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Nonequilibrium phase transition in a driven-dissipative quantum antiferromagnet
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A deeper theoretical understanding of driven-dissipative interacting systems and their nonequilibrium phase
transitions is essential both to advance our fundamental physics understanding and to harness technological
opportunities arising from optically controlled quantum many-body states. This paper provides a numerical study
of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-
dimensional Heisenberg antiferromagnet with drive and dissipation. We demonstrate a nonthermal transition that
is characterized by a qualitative change in the magnon distribution from subthermal at low drive to a generalized
Bose-Einstein form including a nonvanishing condensate fraction at high drive. A finite-size analysis reveals
static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus
driving field strength and critical slowing down at the transition point. Implications for experiments on quantum
materials and polariton condensates are discussed.
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I. INTRODUCTION

Nonequilibrium phase transitions in driven interacting
quantum systems constitute a fundamental and largely open
research problem [1,2]. Quenches, i.e., abrupt changes in
Hamiltonian parameters or initial conditions, followed by a
time evolution, have been extensively studied and can lead
to dynamical phase transitions [3,4] characterized by quali-
tative modifications of the dynamical response as the quench
magnitude is varied. A nonequilibrium steady state presents
additional issues involving the flow and redistribution of en-
ergy: the drive adds energy, the dissipation removes energy,
and the internal dynamics redistribute energy among modes
[5,6]. As the drive strength is varied, the competition between
these effects can qualitatively change system properties in
the same sense that changing temperature or a Hamiltonian
parameter can drive a system through an equilibrium phase
transition.

Equilibrium phase transitions are typically analyzed in
terms of the onset or disappearance of order parameters
that encode broken symmetries, for example, the staggered

*mona.kalthoff@mpsd.mpg.de
†dante.kennes@rwth-aachen.de
‡amillis@flatironinstitute.org
§michael.sentef@mpsd.mpg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

magnetization in an antiferromagnet that appears when the
temperature is reduced below a critical temperature. We la-
bel such phase transitions as symmetry-breaking transition
in the following. In a nonequilibrium setting, an additional
type of phase transition can exist that is characterized by a
qualitative change in the low-frequency distribution of the
collective excitations of a system. Such a transition cannot
exist in equilibrium where the form of the distribution is
fixed by equilibrium thermodynamics. We refer to the latter
as a subthermal-to-superthermal transition. Phase transitions
occurring in a nonequilibrium steady state are the subject of
an interesting and growing body of literature [7–15] but are
less well understood. A deeper theoretical understanding of
these issues could open nonthermal pathways for controlling
emergent properties of driven quantum materials [2].

Driven magnetic systems are of particular interest in this
context for both fundamental and technological reasons [16].
A specific focus of attention has been the possibility of
magnon Bose-Einstein condensation (BEC), in which a sys-
tem is excited by a radiation pulse and the resulting excitation
distribution forms a single coherent macroscopic quantum
state with the lowest-energy excited state being macroscop-
ically populated. The existing experimental literature on
magnon BEC [17–32] concerns systems with very long energy
relaxation times, in which a population of magnons is tran-
siently induced (often by a short-duration frequency-coherent
excitation) and then evolves into a BEC [16,33–35]. This
physics is very similar to the Bose-Einstein condensation
of excitons and exciton-polaritons which has been studied
experimentally [36–40] and theoretically [41–43]. Theoret-
ical analyses of the magnon case to date have been based
on semiphenomenological continuum approximations using
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FIG. 1. Nonequilibrium phase diagram of driven-dissipative
steady states. Steady states as a function of drive strength g and
quantum fluctuations, parametrized here by the inverse spin length
1/S but controlled in physical systems by many factors, including
geometrical frustration. The red section along the vertical axis marks
the antiferromagnetically ordered ground state at T = 0. The black
curve separating the ordered (orange) and disordered (green) sub-
thermal phases is obtained by determining the value of 1/S at which
the staggered magnetization [as defined in Eq. (A10)] vanishes for
a given g. The gray vertical line at g = 1 separates the subthermal
regime from the superthermal regime, which turns into a thermal
distribution plus a δ-function in the interacting system in the thermo-
dynamic limit. The critical end point at g = 1, 1/S = 0 is a specific
feature of the Heisenberg antiferromagnet in two dimensions. The
gray dashed curve indicates the expected behavior in three dimen-
sions or in the anisotropic xy or xxz (Ising, gapped) regimes in two
dimensions.

Landau-Lifshitz-Gilbert equations [44,45], Gross-Pitaevskii
equations [18,26,27], or field theoretical analyses [8,10,12–
15,42,43]. Here, we focus on the distribution function of ex-
citations.

In this work we aim to add a new dimension to the under-
standing of this field. We study a steady-state system in which
the crucial physics is the interplay of interactions and the flow
of energy and particles from the drive through the system to a
dissipative reservoir. We provide a precise microscopic treat-
ment of the interaction among excitations, which is known
[35,46–57] to be crucial for the long-time physics. Figure 1
shows the behavior of the spin system under consideration
as a function of the critical parameter g, which parametrizes
the nonequilibrium excitation strength relative to dissipative
losses and will be introduced in more detail below. Figure 1
displays two distinct phase transitions, namely, an order-to-
disorder phase transition, which is conceptually similar to
known equilibrium transitions but occurs here for nonthermal
distributions, and an intrinsically nonequilibrium subthermal-
to-superthermal transition, which we study in this paper. The

latter phase transition is characterized by a qualitative change
in the distribution function.

II. MODEL AND FORMALISM

A. Hamiltonian and kinetic equation

We study the driven-dissipative square-lattice Heisenberg
antiferromagnet with nearest-neighbor interactions, described
by the Hamiltonian

HHeis = J
∑
〈i j〉

{
1

2

(
S+

i S−
j + S−

i S+
j

) + Sz
i Sz

j

}
, (1)

with canonical spin operators Si at site i of the lattice. The
Heisenberg Hamiltonian has two parameters, the exchange
coupling strength J , which sets the energy scale and which
we take to be positive so that the ground state is antiferro-
magnetic, and the spin magnitude |S|, which sets the strength
of the quantum fluctuations and of the interactions between
the spin waves. At |S| = ∞ the model is straightforwardly
solvable and has a twofold degenerate set of spin-wave exci-
tations (magnons) with dispersion ωk. The primary object of
interest will be the magnon distribution function nk counting
the number of magnons excited above the ground state into
the mode with energy ωk. Key to our analysis will be the
interactions between magnons. Because we are interested in
the qualitative effects of the interactions, we use a standard
Holstein-Primakoff method [58] to obtain the spin-wave inter-
actions at leading nontrivial order in 1/|S| (see Appendix A).
The important points here are that the inter-spin-wave inter-
actions conserve both total energy and the total number of
spin waves and that their effect on the distribution may be
studied using the Boltzmann equation with a collision integral
S derived via standard methods from the magnon-magnon
interactions.

The Heisenberg model is an effective model describing the
low-energy physics of a more fundamental system of strongly
correlated electrons moving in a periodic lattice potential
such as the Hubbard model. These more fundamental mod-
els enable a calculation of the drive due to electromagnetic
radiation and dissipation due to coupling with a reservoir. We
specifically adopt the model studied in Ref. [59] in which the
Heisenberg model is obtained as the low-energy limit of the
half-filled large-U Hubbard model. The drive emerges from
a Floquet analysis of minimally coupled high-frequency radi-
ation detuned from the upper Hubbard band. The dissipation
results from particle exchange with a reservoir, which we take
to be at zero temperature. The particle exchange is virtual
because of the Mott-Hubbard gap, but dissipation of energy
and magnons into the reservoir is allowed.

Since we consider only a spatially uniform drive, we
restrict our attention to a distribution function of energy ω (in-
stead of momentum k) defined [60] as n(ω) = ∫

d2knkδ(ω −
ωk)/ρ(ω), with ωk being the magnon energy and nk being the
magnon distribution as a function of wave vector. The density
of states summed over the two magnon branches is

ρ(ω) = 2
∫

d2kδ(ω − ωk). (2)

We take the drive and dissipation from a previous analysis
[59] of the driven-dissipative Hubbard model, specializing it
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to the particular case of a high-frequency drive detuned from
any charge excitations and a dissipation arising from particle
exchange with a reservoir. Reference [59] found, using an ap-
proximation that neglected the magnon-magnon interactions,
that the effect of a high-frequency detuned drive is the addition
of magnons to the system, such that the number of magnons in
the mode with energy ω increases at the rate γin[1 + n(ω)]. γin

is proportional to the drive strength, and the simple form of the
in-scattering follows from the very high frequency, detuned
drive. The calculation also implies a decay of magnons into
the charge reservoir at a rate given by γout[n(ω) + ( n(ω)

nT̃ (ω) )2],

with nT̃ (ω) = 1/(e
ω

T̃ − 1) and parameter T̃ ≈ 0.6J . Note that
T̃ from Eq. (3) is not the equilibrium temperature of the
system but is a parameter describing the nonlinearity of the
relaxation to the bath. The nonlinearity ensures a steady state
at any drive amplitude. The key features of the out-scattering
are that the basic rate is determined by the particle-reservoir
coupling and that the nonlinearity vanishes quadratically as
ωk → 0. The latter feature stems from the large charge gap
and the vanishing of the charge-magnon coupling at low ener-
gies due to the Goldstone theorem.

This allows us to write down a kinetic equation that
encodes magnon-magnon scattering through the collision in-
tegral S as well as the effects of drive and dissipation,

∂t n(ω) =γin[1 + n(ω)] − γout

[
n(ω) +

(
n(ω)

nT̃ (ω)

)2]

+ S[{n(ω)}]. (3)

B. Numerical implementation

We discretize the system and solve the resulting set of
coupled nonlinear equations numerically by integrating for-
ward in time from an initial condition until a steady state
is reached. We choose a uniform � × � momentum space
grid containing N = �2 points, as shown in Appendix D, and
therefore a discrete set of momentum points ωk. We replace all
momentum/frequency integrals by sums. The largest linear
dimension � used throughout the paper is � = 120, which
is the default discretization parameter for the results shown
below, unless otherwise indicated. The discretized momentum
grid is chosen in a way such that k = 0 is avoided because a
Bose-Einstein distribution with μ = 0 diverges as k → 0, im-
plying that k = 0 cannot be treated directly numerically (see
Appendix D, Fig. 7). Below we employ a careful finite-size
scaling analysis and extrapolation to infinite system size to
extract information about k → 0 and possible Bose-Einstein
condensation. In the numerical results presented here we fix
the parameter T̃ describing the nonlinear term in the dissipa-
tion as T̃ = 0.6 and set γout = 0.002, unless explicitly denoted
otherwise. Our conclusions are independent of the specific
parameter values.

As noted above, the collision integral S conserves the
magnon number N and energy E , which are discretized as

N =
ωmax∑
m=1

ρ(ωm)n(ωm), (4a)

E =
ωmax∑
m=1

ρ(ωm)n(ωm)ωm, (4b)

where ρ(ωm) is the discretization of the density of states
given in Eq. (2). We parametrize the drive strength via the
dimensionless tuning parameter, which controls the excitation
density,

g ≡ γin

γout
, (5)

and consider the qualitative form of the computed magnon
distribution function.

III. RESULTS

A. Nonequilibrium phase diagram

Figure 1 summarizes our findings in terms of a phase
diagram in the plane defined by the amplitude of quantum
fluctuations (inverse spin length 1/S, vertical axis) and the
drive strength g (horizontal axis). In equilibrium (g = 0), in-
creasing quantum fluctuations drives a transition to a quantum
disordered state. Increasing the drive strength at a fixed value
of quantum fluctuations produces two conceptually distinct
effects.

The drive adds energy to the system, exciting magnons
above the ground state and thereby weakening the order.
For drive strengths less than a critical value (here, g = 1)
the magnon distribution retains a subthermal form, with the
magnon occupation n(ω) remaining finite as the magnon en-
ergy ω vanishes, in contrast to the ∼T/ω behavior of the
thermal distribution. Although the distribution is subthermal,
the increase in magnon number may be sufficient to drive
the system into a disordered state, as indicated by the phase
boundary in Fig. 1. This symmetry-breaking phase transition
is a nonequilibrium version of the standard equilibrium phase
transition driven by raising temperature. Distinct from this
transition Walldorf et al. also found a change in the magnon
distribution from subthermal to superthermal that occurred
as the relative drive strength was increased beyond the crit-
ical value g = 1 [59]. It is this subthermal-to-superthermal
transition, which is characterized by a qualitative change in
the distribution and is not directly related to the disappear-
ance of a conventional order parameter, that we investigate
here. Because the distribution function is at least thermal,
in the two-dimensional Heisenberg-symmetry case studied
in detail here, long-range order is necessarily destroyed at
g = 1. However, in two-dimensional xy/xxz systems or in
three-dimensional systems, the ordered phase may persist into
the superthermal phase.

B. Nonequilibrium steady state

Figure 2(a) compares the magnon distribution function
calculated with and without magnon-magnon scattering. We
find that the clear qualitative difference between the subther-
mal and superthermal cases is still evident in the interacting
case, confirming that the nonequilibrium phase transition is
preserved under magnon-magnon scattering. In the subther-
mal steady state, the impact of magnon-magnon scattering
is rather small, producing only a slight shift of magnon oc-
cupation towards lower frequencies. In striking contrast, the
superthermal steady state is strongly affected by magnon-
magnon scattering. At all but the lowest frequency the effect
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FIG. 2. Nonequilibrium phase transition. (a) Interaction-induced changes in the steady-state magnon occupation n(ω). Plotted is ωn(ω) as
a function of magnon frequency ω in order to highlight the difference between subthermal [ωn(ω) → 0 for ω → 0], thermal [ωn(ω) → const],
and superthermal [ωn(ω) → ∞] regimes. The blue (red) data points show the interacting results for representative subthermal (superthermal),
g = 0.5 (g = 1.5), cases in comparison with the noninteracting results shown by blue (red) curves. The dark gray solid line indicates a thermal
state at g = 1 and T = 0.6; the light gray dashed line is a best fit to the high-frequency part of the interacting distribution function at g = 1.5
and corresponds to a thermal state with an effective temperature T > T̃ . Inset: The same results plotted as n(ω) versus ω, focusing on the
low-frequency part to highlight that the interacting superthermal system shows a low-frequency divergence that is stronger than both the
noninteracting system and the best thermal fit. (b) Points: magnon number vs total energy curve defined from Eq. (4) with g as an implicit
parameter for both noninteracting and interacting steady states. Solid black line: magnon number vs total energy relation obtained from Bose
distribution with chemical potential μ = 0 with temperature as an implicit parameter. States below this critical Bose-Einstein condensation
line have a lower number of magnons per energy than a thermal state. States above the critical line have a number of magnons that exceeds
the maximal number in states with ω(k) > 0 that is compatible with the given system energy in a thermal state, implying the existence of a
δ-function contribution at zero energy (condensate fraction) in the thermodynamic limit.

of the scattering is to drive the distribution close to a thermal
distribution, but the occupancy at the lowest frequency is
strongly enhanced relative to the noninteracting case [see inset
in Fig. 2(a)].

To interpret our results, we recall equilibrium BEC, in
which the occupancy is given by a Bose-Einstein distribution
with μ = 0 and a δ-function at ωk = 0 describing the conden-
sate fraction. This distribution has a temperature that is fixed
by the total energy; the number of uncondensed bosons is then
uniquely determined by this temperature, and any excess over
the uncondensed number makes up the condensate fraction.
With this in mind we plot in Fig. 2(b) the magnon number as
a function of magnon energy, with g being an implicit param-
eter, along with the magnon number–energy relation implied
by the Bose distribution with chemical potential μ = 0 and
no condensate, with temperature being an implicit parameter.
In ordinary BEC, decreasing the temperature decreases the
energy moving the system to the left along a line at fixed
N . Crossing the solid line signals the BEC. In our system for
g < 1 the number-energy trace remains below the solid line.
At g = 1 the curves for both noninteracting and interacting
systems cross the solid line, implying for g > 1 an excess
of magnons. Importantly, magnon-magnon interactions push
the system even farther away from the thermal distribution
rather than towards it because magnon-magnon scattering
tends to redistribute magnons towards lower energy, thus

accommodating more magnons per energy compared to the
noninteracting steady state.

C. Finite-size scaling analysis

To further interpret the data we present a finite-size scaling
analysis. We define the magnon occupancy at the mth fre-
quency weighted by the discretized density of states, Nm =
ρ(ωm)n(ωm). Figures 3(a) and 3(b) strongly suggest that the
occupancy N0 of the lowest-frequency magnon mode remains
a nonvanishing fraction of the overall number of magnons N
as the system size increases in any interacting system with
g > 1. This is different from the case g = 1, which has no
condensate and where the contribution of the lowest frequency
vanishes as the system size increases. Figures 3(c) and 3(d)
show that the ratio of the occupancy at the second-smallest
frequency to the occupancy at the smallest frequency N1/N0

decreases as the system size increases. The decrease is ap-
parently linear in 1/�, but the system sizes available are not
sufficient to allow for a precise determination. The combi-
nation of a nonvanishing N0/N and a vanishing N1/N0 in
the thermodynamic limit strongly suggests the existence of
a δ-function contribution at ω = 0. For reference, we also
show data points for a system that is initialized with the
noninteracting steady state at a given value of g and then
evolved as a closed system under magnon-magnon scattering.
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FIG. 3. Finite-size scaling analysis revealing the δ-function con-
tribution at g > 1 in the thermodynamic limit. (a) and (b) Ratio of
the magnon density at the lowest frequency and the total number of
magnons in the system N0/N and (c) and (d) ratio of the magnon
density at the second-lowest frequency and the lowest frequency
N1/N0 for g = 1.25 (left panels) and g = 1.5 (right panels). Differ-
ent colors correspond to different values of γout = 0.002, 0.02, 0.2 as
indicated. Black points correspond to the noninteracting stationary
state, gray points show thermal behavior (g = 1), and red stars corre-
spond to the stationary state to which the interacting, closed system
evolves when initialized with the respective noninteracting stationary
state at given g.

At g > 1 this closed system is positioned above the critical
line for BEC in the N -E diagram in Fig. 2(b). Therefore, in the
thermodynamic limit this closed system necessarily develops
a finite condensate fraction because this is the only possible
thermalized solution to the closed-system kinetic equation.
The comparison between the interacting driven-dissipative
steady states and the closed-system thermalized states drives
home our point that the interacting g > 1 system develops a
nonvanishing condensate fraction in the thermodynamic limit
[61].

D. Static and dynamic criticality

Figure 4 examines the nature of static and dynamic criti-
cality occurring as g is tuned through g = 1. The main panels
show both the dependence of the static observable dN /dg
[Fig. 4(a)] and the dynamic decay rate λN [Fig. 4(b)], as
defined by

N (t ) = Nfinal + 	N exp (−λN t ) (6)

on the tuning parameter g. Equation (6) is the empirically
observed long-time behavior of the excitation density in the
system [62]. Data are shown for different system sizes. For
both quantities there is a clear difference between g < 1 and
g > 1 with weak system-size dependence for g < 1 and strong
system-size dependence for g > 1. The insets in Fig. 4(a)
and (b) show approximate data collapses that are consistent

FIG. 4. Static and dynamical critical behavior in the interacting
driven-dissipative steady state. (a) Rate of change of magnon number
N as a function of g. Inset: Scaling behavior with the linear system
size collapses the data points onto a single curve. (b) Rate of decay
of total magnon number N towards the stationary state, plotted as
a function of g for different system sizes as indicated. Inset: Scaling
behavior with the linear system size is consistent with collapse onto a
single curve, suggesting critical slowing down as g → 1. (For critical
behavior in the strength of the condensate fraction, see Appendix B.)

with critical scaling as g → 1 from above and � → ∞. The
implication of the data collapse is that

dN
dg

= f1[(g − 1)�]
√

� , (7a)

λN = f2[(g − 1)�]√
�

. (7b)

If dN /dg and λN are to be finite and nonzero as � → ∞,
functions f1(x) and f2(x) need to have the forms f1(x) ∝
(1/

√
x) and f2(x) ∝ √

x as x → ∞, implying that at � = ∞,
dN /dg ∼ 1√

g−1
, i.e., a square-root singularity of N (g) in the

thermodynamic limit, and λN ∼ √
g − 1 as g → 1+, i.e., a

critical slowing down as g → 1 from above. This asymmetric
criticality is not present in the noninteracting theory and is a
consequence of magnon-magnon interactions.

IV. DISCUSSION

A driven-dissipative system may exhibit two phase transi-
tions as a function of drive strength. One is the nonequilibrium
analog of a conventional symmetry-breaking transition that
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occurs because the drive creates excitations which push the
system away from the ordered state. This transition was pre-
viously studied [8,10,12–15,42,43]. The other type, studied
here, is that when the drive exceeds a critical value set by the
linear dissipation mechanism, a kind of “order from disorder”
transition may occur, with some fraction of the drive-induced
excitations condensing into a zero-momentum ground state.
Our finding bears an interesting relationship to the existing
literature on Bose-Einstein condensation of magnons, where
an evolution into a condensed state of a transiently induced
magnon population is analyzed.

Crucial to our analysis is a numerically exact solution of
the Boltzmann equation derived by considering the interac-
tions among excitations, which enables an analysis of the
interplay between the frequency dependence of the dissipation
mechanism and the tendency to condensation. This com-
prehensive numerical solution extends previously published
theory which typically uses either a phenomenological relax-
ation rate or a simple approximation to the magnon-magnon
scattering term. A key finding is that the condensation occurs
in a high-drive limit, where the drive-induced energy density
is large and the number of excited magnons is also large, and is
associated with a dynamical (drive-strength-driven) criticality.
On the level of theory used here, this criticality is described by
a different set of static and dynamic critical exponents.

Our work raises many important questions. First, while
we have demonstrated a qualitative change in the magnon
distribution consistent with the formation of a condensate,
the physics of fluctuations around this state has not yet been
studied, and therefore, a full analysis of the criticality, be-
yond the Boltzmann approximation used here, cannot be
undertaken. Important open problems include understanding
how to characterize the differences between the nonthermal
symmetry-breaking transition and the usual thermal one, how
to interpret transitions involving distribution functions and not
conventional order parameters, and how to generalize the stan-
dard equilibrium theory of spatial and temporal fluctuations
in a critical state to strongly nonequilibrium situations such as
that considered here. The issues are of particular importance
in two dimensions, where the obvious generalization of the
Hohenberg-Mermin-Wagner theorem to nonequilibrium situ-
ations would suggest that the Bose-Einstein condensation we
find signals a phase with power law correlations.

Observation of the nonthermal critical behavior pre-
dicted here is an important experimental challenge. Possible
techniques include time-resolved second harmonic optical
polarimetry and inelastic x-ray scattering [63]. Our work
also has a close connection to Bose-Einstein condensation
in exciton-polariton systems, for which interesting field-
theory-based studies of criticality have appeared [42,43].
Investigations of possible nonequilibrium-induced spatial
structure, analogous to the structures observed in turbulence

[64], and clarifying the relation of our work to nonthermal
fixed points in closed systems after quenches [65–67] are also
important directions for future research.
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APPENDIX A: METHODS

Interacting spin-wave theory. We consider the isotropic
Heisenberg antiferromagnet as given in Eq. (1) and apply
standard Holstein-Primakoff spin-wave theory [58], resulting
in

HHP = E0 + H0 + V, (A1)

with an irrelevant ground state energy E0 and bilinear Hamil-
tonian

H0 =
∑

k

h̄ ωk(α†
kαk + β

†
kβk). (A2)

The magnon dispersion is

ωk = JSz

h̄

[
1 + 1

2S

(
1 − 2

N

∑
k′

λk′

)]
λk, (A3)

with

λk =
√

1 − γ 2
k , (A4a)

γk = cos (kx ) + cos (ky)

2
. (A4b)

The interaction term for the kinematically allowed magnon
energy and momentum conserving scattering processes is
given by V with interaction vertices V (2:2)

1+
α 2+

α 3−
α 4−

α
and Ṽ (2:2)

1+
α 2−

β 3−
α 4+

β

,

namely,

V = −J
2z

N

∑
k1k2k3k4

δ(k1 + k2 − k3 − k4){V (2:2)(α†
1α

†
2α3α4 + β

†
3β

†
4β1β2) + Ṽ (2:2)(α†

1α3β
†
4β2)}, (A5a)

V (2:2)
1+

α 2+
α 3−

α 4−
α

= γ(2−4)u1u3 v2v4 + 1

4
[γ1 u1 v2v3v4 + γ2 u1u3u4 v2 + γ3 u3 v1v2v4 + γ4 u1u2u3 v4], (A5b)

Ṽ (2:2)
1+

α 2−
β 3−

α 4+
β

= γ(2−4)[u1u2u3u4 + v1v2v3v4] + γ(2−3)[u1u2 v3v4 + u3u4 v1v2]
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+1

2
γ1[u3 v1v2v4 + u1u2u4 v3] + 1

2
γ2[u1u2u3 v4 + u4 v1v2v3]

+1

2
γ3[u2u3u4 v1 + u1 v2v3v4] + 1

2
γ4[u2 v1v3v4 + u1u3u4 v2]. (A5c)

Here, we have used

uk =
√

1 + λk

2λk
, (A6a)

vk = −sign(γk)

√
1 − λk

2λk
. (A6b)

In Eq. (A5a), the momentum-conserving δ-function should
be understood as modulo a reciprocal lattice vector of the
standard two-dimensional antiferromagnetic Brillouin zone.

Boltzmann equation. The semiclassical magnon Boltz-
mann equation for the magnon distribution in branch α at a
given momentum k1 is

dnα (k1)

dt
= 2π

h̄

(
2Jz

N

)2[
S (2:2)

α (k1) + S̃ (2:2)
α (k1)

]
, (A7)

where S are the relevant scattering integrals. To leading order
in 1/S, only scattering processes with two magnons scattering
into two other magnons are kinematically allowed. Conse-
quently, the scattering conserves the number of magnons term
by term at this level of approximation. The corresponding
scattering integrals are given by

S (2:2)
α (k1) =

∑
k2k3k4

δ(k1 + k2 − k3 − k4)δ(ωk1 + ωk2 − ωk3 − ωk4 )V (2:2)
1+

α 2+
α 3−

α 4−
α
V (2:2)

3+
α 4+

α 1−
α 2−

α

× {[1 + nα (k1)][1 + nα (k2)]nα (k3)nα (k4) − nα (k1)nα (k2)[1 + nα (k3)][1 + nα (k4)]}, (A8)

S̃ (2:2)
α (k1) =

∑
k2k3k4

δ(k1 + k2 − k3 − k4)δ(ωk1 + ωk2 − ωk3 − ωk3 )Ṽ (2:2)
1+

α 2−
β 3−

α 4+
β

Ṽ (2:2)
3+

α 4−
β 1−

α 2+
β

× {[1 + nα (k1)][1 + nβ (k4)]nα (k3)nβ (k2) − nα (k3)nβ (k2)[1 + nα (k1)][1 + nβ (k4)]}. (A9)

Computational remarks. We compute the time evolution
on the two-dimensional antiferromagnetic Brillouin zone,
which is discretized into square tiles and subsequently
mapped onto an energy grid (see Appendix D for details). The
time propagation of the full kinetic equation in the main text
is performed using the two-step Adams-Bashforth method.
We have carefully checked convergence in the time step dis-
cretization.

The staggered magnetization is computed via

m(S, n(ω)) = S + 1

2
− ωmax

ωmax∑
m=1

ρ(ωm)

ωm

(
n(ωm) + 1

2

)
.

(A10)

Specifically, the black curve in Fig. 1 that separates the sub-
thermal disordered phase from the subthermal ordered phase
is computed by solving the equation m(S, n(ω)) = 0 (with the
noninteracting magnon distribution at a given g inserted to
compute m) for 1/S.

APPENDIX B: STRENGTH OF THE CONDENSATE
FRACTION

The strength of the condensate faction is determined by
the ratio of the number of magnons N to the system energy
E . Projecting each individual point in Fig. 2(b) vertically onto
the thermal distribution gives the number of magnons Nth that
can be accommodated by the thermal distribution. The excess
of magnons determines the strength of the δ-function, D0 ≡

N − Nth. Therefore the steady state has the form

N (ω) = D0 N	(ω) + Nth,TE (ω), (B1)

where N	(ω) is a normalized function (integrating to unity)
and, as discussed above, turns into a δ function in the ther-
modynamic limit. Since the number of magnons exceeds only
the number of magnons in a thermal distribution at g > 1, the

FIG. 5. Condensate fraction D0 as a function of the dimension-
less tuning parameter g for different linear system sizes as indicated.
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FIG. 6. Finite-size scaling analysis analogous to Fig. 4 for the
subthermal regime (g = 0.875). (a) Ratio of the magnon density at
the lowest frequency and the total number of magnons in the system
N0/N and (b) ratio of the magnon density at the second-lowest
frequency and the lowest frequency N1/N0. Different colors cor-
respond to different values of γout = 0.002, 0.02, 0.2 as indicated.
Black points correspond to the noninteracting stationary state, gray
points show thermal behavior (g = 1), and red stars correspond to
the stationary state to which the interacting, closed system evolves
when initialized with the respective noninteracting stationary state at
given g.

weight of the δ-function D0 vanishes for g < 1. The decrease
in the weight of the δ-function D0 to zero at g = 1 marks the
phase transition (Fig. 5).

APPENDIX C: SCALING OF THE MAGNON NUMBER IN
THE LIMIT OF WEAK DRIVING

In the low-driving phase g < 1 the scaling behavior is
substantially different from the results in the strong-driving
phase. This is visible in Fig. 6(a), where the contribution of the
lowest frequency in the interacting phase goes to zero as sys-
tem size is increased, just as in the thermal system. So at g < 1
there are no indications for a condensate fraction at ω = 0.
Similarly, there is only a minimal shift from the noninteracting
results in the ratio of the magnon density at the second-lowest
frequency and the lowest frequency N1/N0. This behavior in
the low-driving ordered phase is substantially different from
the findings in the high-driving, disordered phase.

FIG. 7. Magnetic Brillouin zone (MBZ) for � = 8. The full MBZ
(yellow) can be reduced to (�2 + 2�)/8 lattice sites (green) due to
the symmetry of the lattice. The multiplicity weights of the reduced
lattice vectors that are sufficient to simulate the dynamics in the
system are marked as indicated.

APPENDIX D: PSEUDOCODE

We numerically consider a quadratic lattice of momen-
tum vectors as displayed in Fig 7 with linear dimension �

and �2 lattice sites. To make our computation numerically
feasible even for comparatively large � we then reduce this
magnetic Brillouin zone (MBZ) using symmetry relations to
(�2 + 2�)/8 lattice sites (green). These reduced MBZ vec-
tors kPZ are associated with different weights due to their
multiplicity, as indicated. Please note that in the following
pseudocode # denotes the number of a quantity in an array,
while symbols like kPZ without a # are the actual quantity. For
example, kPZ without a # is the actual vector in the reduced
MBZ.

1. Building the full (yellow) and reduced (green) MBZs as displayed in Fig. 7.

1: Save MBZ vectors sorted by length in MBZ[#kMBZ][kx, ky]
2: Save vectors within the reduced MBZ sorted by length in PZ[#kPZ][kx, ky]
3: for k ∈ PZ do
4: save the precise energy associated with this vector as 
[#kPZ]
5: save the weight associated with this vector as kweight[#kPZ]
6: end for

The scattering conserves both momentum and energy. This is implemented numerically by mapping the MBZ in momentum
space on an energy grid as displayed in Fig. 8. To do so, we divide the interval {0,
max} into � equidistant energy bins and
determine with which bin the vectors in the momentum grid are associated. The different colors of the bins in Fig. 8 are simply
to distinguish them from each other and have no further meaning. Since not all bins will have energies, not all bins need to be
taken into account. Note that in the example of � = 8 only five of the bins are occupied (purple ω). Each bin is then associated
with the total weight of the MBZ vectors in it (red numbers).
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FIG. 8. Mapping of the momentum grid onto an energy grid for � = 8. The interval {0, 
max} into � equidistant energy bins (blue and
magenta) and for each momentum vector kPZ of the associated bin is determined. The red numbers give the total weight of all vectors within
the energy bin, so, for example, energy bin ω5 has momentum vectors {k5, k6, k7, k8, k9, k10}, which have a total weight of 10.

2. Map the reduced MBZ in k space onto an energy grid as illustrated in Fig. 8.

1: Divide the interval {0,
max} into � equidistant energy bins
(see Fig. 8, blue and magenta boxes)

2: for k ∈ PZ
3: identify in which energy bin 
[#k] falls
4: end for
5: Discard empty energy bins
6: Save the center of the remaining energy bins as energybin[#ω]

(see purple {ω1, ω2, ω3, ω4, ω5} in Fig. 8)
7: Save the numbers of reduced MBZ vectors in each bin as kpz@energybin[#ω][#kPZ]
8: Compute the total kweight in each bin and save it as kweight@energybin[#ω][#kPZ]

The next step is to find the quadruples in momentum space that satisfy momentum and energy conservation simultaneously.
Note that we use the centers of the energy bins and not the precise energies of the momentum vectors to determine whether
energy conservation is satisfied. The factor of 4 in the cutoff is needed because each quadruple consists of four momentum
vectors. Furthermore, all entries of the two-dimensional array “integrals” are the same. Here, the cutoff has to be divided by �4

because there are four free dimensions in the integration. The vertices are then symmetrized by computing

(VV )sym = 0.125
[
V1+

α 2+
α 3−

α 4−
α

+ V3+
α 4+

α 1−
α 2−

α

] + 0.125
[
V1+

α 2+
α 4−

α 3−
α

+ V3+
α 4+

α 2−
α 1−

α

]
(D1)

+ 0.125
[
V2+

α 1+
α 3−

α 4−
α

+ V4+
α 3+

α 1−
α 2−

α

] + 0.125
[
V2+

α 1+
α 4−

α 3−
α

+ V4+
α 3+

α 2−
α 1−

α

]
and (

ṼṼ
)

sym = 0.25
[
Ṽ1+

α 4−
β 3−

α 2+
β

+ Ṽ3+
α 2−

β 1−
α 4+

β

] + 0.25
[
Ṽ2+

α 3−
β 4−

α 1+
β

+ Ṽ4+
α 1−

β 2−
α 3+

β

]
. (D2)

This vertex symmetrization ensures energy and particle number conservation by enforcing detailed balance and is a necessary
step in the energy-grid representation.

3. Find quadruples that satisfy momentum and energy conservation in momentum space.

1: cutoff = 4 ∗ 
max/�

2: for k1 ∈ PZ do
3: for k2 ∈ MBZ do
4: for k3 ∈ MBZdo
5: k4 = k1 + k2 − k3

6: Find bin energy ωi associated with each of {k1, k2, k3, k4} → {ω1, ω2, ω3, ω4}
7: ifω1 + ω2 − ω3 − ω4 < 0.05 ∗ cutoff then
8: Save quadruple as kquadruple[#k1][#quadruple][{k1, k2, k3, k4}]
9: Compute (VV )sym = (symmetrize[V1+

α 2+
α 3−

α 4−
α

])2

10: Compute (ṼṼ )sym = (symmetrize[Ṽ1+
α 2−

β
3−
α 4+

β
])2

11: Set vertices[#k1][#quadruple] = VV sym + ṼṼsym

12: Set integrals[#k1][#quadruple] = cutoff/(�4)
13: end if
14: end for
15: end for
16: end for
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Now we have found the quadruples in momentum space, but in order to compute the time evolution using the energy grid in
Fig. 8 we need to turn the quadruple list into an energy list with ω1, ω2, ω3, and ω4 and then average for each given ω1 over the
multiple entries. This gives a consolidated list of energy quadruples and their weights.

4. Convert momentum quadruples into energy quadruples.

1: for ω ∈ energybins do
2: fork ∈ kweight@energybin[#ω] do
3: for q ∈ kquadruple[#k1] do
4: {k1, k2, k3, k4} = kquadruple[#k][#q]
5: Find energy bins associated with k1, k2, k3, and k4 → {ω1, ω2, ω3, ω4}
6: Safe energyquadruples[#ω][#equadruple][{ω1, ω2, ω3, ω4}]
7: enegryweight = integrals[#k][#q] ∗ vertices[#k][#q] ∗ kweight[#k]
8: Set energyweights[#ω][#equadruple] = energyweight
9: end for

10: end for
11: for equad ∈ energyquadruples[#ω] do
12: Check if the combination {ω1, ω2, ω3, ω4} has already been found
13: if No then
14: Save energyquadruples_consolidated[#ω][#equad_c][{ω1, ω2, ω3, ω4}]
15: energyweight_averaged = energyweights[#ω]/kweight@energybin[#ω]
16: Save energyweights_consolidated[#ω][#equad_c] = energyweight_averaged
17: else if Yes then
18: energyweight_averaged = energyweights[#ω]/kweight@energybin[#ω]
19: Add energyweights_consolidated[#ω][#equad_c]+ = energyweight_averaged
20: end for
21: end for
22: end for

We then use the consolidated quadruples in energy space to compute the time evolution using the two-step Adams-Bashforth
linear multistep method.
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