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Tailored diffraction asymmetries from spatially odd-symmetric phase gratings
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Phase gratings, each period of which consists of even numbers of equal-width and equal-thickness elements,
can be devised to attain asymmetric diffraction patterns. We show that engineering of offset refractive indices
in different elements exhibiting a spatially odd symmetry leads to the elimination of a single diffraction order
(directional elimination), while further manipulations on offset refractive indices may lead to the elimination
of all odd or even orders (grouped elimination) or all orders but one or two selected (directional selection).
These intriguing effects arise from destructive interference between diffracted amplitudes contributed by paired
or successive elements, and violation of Friedel’s law in such transparent gratings is an effect of higher order

multiple scattering.
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I. INTRODUCTION

Diffraction gratings, discovered at least three centuries
ago, are crucial components of instruments that have en-
abled important developments in many fields of science and
technology, including physics, astronomy, chemistry, and bi-
ology [1-4]. Underlying principles of light diffraction, on the
other hand, have always been an intriguing subject from a
fundamental point of view ever since Grimaldi’s first char-
acterization and Young’s celebrated experiment on this effect.
The latter, e.g., helped in understanding that light must prop-
agate as a wave supporting Huygens’ original wave theory of
light [5]. A traditional (etched) grating, consisting of a peri-
odic binary structure made from nonabsorbing and amplifying
materials, has somewhat limited applications due to the fact
that its diffraction pattern is (I) fixed and (II) symmetric about
the incident direction, however.

Over the past two decades, reconfigurable gratings to
overcome the disadvantage that diffraction patterns cannot
be modulated (I) have been proposed and realized. Electro-
magnetically induced gratings (EIGs) [6-9] are probably the
most familiar ones and have attracted great interest because
they are readily controlled while bearing broad application
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prospects. Approaches based, e.g., on microwave composite
phase modulation and Kerr enhanced cross-phase modula-
tion were also proposed to improve the grating performance
[10-15]. Overcoming the symmetry disadvantage (II) may be
more demanding in applications. As a matter of fact, diffrac-
tion from a crystal is expected to be symmetric even if the
crystal has no center of inversion. This is known as Friedel’s
law [16] that holds when (a) scattering is weak, in the sense
that only first-order processes are relevant, and when (b) there
is no absorption. To be more specific, the diffraction intensity
1(G) corresponding to a wave-vector change G is proportional
to the modulus square of the Fourier component V (G) of a
scattering potential, and hence Friedel’s law [ (G) =1 (—é)
follows when we have V(—G) = V*(G) for a real potential. In
the case of x-ray scattering, where Friedel’s law was originally
formulated, requirement (a) means that the kinematic diffrac-
tion theory, as opposed to the general dynamical diffraction
theory, works while requirement (b) means that the polariz-
ability is real [17]. Clearly, Friedel’s law can be generalized
to diffractions of electrons, neutrons, and atoms, provided
scattering processes arise from a weak and real potential.

The realization and control of diffraction asymmetries are
very important, e.g., in modern light-wave communications
though it is obviously a more difficult task. In the case of x-
ray scattering, mild violations of Friedel’s law are commonly
found because of absorption, see point (b) above, as predicted
by Ewald ef al. [18] and observed in zincblende crystals [19].
The underlying physics lies in the spatial phase shift of a
refractive-index (phase) grating relative to an absorption (am-
plitude) grating. That means, complex scattering potentials
were used whereby an out-of-phase modulation of phases and
amplitudes of the scattered waves gives rise to diffraction
asymmetries [20,21]. Strongly asymmetric patterns have been
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achieved with atomic beams diffracted by a tailored complex
potential (optical lattice) [20]. In optics, such out-of-phase
modulations are also called non-Hermitian modulations, and
parity-time (P7) symmetric modulations are attained in
particular when the refractive index is an even function
while the absorption is an odd function in space. So far,
quite a few examples of one-dimension and two-dimension
asymmetric diffractive gratings based on P7 symmetric or
more general non-Hermitian modulations have recently been
proposed [22-29].

While non-Hermitian gratings are effective to achieve
asymmetric diffraction, they hinge, however, on an accurate
control on spatial distributions of both absorption-gain and
refractive index. Then a question arises of whether it is viable
to break Friedel’s law so as to realize, and more importantly
tailor on demand, diffraction asymmetries in a phase grating
by modulating the spatial distribution of only refractive in-
dex. The answer is positive when scattering processes can no
longer be considered weak; see point (a) above. The possibil-
ity of observing diffraction asymmetries solely due to higher
order scattering, originally brought forward many decades ago
[30,31] for electrons, has recently been demonstrated also
in two-dimension materials [32]. Needless to say, the search
for asymmetric diffraction due to a breakdown of the weak
scattering requirement in Friedel’s law is rather elusive in the
optical regime. Yet, we reckon it would be important not only
for real applications but also from a more fundamental point of
view. This is relevant to binary optics as far as light diffraction
is concerned, which allows one to make micron-level (relief)
phase elements based on computer-aided designs for realizing
various wave filtering functions like angle selection, color
separation, and rotational asymmetry [33—-38]. A more flexible
and complete control of the flow of light is now viable via
metasurfaces—planar and ultrathin metamaterials composed
of subwavelength building blocks—as an effective extension
of binary optical devices [39-44].

Here we explain how to engineer a pure phase grating in the
spirit of extended binary optics that can lead to asymmetric
diffraction in the presence of multiple scattering processes.
First, we provide a theoretical framework to tackle diffrac-
tion asymmetries by introducing a multielement periodic
structure into our phase grating. Results for light intensities
corresponding to different diffraction orders show that asym-
metric higher order scattering occurs when offset refractive
indices of different elements exhibit a spatially odd symmetry.
Second, we provide an elaborate procedure to derive specific
conditions under which diffraction patterns can be tailored
by suppressing one or more selected diffraction orders. Three
examples of diffraction asymmetries are discussed and shown
via numerical calculations, namely directional elimination of
a single diffraction order, grouped elimination of all even or
odd diffraction orders, and directional selection of one or two
diffraction orders.

II. MODEL AND EQUATIONS

We start by considering a one-dimension phase grating
of period a along the x direction, which will result in the
diffraction of a light beam incident along the z direction into a
few symmetric orders j € {—J, J} as shown in Fig. 1(a). Each
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FIG. 1. (a) Schematic of a phase grating of period a along the
x direction, which can diffract a light beam of amplitude E;, inci-
dent along the z direction into a few light beams of amplitudes E;
deviating with angles 6; relative to the z direction. (b) Fine struc-
ture in a period consisting of 2m, elements with a common width
8x = a/2m, and a common thickness £ while different refractive
indices n,, = ny + én,, e.g., restricted by én,, = —én_,, in the limit
of my — oo.

period is designed to have 2m, elements with an identical
width 6x = a/2m, along the x direction but different refractive
indices n,, = ng + dn,, for |m| € {1, m,}, with ny being the
mean value while én,, denoting the offset values, as shown in
Fig. 1(b). In order to have an asymmetric diffraction pattern,
we must take m, > 1 because a centrosymmetric unit cell can
always be chosen in the binary case (m, = 1). Taking £ as the
common thickness for all elements and considering a probe
field with wavelength A, and wave vector k, = 27 /A ,, we can
write down the individual transmission function

Tm — einmka — eiﬁl’lmk,,[,, (1)

of the mth element, where the immaterial common phase
factor ™%~ has been removed for simplicity. Each period of
this multielement phase grating can be described by the total
transmission function

>, @)

mg
T(x)= Tmrect<x i
m;ﬂg Sx

being x,, = 2m + 1)a/4m, for m < —1 while x,, = 2m —
1)a/4mg for m > 1 the mth element’s center. Note that the
term m = 0 is not present in the summation above and the
following ones. It is also worth noting that 7'(x) in Eq. (2)
for a finite grating thickness £ is valid only if resonator ef-
fects are negligible between different elements and at grating
boundaries. This approximation of geometrical optics can be
justified by choosing ng > |én,,| and a > A, to avoid signif-
icant reflections by simultaneously reducing reflectivities and
diffraction angles, as supported by previous works on EIGs
realized with cold atoms [7-11] where periodic changes of
refractive indices are induced by standing-wave laser fields.

Further considering the translational invariance, we now
make a Fourier transform to expand the total transmission
function into T (x) = ff’k] E(0)e**dk,, where 6 refers to an
angle deviating from the z direction in the xz plane while
k. = k,sin 0 denotes a projection of k, from the direction de-
termined by angle 6 to the x direction. An inverse procedure of
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this Fourier transform then yields the dimensionless amplitude

m o

§ ei(zﬁn,,,k,,llkaxm)’

m=—myg

2 sin(ky8x/2)

EO)=—4

3

for a normally incident light beam diffracted into angle 6. It
is thus straightforward to write down the diffraction intensity
contributed by M irradiated periods

, sin’ (MR sin )

10 = O P R sin )’

“
where the beam width W, has been taken into account in terms
of the ratio M = W, /a.

Diffraction peaks are known to occur at discrete angles
0; determined by k; = k, sin6; = j2m /a or j = Rsin6; with
R =a/X,. Based on this consideration, we would pay spe-
cial attention to the jth-order diffraction by examining E; =
E(9;) for j # 0. Setting «,, = Snyk,L, Bin = kjxyy, and A; =
sin(jm /2mg)/ jr, we can make a power series expansion of
Eq. (3) to attain

mg )
E; = Z Aje_iﬂ’j" |:iam -

m:—mg

1y )
2 6 )
Defining g;, = > A; cos ,B,f,oem, gji =y Ajsin /3,{101,", hjr =
> AjcosBnaZ, and hj; =Y A;sin B2, with the replace-
ment o, — €;a,,, we further have

(6)

where factor ¢; is so small that it is enough to keep only the
first- and second-order scattering terms. Considering g, =
8—jr» 8ji = —8—ji» hjr = h—jrs and hji = _h—ji’ it is then vi-
able to write down intensities

Ej ~ (gjiej — hjrej/2) + i(gjre; + hjiej/2),

2 2
I:tj% gj,-ej:f:hjrejz-/2| +|gjr8j:|:hji812v/2| (7)

for the £ jth diffraction orders. Accordingly, we can introduce
the intensity contrast ratio

L=y girhii = gjihr
L+ &+ &

®)

J

J

sin (1},

with m* = mg, — m + 1 denoting the conjugate element of the
mth element. Note, however, that

sin (l,{;g/zn F kbum,,) = sin (l,{;g/zn Fhr)=0, (13)

where mg), = m;ﬁ/z = (mg + 1)/2 is also required if m, is
an odd integer. It is thus clear that all even or odd diffrac-

tion orders will Adisappear when (i) j is an even or odd
integer and (ii) ], + [. is chosen as an even integer to en-

m*

m*

. 4
7 Fk8y) + sin (I, 7w F k) = 25sin |:(”‘+T

to evaluate the degree of diffraction asymmetries. Consider-
ing B7,, = — B and a,, = Sny,k,L, it is not difficult to find
gjrhji = gjihj, inthe case of dn_,, = dn,, (spatially even sym-
metry) while g;hj; = —g;;h;, in the case of én_,, = —én,
(spatially odd symmetry). Thus, higher order scattering pro-
cesses will lead to diffraction asymmetries as long as dn,
is not of spatially even symmetry, and largest asymmetries
definitely occur when én,, exhibits a spatially odd symmetry.

In what follows, we restrict our discussions to diffraction
peaks with k, = k; only in the case of én,, = —dn_,, such that
Eq. (3) can be translated into

myg

Z cos (am — ,8,&,)

m=1

_sin(jm/2my)

jn /2 ®

for the jth diffraction order. From this equation, it is not
difficult to see that we can attain E; = O by requiring ol =
ﬂ,{; + (l,{'1 — 1/2)m, being l,{l an integer. In this case, transmit-
ted light beams out of the mth elements will exhibit opposite
phase shifts :t(l,{, — 1/2)m and thus have a vanishing contri-
bution to the jth diffraction order due to a paired destructive
interference. Such a requirement on l,{, can be satisfied by
engineering offset refractive indices snjy = —on’. . according
to

[j@2m— 1)+ (205 — V)mg]r,

$n) =
" 4m L

m

(10)

’

where /;, can be chosen at will for each value of m € {1, m,} to
realize the directional elimination of a single diffraction peak
of any order j € {—J, J}.

We then consider whether it is possible to further have
Ejio =0 with k € {1, 2,3, ...} on the basis of E; =0, re-
alizing thus the grouped elimination of all even or odd
diffraction orders. To this end, we note that

g

> sin (I Fk8).

m=1

sin[(j = 2k)7 /2m,]
(j % 2k /2

an

Eji =

with §,, = (2m — 1)m /m, being the mean phase shift of the
(j — 2)th diffraction order relative to the jth diffraction order
contributed by the mth elements. Accordingly, E;1o; will
become vanishing if we require

J
n

>”kn}m[<l

(

J _lf

m

2

)n:F k(m_m*)n} =0, (12

my

sure sin [(l,{, + l,'fl* ) /2] = 0. This can be easily understood
by reiterating the discussion above Eq. (10) except that a
dual paired destructive interference occurs as the sin(l,',i,n F
kd,,) terms of +mth elements cancel the sin(l,{l*n F kb )
terms of +m*th elements. The extra requirement on l;f, + l,’n
can also be satisfied by engineering offset refractive indices
snjy = —sn’. . according to Eq. (10). Other diffraction orders
Ej+or—1) are nonzero, however, because Eqs. (12) and (13) do

J
not hold again with the replacement kr — (kK — 1/2)m.
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TABLE L

Sufficient conditions for realizing three types of asymmetric diffraction patterns.

Directional elimination

Grouped elimination

Directional selection

I =0,+1,£2,43,... 41, =0,42,+4, 6, ... I, =1 =%£1,4£345,...
snj = —on’,, sni = —8n’,, snl = —sn’,,
i L @m—1)+ (21, —1ymg1n ; L @m—1)+Ql,— Dmgla, ; Lj@m—1)+QL, — mg ],
J = M= T mm D J — WA m TR J g1
Bnm - Amg L 8”’" - Amg L Bnm 4mg L
Finally, we consider whether it is possible to real- that

ize a more interesting case of E;i; =0 except for a
specific value of k€ ({1,2,3,...} on the basis of E; =
0, realizing thus the directional selection of a sin-
gle diffraction order on demand. To this end, we note

Zcos k(Sl sin lfrr kém =
2 T3 )7

in the case of k # m, € {1,3,5,.

J

%;sin<

..}mg so as to guarantee

cos(kdy/2) = cos(km /2my,) # 0. Defining lm = l{ + k, we
can further translate this equation into
o (e k A"
Zsin —m’Hn:{:—mn cos ("7 ) = o,
— 2 mg 2
(16)

after a sequential summation of the 2m, sine functions. It
is thus clear that we can attain E;1; =0 for k # m, as

J J
long as [, ., — Iy is chosen as an odd integer to ensure

cos [(l,,H_1 l,’,l)n/Z] = 0. This can be easily understood by
reiterating the discussion above Eq. (10) except that a suc-
cessive paired destructive interference occurs as the sin[l,{q F
km/mglm and sin[l,{; F k(m —1)/mg]m terms of Lmth ele-
ments cancel the sin[l,{1+1 F km/mg]m terms of £(m + 1)th
elements and the sin[l,fl_1 F k(m — 1)/mg|m terms of £(m —
1)th elements, respectively. The extra requirement on l /

I, can also be satisfied by engineering offset refractive 1nd1ces
Snm = —én’ n’,, according to Eq. (10). In the case of k = mg
however, a straightforward calculation from Eq. (14) yields

Ejn, = cos(jm /2my) Zcos |:< ] )71:|, a7

§== mg)rr /2
which cannot be zero because all terms in the summation are
equal when lm 41 — I3, is an odd integer. As a result, we can
select a single diffraction order while eliminating all others
only if just a specific value of j =+ m, falls within {—J, J},
depending critically on R = a/A,,.

Sufficient conditions derived above for realizing the di-
rectional elimination of a single diffraction order, grouped
elimination of all even or odd diffraction orders, and direc-
tional selection of a few diffraction orders are summarized in

Table 1 in terms of 87}, (12).

J
I

mg

sin[(j & k) /2my] . ( - k(Sm)
sin({llr+— |, (14)
2 2

Ejw =
s (k)2

which will become vanishing if we require

km k . iy
F m—n +—mn|+sin|l7w (15)

km )
F—n) =0,
g My Mg

III. RESULTS AND DISCUSSION

More direct insights onto analytical results derived in the
last section can be gained via numerical calculations and
qualitative discussions for a phase grating reconfigurable via
8nj, = —8n’,,. Our calculations and discussions will be re-
stricted to the case of my = 5, £ = 51, R = 50, and |81, <
ngy with a surrounding medium of refractive index n = ny. This
choice is considered to restrict the maximal diffraction an-
gle down to O < 10° corresponding to J = [Rsin O] < 8
and suppress the maximal reflectivity down to ryax < 0.25%
between different elements and at grating boundaries so as
to justify the applicability of T (x) in Eq. (2). The validity of
this analytical approach has been also verified by a numerical
Comsol calculation as discussed below.

A. Directional diffraction elimination

First, we verify via numerical calculations that it is viable
to eliminate a desired diffraction order with appropriate values
of 8n,’;1 according to the left column in Table I. This column
tells that 8nj, = —8n’. . can be designed on demand to satisfy
Eq. (10) for different combinations of j and l,’,‘, while m, my,
and L/, are fixed parameters. For instance, we can take

j=12with [}, =0,0,0,—1,—1 to eliminate the first
134

and second diffraction orders while j = 3,4 with [ 3, s =
0,0, =2, —1, —3 to eliminate the third and fourth diffraction
orders, respectively. Corresponding diffraction patterns are
shown in Figs. 2(a;)-2(as) accompanied by respective offset
refractive indices in Figs. 2(b;)-2(b4), along with a numerical
check of the validity of Eq. (2) via Comsol in Figs. 2(c;)—
2(c3). It is clear that surviving diffraction orders are highly
asymmetric and the strongest diffraction always occurs for
j=j%£2 or j=j£2F2m, Other choices of integers
l 1’ 2.3.4.5 €an also be used to eliminate the jth diffraction order,
but may result in different diffraction asymmetries.

The underlying physics may be attributed to the destructive
interference between each pair of light beams scattered by the
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FIG. 2. Intensity / against sin 6 with a missing first (a, ), second

(ap), third (a3), or fourth (a4) diffraction order, and corresponding offset

refractive indices 8nl, (b)), 8n% (by), 812, (bs), or 8n?, (by) for the 2m, elements in a period. (c) Comparison of the phase of T (x) associated
with the offset refractlve indices Snm shown in (b,) as obtained analytically from Eq. (2) (c;) and numerically via Comsol (c;) at the sample
exit face, with the full Comsol numerical calculation shown in (c3) . (d) Schematic of a paired destructive interference between diffracted

amplitudes contributed by the mth elements. Relevant parameters are A, = 0.8 um, m, = 5,R = 50, M =

0,0,0,—1,—1,and 1}, s =10,0,—2,—1,-3.

+mth elements in the same period as illustrated in Fig. 2(d).
This paired destructive interference can be understood as de-
scribed below. (i) We note from Eq. (3) that the jth-order
light beam scattered by the mth element acquires an exact for-
ward phase &, = 8n,,k,L and a mean deflected phase —B;, =
—k;x,, in addition to a common amplitude independent of m.

(ii) We write down E; 1., oc e™@ =P for the +mth elements
by further considering én, = —én_,, and x,, = —x_,,. (iii)
We find that the +mth elements contribute a beam superposi-
tion, to the jth-order diffraction, of amplitude &;,, = E; ,, +
Ej_m o< cos(am — /3,,'[) which will become vanishing in the
case of o}, = ,Bm + (=1 /2)m. Consequently, we would ob-
serve the overall effect of jth-order directional elimination
with 1(8;) = 0 as all my, pairs of elements are made to satisfy
Eq. (10).

Then we try to verify that diffraction asymmetries observed
in Fig. 2 are a result of multiple higher order scattering
as explained via Eq. (7) and Eq. (8). This can be done by
calculating the intensity contrast ratio C; as a function of

10, £ = 5i,, ny = 2.0, 111,’22,3,4,5 =

¢j, quantifying the strength of the phase contrast for four
eliminated diffraction orders. As shown in Fig. 3, C; vanishes
linearly for all diffraction orders as €| is decreased in the weak
scattering regime (¢; < 0.2 for the parameters used here)
while the maximum contrast |C;| — 1is attained with e; ~ 1.
Further increasing ¢;, we find that |C;| becomes smaller at
different rates and cannot be vanishing at the same time for
different diffraction orders, indicating that diffraction is in
general asymmetric as long as scattering is not weak.

B. Grouped diffraction elimination

Second, we verify via numerical calculations that it is
viable to eliminate all eyen or odd diffraction orders with
appropriate values of &n), according to the middle column
in Table I. This column tells that the requirement 8nm =
—&n’,, should be imposed by an extra restriction I+ lm* =
O:|:2:|:4 Takmgj_land112345_00000for
instance, we can see from Fig. 4(a;) that all odd diffrac-
tion orders are eliminated with corresponding offset refractive
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FIG. 3. Intensity contrast C; against scattering factor &;. The
black solid, red dashed, blue dotted, and green dash-dotted curves
correspond to C; attained with parameters used in Fig. 2(a;), C,
attained with parameters used in Fig. 2(a;), C; attained with pa-
rameters used in Fig. 2(a;), and C, attained with parameters used
in Fig. 2(ay), respectively.

indices shown in Fig. 4(b;). In another case of j =2 and
112,23’4,5 =0,0,0,0, -2, we find from Fig. 4(a;) that all even
diffraction orders are eliminated with corresponding offset
refractive indices shown in Fig. 4(b,). It is clear that surviv-
ing diffraction orders are highly asymmetric and j' = j + 1
refer to the two strongest diffraction orders. Other choices
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FIG. 4. Intensity / against sin® with all odd (a;) or even (a;)
diffraction orders eliminated on the basis of a missing first (a;) or
second (ap) diffraction order, and corresponding offset refractive
indices 8n! (by) or 8n? (by) for the 2m, elements in a period.
(c) Schematic of a dual paired destructive interference between
diffracted amplitudes contributed by the 77ith and m*th elements, with
m denoting a joint contribution of the +m elements. Parameters are
the same as in Fig. 2 except /{,5,5=0,0,0,0,0 and I}, 5,5 =
0,0,0,0, —2. '

of Ij, + 1), =0,%2, 4, ... can also be used to eliminate
all odd or even diffraction orders, but may result in different
diffraction asymmetries.

The (j & 2k)th-order diffraction elimination should be at-
tributed to a dual paired destructive interference as illustrated
in Fig. 4(c), which can also be understood in three steps. (i)
We note that a,’,'l — ﬂ,{l = (l,{'1 — 1/2)m has been taken to elim-
inate the jth-order diffraction, yielding thus 8nj, in Eq. (8).
(ii) On this basis, we write down &1t m X sin(l,{;rr F kb)
for the £mth elements and ;o o sin(l).7w F k3,,+) for
the m*th elements by considering o, 2k = o], and ﬂ,{,ﬂk =
,Bm =+ k6. (ii1) With 6,, 4 8, = 2, it is easy to find that the
+mth and £m*th elements contribute a beam superposition,
to the (j £ 2k)th-order diffraction, of amplitude &£ty m +
Ejaokm o sin[(ly, + I2.)7 /2]. Consequently, the (j =+ 2k)th
diffraction orders will disappear due to a dual paired destruc-
tive interference of the conjugate mth and +m*th elements
when [, 4+ 1/, is an even integer (I}, and /. are of the same

parity).

C. Directional diffraction selection

Finally, we verify via numerical calculations that it is
viable to select one or two desired diffraction orders with
appropriate values of dnj, according to the right column
in Table 1. This column tells that the requirement &n;, =
—on’. . should be imposed by an extra restriction /, ) =
+1, £3, +5,. Taklng]—land11234 =0,1,0,—-1,0
for instance, we can see from Fig. 5(a1) that the —4th and 51xth
diffraction orders survive due to j' = j —m, > —J and j' =
J +mg < J, respectively, with corresponding offset refractive
indices shown in Fig. 5(b;). In another case of j = —4 and
I;5545="0,1,2,3,4, we find from Fig. 5(ay) that the first
diffraction order survives due to j' = j + m, < J, while the
—O9th diffraction order missing due to j’ = j — m, < —J, with
corresponding offset refractive indices shown in Fig. 5(b,). It
is clear that the first diffraction order in Fig. 5(ay) is stronger
than the —4th and sixth diffraction orders in Fig. 5(a;) because
the former spreads over in a smaller range of angle 6 than
the latter, though exhibiting similar spatial widths in terms of
sin 6.

The (j &£ k)th-order diffraction elimination arises instead
from a sequential destructive interference as illustrated in
Fig. 5(c), which will be explained once again in three steps. (i)
We note that o, — B}, = (I, — 1/2)7 has been taken to elim-
inate the jth-order diffraction, yielding 8y, in Eq. (10). (ii)
On this basis, we then write down &j4¢ , X sin(l,m F k8,,/2)
for the +mth elements, which upon the multiplication of
a nonvanishing cos(k81/2) with k # :I:r%g can be rewritten

as a sum of inward ]ik X sin[l,',",n F k(m — 1) /m,] and
outward Ej"f_fk m X sin(l,w F kmm /mg) components. (iii) We
find that the sum of E;’i‘k m T €]ik i
+mth and £(m + 1)th elements is proportional to cos[ (1’

| contributed by the

m+1
l/n)n/ 2]. Consequently, only the diffraction peaks of orders
(j £ my) € {—J, J} can survive due to a sequential destructive
interference of the adjacent +=(m + 1)th and £mth elements
when lj — I, is an odd integer (I/ 41 and I3, are of opposite
parltles)
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FIG. 5. Intensity / against sin @ with a selected —4th (a;) or first
(ay) diffraction order on the basis of a missing first (a;) or —4th
(a,) diffraction order, and corresponding offset refractive indices n,
(by) or (Sn,;“ (by) for the 2m, elements in a period. (c) Schematic of
a sequential destructive interference between diffracted amplitudes
contributed by the mith and m + 1th elements, with 71 denoting a joint
contribution of the =m elements. Parameters are the same as in Fig. 2
exceptl{,5,5=0,1,0,—1,0and 11__?,3,4,5 =0,1,2,3,4

It is also worth noting from Eq. (17) that all selected
diffraction peaks, if existent, are equally spaced with the same
order difference 2m,. This fact indicates that we can observe a
broad background with no diffraction peaks or one selected
diffraction order in the case of m, > J (i), one or two se-
lected diffraction orders in the case of J > m, > J/2 (ii), and
two or three selected diffraction orders in the case of J/2 >
m, > J/3 (iii), depending on which diffraction order is first
eliminated with Eq. (10). Case (ii) has been examined above
while cases (i) and (iii) may be realized by taking m, = 10
and m, = 3, respectively, without changing other parameters.

Finally, we assess how disorders may affect the perfor-
mance of our grating due to, e.g., an imperfect material
preparation process. We discuss, as an instance, disorders
in offset refractive indices n, which are simulated here by
replacing n,, with (1 4+ r,,)n,,, being r,, € {—r, r} randomly
generated numbers. We recalculate in Fig. 6 the diffraction
patterns of Figs. 2, 4, and 5, yet in the presence of disorders
and find that the missing diffraction orders start to appear for
r = 0.3 in all three cases of directional elimination, grouped
elimination, and directional selection. In other words, for
our used parameters, rather steep (30%) random fluctuations
in offset refractive indices are needed to observe the initial
weak onset of all missing diffraction orders. We have further
verified that, for lower disorder strengths, these rather dim
diffraction peaks can be safely ignored (not shown), confirm-
ing the robustness of our grating against disorders in offset
refractive indices and the validity of our results as compared
to full-wave Comsol simulations.

0.4 @l | 0.4{ (@2)
= S
— 0.2} 1 — 0.2 A
. N
02 01 0 01 02 02 01 0 01 02
sin ¢ sin @
0.4+ (bl) 0.4} (b2)
= S
ht 0.2} — 0.2
0 ‘ A A ‘ A
0.2 0.1 0 0.1 0.2 -0.2 0.1 0 0.1 0.2
sinf sin @
1 1
(cl) (c2)
= 05 = 05
~ A ~
0 A 0
02 -01 0 0.1 0.2 0.2 -01 0 0.1 0.2
sin ¢ sin ¢

FIG. 6. Intensity / against sin 0 in the presence of disorders 7,,1,,,
with r, being in the range of {—0.3,0.3}. Other parameters are
the same as in Figs. 2(a;) and 2(a,) for panels (a;) and (ay); as in
Figs. 4(a;) and 4(a,) for panels (b;) and (b,); and as in Figs. 5(a;) and
5(a,) for panels (c;) and (c;). Each curve is attained as an average of
10 random realizations.

IV. CONCLUSIONS

In summary, a pure phase grating has been designed to
yield a spatially odd structure in terms of offset refractive
indices for different elements in each period. It is of interest
that this grating without loss and gain can produce highly
asymmetric diffraction, which represents an uncommon way
to break Friedel’s law as it does not rely on an out-of-
phase absorption modulation, but rather on multiple scattering
processes. We have derived, in particular, three sufficient con-
ditions on offset refractive indices for realizing the directional
elimination of a single diffraction order, the grouped elimina-
tion of all even or odd diffraction orders, and the directional
selection of a few diffraction orders, respectively. These in-
triguing phenomena are verified via numerical calculations
and explained in terms of paired or sequential destructive
interference between diffracted amplitudes contributed by the
conjugate or adjacent elements in each period. Among them,
selecting one or two diffraction orders on demand seems more
appealing because it is beneficial in the development of high-
precision signal-selecting optical devices.

We finally suggest that our main results might be imple-
mented in recently flourishing metasurface platforms like in
Refs. [42-44] where they could be further extended to the
richer two-dimension case. Other materials with tunable re-
fractive indices such as indium tin oxide [45] and germanium
antimony tellurium alloy [46] might likewise be promising
platforms where our asymmetric diffraction could be gener-
ated on demand.
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