy − n̂qx n̂py

∓ m̂x
(̂
nqz n̂py − n̂qy n̂pz

)
∓ m̂y

(̂
nqx n̂pz − n̂qz n̂px

)
∓ m̂z

(̂
npx n̂qy − n̂qx n̂py

)
, (A1)

and the denominator components to build {tanq
p �̃±

gg}D,

σ0 ± m̂−→σ = 1 ± m̂z,

[̂np × m̂] · −→σ = m̂yn̂px − m̂xn̂py ,

[̂nq × m̂] · −→σ = m̂yn̂qx − m̂xn̂qy ,

(̂np · n̂q)m̂,−→σ = n̂px n̂qx + n̂py n̂qy + n̂pz n̂qz

∓ m̂z
(̂
npx n̂qx + n̂py n̂qy + n̂pz n̂qz

)
± n̂qz

(
m̂xn̂px + m̂yn̂py + m̂zn̂pz

)
± n̂pz

(
m̂xn̂qx + m̂yn̂qy + m̂zn̂qz

)
. (A2)

For the off-diagonal complex phase shift, we obtain the nu-
merator components for {tanq

p �̃±
eg}N ,

n̂p · (−→σ ± m̂σ0) = n̂px + înpy ,

n̂q · (−→σ ± m̂σ0) = n̂qx + înqy ,

(̂np × n̂q) · (−→σ ∓ m̂σ0) = (̂
nqy n̂pz − n̂qz n̂py

)
+ i

(̂
nqz n̂px − n̂qx n̂pz

)
, (A3)

and the denominator components for {tanq
p �̃±

eg}D,

σ0 ± m̂−→σ = ±(m̂x + im̂y),

[̂np × m̂] · −→σ = (
m̂zn̂py − m̂yn̂pz

) + i
(
m̂xn̂pz − m̂zn̂px

)
,

[̂nq × m̂] · −→σ = (
m̂zn̂qy − m̂yn̂qz

) + i
(
m̂xn̂qz − m̂zn̂qx

)
,

(̂np · n̂q)m̂,−→σ = ∓(m̂x + im̂y)
(̂
npx n̂qx + n̂py n̂qy + n̂pz n̂qz

)

± (̂
nqx + înqy

)(
m̂xn̂px + m̂yn̂py + m̂zn̂pz

)
± (̂

npx + înpy

)(
m̂xn̂qx + m̂yn̂qy + m̂zn̂qz

)
,

(A4)

where N, D stands for the numerator and the denominator of
the quantity tanq

p �̃±
uu′ and all elements have to be associated

with tan θ̃p and tan θ̃q. Now, we proceed by fixing the ori-
entation axis m̂ = (0, 0, 1) as in the main text. We explicitly
derive the diagonal phase-shift expressions q

p�̃
±
gg with the help

of Eqs. (A1) and (A2),

tanq
p �̃+

gg = n̂pz tan θ̃p + n̂qz tan θ̃q

1 − n̂pz n̂qz tan θ̃p tan θ̃q
,

tanq
p �̃−

gg = n̂py n̂qx − n̂px n̂qy

n̂px n̂qx + n̂py n̂qy

. (A5)

Using normalized parameters from the main text n̂lx ≡
�l
ωl

cos ϕl , n̂ly ≡ �l
ωl

sin ϕl , and n̂lz ≡ δl
ωl

with (l = p, q), we

obtain with Eq. (16), the overall Ramsey phase-shift q
p�̃gg,

q
p�̃gg = ϕq − ϕp + φp + φq

= ϕ1 − ϕ1′ + φ1′ + φ1, (A6)

where we use φl = δl
ωl

tan θ̃l . Indeed, we have recovered the
Ramsey phase shift by fixing p = 1′ and q = 1 as two single
pulses.

2. ()4′
x,y,z and ()4

x,y,z elements for 4
1′ ˜�gg and 1

4′ ˜�gg

The ERG transformation through Eq. (15) is applied twice
on numerator and denominator elements from Eqs. (19) and
(20) with p = 4′, q = 4 pulses.

The transformation gives for the set of p = 4′ composite
pulses,

n̂2′ tan θ̃2′ �→
3′
2′ N̂+ − 3′

2′ N̂×
1 −3′

2′ N̂0•
,

n̂3′ tan θ̃3′ �→
4′
3′ N̂+ − 4′

3′ N̂×
1 −4′

3′ N̂0•
. (A7)

The transformation gives for the set of q = 4 composite
pulses,

n̂2 tan θ̃2 �→
3
2N̂+ + 3

2N̂×
1 −3

2 N̂0•
,

n̂3 tan θ̃3 �→
4
3N̂+ + 4

3N̂×
1 −4

3 N̂0•
. (A8)

New expressions for components are, thus,

n̂2′
x

tan θ̃2′ �→ n̂2′
x

tan θ̃2′ + n̂3′
x

tan θ̃3′ + (̂
n2′

z
· n̂3′

y
tan θ̃3′ − n̂2′

y
· n̂3′

z
tan θ̃3′

)
tan θ̃2′

1 − (̂
n2′

x
· n̂3′

x
tan θ̃3′ + n̂2′

y
· n̂3′

y
tan θ̃3′ + n̂2′

z
· n̂3′

z
tan θ̃3′

)
tan θ̃2′

,

n̂2′
y
tan θ̃2′ �→ n̂2′

y
tan θ̃2′ + n̂3′

y
tan θ̃3′ + (̂

n2′
x
· n̂3′

z
tan θ̃3′ − n̂2′

z
· n̂3′

x
tan θ̃3′

)
tan θ̃2′

1 − (̂
n2′

x
· n̂3′

x
tan θ̃3′ + n̂2′

y
· n̂3′

y
tan θ̃3′ + n̂2′

z
· n̂3′

z
tan θ̃3′

)
tan θ̃2′

,

n̂2′
z
tan θ̃2′ �→ n̂2′

z
tan θ̃2′ + n̂3′

z
tan θ̃3′ + (̂

n2′
y
· n̂3′

x
tan θ̃3′ − n̂2′

x
· n̂3′

y
tan θ̃3′

)
tan θ̃2′

1 − (̂
n′

2x
· n̂3′

x
tan θ̃3′ + n̂2′

y
· n̂3′

y
tan θ̃3′ + n̂2′

z
· n̂3′

z
tan θ̃3′

)
tan θ̃2′

, (A9)
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where n̂3′
x,y,z

tan θ̃3′ axial components are replaced by

n̂3′
x

tan θ̃3′ �→ n̂3′
x

tan θ̃3′ + n̂4′
x

tan θ̃4′ + (̂
n3′

z
· n̂4′

y
tan θ̃4′ − n̂3′

y
· n̂4′

z
tan θ̃4′

)
tan θ̃3′

1 − (̂
n3′

x
· n̂4′

x
tan θ̃4′ + n̂3′

y
· n̂4′

y
tan θ̃4′ + n̂3′

z
· n̂4′

z
tan θ̃4′

)
tan θ̃3′

,

n̂3′
y
tan θ̃3′ �→ n̂3′

y
tan θ̃3′ + n̂4′

y
tan θ̃4′ + (̂

n3′
x
· n̂4′

z
tan θ̃4′ − n̂3′

z
· n̂4′

x
tan θ̃4′

)
tan θ̃3′

1 − (̂
n3′

x
· n̂4′

x
tan θ̃4′ + n̂3′

y
· n̂4′

y
tan θ̃4′ + n̂3′

z
· n̂4′

z
tan θ̃4′

)
tan θ̃3′

,

n̂3′
z
tan θ̃3′ �→ n̂3′

z
tan θ̃3′ + n̂4′

z
tan θ̃4′ + (̂

n3′
y
· n̂4′

x
tan θ̃4′ − n̂3′

x
· n̂4′

y
tan θ̃4′

)
tan θ̃3′

1 − (̂
n3′

x
· n̂4′

x
tan θ̃4′ + n̂3′

y
· n̂4′

y
tan θ̃4′ + n̂3′

z
· n̂4′

z
tan θ̃4′

)
tan θ̃3′

, (A10)

and

n̂2x tan θ̃2 �→ n̂2x tan θ̃2 + n̂3x tan θ̃3 − (̂
n2z · n̂3y tan θ̃3 − n̂2y · n̂3z tan θ̃3

)
tan θ̃2

1 − (̂
n2x · n̂3x tan θ̃3 + n̂2y · n̂3y tan θ̃3 + n̂2z · n̂3z tan θ̃3

)
tan θ̃2

,

n̂2y tan θ̃2 �→ n̂2y tan θ̃2 + n̂3y tan θ̃3 − (̂
n2x · n̂3z tan θ̃3 − n̂2z · n̂3x tan θ̃3

)
tan θ̃2

1 − (̂
n2x · n̂3x tan θ̃3 + n̂2y · n̂3y tan θ̃3 + n̂2z · n̂3z tan θ̃3

)
tan θ̃2

,

n̂2z tan θ̃2 �→ n̂2z tan θ̃2 + n̂3z tan θ̃3 − (̂
n2y · n̂3x tan θ̃3 − n̂2x · n̂3y tan θ̃3

)
tan θ̃2

1 − (̂
n2x · n̂3x tan θ̃3 + n̂2y · n̂3y tan θ̃3 + n̂2z · n̂3z tan θ̃3

)
tan θ̃2

, (A11)

where n̂3x,y,z tan θ̃3 axial components are replaced by

n̂3x tan θ̃3 �→ n̂3x tan θ̃3 + n̂4x tan θ̃4 − (̂
n3z · n̂4y tan θ̃4 − n̂3y · n̂4z tan θ̃4

)
tan θ̃3

1 − (̂
n3x · n̂4x tan θ̃4 + n̂3y · n̂4y tan θ̃4 + n̂3z · n̂4z tan θ̃4

)
tan θ̃3

,

n̂3y tan θ̃3 �→ n̂3y tan θ̃3 + n̂4y tan θ̃4 − (̂
n3x · n̂4z tan θ̃4 − n̂3z · n̂4x tan θ̃4

)
tan θ̃3

1 − (̂
n3x · n̂4x tan θ̃4 + n̂3y · n̂4y tan θ̃4 + n̂3z · n̂4z tan θ̃4

)
tan θ̃3

,

n̂3z tan θ̃3 �→ n̂3z tan θ̃3 + n̂4z tan θ̃4 − (̂
n3y · n̂4x tan θ̃4 − n̂3x · n̂4y tan θ̃4

)
tan θ̃3

1 − (̂
n3x · n̂4x tan θ̃4 + n̂3y · n̂4y tan θ̃4 + n̂3z · n̂4z tan θ̃4

)
tan θ̃3

. (A12)

Phase-shift expressions 4
1′�̃gg and 1

4′�̃gg can, thus, be analyt-
ically obtained encapsulating Eq. (A10) with Eq. (A10) and
Eq. (A11) with Eq. (A12) into Eqs. (19) and (20).

3. Spinor interferences with composite pulses

We apply our ERG algorithm following Eq. (13) to de-
rive transition probabilities of composite spinor interferences
based on Eq. (5). We use a quantization axis projection with
m̂ = (0, 0, 1) leading to θ̃mz = δT/2. We first derive the Ram-
sey formula with two pulses based on the coefficient 1

1′Cgg as
follows:

1
1′Cgg =1

1′ C̃+
ggei1

1′ �̃+
ggeĩθmz +1

1′ C̃−
ggei1

1′ �̃−
gge−ĩθmz ,

1
1′C̃±

gg = 1

2
(cos θ̃1′ cos θ̃1) 1

1′C±
√

1 + tan2
(1

1′�̃
±
gg

)
, (A13)

where phase shifts are given by

1
1′�̃

+
gg = arctan

[
n̂1′

z
tan θ̃1′ + n̂1z tan θ̃1

1 − n̂1′
z
n̂1z tan θ̃1′ tan θ̃1

]

1
1′�̃

−
gg = arctan

[(̂
n1′

y
n̂1x − n̂1′

x
n̂1y

)
tan θ̃1′ tan θ̃1(̂

n1′
x
n̂1x + n̂1′

y
n̂1y

)
tan θ̃1′ tan θ̃1

]
(A14)

and,

1
1′C+ = 2 − 2̂n1′

z
tan θ̃1′ · n̂1z tan θ̃1,

1
1′C− = −2̂n1′

x
tan θ̃1′ · n̂1x tan θ̃1 − 2̂n1′

y
tan θ̃1′ · n̂1y tan θ̃1.

(A15)

We now proceed with our ERG algorithm to obtain coeffi-
cients of the 2

2′Cgg amplitude of transition using p = 2′ pulses
on the left arm and q = 2 pulses on the right arm of the
spectroscopic pulse scheme. We get

cos θ̃1′ �→ cos θ̃1′ cos θ̃2′ (1 − n̂1′ tan θ̃1′ · n̂2′ tan θ̃2′ ),

cos θ̃1 �→ cos θ̃1 cos θ̃2(1 − n̂1 tan θ̃1 · n̂2 tan θ̃2),

n̂1′
x,y,z

tan θ̃1′ �→ ()2′
x,y,z,

n̂1x,y,z tan θ̃1 �→ ()2
x,y,z,

1
1′�̃

±
gg �→2

2′ �̃±
gg, (A16)

where modified elements ()2′
x,y,z and ()2

x,y,z are given by
Eqs. (19) and (20). We have plotted two examples of arbitrary
composite spinor interferences based on four pulses versus the
clock detuning in Fig. 6 .
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