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Error correcting codes with a universal set of transversal gates are a desideratum for quantum computing.
Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, the theorem also rules out codes
which are covariant with respect to the action of transversal unitary operations forming continuous symmetries.
In this work, starting from an arbitrary code, we construct approximate codes which are covariant with respect
to the entire group of local unitary gates in dimension d (<∞), using quantum reference frames. We show that
our codes are capable of efficiently correcting different types of erasure errors. When only a small fraction of
the n qudits upon which the code is built are erased, our covariant code has an error that scales as 1/n2, which
is reminiscent of the Heisenberg limit of quantum metrology. When every qudit has a chance of being erased,
our covariant code has an error that scales as 1/n. We show that the error scaling is optimal in both cases.
Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the
AdS-CFT duality.
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I. INTRODUCTION

Reliable universal quantum computation requires fault-
tolerant error correction [1], the ability to correct errors with
gates that are themselves noisy. Achieving such quantum error
correcting codes (QECCs) is a notoriously challenging task,
due to fundamental limitations such as quantum no cloning.

One of the earliest proposals to achieve fault-tolerance for
universal quantum computation was the idea of implement-
ing all the logical gates “transversally” [2,3], which is the
following idea: Given a qudit logical space and an n-qudit
physical space, find an encoder Ecov which maps all logical
gates V ∈ SU(d ), the group of unitaries in d dimensions, to a
tensor product of physical gates:

Ecov ◦ VL = (V1 ⊗ · · · ⊗ Vn) ◦ Ecov, (1)

where VL(·) = V (·)V † is the unitary channel corresponding to
logical gate VL, and Vm (m = 1, . . . , n) is either the unitary
channel V (·)V † or the identity channel, on the mth physi-
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cal qudit.1 Therefore, in such proposals, all gates required
to achieve universal computation would be realized at the
physical level by applying a tensor product of local gates.
This structure is naturally suited to error correction, since an
error in one of the physical qudits does not easily propagate
to other physical qudits—keeping errors local so that it can be
efficiently corrected afterwards.

However, as shown by Easting and Knill, there cannot exist
a code E satisfying Eq. (1), with a finite dimensional code
space that perfectly corrects single-qudit errors [4]. Moreover,
their result actually holds more generally for any set of qudit
gates which form a continuous symmetry, that is to say, any
set of gates V which act on qudits and form a Lie subgroup of
SU(d ) [4–6].

The code space is simply the image, in the physical space,
of the encoding map, while a code that perfectly corrects is
simply one for which the decoder Dcov can correct any error C
and still decode perfectly any logical state ρL:

Dcov ◦ C ◦ Ecov ◦ ρL = ρL. (2)

The Eastin-Knill theorem does not rule out the ability to
correct local errors for a nonuniversal set of gates, however.

1One may feel that Eq. (1) should be relaxed to hold only for a
finite, universal gate set. However, observe that since the transver-
sality condition is preserved under gate composition, and the set of
gates generated by a universal gate set is dense in SU(d ), these two
conditions are effectively equivalent.
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A case in point is the set of Clifford gates, which can be
implemented transversally but lack one crucial gate in order
to form a universal set. Supplementing this set with the miss-
ing gate is the idea behind one of the frontrunner proposals
for universal quantum computation, using so-called “magic
states” [7]. Several other schemes to relax the transversality
condition also exist [8–14].

In this work, we demonstrate a different approach to cir-
cumvent the Eastin-Knill theorem. In particular, all gates
can be applied transversally under various local error models
in our scheme. The key ingredients are quantum reference
frames and randomness. We now introduce the former before
explaining their relevance to our scheme.

In physics, all observations are reported relative to a ref-
erence frame. While the reference frames have traditionally
been treated according to the laws of classical physics, the us-
age of quantum states to encode reference frame information
(a Cartesian coordinate system, for instance) in quantum su-
perpositions has been shown to be advantageous in problems
involving reference frame alignment and overcoming super-
selection rules [15–21]. Quantum reference frames also play
a crucial role in demystifying a number of controversies and
paradoxes [22–25], in addition to unifying various different
paradigms [26]. There has been a renaissance very recently,
due to generalization of quantum reference frame transfor-
mations to a “superposition of coordinate transformations,”
which consistently describe the physics without appealing to
an external, absolute reference frame [27–33].

Quantum reference frames in the context of QECCs was
first explored in Ref. [34], where classical idealized reference
frames2 were employed. The hypothetical setup allows for
exact decoding, and does not violate the Eastin-Knill theorem
due to the use of an infinite dimensional code space. While
impractical due to infinite dimensionality, the approach in
Ref. [34] paved the way for another approach to circumvent
the Eastin-Knill theorem: using finite dimensional reference
frames and decoders which only recover approximately. This
route was followed in Ref. [5], where finite quantum reference
frames have been used to allow for a single Abelian family
of transversal gates. This construction, while useful, does
not allow for universal quantum computation with transversal
gates.

Here we further develop this approach and design a
new family of quantum reference frames to achieve QECC
constructions with all logical gates being transversal. Quan-
tum reference frames have an inherent quantum uncertainty
which unavoidably leads to a small error in the decoding.
Consequently, our quantum error correcting code is only
approximate. On a theoretical level, this is essential to circum-
vent the Eastin-Knill theorem while achieving our objective
of a universal quantum gate set. On a practical level, this error
can be made smaller than any chosen tolerance by increasing
the size of the quantum reference frame.

2An idealized reference frame, also know as a “perfect” reference
frame, is one whose orientation can be deterministically obtained
via measurement which is contrary to a quantum reference frame
whose orientation is subject to quantum uncertainty. See Ref. [18]
for definition and Ref. [5] for further insight.

FIG. 1. Error correction via reference frames. The physical space
of the computer is over n qudits which are divided into two sub-
spaces: the computational space (black and green) and a reference
frame space (yellow and brown). The former is where the gates
needed for the algorithm are applied transversally, while the latter
is where the reference frames are located. The two systems are only
classically correlated at any given moment in our protocols.

The physical space necessary for our implementation of the
QECC consists of two parts, the computational space and the
reference frame space. Roughly speaking, the computational
space is where the logical information is stored and the se-
quence of logical gates needed for the computation are applied
on various copies. The reference frames on the other hand,
play the role of recording information about which gate was
applied—analogously to how gyroscopes record a Cartesian
coordinate system. See Fig. 1.

At an abstract level, our encoder works by choosing a
quantum reference frame which can record the “coordinates”
of any logical state. The quantum reference frame states
are approximately distinguishable by measurements under
transformations of SU(d )—the special group of unitary trans-
formations in d dimensions. To implement any logical gate
under this encoding, we can simply apply the gate transver-
sally on the computational space in tandem with updating our
reference frames with a corresponding transformation.

However, before this paradigm can be implemented, one
needs to perform the encoding—this is where the randomness
comes into play. We pick a logical gate at random, apply it
transversally to the computational system and a copy to the
reference frame. The reference frame information is retrieved
during the decoding stage via measurement.

In the regime of error correction via finite quantum refer-
ence frames, the error of approximate recovery is dependent
on the size of the reference frames, leading to a trade-off
relation. It is thus of prime importance to identify the optimal
scaling of the approximation error with respect to the size of
the reference frame, so that the cost of making the recov-
ery errors admissible can be determined. Here we analyze
the error scaling of our QECC construction in two different
commonly studied error models and show that our approach
is optimal in both cases. Besides the analytical analysis, we
also conduct numerical simulation that further justifies our
analysis in various practical error models.
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In a nutshell, our contribution is to show that the use
of quantum reference frames allows for approximate QECC
where all gates necessary for universal quantum computa-
tion can be applied transversally, and to identify the optimal
tradeoff between the approximation error and the size of the
reference frames. This was the initial idea of the pioneers of
quantum error correction [2,3], who, in light of the Eastin-
Knill theorem, invented distinct methods alternative to finding
a transversal gate set for quantum error correction. Our work
thus offers a new test bed for quantum error correction whose
full potential can now be further explored. An immediate
question is whether the encoder and the decoder in our con-
struction can be implemented fault-tolerantly. As discussed
in more details later, there are several paths that potentially
lead to this ultimate purpose, though the concrete approach is
still unknown. This is thus an important open question left for
investigation in future research.

II. RESULTS

Overview. We start by introducing the relevant definitions
to define our encoder, decoder, and characterization of the
decoding error. We then consider two errors models: the i.i.d.
error model and the weak error model and fully characterize
the performance of our QECC under these different scenarios.
Details appear in the appendices.

Construction of covariant encoder and decoder. A QECC is
characterized by an encoder-decoder pair (E,D). The encoder
E is a quantum channel mapping a logical qudit, whose dimen-
sion we denote by d , to a state of a physical register consisting
of several qudits. The decoder D corrects possible errors in the
physical register and maps the state back to a logical qudit.
Since our protocol uses reference frames and randomness to
convert an arbitrary encoder E and decoder D to a covariant
encoder-decoder pair, we refer to E and D as the subroutine
encoder and decoder. The n-qudit physical register is divided
into two parts, the computational register C, consisting in
nC qudits and a reference frame register R, consisting in the
remaining nR = n − nC qudits. The subroutine decoder, D,
maps to the computational register only.

In order to be resilient to errors, the reference frame reg-
ister may consist of sR � 1 identical blocks, each in the
quantum state |ψ〉. Here we choose |ψ〉 to be an entangled
state of a bipartite system H ⊗ H′ (H′ � H), as they offer
superior performance [17,35,36]. Each part of the bipartite
system further consists of several qudits. This reference frame
is a finite dimensional quantum state |ψ〉. Rotating every qudit
in the part of |ψ〉 on H by the same (unknown) unitary U in
SU(d ) (while keeping the part on H′ unchanged) yields a state
that, when measured appropriately, allows one to deduce U
with high accuracy. The better the quality of |ψ〉, the smaller
the uncertainty in U is.

Our covariant encoder is defined as

Ecov(·) =
∫

dU UC ◦ E ◦ U−1
L (·) ⊗ UR(�), (3)

where � := |�〉〈�| with |�〉 = |ψ〉⊗sR is the initial state of
the reference frame register and dU is the Haar measure on
SU(d ). The unitary channels in Eq. (3) are defined by UC :=
U⊗nC and UL := U the actions of an element U ∈ SU(d ) on

the computational register and the logical register, and by
UR := (U ⊗ I )⊗nR/2 its action on the reference frame register
(as one part of the reference frame state is rotated and the other
part remains unchanged), where U (·) := U (·)U †. See Fig. 2
for an example of how to construct the encoder.

The covariant decoder consists of first measuring the refer-
ence frame with a POVM {MÛ dÛ }, which yields an estimate
Û , and then applying Û−1

C . Here dÛ is again the Haar mea-
sure. We then perform the subroutine decoder D of the
original code to correct errors, and finally we redo ÛL to obtain
the final, decoded output. This gives rise to the channel

Dcov(·) =
∫

dÛ (ÛL ◦ D ◦ Û−1
C ⊗ MÛ )(·), (4)

where the map MÛ (·) := Tr[(·)MÛ ] outputs the probability
density function of obtaining measurement outcome estimate
Û .

One may be concerned about the practicality of construct-
ing Eqs. (3) and (4), since sampling from the Haar measure is
essentially to randomly apply all unitary gates, which might
be computationally hard. In fact, we show later that, using
the technique of unitary t-designs [37–44], we only require
to sample from a discrete set of unitary gates in a computa-
tionally efficient manner.

Errors arise in this procedure both from any noise that oc-
curs between encoder-decoder, as well as in the measurement
of the reference frame itself. Nevertheless, we show that the
overall error vanishes with the number of qudits upon which
we construct the covariant code.

As promised, the encoder in Eq. (3) satisfies the transver-
sality condition, Eq. (1), thanks to the well-known invariance
properties of the Haar measure. In our particular case, it takes
the form:

Ecov ◦ VL = (VC ⊗ VR) ◦ Ecov (5)

for any V ∈ SU(d ), where VC := V⊗nC and VL := V , VR :=
(V ⊗ I )⊗nR/2 with V := V (·)V †, and I the identity channel.
Notice that since our decoder is also covariant, i.e. Dcov ◦
(VC ⊗ VR) = VL ◦ Dcov , our entire code is covariant: Dcov ◦
Ecov ◦ VL = VL ◦ Dcov ◦ Ecov .

Reference frame structure. There is a trade-off: the optimal
pair of the initial reference frame state � and the POVM
{MÛ dÛ }, which yields the smallest decoding errors when
no noise is present, tends not to be very resilient to noise.
Conversely, those which are highly resilient to noise, tend to
lead to substantial decoding errors. As such, the optimal refer-
ence frame choice depends on the noise model. We will only
provide the general structure considered here, and specialize
later as specific noise models are introduced.

We divide the nR reference frame register qudits into
sR blocks of identical systems, i.e., HR = HR,1 ⊗ HR,2 ⊗
· · · ⊗ HR,sR and construct identical states on each of them,
� = ψ⊗sR . Each block consists in 2m qudits each, such that
2m sR = nR. We assume that the error occurring on each of
the reference frames is detectable, i.e., it acts as follows for
all k: it takes the state on HR,k to an error space Herr,k that is
orthogonal to HR,k . This is the case, for instance, for erasure
errors.

The measurement performed on the reference frame during
the decoding stage, is a two step process: We first perform
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FIG. 2. Covariant encoder construction. (The following is an
in-principle method to implement our QECC. For practical im-
plementations, see section Towards fault-tolerant QECCs.) Given
an arbitrary channel E encoding one logical qudit into nC qudits,
and a corresponding decoder D, our covariant encoding protocol
runs as follows. (a) Choose a unitary U ∈ SU(d ) at random (in
practice, this can be achieved by sampling from a large enough
finite set of gates) and apply its inverse unitary channel U−1

L to the
logical state ρL one wishes to encode. (b) Perform UC ◦ E , where
UC is the unitary channel corresponding to the representation of
U in the computational space, and UC are local gates which will
be transversal for the new code. (c) Such an operation alone does
not result in a useful code, as the identification of the particular
U is needed to later correct errors and decode. Thus, to store U
efficiently, we append nR quantum reference frames, and (d) apply
it to a quantum reference frame, resulting in the unitary’s identity
being encoded into the reference frame’s state. The outcome of steps
1 to 4 is a new code with a covariant encoder Ecov which outputs
an encoded state on the original computational and reference frame
registers, C and R.

binary projective measurements onto HR,k and Herr,k for all
blocks k = 1, . . . , sR, followed by discarding those blocks
whose state is in the error space. We then measure the remain-
ing blocks to obtain an estimate Û , which is used to decode
the information in the computational space [see Eq. (4)].

Decoding error and noise structure. There are two con-
tributing factors to errors in our covariant scheme: noise
occurring between encoding and decoding, and errors in the
decoding due to the finiteness of the reference frames. Here
we show that our protocol is able to recover from both of
these. Since these errors hinder our ability to decode, we refer
to them as decoding errors and quantify it via the diamond
norm:

εcov := max
V ∈SU(d )

1
2‖Dcov ◦ C ◦ (VC ⊗ VR) ◦ Ecov − VL‖�, (6)

where C is the noise channel being considered, and the sub-
script in εcov is to remind the reader that the error is originating
from making an encoder-decoder pair covariant. We assume it
to be a statistical mixture over channels on the computation
and reference frame registers, i.e.,

C =
∑

j

p j C j,C ⊗ C j,R, (7)

where C j,C/R are channels characterizing the error on the
computational/reference frame register, and {p j} is a prob-
ability distribution. We also need to assume that the errors
are covariant, namely C ◦ (VC ⊗ VR) = (VC ⊗ VR) ◦ C for all
V ∈ SU(d ). For example, erasure errors are of this form.

In Appendix A, we show that the total decoding error
satisfies a bound of the form εcov � ∑

j p jCj , where Cj only
depends on either the computational error C j,C or the reference
frame error C j,R; whichever error is dominant.

Error bounds for the weak error model. Our first result
concerns the case in which relatively few errors occur. Specif-
ically, the error is that at most ne qudits among the n qudit
systems composing the computational register and the refer-
ence frame register, are randomly lost:

C =
∑
s

ps(Ce )s, (8)

where the summation runs over all subsets s ⊂ {1, 2, . . . , n}
of cardinality at most ne, and (Ce )s denotes the erasure of
qudits whose labels are in the set s, and {ps} is a probability
distribution.

Any quantum error-correcting code over qudits of distance
at least k + 1 can perfectly correct k erasures [3]. For in-
stance, the polynomial codes of Aharonov and Ben-Or are
[2k + 1, 1, k + 1]d stabilizer codes with this property [45].
In these cases, we employ one of the perfect codes as the
noncovariant subroutine (E,D) of our code. Since we only
need to encode one logical qudit, the perfect code requires
only nC = O(1) computational qudits.

This is to say: the subroutine code (E,D) we use requires
only O(1) computational qudits and corrects perfectly up to ne

erasure errors on the computational register. Next we arrange
the reference frame to perform well against this type of noise.
To this purpose, we set sR = ne + 1, so that the reference
frames has ne + 1 blocks. Crucially, these conditions imply
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that at least one of the reference frame states will survive
the erasure, and we can measure it to obtain the embedded
rotation.

On each block we construct a reference frame state. Since
the noise is weak, we can utilize as much entanglement as
possible to enhance the accuracy of the reference frame de-
coding. To this purpose, we design a new family of highly
coupled quantum reference frame states, which turn out to
be a highly nontrivial generalization of the sine-shape states
[46], and thus we name them generalized sine states. Using
the generalized sine states as reference frames for our error
correction protocol, we can recover the information with high
accuracy. We derive an upper bound on the recovery error εcov

in our protocol for the weak error model, defined by Eq. (8):

εcov � 81π2d4(d − 1)2(ne + 1)2(nC + d − 1)2

2n2
R

+ O
(
n−3

R

)
.

(9)

All details can be found in Appendix B. Since nC can be
chosen to be O(1) and nR = n − nC is close to n, our protocol
achieves the Heisenberg limit 1/n2 with respect to the total
number of qudit systems.

It is most challenging to correct the errors in the weak error
model when the locations of the erasures are most uncertain,
that is, when p0 = 0, |s| = ne and the ps are constant, in
Eq. (8). In this worse case scenario, we can lower bound the
decoding error:

εcov � 1

16n2(1 + 1/ne )
. (10)

What is more, we show that any encoder-decoder pair which
satisfies the transversality condition Eq. (1), encoding one
qudit into n physical qudits which is subject to the weak error
model Eq. (8) with maximum uncertainty as described above,
has a decoding error which is lower bounded by Eq. (10). As
shown in Appendix B, the derivation of Eq. (10) comes from a
strengthening of a bound found in Ref. [47] (see also Ref. [48]
for a more recent result with similar bounds). Since the bound
Eq. (10) matches the performance of our protocol in scaling,
we conclude that the optimal error scaling of covariant codes
is 1/n2.

Error bounds for the i.i.d. errorm Model. We now turn our
attention to types of erasure errors which are stronger than the
one considered in the previous section and more realistic. The
error affects each qudit independently, erasing the jth qudit
with a probability pe:

C =
n⊗

j=1

((1 − pe )I + peCe ) pe ∈ (
0, 1

2

)
, (11)

where Ce denotes the single-qudit erasure channel. This error
model can be written in the form Eq. (7), and is thus compat-
ible with our prior assumptions. Since the erasure channel is
degradable, if pe � 1/2 the information leaked to the environ-
ment would not be retrievable. Note that, in general, the error
model on each qudit does not have to be identical, and each
qudit j can have distinct probability pe, j of being erased. In
that case, however, we can simply set pe to be the worst case
over {pe, j} and consider this more stringent model instead.

In contrast to the weak error model case, there does not
exist any code, which we can use for our subroutine code,
that perfectly corrects the errors at hand. Instead, there exist
pretty good codes that correct the error unless too many qudits
are erased. The quantum capacity of the erasure channel, with
erasure probability pe, has been determined to be 1 − 2pe

[49]. We can choose nC, the number of computational qudits,
to grow with n. When n is large, since the number of qudits
we want to encode is only one qudit and is much smaller than
that allowed by the capacity [which is (1 − 2pe )nC], the error
probability would vanish exponentially in nC.

We choose the number of computational qudits to scale
sub-linearly in the total number of qudits, that is, nC = nγ ,
where γ ∈ (0, 1) does not depend on n and can be chosen to
be very small. We use any subroutine code (E,D) that encodes
one qudit into nγ computational qudits, with the property that
it has a decoding error O(e−xd ·nγ

) for some xd > 0 that may
depend on d . By a random coding argument, one can show
that there exists a stabilizer code satisfying our requirement
(see, e.g., Ref. [50]), although its explicit form is not given.
Recently, progress in error correcting codes also showed that
quantum polar codes [51,52] and Reed-Muller codes [53]
have the desired property. Notice that the requirement of the
O(e−xd ·nγ

) scaling is chosen for convenience of analyzing the
error, and it can be further relaxed in practice.

Meanwhile, the model is now too noisy for the highly
coupled reference frame state used in the weak error model to
be effective. Instead, we prepare the reference frame register
to have only two qudits per block, namely 2 sR = nR, with
the reference frame on each two qudits block being the max-
imally entangled state. While like in the weak error model,
this choice means that one erasure error only destroys one
reference frame block, now there are far more blocks, which
reduces the chance of them all being erased. The price to pay
for this more error resilient setup, is less precise reference
frames, due the smaller dimension of each block.

As long as there are still order n non erased blocks left we
can achieve high performance, which happens with very high
probability. Indeed, the overall error, Eq. (11), can be recast
into the form:

C =
n∑

k=0

pk
e(1 − pe )n−k

∑
s:|s|=k

(Ce )s. (12)

Then the number of surviving blocks follows a binomial dis-
tribution with mean n(1 − pe ), which is sufficient for a high
accuracy decoding. This reasoning leads us to the following
upper bound on the decoding error under the i.i.d. error model
Eq. (12). For any α > 0, there exists nα > 0 such that

εcov �
(

36(d2 − d + 32)d
d2−d+2

2

(1 − 2pe )2
∏d

j=1( j − 1)!

)(
1

(1 − 2pe )n

)1−α

(13)

for all n � nα . Details of the proof can be found in
Appendix C.

The error of our protocol scales almost as 1/n, instead of
1/n2 in the previous case. This is a result of the (stronger) i.i.d.
noise. In fact, the error scaling of our protocol is still optimal
for this error model. Analogously to the weak error model, we
can prove that the 1/n scaling is also optimal for the i.i.d. error
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FIG. 3. Weak erasure error with “five-qubit code”. Under the
weak erasure model, the decoding error of our protocol (with
the five-qubit code [49] as the subroutine noncovariant code and
the generalized sine states as the reference frame) is plotted as a
function of 2m, the number of qubits contained in each block of the
reference frame register. The blue dots correspond to the evaluated
values of the decoding error and the red line corresponds to the fitting
curve 269.2

(2m)2 .

model. In particular, we prove that all covariant QECC satisfy
the following bound under the i.i.d. error model:

εcov � pe

64n(1 − pe )
. (14)

In the above analysis, we focused on erasure error models, as
they allow us to derive analytical bounds on our protocol’s
performance. Nevertheless, our protocol also performs well
under other commonly encountered error types, as we show
in the following.

Numerical simulation for generic error models. In addition
to the above bounds, we also conduct numerical experiments
to evaluate the performance of our protocol. As a working
example, we use the ‘five-qubit code” [54] (five computational
qubits; one logical qubit) as the subroutine encoding and de-
coding pair. We consider not only erasure errors but also other
common error types like dephasing errors and depolarizing
errors.

We first consider the weak erasure error model and use
a group of identical generalized sine states as the reference
frame register. We assume that at least one reference frame
state survives the erasure error, which consists of 2m qubits.
(Recall that the number of qubits is always even since we use
entangled reference frame states.) As shown in Fig. 3, the
decoding error (in the leading order) is 269.2

(2m)2 , matching the
prediction of our theory. We now consider errors beyond the
erasure models. We first consider the case where all reference
frame qubits are subject to i.i.d. depolarizing/dephasing error
with probability p = 0.2. In this case, our reference frame
register consists of nR/2 maximally entangled states. Each
of the reference frame states are measured individually for
an estimate of the reference frame parameters. We assume at
most one out of the five computational qubits is subject to
error (corresponding to an error rate of 0.2), so that the logical
qubit can always be recovered.

FIG. 4. i.i.d. dephasing/depolarizing with p = 0.2 and “five-
qubit code”. The decoding error for i.i.d. dephasing/depolarizing
error of the our covariant code using “five-qubit code” as the subrou-
tine encoding and nR/2 maximally entangled states as the reference
frame is plotted as a function of n, the number of total physical
qubits. The blue dots correspond to the evaluated values of the
decoding error and the red lines correspond to the fitting curves:
32.43/n for the dephasing error and 33.30/n for the depolarizing
error.

Notice that, unlike the erasure error, depolarizing and de-
phasing errors in the reference frame register are not flagged
(i.e., we do not know whether a reference frame state is subject
to an error or not). In order to mitigate the effect of erroneous
reference frames, we adopt a majority vote algorithm that
abandons estimates in case they are likely to be faulty. With
this method, for the i.i.d. depolarizing/dephasing model, we
are able to achieve decoding errors (in the leading order)
33.30

n for the depolarizing error and 32.43
n for the dephasing

error, with n(:= nR + 5) being the total number of physical
qubits employed in our construction (see Fig. 4). The 1/n
error scaling, observed for both the i.i.d. depolarizing error
and the i.i.d. dephasing error, coincides with the lower bound
Eq. (13) which we proved for the i.i.d. erasure error model. It
suggests that the error scaling of our protocol is consistent in
generic error models. We have also tested our protocol under
variants of the above error models: We consider models where
one fifth reference frame qubits go through the completely
depolarizing/dephasing error, and the 1/n error scaling has
also been observed (see Table I for a summary).
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TABLE I. Performance of our construction under dephasing and depolarizing errors. For variants of the i.i.d. dephasing/depolarizing error
model, the decoding errors of our construction (using “five-qubit code” as the subroutine noncovariant code) as functions of the code size
are numerically evaluated. In the variant models, a randomly chosen subset of the qubits are completely depolarized/dephased, while others
remain unaffected by noise. Numerical simulation shows that in models considered here the decoding errors vanish with the 1/n scaling.

n (total qubits) 75 135 205 305

i.i.d. dephasing (p = 0.20) 4.28×10−1 2.58×10−1 1.71×10−1 1.18×10−1

i.i.d. depolarizing (p = 0.20) 4.29×10−1 2.62×10−1 1.77×10−1 1.27×10−1

20% qubits dephased 3.88×10−1 2.38×10−1 1.74×10−1 1.20×10−1

20% qubits depolarized 4.60×10−1 3.15×10−1 2.18×10−1 1.53×10−1

n (total qubits) 405 505 605 705
i.i.d. dephasing (p = 0.20) 8.79×10−2 7.19×10−2 6.02×10−2 5.09×10−2

i.i.d. depolarizing (p = 0.20) 8.76×10−2 7.32×10−2 5.83×10−2 5.30×10−2

20% qubits dephased 8.65×10−2 7.03×10−2 5.94×10−2 5.34×10−2

20% qubits depolarized 1.21×10−1 9.17×10−2 7.52×10−2 6.37×10−2

These results show that the application of our protocol is
not limited to erasure errors. Instead, it has good potential to
work well under generic error types. Our code is available at
Ref. [55], and more details can be found in Appendix E.

Resource requirements and implementation. We now an-
alyze some of the memory and time resources needed to
implement our QECC which are required beyond those of the
subroutine code.

Our reference frames are constructed on nR qudits con-
stituting a dnR dimensional Hilbert space. However, the
reference frame states only have support on a space dR :=
dim(Span{UR(�)}U∈SU(d ) ), which we prove to be upper
bounded by

dR �
(

nR

2
+ 1

)(d2−1)

. (15)

Therefore we can compress the reference frame state to a
system of much smaller dimension, which reduces exponen-
tially the cost of quantum memory. At any time when the
reference frame state is idling, it can be compressed by a
covariant isometry into a much smaller system. The cost can
be further reduced at the price of a small recovery error using
the compression protocols in Refs. [56–58].

We now turn our attention to the implementation of the
covariant encoding and decoding: At first sight, our encod-
ing and decoding may appear to necessitate sampling from
the Haar measure on SU(d ) in order to be implemented
[see Eqs. (3) and (4)]. From a computational complexity
standpoint, this would be a problem, since to implement a
Haar-random unitary one needs an exponential number of
two-qubit gates and random bits [59]. Fortunately, our en-
coding and decoding do not require sampling from the Haar
measure, but rather only from a distribution which agrees with
it upto the t th moment, for appropriate t . Such equivalent
distributions are known as unitary t-designs [37–44], and are
more efficient to implement.

Specifically, let U be a unitary representation on Cd×d and
Pt,t (U ) be a matrix whose entries are polynomials of order t
in the coefficients of U and of order t in the coefficients of U ∗,
and let EU∼ν[ f (U )] be the expectation value of a function f
according to measure ν. We then say that EU∼νHaar [Pt,t (U )],

where νHaar denotes the Haar measure, admits a unitary t-
design.

Our result is that the encoder Ecov(XL) and decoder
Dcov(XC) admit unitary (nC + nR/2 + 1)-designs for all XL ∈
Lin(HL), XC ∈ Lin(H⊗n

C ). See Appendix D 1 for proof.
Ref. [43] devises and quantifies a method to approximate
unitary t-designs: to approximate our encoder and decoder
up to an error εcov in diamond norm, it is enough to use k
two-qubit gates, randomly drawn from the Haar measure on
SU(4). Here

k = 510 000 log2(d )(nC + nR/2 + 1)9.1

×(2 log2(d )(nC + nR/2 + 1) + 1 + log2(1/εcov)), (16)

which scales polynomially in both nC and nR [recall lower
bounds on εcov, in the weak and i.i.d. error models, Eqs. (10)
and (14)].

Since sampling a polynomial number of times from SU(4)
can be performed efficiently, both the encoder and the decoder
can be efficiently implemented in nC and nR so long as the ref-
erence frame state � and measurement MÛ can be efficiently
constructed.

Efficient error syndrome extraction. In quantum error cor-
rection, we often need to measure error syndromes after
applying quantum gates. It might appear that a full decoding
is needed to achieve this in our QECC, which, despite the effi-
ciency analysis in the previous part, could have non-negligible
effects on the performance of the computation. However, this
is not true for the erasure error models we considered. Instead,
one can keep track of the error in a very simple way and
correct them all together at a suitable time.

To see this, first notice that erasure errors are “flagged”,
meaning that the qudit is mapped from its original Hilbert
space H to an orthogonal Hilbert space Herr. Then, the error
syndrome can be obtained by a binary projective measurement
consisting of projectors on H and Herr. This measurement
commutes with the (covariant) implementation of logical op-
erations, and thus to implement a sequence of logical gates we
can adapt the following procedure.

(1) Apply Ecov.
(2) Create a (classical) bit string s, initiated as a null

vector, to record erasure errors.
(3) For i = 1, . . . , k:

023107-7



YANG, MO, RENES, CHIRIBELLA, AND WOODS PHYSICAL REVIEW RESEARCH 4, 023107 (2022)

(a) apply Vi,
(b) measure error syndromes, and
(c) add the measured error locations to s.
(d) If |s| exceeds the maximal number of tolerable lo-

cal errors, do Dcov followed by Ecov.
(4) Apply Dcov.
Therefore a full physical decoding is done only if there is

too many local errors (which is determined by the subroutine
code) rather than after each logical gate, making our QECC
much more efficient than it appears. We remark that how this
feature generalizes to other error models remains an open
question to be investigated in the future.

Towards fault-tolerant QECCs. To achieve practical fault
tolerance, one must show that each step of the QEC procedure
can be performed fault-tolerantly. For our QECC construction,
the logical gate implementation is transversal and thus fault-
tolerant thanks to covariance. It remains to be shown that the
encoder and the decoder are both (a) computationally efficient
to implement and (b) can be implemented fault tolerantly.
For (a), we have provided covariant encoders and decoders
which can be implemented via a polynomially in n (total
number of physical qudits) number of two-qubit gates, while
still maintaining the optimal scaling of the decoding error.
Regarding (b), making the encoder and the decoder fault-
tolerant amounts to finding a fault-tolerant implementation
of the SU(d ) twirling in Eqs. (3) and (4). We remark that it
is unlikely that unitary designs are the solution: any unitary
t-design D is an ε-net on the parameter space of SU(d ), with
ε vanishing in t . For large t , the ε-net becomes dense enough
that, unless the commutant of {U ⊗ U ∗ |U ∈ D} has dimen-
sion larger than two, D forms a universal gate set (see also
Ref. [60, remark 4]). In this case, it follows that to implement
the unitary design fault tolerantly we need to implement a
universal gate set fault tolerantly, leading to a contradiction.

Nevertheless, unitary designs are not a must for implement-
ing the twirling in Eqs. (3) and (4). One can, for example, use
extrapolation of different noisy channels as an alternative ap-
proach. Similar ideas have resulted in error mitigation [61,62],
which effectively deals with errors in near-term devices.

Another possibility, is to partition the logical space into
code blocks and apply our encoding to each block individually
(call this level 1 encoding). One then implements the gates
corresponding to the computation such that any one gate has
support on either one or two code blocks. When one wishes to
implement a gate across two code blocks, these code blocks
are encoded once more using our encoding scheme (call this
level 2 encoding); the unitary is then implemented and we de-
code back to the level 1 encoding. This way, one can increase
the logical code size by adding more code blocks (each one
of constant size) while only applying gates on encoded states.
The quantum reference frames for the level 2 encoding can be
repurposed after ever level 2 decoding for level 2 encodings
over other code blocks. Using this scheme, there is a much
better overall scaling of the resources involved since we no
longer require SU(d ) twirling over the entire logical space.
These possibilities will be explored more in future research. In
summary, our covariant QECC construction does not imme-
diately lead to a satisfactory approach of achieving full fault
tolerance, but it opens up a new route that is worth further
exploration.

III. DISCUSSION

Starting from an arbitrary error correcting code, we have
shown how to use quantum reference frames to construct a
new code for which all gates are covariant and transversal,
up to a small error in the decoding. In the absence of noise,
the error in the decoding is ultimately a consequence of the
inability to perfectly determine the orientation of the reference
frames via measurement.

Our results generalize the setting in Ref. [5] from d-
dimensional reference frame representations of U(1) to
d-dimensional reference frame representations of SU(d ).
This construction is important primarily since once the log-
ical states have been encoded, it allows for a universal set
of gates to be applied transversally, which in turn can allow
for errors to be more easily detected and corrected during a
computation. Furthermore, the construction also allows any
quantum error correcting code to be converted into a covariant
code. Previously it was not known if this is possible with a
finite dimensional physical space. In the setting of the weak
error model and SU(d ) symmetry, we establish novel upper
bounds on the decoding error which are tight in the scaling
with n (number of physical subsystems). Indeed, previous
upper bounds in this context [6,63] are not tight with n. Fur-
thermore, in this context, we also improved previous results
[47,48] on the lower bounds of the decoding error. We have
also analysed the i.i.d. erasure model, which is more realistic
in the context of computation. Here we have produced upper
and lower bounds for the decoding error which are tight in the
scaling with n. We argued that our model for a QECC should
be able to correct errors beyond those of the local erasure type.
Numerical simulations of the performance of our construction
for practical error models including the depolarizing error and
the dephasing error bears this out.

Our results also feature applications beyond correcting
errors in quantum computation. Two party communication
with misaligned reference frames and lossy quantum channels
[34] is a clear example, but the range of potential applications
is much broader. In particular, we designed and introduced
generalized sine states and used them as optimal reference
frames in the weak error model. A characteristic novel feature
of the generalized sine states is that they can achieve the
Heisenberg limit in estimating a completely unknown unitary
gate, making it promising to apply them in the emergent field
of multiparameter quantum metrology [64–68] and, more
generally, in quantum information processing. Remarkably,
these states have recently been used as the key to solving
the long-standing optimal programming problem of unitary
quantum gates [69].

From a more fundamental physics perspective, our results
provide new insight into the study of quantum gravity. In
particular, there is a conjectured duality between a theory of
gravity in anti-de Sitter (AdS) space and a conformal quantum
field theory (CFT) on its boundary, known as the AdS-CFT
correspondence. The duality is mediated via a quantum error
correcting code, where the encoding channel maps low-energy
states in the anti-de Sitter space (known as the “bulk”) to
states on the conformal field (known as the “boundary”) [70].
The implication of the Eastin-Knill theorem, discussed in the
introduction, to the AdS-CFT duality is that global continuous
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symmetries in the bulk cannot map onto local symmetries on
the boundary (see [71,72] for details). This is often interpreted
as a problem for the duality since initially such symmetries
were believed to exist. It is thus interesting to quantify, as
a function of physical quantities such as energy or dimen-
sion, how local symmetries of the bulk can approximate local
symmetries in the boundary. This program was initiated in
Refs. [5,6,73] and is the subject of ongoing investigation (see,
e.g., Ref. [74]). Our results quantify the extent to which the
approximate duality for global SU(d ) symmetries could exist.

Our numerical results suggest that our reference frame
based QECCs work well for generic nondetectable error mod-
els. Understanding and analytically bounding the decoding
error, on the other hand, requires further investigation. It
would be an interesting future direction of research to rigor-
ously analyze the performance of our QECCs in generic error
models and compare to other existing constructions [63]. The
dephasing error model, for example, was studied in the U(1)
case in Ref. [5] and shown to be correctable. This should also
be true in the current SU(d ) case. These studies will also
help pave the way to proving robustness of our results when
optimized for error models found in experiments.

Finally, since our protocols only involve classical corre-
lations between the computational system and the reference
frame system, this setup is naturally suited to implementing
these two physical subsystems on different quantum archi-
tectures to harness specific advantages of each platform. For
example, one may wish to implement the quantum refer-
ence frames on a phonic platform using Gaussian quantum
computing [75], while using superconducting qubits for the
computational space.
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APPENDIX A: CONSTRUCTION OF COVARIANT
ERROR CORRECTING CODES

1. Preliminary

We use the notation Hx (x = R, P, L) to denote the Hilbert
space of the reference frame register, the computational reg-
ister, or the logical register. In particular, H refers to a

d-dimensional Hilbert space. For a generic Hilbert space K
and a pure state |ψ〉 ∈ K, we will use the notation ψ :=
|ψ〉〈ψ | to denote the projector on the one-dimensional sub-
space spanned by |ψ〉. The set of quantum states will be
denoted by St(K). In this work we will focus on finite di-
mensional quantum systems, with dim(K) < ∞.

A quantum process transforming an input system into
a (possibly different) output system is called a quantum
channel. A quantum channel transforming an input system
with Hilbert space Kin into an output system with Hilbert
space Kout is a completely positive trace-preserving map N :
Lin(Hin ) → Lin(Hout ), where Lin(K) denotes the space of
linear operators on K. For pure channels with a single Kraus
operator U , i.e., unitaries or isometries, we use the shorthand
U (·) := U (·)U †.

We will use the big-
 notation, the big-O notation, and
the big-� notation to characterize the asymptotic behavior of
functions. For a function f (n), we write f (n) = 
(g(n)) if
there exists a constant c1 > 0 so that f (n) � c1 g(n) for large
enough n, f (n) = O(g(n)) if there exists a constant c2 > 0 so
that | f (n)| � c2g(n) for large enough n, and f (n) = �(g(n))
if f (n) = 
(g(n)) and f (n) = O(g(n)).

We will make frequent use of a couple of basic concepts
in representation theory of the special unitary group SU(d ),
which can be found in standard textbooks, e.g., Ref. [76].
We denote the Young diagrams by a vector3 λ = (λ1, λ2, . . . )
with λ1 � λ2 � · · · and by Uλ the irreducible representation
of SU(d ) characterized by the Young diagram λ. We denote
the collection of all Young diagrams with n boxes and at
most d rows by Yn (since the dimension d is fixed throughout
the paper, we often omit it). In particular, we define ei to be
the vector whose i-th entry is one and other entries are zero.
By definition, e1 corresponds to a legitimate Young diagram
whose associated representation is the standard one, and we
use the abbreviation U := Ue1 . We will use the double-ket no-
tation |A〉〉 := ∑

n,m〈n|A|m〉|n〉|m〉 ({|n〉} being an orthonormal
basis) with A being a matrix. With the double-ket notation,
we denote by |+

U,λ〉 := |Uλ〉〉/
√

dλ the maximally entangled
state associated to Uλ, with dλ = Tr Iλ being the dimension
of the irreducible subspace. By this notation, |+

U 〉 refers to
a maximally entangled state in H ⊗ H, rotated by a local
unitary U . Unless otherwise specified, dU or sometimes dÛ
denotes the Haar measure.

Next we introduce a couple of measures of error and
faithfulness that are used in this work. Consider two chan-
nels A,B : Lin(Kin ) → Lin(Kout ). For instance, A can be a
desired quantum gate and B is an approximation of A. There-
fore we often need measures to quantify their distance (i.e.
measures of simulation error) and similarity (i.e. measures of
simulation faithfulness).

The first measure of faithfulness, defined intuitively as the
minimum fidelity between the outputs for the same input, is
the worst-case input (or minimum) fidelity:

Fwc(A,B) := inf
ρ∈St(Kin⊗K′ )

F ((A ⊗ IK′ )(ρ), (B ⊗ IK′ )(ρ)),

(A1)

3For vectors, we use the bond font.
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where F (ρ, σ ) := (Tr
√

ρ
1
2 σρ

1
2 )2 is the Uhlmann fidelity de-

fined for two arbitrary quantum states ρ and σ and K′ is an
arbitrary reference Hilbert space. Later we give a semidefinite
program to compute Fwc(A,B) (see lemma 6). Nonetheless,
the worst-case fidelity is often difficult to work with, and thus
it is more common to consider another measure of faithful-
ness, known as the entanglement fidelity [77]:

Fent (A,B) := F ((A ⊗ IK′ )(+), (B ⊗ IK′ )(+)), (A2)

where + := |+〉〈+| with |+〉 ∈ Kin ⊗ K′ being the
maximally entangled state of the system and a reference. It
is straightforward by definition that Fwc � Fent.

On the other hand, one can also quantify the performance
of simulation by error measures. Similarly as for faithfulness,
there are also two commonly considered measures of error,
defined with respect to the worst-case input and the maximally
entangled state. The first is the worst-case input error, or the
diamond norm error, defined as

εwc(A,B) := 1
2‖A − B‖� (A3)

= 1
2 sup

ρ∈St(Kin⊗K′ )
‖(A ⊗ IK′ )(ρ) − (B ⊗ IK′ )(ρ)‖1,

(A4)

where ‖ · ‖1 is the trace norm and ‖ · ‖� denotes the diamond
norm [78]. Correspondingly, we have the entanglement error:

εent (A,B) := 1
2‖(A ⊗ IK′ )(+) − (B ⊗ IK′ )(+)‖1. (A5)

Again, by definition, we have εent � εwc.
The above faithfulness measures and error measures are

not independent [79]. For instance, the well-known Fuchs-van
de Graaf inequalities [80], which relate fidelities to distances
as

1 −
√

F (ρ, σ ) � 1
2‖ρ − σ‖1 �

√
1 − F (ρ, σ ) ∀ ρ, σ

(A6)

can be readily employed. Besides, the worst-case input error
can be bounded using the following inequality

εwc(A,B) � dS · εent (A,B), (A7)

where dS is the dimension of the system [81, exercise 3.6].

2. Quantum reference frames

In this section, we introduce quantum reference frames,
which will be the key ingredient of our construction of
covariant error correcting codes. We will consider entan-
gled reference frames, as they offer superior performance
[17,35,36]. A quantum reference frame is essentially an en-
tangled state |ψ ′〉AB, constructed on 2m qudits and shared by
two parties Alice and Bob. Assume that the reference frames
of Alice and Bob are misaligned up to a rotation U ∈ SU(d ):
if Bob prepares one of his qudits in, say, a state |k〉 in the
computational basis, it would actually be a rotated version of
the corresponding state on Alice’s side, i.e., |k〉B = U |k〉A.

To align their reference frames, Bob sends his part of the
state through a distortion-free channel to Bob. Now, Alice has
full disposal of the bipartite state |ψ ′〉AA′ = (U ⊗m ⊗ I⊗m)|ψ〉,

where |ψ〉 is the state when there is no reference frame mis-
alignment. By making a suitable measurement, Alice obtains
information on the misalignment U to a good precision.

In this work, we will mainly use a quantum reference frame
in a single-party but mathematically equivalent scenario. The
role of quantum reference frames in our construction of co-
variant error correcting codes is to store an unknown unitary
rotation. By the Schur-Weyl duality [76], we have the follow-
ing decomposition of the product Hilbert space into the direct
sum of irreducible subspaces:

H⊗m �
⊕
λ∈Ym

(Hλ ⊗ Mλ). (A8)

Here Ym is the collection of Young diagrams of m boxes, Hλ

and Mλ denote the irreducible subspace and the multiplicity
subspace associated to the Young diagram λ, respectively.
Notice that Mλ also depends on m but this dependence is not
important in this work. The notation “�” means that the two
spaces are equivalent up to a change of basis, which is called
the Schur transform and can be implemented efficiently on a
quantum computer [82,83].

In our work, it is enough to consider (quantum) reference
frame states of the form [36]

|ψ〉 =
⊕
λ∈Ym

√
qλ|+

λ 〉 ⊗ |+
mλ

〉, (A9)

where |+
λ 〉 and |+

mλ
〉 denote the maximally entangled states

of the irreducible subspace and the multiplicity subspace,
respectively, and {qλ} is a probability distribution that
uniquely characterizes the reference frame state. Here the
state is built on the coupled basis of 2m qudit systems, half of
which serve as a reference. Explicitly, it lies within the Hilbert
space

⊕
λ Hλ ⊗ H′

λ ⊗ Mλ ⊗ M′
λ ⊂ H⊗m ⊗ H⊗m, where

Hλ (� H′
λ) is the representation subspace and Mλ (� M′

λ)
is the multiplicity subspace.

The reference frame state lies in a subspace of H⊗m ⊗
H⊗m. To it we apply (U ⊗ I )⊗m on it,4 resulting in a state
of the form

|ψU 〉 =
⊕

λ

√
qλ|+

U,λ〉 ⊗ |+
mλ

〉. (A10)

The optimal measurement to extract the information of U
from the above state is the covariant POVM {dÛ , |ηÛ 〉〈ηÛ |}
[36], where dÛ is the Haar measure and |ηÛ 〉 is the following
vector:

|ηÛ 〉 :=
⊕

λ

dλ|+
Û ,λ

〉 ⊗ |+
mλ

〉, (A11)

where dλ denotes the dimension of the irreducible subspace
characterized by λ. Denoting by χU,λ := Tr[Uλ] the charac-
ters of SU(d ), the probability density function of getting the

4A covariant code in the usual sense should have realization U ⊗2m

on it. Here instead we realize it as (U ⊗ I )⊗m, which is still both
mathematically rigorous (U ⊗ I is still a representation of U ) and
good for the physical implementation (just run fewer operations).
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outcome Û when the actual gate is U can be expressed as

p(Û |U ) =
∣∣∣∣∣
∑

λ

√
qλχUÛ −1,λ

∣∣∣∣∣
2

. (A12)

This distribution is nice because it is conjugate invariant, i.e.,
p(WUV |WV ) = p(U |I ) = p(U †|I ) for any W,V, and U . The
above defines a series of estimation strategies, each specified
by a choice of {qλ}. Later, we will make specific choices that
fulfill the goal of constructing covariant codes.

In the error correction scenario, we have to deal with
errors occurring on the reference frames. To this purpose,
we divide the nR qudits assigned to the reference frame
register into sR > 1 groups of identical systems, i.e., HR =
HR,1 ⊗ HR,2 ⊗ · · · ⊗ HR,sR and construct an individual refer-
ence frame state of the form in Eq. (A9) on each of them.
We assume that the error occurring on each of the reference
frames is detectable, i.e., it takes the state on HR,k (∀ k) to an
error space Herr,k that is orthogonal to HR,k . This is the case,
for instance, for erasure errors.

For detectable errors, we will use the reference frames in
the following way.

(1) We prepare all the reference frame registers in the
same state Eq. (A9) and denote the overall state by � :=
ψ⊗sR . Here, since each ψ is constructed on 2m qudits, we have
2m sR = nR.

(2) For each copy of ψ , we perform a binary POVM to
detect whether an error has happened. For each label k, the
POVM is defined by projections on the error space HR,err,k

and the original space HR,k .
(3) We discard those erroneous reference frames and mea-

sure jointly the remaining ones with the measurement defined
in Eq. (A11).

Denote by Herr,R := Herr,R,1 ⊗ · · · ⊗ Herr,R,sR the total
error space. The POVM element of our error-tolerant
measurement is {|ηÛ 〉〈ηÛ |s ⊗ Perr,sc , dÛ }s⊂[sR], where
{|ηÛ 〉〈ηÛ |s, dÛ } corresponds to a joint measurement on⊗

k∈sHR,k with |ηÛ 〉 defined by Eq. (A11), Perr,sc :=⊗
k∈sc Perr,k is the projection on the error spaces of all k �∈ s,

and [l] for l ∈ N denotes the set {1, 2, . . . , l}. Alternatively,
the measurement is characterized by a linear map that yields
a probability density function MÛ : St(HR ⊗ Herr,R) → R:

MÛ (·) :=
∑
s⊂[sR]

Tr [(·)|ηÛ 〉〈ηÛ |s ⊗ Perr,sc ]. (A13)

When an error CR occurs, the probability density function of
the outcome Û is just MÛ ◦ CR(�).

3. Covariant quantum error correction

Given n qudit systems in total, the goal of covariant
quantum error correction is to construct a covariant code
(Ecov,Dcov) that encodes one logical qudit, i.e., dL = d into
the n qudit systems. This is to say that the encoder Ecov

satisfies

Ecov ◦ VL = (V1 ⊗ · · · ⊗ Vn) ◦ Ecov (A14)

for any V ∈ SU(d ), where Vi (i = 1, . . . , n) is either fixed to
be V or fixed to be the identity channel. In this way, any logical
gate can be realized transversally by implementing the same

gate on each of the qudit systems, which is the desideratum of
fault-tolerant quantum computing.

Nevertheless, the Eastin-Knill theorem rules out any co-
variant, finite dimensional code that perfectly corrects local
errors. One way to circumvent this restriction is to consider
approximate codes that are still covariant but correct an error
C only ε-well:

Dcov ◦ C ◦ Ecov ≈ε IL. (A15)

This was first achieved for U(1) covariance using finite dimen-
sional reference frames in Ref. [5] and using other techniques
in Ref. [6]. The main idea of our construction is to divide
the n qudit systems into two registers: the reference frame
register R (consisting of nR qudits), and the computational
register C (consisting of nC = n − nR qudits). We denote
by UC := U⊗nC and UL := U the actions of an element U ∈
SU(d ) on the computational register and the logical register,
and by UR := (U ⊗ I )⊗nR/2 its action on the reference frame
register, were recall U (·) := U (·)U †. Our covariant code is
built on an arbitrary, possibly noncovariant, code (E,D) on
the computational register, i.e., E : HL → HC. We make E
and D covariant via the technique of twirling. The role of
the reference frame register is to keep track of the random
unitaries applied in the twirling and to keep the subroutine
code functioning.

In particular, the covariant encoder is defined by Eq. (3)
and the decoder is defined by Eq. (4) with MÛ the measure-
ment from Eq. (A13).

4. General bound on the error

There are two contributing factors to errors in the covariant
scheme: noise occurring between encoding and decoding, and
errors in the decoding due to the finiteness of the reference
frames. Here we show that our protocol is able to recover from
both of these. We quantify the error by the diamond norm error
Eq. (A4)

εcov := max
V ∈SU(d )

εwc(Dcov ◦ C ◦ (VC ⊗ VR) ◦ Ecov,VL), (A16)

where C is a noisy channel. Here we focus on errors that
are detectable on the reference frames (see Sec. A 2) and
covariant. We assume that the error can be expressed in the
form

C =
∑

j

p jC j, (A17)

where each C j is of the product form

C j = C j,C ⊗ C j,R (A18)

acting on the computational register and the reference frame
register, respectively. For the subroutine code pair (E,D), let
ε j,code = εwc(D ◦ C j,C ◦ E, IL) denote the worst-case error for
noise operator C j . Then we can show

Lemma 1. For covariant error of the form Eq. (A17), the
error of our construction (see protocol 1) II is upper bounded
as

εcov � 9d ·
∑

j

p jε j, (A19)
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FIG. 5. Reference frame assisted covariant error correction. An arbitrary code (E,D) can be converted into a covariant code (Ecov,Dcov )
following the instruction of Protocol 1. The subroutine encoder E : HL → HC is made covariant via twirling, where U is a random unitary
sampled from the Haar measure. A reference frame register, which is divided into multiple copies of a reference frame state ψ , is employed
to keep track of the unitary. Since Ecov is covariant, any desired logical operation V can be implemented transversally. To correct error
(characterized by a channel C) or to decode the information, the reference frame register is first measured, and recovery operations are
performed on the computational register depending on the measurement outcome.

where

ε j = max

{
ε j,code, 1 − Fwc

×
(∫

dU pj (U |I )UC ⊗ U∗
L, IC ⊗ IL

)}
(A20)

for Fwc(
∫

dU pj (U |I )UC ⊗ U∗
L, IC ⊗ IL) � 3/4; otherwise

ε j = 1. Here

p j (Û |U ) := MÛ ◦ C j,R ◦ UR(�) (A21)

is the probability distribution of the measurement outcome
conditioned on U being applied and error C j occurring.

We remark that, since we mainly focus on the small error
regime, the condition Fwc � 3/4 in the above lemma is usually
guaranteed.

Proof. Since the protocol (Ecov,Dcov) and the error C are
both covariant, the protocol fares equally well for any VL, and
thus we have

εcov = εwc(Dcov ◦ C ◦ Ecov, IL). (A22)

Substituting the expressions of Ecov [see Eq. (3)] and Dcov [see
Eq. (4)] as well as C = ∑

j p jC j into the definition, we obtain

εcov �
∑

j

p jε j (A23)

ε j := εwc

(∫
dU

∫
dÛ

(
ÛL ◦ D ◦ Û−1

C ⊗ MÛ

) ◦ C j ◦ (UC ◦ E ◦ U−1
L ⊗ UR(�)

)
, IL

)
, (A24)

having used the joint convexity of the diamond norm error. Since each C j is decomposed as C j,C ⊗ C j,R, we find

ε j = εwc

(∫
dU

∫
dÛ p j (Û |U ) ÛL ◦ D ◦ Û−1

C ◦ C j,C ◦ UC ◦ E ◦ U−1
L , IL

)
, (A25)

where p j (Û |U ) := MÛ ◦ C j,R ◦ UR(�), as defined by Eq. (A21), is the probability of getting the outcome Û when the embedded
unitary is U . p j (Û |U ) is conjugate-invariant, and thus p j (Û |U ) = p j (U ′†|I ) = p j (U ′|I ) with U ′ := Û †U . Substituting into the
above expression, we have

ε j = εwc

(∫
dU

∫
dU ′ p j (U

′|I )UL ◦ U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E ◦ U−1
L , IL

)
. (A26)

Define the twirled version of the original protocol as

Ptwirl :=
∫

dU UL ◦ D ◦ C j,C ◦ E ◦ U−1
L . (A27)

Protocol 1. Covariant implementation of VL (see also Fig. 5).

Preparation: Initiate each reference register in the reference frame state �.
Encoder Ecov: Apply UC ◦ E ◦ U−1

L to the logical system and UR to the reference, with U following the Haar measure.
Gate implementation: Apply VC on the computational system and VR on the reference.
Error C: An error may occur on the computational register C and the reference R.
Decoder D: Measure the reference frame with the error-tolerant measurement MÛ from Eq. (A13). Depending on the measurement
outcome Û , apply ÛL ◦ D ◦ Û−1

C on the computational system.
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Using lemma 5 in Appendix A 6, we bound the error as

ε j � 9d · max {ε̃ j,code, 1 − Fj,RF}, (A28)

where

Fj,RF := Fent

(∫
dU

∫
dU ′ p j (U

′|I )UL ◦ U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E ◦ U−1
L ,Ptwirl

)
(A29)

is the entanglement fidelity for the reference frame correction and

ε̃ j,code := εwc(Ptwirl, IL) (A30)

is the twirled code error. Notice that, by lemma 5, Eq. (A28) holds only if

εent

(∫
dU

∫
dU ′ p j (U

′|I )UL ◦ U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E ◦ U−1
L ,Ptwirl

)
� 1

2
. (A31)

By the Fuchs-van de Graaf inequalities Eq. (A6), this holds as long as Fj,RF � 3/4.
On one hand, by the joint convexity of the diamond norm error, the twirled code error is bounded by the code error, i.e.,

ε̃ j,code � ε j,code. (A32)

On the other hand, by the joint concavity of the square-root fidelity and the unitary invariance of fidelity, we have

√
F j,RF �

∫
dU

√
F ent

(∫
dU ′ p j (U

′|I )UL ◦ U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E ◦ U−1
L ,UL ◦ D ◦ C j,C ◦ E ◦ U−1

L

)

=
∫

dU
√

F ent

(∫
dU ′ p j (U

′|I )U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E,D ◦ C j,C ◦ E
)

=
√

F ent

(∫
dU ′ p j (U

′|I )U ′−1
L ◦ D ◦ U ′

C ◦ C j,C ◦ E,D ◦ C j,C ◦ E
)

. (A33)

Using the maximally entangled state to “wire around” the channels, we get

Fj,RF � F

(∫
dU pj (U |I ) (D ◦ UC ◦ C j,C ◦ E ⊗ U∗

L )(+
L ), (D ◦ C j,C ◦ E ⊗ IR)(+

L )

)

� Fwc

(∫
dU pj (U |I ) (D ◦ UC ◦ C j,C ◦ E ⊗ U∗

L ),D ◦ C j,C ◦ E ⊗ IL

)
. (A34)

Here U ∗ denotes the complex conjugation of U . Exploiting
the data processing inequality of fidelity, we have

Fj,RF � Fwc

(∫
dU pj (U |I )UC ⊗ U∗

L, IC ⊗ IL

)
. (A35)

Finally, combining Eqs. (A28), (A32), and (A35) gives
(A19). �

The bound in lemma 1 applies to covariant codes con-
structed from arbitrary reference frames. For reference frames
as in Eq. (A9), we can give a more detailed bound. Since
ε j,code is specified by the noncovariant code (E,D) that we use
as a subroutine, what we need to do is to bound the reference
frame error by determining

Fwc

(∫
dU pj (U |I )UC ⊗ U∗

L, IC ⊗ IL

)
, (A36)

where p j (U |I ) is the distribution defined by Eq. (A21).
From now on we focus on erasure errors, which are indeed

covariant and detectable. For erasure errors, as the reference
frame register is initiated in multiple copies of the state ψ

defined by Eq. (A9), the error map C j,R will ruin some of the
copies, and the remaining copies can still be cast in the form
Eq. (A9). For simplicity, we still denote the distribution [as in

Eq. (A9)] associated to the state of the remaining copies by
{qλ}, keeping in mind that this distribution may depend on j.
Then, by using Eq. (A12) we can write p j (U |I ) as

p(U |I ) =
∣∣∣∣ ∑

λ∈Svia

√
qλχU −1,λ

∣∣∣∣
2

, (A37)

where Svia is the “viable” set of Young diagrams on which
qλ > 0.

Define n′ := nC + d − 1 and the “interior” subset of Svia as

Sint := {λ ∈ Svia : |λi − λ j | > 3n′ ∀ i �= j}. (A38)

Then we can show that
Lemma 2. For reference frames of the form in Eq. (A9),

Fwc

(∫
dU pj (U |I )UC ⊗ U∗

L, IC ⊗ IL

)

� min
�∈Sdiff

∑
λ∈Sint

√
qλqλ+�, (A39)

where Sdiff ={�∈Z×d : |�i| � n′, i=1, . . . , d;
∑d

j=1 � j =
0}.
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Proof. Denote by Scost the collection of all Young diagrams
appearing in the decomposition of U∗

L ⊗ UC, i.e., the set of
Young diagrams corresponding to the “cost” function. Notice
that, since the computational register consists of nC = n − nR

qudits and the logical register consists of one qudit, Scost does
not contain any λ with more than n′ := nC + d − 1 boxes. We
have the decomposition

U∗
L ⊗ UC �

⊕
λ∈Scost

Uλ ⊗ Imλ
(A40)

where mλ are the multiplicities.
We now convert the quantity Eq. (A36) into a form

that is easier to bound. For conjugate-invariant p j (U |I ),
the channel of interest

∫
dU pj (U |I )

⊕
λ∈Scost

(Uλ ⊗ Imλ
) is

block-covariant with respect to the symmetry
⊕

λ∈Scost
(Vλ ⊗

Imλ
) for V ∈ SU(d ). We can now apply the following lemma

(see Sec. A 7 for the proof):
Lemma 3. The worst-case input fidelity of a channel E

commuting with unitary channels of the block diagonal form⊕
λ(Uλ ⊗ Imλ

) for any U ∈ SU(d ) can be achieved by an
input state of the following form:

|�∗〉 :=
⊕

λ

cλ|+
λ 〉 ⊗ |ψmλ

〉 (A41)

with |+
λ 〉 being the maximally entangled state in Hλ ⊗

H′
λ, {cλ} being an amplitude distribution, and |ψmλ

〉 be-
ing a fixed (otherwise arbitrary) state on the multiplicity
subspace.

Then, the worst-case input fidelity Eq. (A36) can be
achieved by a state of the form Eq. (A41).

Notice that, since the error C j,R simply destroys a few
copies of the reference state, the remaining copies can still be
cast in the form Eq. (A10). Therefore p j (U |I ) is of the form
Eq. (A12). We now combine the above facts with lemma 3 and

express the fidelity Eq. (A36) as

Fwc

(∫
dU pj (U |I )UC ⊗ U∗

L, IC ⊗ IL

)

=
∑

λ,λ′∈Svia

√
qλqλ′Sλ,λ′ , (A42)

where Svia is the set of Young diagrams on which qλ > 0, Sλ,λ′

is a correlation function defined as

Sλ,λ′ :=
∫

dU χU,λχ
∗
U,λ′

∣∣∣∣∣
∑

μ∈Scost

|cμ|2 d−1
μ χU,μ

∣∣∣∣∣
2

(A43)

and {cμ} is an amplitude distribution over Scost. Notice that
here {qλ} corresponds to the reference frame state when the
error syndrome C j,R takes place, and we abbreviated the index
j for simplicity.

By the orthogonality of the characters, Sλ,λ′ � 0 depends
on the overlap between the irreducible decomposition of λ ⊗
μ and the irreducible decomposition of λ′ ⊗ μ′. Since Scost

contains only diagrams with no more than n′ boxes, Sλ,λ′ = 0
unless

dYoung(λ,λ′) � n′, (A44)

where dYoung(λ,μ) := 1
2

∑d
i=1 |λi − μi| is the distance be-

tween Young diagrams.
Now we turn back to the fidelity. First, since Sλ,λ′ � 0 with

equality for dYoung(λ,λ′) > n′, we have

Fwc �
∑
λ∈Sint

∑
�∈Sdiff

√
qλqλ+�Sλ,λ+�, (A45)

where Sint is the interior subset of Svia defined by Eq. (A38).
Crucially, we now argue that for λ ∈ Sint and � ∈ Sdiff , the
correlation function depends only on their relative distance �,
but not explicitly on λ, i.e.,

Sλ,λ+� = S̃�. (A46)

Invoking Eq. (A43), the correlation function can be expressed as

Sλ,λ+� =
∑

μ,μ′∈Scost

|cμcμ′ |2(dμdμ′ )−1
∫

dU χU,λχU,μχ∗
U,λ+�χ∗

U,μ′ . (A47)

By orthogonality of the characters, the correlation function is just

Sλ,λ+� =
∑

μ,μ′∈Scost

|cμcμ′ |2(dμdμ′ )−1Cλ,λ+�
μ,μ′ , (A48)

Cλ,λ+�
μ,μ′ = ∣∣{(Lμ→μ̃

ν/λ , Lμ′→μ̃′
ν/(λ+�)

)
: ν ∈ λ ⊗ μ, ν ∈ (λ + �) ⊗ μ′}∣∣. (A49)

Here Lμ→μ̃
ν/λ denotes a Littlewood-Richardson tableau of shape

ν/λ with content μ̃, obtained by adding the Young diagram
μ to λ according to the Littlewood-Richardson rule, and ν ∈
λ ⊗ μ means that ν appears at least once in the decomposition
of λ ⊗ μ. Now one can see why Eq. (A46) holds. Indeed, Sint

is so defined [cf. Eq. (A38)] that, when λ ∈ Sint, the lengths of
different rows of λ and λ + � have big enough gaps so that
even adding all n′ boxes to one row would not make its box
number greater than its preceding rows. Therefore, according

to the Littlewood-Richardson rule adding μ′ and μ, neither
has more than n′ boxes, is not constraint by the shape of λ

and λ + �. The sum
∑

� Cλ,λ+�
μ,μ′ is determined by how many

different contents can any μ ∈ Scost possibly generate.
The following property will be useful: rectifications of

Littlewood-Richardson tableaux and representative Young
tableaux (of symmetry tensors) are in one-to-one corre-
spondence. Indeed, every representative Young tableau is a
standard (i.e., left � right and top < bottom) tableau. It cor-
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responds to a rectified Littlewood-Richardson tableau, whose
jth row has a number x of the index i with x being the
number of js in the ith row of the representative Young
tableau. A rectified Littlewood-Richardson tableau of content
μ̃ thus corresponds to the representative Young tableau μ̃.
Since the total number of representative Young tableaux is the
dimension of the irreducible representation, the total number
of contents that μ ∈ Scost can generate is dμ. Therefore we
have ∑

�

Cλ,λ+�
μ,μ′ = dμdμ′ (A50)

for any μ,μ′ ∈ Scost. Combining with Eqs. (A46) and (A48),
we have ∑

�∈Sdiff

S̃� =
∑

μ,μ′∈Scost

|cμcμ′ |2 = 1. (A51)

Now, the fidelity bound Eq. (A45) becomes

Fwc

(∫
dU pj (U |I )UC ⊗ U∗

L, IC ⊗ IL

)

�
∑
λ∈Sint

∑
�∈Sdiff

√
qλqλ+�S̃�

�
(

min
�∈Sdiff

∑
λ∈Sint

√
qλqλ+�

)⎛⎝ ∑
�′∈Sdiff

S̃�′

⎞
⎠

= min
�∈Sdiff

∑
λ∈Sint

√
qλqλ+�, (A52)

and the proof is complete. �
From the above discussion, we obtain a bound (by com-

bining lemma 1 with lemma 2) on the performance of our
protocol. In the following sections, we will use it to evaluate
the performance of our protocol for two different erasure error
models.

(1) Weak erasure error (Sec. B). At most ne out of the n
qudits are erased, with ne a constant independent of n.

(2) i.i.d. erasure error (Sec. C). Each qudit has a constant
probability of being erased. The errors on different qudits are
independent.

5. A lower bound on εcov

In the last part of this section, we derive a lower bound
on εcov of any covariant code, which will be used to show
the optimality of our protocol. The lower bound is built upon
the main result of Ref. [47], further strengthened here by us.
This bound was derived for U(1), but we can always find a
single-parameter family of unitaries embedded in SU(d ), so
the bound applies in general. For instance, we can consider
the U(1) family Uθ := e−iθH generated by the Hamiltonian

H =
d∑

j=1

h j | j〉〈 j| (A53)

for an orthonormal basis {| j〉}d
j=1 of H. The SU(d ) covariance

implies the U(1) covariance, i.e., U ⊗n
θ ◦ Ecov = Ecov ◦ Uθ for

any θ .

In Ref. [47], it was shown for covariant codes the worst-
case input fidelity obeys the lower bound:

√
1 − Fwc �

(�H )2

3
√

6I↑
Fisher

. (A54)

Here �H is the difference between the maximum eigenvalue
and the minimum eigenvalue of H , and I↑

Fisher is a Fisher
information upper bound of the channel Cθ := C ◦ U⊗n

θ (with
C being the error) that can be evaluated as follows: if there
exists Kraus operators {Kl;θ } of the channel Cθ such that∑

l
˙Kl;θ

†
Kl;θ = 0 (here ˙Kl;θ denotes the derivative of Kl;θ with

respect to θ ), the Fisher information upper bound is again
bounded as

I↑
Fisher � 4

∥∥∥∥∥
∑

l

˙Kl;θ
†
K̇l;θ

∥∥∥∥∥
∞

. (A55)

Here ‖ · ‖∞ denotes the operator norm. If there does not
exist such a Kraus form, we set I↑

Fisher = ∞ and the bound
Eq. (A54) is trivial.

The above bound, however, is not enough to show the
optimality of our result. Instead, we derive a strengthened
version of it.

Lemma 4 (Theorem 1 of Ref. [47]; strengthened version).
The error of any covariant code is lower bounded by

εcov � (�H )2

16I↑
Fisher

. (A56)

Here �H is the difference between the maximum eigenvalue
and the minimum eigenvalue of H , and I↑

Fisher is the Fisher
information upper bound Eq. (A55).

To see Eq. (A56) is indeed a strengthening of Eq. (A54),
simply notice that εcov � √

1 − Fwc [80] and thus Eq. (A56)
implies Eq. (A54). On the other hand, plugging the other part
of the Fuchs-van de Graaf inequality εcov � 1 − √

Fwc into
Eq. (A54) only yields a bound on εcov that scales as (I↑

Fisher )
−2

which, as we will soon see, is not enough to prove the desired
1/n2-scaling bound on εcov. For this reason, we must use the
strengthened version.

Proof of lemma 4. This result can be derived along the same
line of arguments as the proof of the original bound Eq. (A54)
in Ref. [47]. A few improvements need to be made as the fol-
lowing: First, in Eq. (A11) of Ref. [47], we directly consider
the worst-case error εcov and employ the tighter bound (than
the Fuchs-van de Graaf inequality) between f 2 an εwc when
one of the two states is pure; see, e.g., ([84], Eq. (9.111)).
Then Eq. (A11) becomes

f 2 � 1 − εcov, (A57)

where f 2 is the same quantity as in the original equation. With
this improved inequality substituted into Eq. (A20), we get the
counterpart of ([47], Lemma 1) for εwc:

I↑
Fisher � (1 − 4εcov)(�H )2. (A58)

Equation (21) of [47] then becomes (m�H )2(1 − 4mεcov) �
mI↑

Fisher and optimizing over m we get the bound (A56). �
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6. On the error of covariant channels

Let A and B be channels acting on a d-dimensional Hilbert
space H. Assume that A and B are both covariant with the
(full) symmetry group SU(d ) on H. Define the entanglement
error:

εent (X ,Y ) := 1
2‖X − Y ‖1,

where X and Y are the Choi states of two channels X and Y ,
respectively.

Here we prove the following lemma:
Lemma 5. Suppose εent (A,B) � 1/2. The worst-case in-

put error of B can be bounded as

εwc(B, I ) � 9d · max {εent (A, I ), 1 − Fent (A,B)}. (A59)

Here I denotes the identity channel on H.
Proof. In the following, we make frequent use of an ele-

mentary relation between the worst-case input error and the
entanglement error:

εwc(X ,Y ) � d · εent (X ,Y ). (A60)

For any channel A, define its Choi state as

A := (A ⊗ I )(+
d ) (A61)

with +
d being the maximally entangled state in H ⊗ H.

When A is covariant, we have

[A, U ⊗ U ∗] = 0, ∀U ∈ SU(d ). (A62)

By Schur’s lemma, the Choi states of the covariant channels
A and B can be decomposed as

A = (1 − a) · +
d + a · ρ⊥ ρ⊥ := 1

d2 − 1
(I ⊗ I − +

d ),

(A63)

B = (1 − b) · +
d + b · ρ⊥. (A64)

Therefore the entanglement error and the entanglement fi-
delity that we are interested in can be evaluated as

εent (A, I ) = a, (A65)

εent (B, I ) = b, (A66)

Fent (A,B) = (
√

(1 − a)(1 − b) +
√

ab)2, (A67)

εent (A,B) = |a − b|. (A68)

If a � b, we have

εwc(B, I ) � d · εent (B, I ) = d · b � d · a. (A69)

If a < b, we can write b = a + εent (A,B). We further distin-
guish between two cases: If a > εent (A,B)/8, then b � 9a
and thus

εwc(B, I ) � 9d · a. (A70)

Otherwise, if a � εent (A,B)/8, we have (using the shorthand
εent := εent (A,B))

1 − Fent (A,B)

= 1 − (
√

(1 − a)(1 − a − εent ) +
√

a(a + εent ))
2

= εent + 2a(1 − a − εent )

− 2
√

a(1 − a)(a(1 − a) + εent (1 − 2a − εent ))

� εent + 2a(1 − a − εent ) − 2
√

2a(1 − a)εent

= (
√

εent −
√

2a(1 − a))2 − 2aεent

�
(√

εent −
√

εent

2

)2

− ε2
ent

4

� εent (1 − εent )

4
� εent

8
.

Notice that the last inequality holds if εent (A,B) � 1/2. Then,
the worst-case input error of B can be bounded as

εwc(B, I ) � d · (a + εent (A,B))

� d · (a + 8(1 − Fent (A,B))). (A71)

Finally, we get the desired bound by summarizing Eqs. (A69),
(A70), and (A71) into a more compact form. �

7. Proof of lemma 3

Here we show that the worst-case input fidelity of a channel
E commuting with

Utot :=
⊕

λ

Uλ ⊗ Imλ
(A72)

can be achieved by an input state of the following form:

|�∗〉 :=
⊕

λ

cλ|+
λ 〉 ⊗ |ψmλ

〉. (A73)

The worst-case input fidelity of E can be written as a SDP
(with the Slater’s condition always satisfied). In particular,
from lemma 6 (see later) the primal problem for the worst-
case input (square-root) fidelity is

√
F wc(E, I ) = min 1

2 (Tr(EBA�BA) + Tr(
BA�BA))

such that

(
�BA −IB ⊗ ρT

A
−IB ⊗ ρT

A �BA

)
� 0

Tr
(
ρT

A

)
� 1

ρA, �BA,�BA � 0. (A74)

Here ρA := TrR �AR corresponds to the marginal of the input
state, 
BA := |I〉〉〈〈I|, and EBA := (E ⊗ IA)(
).

Suppose that |�〉 with marginal ρA is an input state achiev-
ing the minimum. Consider the twirling

T (·) :=
∫

dU

(⊕
λ

Uλ ⊗ U∗
λ ⊗ Imλ

⊗ Imλ

)
(·) (A75)

on the constraints. The constraints become( T (�BA) −IB ⊗ ρ̃T
A

−IB ⊗ ρ̃T
A T (�BA)

)
� 0, (A76)

Tr
(
ρ̃T

A

)
� 1, (A77)

ρ̃A, T (�BA), T (�BA) � 0. (A78)

Here ρ̃A := ∫
dU

⊕
λ U∗

λ ⊗ Imλ
(ρA). Noticing that both EBA

and 
BA are invariant under T and its dual T †, the objective
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function remains the same:

1
2 (Tr(EBAT (�BA)) + Tr(
BAT (�BA)))

= 1
2 (Tr(EBA�BA) + Tr(
BA�BA)). (A79)

Therefore an input |�∗〉 with marginal ρ̃A also achieves the
worst-case input fidelity. Since it is invariant under

⊕
λ U∗

λ ,
by Schur’s lemma it has to be of the diagonal form

ρ̃A =
⊕

λ

|cλ|2Iλ ⊗ σmλ
(A80)

with {σmλ
} being arbitrary states on the multiplicity subspaces.

Therefore the corresponding input state |�∗〉 can be cast into
the desired form Eq. (A73).

At last we prove the formulation Eq. (A74) of the worst-
case input fidelity as a semidefinite program, adapting the
method used for the diamond norm [85]. First, for a chan-
nel A : Lin(Kin ) → Lin(Kout ), define its Choi operator A ∈
Lin(Kout ⊗ K′

in ) with K′
in � Kin as follows. For |
〉 ∈ Kin ⊗

K′
in the unnormalized maximally entangled state, set A =

(A ⊗ I )(
).
Lemma 6. Given any two channels A and B with Choi

operators A and B, respectively,√
Fwc(A,B) = min 1

2 (Tr[A�] + Tr[B�])

s.t.

(
� −I ⊗ ρ

−I ⊗ ρ �

)
� 0,

ρ, �,� � 0,

ρ ∈ St(Kin ),

�,� ∈ Lin(Kout ⊗ Kin ). (A81)

Proof. The first step in the proof is to simplify the depen-
dence on the input state. Using the dual form of the fidelity
function from Refs. [85,86] in (A1), we have√

Fwc(A,B)

= min 1
2 (Tr[Y (A ⊗ IR)(ρ)] + Tr[Z

(
B ⊗ IR

)
(ρ)])

s.t.

(
Y −I

−I Z

)
� 0,

ρ ∈ St(Kin ⊗ KR),

Y, Z ∈ Lin(Kout ⊗ KR). (A82)

Observe that we can assume the optimal input state ρ is pure
because the objective function is linear in ρ. Therefore we
can write it as ρ = K
K†, where 
 ∈ Lin(Kin ⊗ K′

in ) and K :
K′

in → KR is the operator defined by |ψ〉 �→ 〈
| (|ρ〉 ⊗ |ψ〉).
Now let K be the variable in the optimization. By construc-
tion, ρ � 0, and the trace constraint becomes Tr[K†K] = 1.
Note that K†K ∈ Lin(H′

in ).
In the first term of the objective function, we recognize the

Choi operator of A:

Tr[Y (A ⊗ IR)(ρ)] = Tr[Y K (A ⊗ I )(
)K†] (A83)

= Tr[K†Y KA], (A84)

and this works similarly for the second term. Thus the opti-
mization takes the form√

Fwc(A,B) = min 1
2 (Tr[K†Y KA] + Tr[K†ZKB])

s.t.

(
Y −I

−I Z

)
� 0,

Tr[K†K] = 1,

K ∈ Lin(K′
in → KR),

Y, Z ∈ Lin(Kout ⊗ KR). (A85)

Now we want to move to different variables, but without
changing the optimal value. Defining � and � in Lin(Kout ⊗
K′

in ) by � = K†Y K and � = K†ZK , the objective function
becomes 1

2 (Tr[�A] + Tr[�B]). To deal with the constraints,
let M = diag(K, K ) and conjugate the block matrix in the
constraint by M, multiplying from the left by M† and the
right by M. Doing so puts � and � on the diagonal, and
−I ⊗ K†K on the off-diagonal. Note that the block matrix
constraint implies Y � 0 and Z � 0, which by construction
then implies � � 0 and � � 0. Defining ρ ∈ Lin(K′

∈) as
ρ = K†K , we have an optimization in the variables �, �

and ρ. However, conjugation generally relaxes the constraints,
which could lead to a smaller minimum value than the original
optimization. Ignoring the difference between K′

in and Kin, we
have established√

F (A,B) � min 1
2 (Tr[�A] + Tr[�B])

s.t.

(
� −I ⊗ ρ

−I ⊗ ρ �

)
� 0,

ρ, �,� � 0,

ρ ∈ St(Kin ),

�,� ∈ Lin(Kout ⊗ Kin ). (A86)

To establish equality in Eq. (A86) and complete the proof,
we show that any feasible variables in Eq. (A86) can be
converted into feasible variables in Eq. (A85) having the
same value of the objective function. Nominally, the following
choice will work. Pick an arbitrary isometry V : Kin → KR

and define

K = V ρ
1/2, (A87)

Y = V ρ−1/2�ρ−1/2V †, (A88)

Z = V ρ−1/2�ρ−1/2V †. (A89)

However, the inverse of ρ is potentially problematic, as we
do not know that ρ is full rank. We can avoid this prob-
lem as follows (which could presumably also be done by
continuity). Suppose that P ∈ Lin(Kin ) is the projection onto
the support of ρ. Then �′ = P�P and �′ = P�P are also
feasible in Eq. (A86), as we can conjugate the constraints by
P. Moreover, these variables will not have a larger value of
the objective function, so we may as well begin the argument
with feasible variables of this form.
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Now we make a slight modification of the above choice,
using the inverse on the support of ρ:

K = V ρ
1/2, (A90)

Y = V (ρ−1/2�ρ−1/2 + I ⊗ (I − P))V †, (A91)

Z = V (ρ−1/2�ρ−1/2 + I ⊗ (I − P))V †. (A92)

Given that the support of � is contained in that of I ⊗ ρ, it
follows that Tr[K†Y KA] = Tr[�A], and similarly for the other
term. Hence this choice of variables leads to the same value of
the objective function. Feasibility in Eq. (A85) also holds. The
positivity and trace conditions hold immediately, and only the
block matrix constraint is a little more involved. Define P′ ∈
Lin(KR) by P′ = V PV †. Then conjugating the block matrix in
Eq. (A86) by M = diag(L, L) for L = I ⊗ V ρ−1/2 gives(

V ρ−1/2�ρ−1/2V † −I ⊗ P′

−I ⊗ P′ V ρ−1/2�ρ−1/2V †

)
� 0. (A93)

To this inequality we can add(
I ⊗ (I − P′) −I ⊗ (I − P′)

−I ⊗ (I − P′) I ⊗ (I − P′)

)
� 0, (A94)

and the result is the block matrix constraint in Eq. (A85). �
Note that a different SDP for Fwc(A, I ) (not the square

root) was given in ([87], Eq. (A12)). After completion of this
work, we discovered that the SDP of Lemma 6 also appears
as Proposition 50 of [88].

APPENDIX B: HEISENBERG-LIMITED ERROR
CORRECTION IN THE WEAK ERROR MODEL

1. Setting

In this section, we consider a relatively weak type of errors
(compared to the other type we will consider). Specifically,
the error is that at most ne qudits among the n qudit systems
composing the computational register and the reference frame
register, are randomly lost:

C = p0I +
∑

s⊂[n]:|s|�ne

ps(Ce )s, (B1)

where (Ce )s denotes the erasure of qudits whose labels are in
the set s and {ps} is a probability distribution.

Any quantum error-correcting code over qudits of distance
at least k + 1 can perfectly correct k erasures [3]. For in-
stance, the polynomial codes of Aharonov and Ben-Or are
[[2k + 1, 1, k + 1]]d (one logical qudit encoded into 2k + 1
computational qudits; code distance k + 1) stabilizer codes
with this property [45]. In these cases, we can employ one
of the perfect codes as the noncovariant subroutine (E,D) of
our code. Since we only need to encode one logical qudit, the
perfect code requires only nC = O(1) computational qudits.

This is to say: the (noncovariant) code (E,D) we use re-
quires only O(1) computational qudits and satisfies

εsC,code = 0 ∀ |sC| � ne, (B2)

where sC ⊂ [nC] is the set of indices for error locations on the
computational register. Now we arrange the reference frame
register against this type of noise. To this purpose, we divide

the nR qudit there into ne + 1 groups, each consisting of 2m
qudits, and we have the relation:

nR = 2m(ne + 1). (B3)

On each group we construct a (highly coupled) reference
frame state ψ of the form Eq. (A9). Then, at least one of the
reference frame states will survive the erasure, and we can
measure it to obtain the embedded rotation. In the following,
we evaluate this (worst) case. Now we fix the form of the
reference frame state by specifying the distribution {qλ} in
Eq. (A9). We first specify Svia ⊂ Ym on which qλ > 0. To this
purpose, we first define a parameter M that depends on m as

M =
⌊

1

3

(
2m

d (d − 1)
− 1

)⌋
(B4)

and m0 := m − d (d − 1)(3M + 1)/2. Define μ̃ ∈ Ym0 as the
following Young diagram with m0 boxes:

μ̃ := (μ̃1, . . . , μ̃d ) s.t.
∑

i

|μ̃i| = m0 and

μ̃ j + 1 � μi � μ̃ j ∀ j > i. (B5)

Now we define the following viable subset of Young diagrams
with d rows and m boxes, on which our probe state has
support:

Svia := {λ ∈ Ym : ∃ λ̃ ∈ [M]×(d−1) s.t.

λi = μ̃i + (2d − i − 2)M + d − i + λ̃i,

i = 1, . . . , d − 1}. (B6)

The reference frame state we use in the weak error model is
defined by

qλ̃ :=
d−1∏
i=1

gλ̃i
, (B7)

where g is the following distribution over [M]:

gλ̃i
:= 2

M + 1
sin2

(
π (2λ̃i + 1)

2(M + 1)

)
. (B8)

A similar construction has recently been used to achieve
optimal programming of unitary gates [69].

2. Bounding the error

In the current error model, the code (E,D) can be made
exact (i.e. error-free). Therefore, to use Lemma 1, we simply
need to bound

∑
λ∈Sint

√
qλqλ+� and appeal to Lemma 2. In

the following, we show that our choice of {qλ} [see Eq. (B7)]
satisfies

min
�∈Sdiff

∑
λ∈Sint

√
qλqλ+� � 1 − ε (B9)

for ε = d
2 ( πn′

M+1 )2 + O(M−3). In this case, we can define Sint

as given by Eq. (B6) with the additional constraint that 2n′ �
λ̃i � M − 2n′ for every i. First, denote by εg the quantity

εg(δ) := 1 −
M−2n′∑
k=2n′

√
gkgk+δ �

1

2

(
πδ

M + 1

)2

+ O(M−3).

(B10)
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The inequality can be shown by straightforward calculation
(see Subsection B 4). For this distribution, it is straightforward
that

∑
λ∈Sint

√
qλqλ+� � 1 − d

2

(
πn′

M + 1

)2

− O(M−3). (B11)

for any � ∈ Sdiff . Summarizing, we reach the bound

Fwc

(∫
dU p(U |I )UC ⊗ U∗

L, IC ⊗ IL

)

� 1 − d

2

(
πn′

M + 1

)2

− O(M−3). (B12)

Substituting Eqs. (B3), (B4), and n′ = nC + d − 1 into the
above bound, we get:

Fwc � 1 − 9π2d3(d − 1)2(ne + 1)2(nC + d − 1)2

2n2
R

− O
(
n−3

R

)
.

(B13)

Applying Lemma 1 and recalling that the code error is always
zero, we obtain the performance of our protocol:

Theorem 1 (Heisenberg-limited covariant error correction).
For the weak error model, defined by Eq. (B1), the diamond
norm error of Protocol 1 is upper bounded as

εcov � 81π2d4(d − 1)2(ne + 1)2(nC + d − 1)2

2n2
R

+ O
(
n−3

R

)
.

(B14)

The reference frame register in Protocol 1 should be initiated
in the state ψ⊗(ne+1), where the state ψ is prepared in the form
Eq. (A9) with coefficients given by Eq. (B7).

Since nR = n − nC and nC can be chosen to be O(1), our
protocol achieves the Heisenberg limit 1/n2 with respect to
the total number of qudit systems.

3. Optimality of Protocol 1 under the weak error model

Here we prove the optimality of our protocol under the
weak error model Eq. (B1). In particular, we consider any
code constructed on n qudit systems, denoted as (Ecov,Dcov),
that is covariant under the SU(d ) action. For the weak error
model, we show that the Heisenberg limit 1/n2 is the ultimate
limit for any covariant code, when each qudit has an equal
probability 1/n of being erased. We stress the full generality
of this result, in the sense that it does not assume any specific
structure of the code.

The optimality can be shown by applying the lower bound
on εcov, as given in Lemma 4, to the weak error model
Eq. (B1). We focus on the case when either exactly ne qu-
dits are erased or no qudit is erased at all, i.e., ps = 0 for
0 < |s| < ne. Notice that Ref. [47], where the original lower
bound was derived, considered only independent local errors,
which is not the case here. However, as long as we can show
I↑
Fisher < ∞, the bound will work for our model. In the fol-

lowing we identify a Kraus form as in Eq. (A55). Consider
the following Kraus form of (Ce )s, the erasure of qudits with
labels in s ⊂ [n], that depends on θ :

(Ce )s(·) =
∑

n

Cs,n;θ (·)C†
s,n;θ

Cn,s;θ :=
ne∏

j=1

(
exp

{
iθhnj( n−1

ne−1

)
ps

}
|d + 1〉〈 j|s j

)
.

Here, for convenience, we add a state |d + 1〉 as the state after
erasure, n = (n1, . . . , nne ) ∈ (Zd+1)⊗ne , H = ∑d+1

j=1 h j | j〉〈 j|
with hd+1 := 0, Al := I1 ⊗ · · · ⊗ Il−1 ⊗ A ⊗ Il+1 ⊗ · · · ⊗ In

for any operator A, and s j refers to the j-th largest element
of s.

The entire channel is Cθ := C ◦ U⊗n
θ with C defined by

Eq. (B1), which has Kraus operators

K0;θ = √
p0

n⊗
l=1

Ul;θ

Kn,s;θ = √
ps

ne∏
j=1

(
exp

{
iθhnj( n−1

ne−1

)
ps

}
|d + 1〉〈nj |s j

)(
n⊗

l=1

Ul;θ

)

s ⊂ [n], |s| = ne n ∈ (Zd+1)⊗ne .

Their derivatives are

K̇0;θ = i
√

p0

(⊗
l

Ul;θ

)(
−
∑

l

Hl

)

K̇n,s;θ = i
√

ps

ne∏
j=1

(
exp

{
iθhnj( n−1

ne−1

)
ps

}
|d + 1〉〈nj |s j

)(⊗
l

Ul;θ

)(
ne∑

j=1

hnj( n−1
ne−1

)
ps

|n j〉〈n j |s j −
∑

l

Hl

)
.

where l = 1, . . . , n. One can verify that

K̇†
0;θ K0;θ +

∑
s

∑
n

K̇†
n,s;θKn,s;θ

= ip0

(∑
l

Hl

)
− i

∑
s

ps

(∑
n

(∑
j

hn j( n−1
ne−1

)
ps

|n j〉〈n j |s j −
∑

l

Hl

)(∏
j

|n j〉〈n j |s j

))
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= ip0

(∑
l

Hl

)
− i

(∑
s

ps
∑

j

Hs j( n−1
ne−1

)
ps

− (1 − p0)
∑

l

Hl

)

= 0. (B15)

In the meantime

K̇†
0;θ K̇0;θ +

∑
s

∑
n

K̇†
n,s;θ K̇n,s;θ

=
∑
s

ne∑
j=1

(H2)s j( n−1
ne−1

)2
ps

−
(∑

l

Hl

)2

. (B16)

Therefore the Fisher information bound satisfies

I↑
Fisher � 4

∥∥∥∥∥K̇†
0;θ K̇0;θ +

∑
s

∑
n

K̇†
n,s;θ K̇n,s;θ

∥∥∥∥∥
∞

� 4
∑
s, j

1( n−1
ne−1

)2
ps

‖H2‖∞ + 4n2‖H‖2
∞

= 4
∑
s

ne( n−1
ne−1

)2
ps

‖H2‖∞ + 4n2‖H‖2
∞. (B17)

Substituting into Eq. (A56), we get

εwc �
(�H )2

64
(∑

s ne‖H2‖∞/(ps
( n−1

ne−1

)2
) + n2‖H‖2∞

) . (B18)

Now, we assume that each qudit has an equal probability
ps = 1/( n

ne
) of being erased and p0 = 0. Since ‖H2‖∞ =

‖H‖2
∞, the above bound implies

εcov � (�H )2

64n2(1 + 1/ne )‖H‖2∞
. (B19)

We can choose the minimum eigenvalue and the maximum
eigenvalue of H to sum up to zero. Then, �H = 2‖H‖∞, and
we reach the following proposition:

Proposition 1. For the weak erasure error model Eq. (B1)
with ps = 1/( n

ne
) for any s : |s| = ne, the error of any covari-

ant code is lower bounded as

εcov � 1

16n2(1 + 1/ne )
. (B20)

Since the above bound matches the performance of our
protocol in scaling, we conclude that the optimal error scaling
of covariant codes is identified as 1/n2.

4. Proof of Eq. (B10)

Invoking the definition of {gk} from Eq. (B7), we have the
following chain of (in)equalities:

M−n∑
k=n

√
gkgk+δ = 2

M + 1

M−n∑
k=n

sin

(
π (2k + 1)

2(M + 1)

)
sin

(
π (2k + 2δ + 1)

2(M + 1)

)

= 1

M + 1

M−n∑
k=n

(
cos

(
πδ

M + 1

)
− cos

(
π (2k + δ + 1)

M + 1

))

= 1

M + 1

(
(M − 2n + 1) cos

(
πδ

M + 1

)
−

M−n∑
k=n

cos

(
π (2k + δ + 1)

M + 1

))

= 1

M + 1

((
M − 2n + 1 + sin

(
2πn
M+1

)
sin

(
π

M+1

)
)

cos

(
πδ

M + 1

))

= cos
(

πδ
M+1

)
M + 1

(
M − 2n + 1 + cos

( π

M + 1

)
+

2n−1∑
k=1

cos

(
π k

M + 1

))

� 1

M + 1

(
M + 1 − 1

2

( π

M + 1

)2
−

2n−1∑
k=1

1

2

(
π k

M + 1

)2
)(

1 − 1

2

(
πδ

M + 1

)2)

= 1 − 1

2

(
πδ

M + 1

)2

− O
(
M−3).
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APPENDIX C: THE i.i.d. ERROR MODEL

1. Setting

In this section, we deal with another type of erasure errors
which are stronger than the one considered in the previous
section. The error affects each qudit independently, erasing it
with a probability:

C =
n⊗

j=1

((1 − pe )I + peCe ) pe ∈
(

0,
1

2

)
, (C1)

where Ce denotes the single-qudit erasure channel. Since the
erasure channel is degradable, if pe � 1/2 the information
leaked to the environment would not be retrievable. Note that,
in general, the error model on each qudit does not have to be
identical, and each qudit j can have distinct probability pe, j

of being erased. In that case, however, we can simply set pe to
be the worst case over {pe, j} and consider this more stringent
model instead. We can cast Eq. (C1) in the form of Eq. (A17)
as

C =
∑
s⊂[n]

pe,s

(⊗
k∈s

Ce

)
⊗
(⊗

k′∈sc

I
)

(C2)

where pe,s := p|s|
e (1 − pe )n−|s|.

In contrast to the previous model, there does not exist
any code that perfectly corrects independent erasure errors.
Instead, there exist pretty good codes that correct the error
unless too many qudits are erased. The quantum capacity of
the erasure channel, with erasure probability pe, has been
determined to be 1 − 2pe [49]. We can choose nC, the number
of computational qudits, to grow with n. When n is large,
since the number of qudits we want to encode is only one
qudit and is much smaller than that allowed by the capacity
(which is (1 − 2pe )nC), the error probability would vanish
exponentially in nC.

We choose nC = nγ , where γ ∈ (0, 1) does not depend
on n and can be chosen to be very small. We use any code
(E,D) in Protocol 1 that encodes one qudit into nγ com-
putational qudits, with the property that it has a decoding
error O(e−xd ·nγ

) for some xd > 0 that may depend on d . By
a random coding argument, one can show that there exists
a stabilizer code satisfying our requirement (see, e.g., [50]),
although its explicit form is not given. Recently progress in
error correcting codes also showed that quantum polar codes
[51,52] and Reed-Muller codes [53] have the desired property.
Notice that the requirement of the O(e−xd ·nγ

) scaling is chosen
for convenience of analyzing the error, and it can be further
relaxed in practice.

Meanwhile, the model is now too noisy for the highly
coupled reference frame state used in the weak error model
to be effective. Instead, we prepare on the reference frame
register the following sR-copy state:

� = (+)⊗sR (C3)

with sR = nR/2 = (1 − n−1+γ )n/2 and |+〉 being the max-
imally entangled state on H ⊗ H. Intuitively, this choice is
to distribute the eggs in different baskets. One erasure error
destroys at most one of the sR reference frame states. As
long as there are still �(n) copies left we can achieve high

performance, which happens with very high probability since
pe,s is a binomial distribution.

2. Bounding the error

When se reference frames are erased, the number of re-
maining reference frames is

s := sR − se. (C4)

The remaining reference frames can be decomposed in the
form Eq. (A9) as

(+)⊗s =
⊕
λ∈Ys

√
pλ,s|+

λ 〉 ⊗ |+
mλ

〉 (C5)

where pλ,s is known as the Schur-Weyl distribution. It has the
following precise form ([89], Eq. (3.28)):

pλ,s = s!
∏

i< j (λ̃i − λ̃ j )2

ds(λ̃d )!
∏d−1

k=1 k!(λ̃k )!
λ̃ j := λ j + d − j. (C6)

We now combine it with Eq. (A12) and Lemma 3 to express
the fidelity Eq. (A36) as

Fs =
∑

λ,λ′∈Ys

√
pλ,s pλ′,sSλ,λ′ , (C7)

where Sλ,λ′ is the correlation function defined by Eq. (A43).
For any α > 0, if s = β · n for some fixed β > 0, then there
exists n0,α so that

1 − Fs �
(

(d2 − d + 32)�

β2

)
·
(

1

2s

)1−α−2γ

(C8)

holds for arbitrary n � n0,α . Here � := d
d (d−1)

2 /(
∏d−1

k=1 k!).
Eq. (C8) implies that 1 − Fs scales almost as 1/s for large

s. Its proof is delayed to Subsection C 4. Roughly speaking, in
the large s limit, pλ,s converges to a tilted multi-variate Gaus-
sian. We can focus on a region near the peak of pλ,s where the
distribution is concentrated and where the correlation function
Sλ,λ′ is maximized as well. This would introduce at most an er-
ror vanishing as 1/s. In addition, since a Gaussian is relatively
flat around its peak, we can show that

√
pλ+�,s pλ,s ≈ pλ+�/2,s

up to an error that scales as 1/s. This would be the main reason
of getting this error scaling.

With Eq. (C8) it is rather straightforward to bound the error
of our protocol. First we define a threshold value

s∗ := (1 − 2pe ) · sR = (1/2 − pe )(n − nγ ). (C9)

This definition ensures that the probability that s < s∗ goes
to zero exponentially fast. Next, notice that the error proba-
bilities on the computational register and the reference frame
register are independent:

pe(s) = pe,P(sC)pe,R(sR) s = sC ∪ sR, (C10)

where pe,P and pe,R are the probability distributions of erasure
errors in the computational register and in the reference frame
register, respectively.
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Applying Lemma 1 and Eq. (C10), we can split the error of our protocol as

εcov � 9d

⎛
⎝ ∑

s⊂[n],Fs� 3
4

pe(s) max {εsC,code, 1 − Fs} +
∑

s⊂[n],Fs<
3
4

pe(s)

⎞
⎠. (C11)

From Eqs. (C8) and (C9), we know that, for large enough n, Fs > 3
4 for s � s∗. That is, when no more than 2pesR erasure errors

occur on the reference frame register. We can then express the bound as

εcov � 9d

(∑
sC

pe,P(sC)εsC,code +
∑
sR

pe,R(sR)(1 − Fs) +
∑

sR:|sR |>2pesR

pe,R(sR)

)
. (C12)

Notice that, by our assumption on (E,D), we should have∑
sC

pe,P(sC)εsC,code = O(e−xd ·nγ

). (C13)

Therefore the reference frame error constitutes the main contribution to the overall error:

εcov � 9d

(∑
sR

pe,R(sR)(1 − Fs) + O(e−xd ·nγ

) +
∑

sR:|sR |>2pesR

pe,R(sR)

)
s = nR

2
− |sR|

� 9d

(
1 − Fs∗ + 2

∑
sR:|sR |>2pesR

pe,R(sR)

)
+ O(e−xd ·nγ

)

�
(

36d (d2 − d + 32)�

(1 − 2pe )2

)
·
(

1

(1 − 2pe )n

)1−α−2γ

+ O(e−p2
e (1−γ )n) + O(e−xd ·nγ

). (C14)

The second inequality comes from dividing the summation
into the term for s � s∗ and the term for s < s∗. The third
inequality comes from Eq. (C8) (with β = 1/2 − pe) and the
Hoeffding bound. From the above bound, we can see that γ

can be chosen to be arbitrarily close to zero. Absorbing the
other error terms into the major term, we have the following
bound on the error:

Theorem 2. Consider the i.i.d. error model defined by
Eq. (C1). For any α > 0, there exists nα > 0 so that the di-
amond norm error of Protocol 1 is upper bounded by

εcov �
(

36(d2 − d + 32)d
d2−d+2

2

(1 − 2pe )2
∏d

j=1( j − 1)!

)(
1

(1 − 2pe )n

)1−α

(C15)

for any n � nα . The reference frame register in Protocol 1
should be initiated in multiple copies of the maximally en-
tangled qudit state.

The error of our protocol scales almost as 1/n, instead of
1/n2 in the previous case. This is a result of the (stronger) i.i.d.
noise. In fact, as we show in the next section, the error scaling
of our protocol is still optimal for this error model.

3. Optimality of Protocol 1 under the i.i.d. error model

Here we prove the optimality of our protocol under the
i.i.d. error model Eq. (C1). In particular, we consider any code
constructed on n qudit systems, denoted as (Ecov,Dcov), that is
covariant under the SU(d ) action. For the i.i.d. error model,
we show that the 1/n scaling is optimal.

Under the i.i.d. error model Eq. (C1), the optimality of our
protocol can, again, be shown by applying Lemma 4. Here the

Fisher information upper bound I↑
Fisher should be replaced by

the one for the local, independent erasure model. For the i.i.d.
(erasure) error model, the Fisher information upper bound has
already been given by ([47], Eq. (B19)) as

I↑
Fisher = 4n(�H )2

(
1 − pe

pe

)
. (C16)

Substituting into Lemma 4, we obtain:
Proposition 2. For the i.i.d. (erasure) error model, defined

by Eq. (C1), the error of any covariant code is lower bounded
by

εcov � pe

64n(1 − pe )
. (C17)

Therefore, since Protocol 1 achieves the (1/n) scaling, it is
optimal in the asymptotic limit of large n.

4. Proof of Eq. (C8)

Here we prove Eq. (C8) under the assumption that s = β ·
n for some fixed β > 0. Since Sλ,λ′ � 0 we can lower bound
the fidelity Eq. (C7) as

Fs �
∑

λ,λ′∈Scent

√
pλ,s pλ′,sSλ,λ′ , (C18)

where Scent ⊂ Ys is defined as

Scent :=
{

λ ∈ Ys :
∣∣∣λi − s

d

∣∣∣ � s
1+x

2

2
, |λi − λ j | > 3n′,∀ i, j

}

(C19)

n′ = nγ + d − 1. (C20)
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Here x > 0 is a parameter to be specified at the end of the
proof. We can express the fidelity as

Fs �
∑

λ∈Scent

∑
�∈Sdiff

√
pλ,s pλ+�,sSλ,λ+�. (C21)

where

Sdiff = {� ∈ Z×d : |�i| � n′, i = 1, . . . , d;
d∑

j=1

� j = 0}.

(C22)

Similar as in the proof of Lemma 2, we first show that: For
λ ∈ Scent and � ∈ Sdiff , the correlation function depends only
on their relative distance �, but not explicitly on λ, i.e.,
Sλ,λ+� = S̃�. Indeed, when λ is in the viable set Scent, the
lengths of different rows of both λ and λ + � have big enough
gaps so that adding n′ boxes to one row would not make its
box number greater than its preceding rows. Therefore, adding
μ′ and μ in Scost according to the Littlewood-Richardson rule
is not constraint by the shape of λ. Now, the fidelity bound
becomes

Fs �
∑

λ∈Scent

∑
�∈Sdiff

√
pλ,s pλ+�,sS̃� (C23)

�
(

min
�∈Sdiff

∑
λ∈Scent

√
pλ,s pλ+�,s

)⎛
⎝ ∑

�′∈Sdiff

S̃�′

⎞
⎠ (C24)

� min
�∈Sdiff

∑
λ∈Scent

√
pλ,s pλ+�,s, (C25)

having used Eq. (A51) in the last step.
What remains is to bound

∑
λ∈Scent

√
pλ,s pλ+�,s for every

� ∈ Sdiff , where pλ,s is the Schur-Weyl distribution:

pλ,s = s!
∏

i< j (λ̃i − λ̃ j )2

ds(λ̃d )!
∏d−1

k=1 k!(λ̃k )!
λ̃ j := λ j + d − j. (C26)

First, we show that for the Schur-Weyl distribution pλ,s,√
pλ+�,s pλ,s ≈ pλ+�/2,s for λ ∈ Scent. Define the following

multinomial distribution of λ̃:

bλ̃ := (s + d (d − 1)/2)!

(λ̃1)! · · · (λ̃d )!
d−(s+d (d−1)/2), (C27)

and we can bound the Schur-Weyl distribution as

pλ,s = bλ̃

�

[s + d (d − 1)/2]d (d−1)/2

∏
i< j

(λ̃i − λ̃ j )
2 (C28)

� bλ̃ �
∏
i< j

(
λ̃i − λ̃ j√

s

)2

, (C29)

where [l]k := l!/(l − k)! and � := d
d (d−1)

2 /(
∏d−1

k=1 k!). We
have

√
pλ+�,s pλ,s

pλ+�/2,s

=
√

bλ̃+�bλ̃

bλ̃+�/2

∏
i< j

(
1 −

(
�i − � j

2λ̃i − 2λ̃ j + �i − � j

)2)
.

(C30)

Using Stirling’s approximation n! = √
2πn(n/e)n(1 +

1/(12n) + O(n2)) and
∑d

i=1 �i = 0, we have√
bλ̃+�bλ̃

bλ̃+�/2

� exp

{
− fλ̃+� + fλ̃

2
+ fλ̃+�/2

}(
1 + d2

6s
+ O(s−2)

)
(C31)

for λ ∈ Scent, where fλ̃ := ∑
i(λ̃i + 1/2) ln λ̃i. Straightfor-

ward calculation shows that

fλ̃ + fλ̃+�

2
− fλ̃+�/2 =

∑
i

(�i )2

8λ̃i
+ O

(
(n′)3

s2

)
. (C32)

Since n′ = O(nγ ) and s = �(n), we have

fλ̃ + fλ̃+�

2
− fλ̃+�/2 =

∑
i

(�i)2

8λ̃i
+ O(n−2+3γ ), (C33)

which, plus
∑

i(�i )2 � (n′)2 and |λi − s/d| = O(s
1+x

2 ), im-
plies that√
bλ̃+�bλ̃ � bλ̃+�/2

(
1 − d (n′)2

8s
− d2

6s
− O

(
n− 3−x−4γ

2
))

(C34)

= bλ̃+�/2

(
1 − O(n−1+2γ ) − O

(
n− 3−x−4γ

2
))

. (C35)

Combining the above bound with Eqs. (C22) and (C30), we
get

√
pλ+�,s pλ,s

pλ+�/2,s
�
(
1 − O(n−1+2γ ) − O

(
n− 3−x−4γ

2
))

·
∏
i< j

(
1 − (n′)2

(λ̃i − λ̃ j + �i/2 − � j/2)2

)

� 1 −
∑
i< j

(n′)2

(λ̃i − λ̃ j + �i/2 − � j/2)2

− O(n−1+2γ ) − O
(
n− 3−x−4γ

2
)

(C36)

and we have
√

pλ+�,s pλ,s ≈ pλ+�/2,s with the approximation
error given by Eq. (C36).

What remains is to evaluate the summation∑
λ∈Scent

pλ+�/2,s. Using the bounds Eq. (C19) and (C29),
the error terms can be bounded as follows:∑

λ∈Scent
pλ+�/2,s

(λ̃i − λ̃ j + �i/2 − � j/2)2

�
∑

λ∈Scent

� bλ̃+�/2

s
·

∏
k<l,k �=i,l �= j

(
λ̃k − λ̃l + �k/2 − �l/2√

s

)2

� �

s
·

∏
k<l,k �=i,l �= j

(
s

1+x
2 + l − k + n′

√
s

)2 ∑
λ∈Scent

bλ̃+�/2

� �

s
·

∏
k<l,k �=i,l �= j

(
s

1+x
2 + l − k + n′

√
s

)2

· 1 (C37)

Assuming (
√

2 − 1)s
1+x

2 � d − 1 + n′ � l − k + n′ for any
l, k (which always holds for large enough n), we can simplify
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the above bound to∑
λ∈Scent

pλ+�/2,s

(λ̃i − λ̃ j + �i/2 − � j/2)2
� 2�

(
1

2s

)1−x· d2−d−2
2

. (C38)

In the same manner, we can show that

∑
λ∈S′

cent\Scent

pλ+�/2,s � 2�(4n′ + d − 1)2

(
1

2s

)1−x· d2−d−2
2

(C39)

where

S′
cent :=

{
λ ∈ Ss :

∣∣∣λi − s

d

∣∣∣ � s
1+x

2

2
, ∀ i

}
(C40)

is just Scent with the restriction |λi − λ j | > n′ lifted. Indeed,
since for λ ∈ S′

cent \ Scent there exists a pair (i, j) such that
|λi − λ j | � 3n′ and |λk − λl | � s

1+x
2 for the rest, we have∑

λ∈S′
cent\Scent

pλ+�/2,s

�
∑

λ∈S′
cent\Scent

� bλ̃+�/2 ·
∏
k<l

(
λ̃k − λ̃l + �k/2 − �l/2√

s

)2

�
∑

λ∈S′
cent\Scent

� bλ̃+�/2 ·
(

3n′ + d − 1 + n′
√

s

)2

· (2s)x· d2−d−2
2

� 2�(4n′ + d − 1)2 ·
(

1

2s

)1−x· d2−d−2
2

.

The probability that λ �∈ S′
cent vanishes exponentially due

to large deviation theory. Precisely, the following bound holds
[90,91]:∑

λ∈S′
cent

pλ+�/2,s

� 1 − max
λ′−�/2 �∈Scent

(s + 1)
d (d−1)

2 exp

{
−2dYoung(λ′, s/d )2

s

}
(C41)

where s/d here refers to the Young diagram (s/d, . . . , s/d ).
Substituting in Eq. (C40) and using s = �(n) we get∑

λ∈S′
cent

pλ+�/2,s � 1 − O(e−nx
). (C42)

Finally, summarizing Eqs. (C36), (C38), (C39), and (C42), we
get

1 − Fs � 1 − min
�∈Sdiff

∑
λ∈Scent

√
pλ,s pλ+�,s (C43)

�
(

d (d − 1)(n′)2

2
+ (4n′ + d − 1)2

)
2� ·

(
1

2s

)1−x· d2−d−2
2

+ O(n−1+2γ ) + O
(
n− 3−x−4γ

2
) + O(e−nx

). (C44)

Picking any x ∈ (0, min{2α/(d2 − d − 2), 1}) we get

1 − Fs � �(d2 − d + 32) · (n′)2

(
1

2s

)1−α

+ O(n−1+2γ ).

(C45)

Recalling that n′ = nγ + d − 1 and s = β · n, we get
Eq. (C8). Since the above bound holds for any x > 0, the
scaling of 1 − Fs approaches s−1+2γ in the asymptotic limit
of large s.

APPENDIX D: RESOURCE REQUIREMENTS
AND IMPLEMENTATION

1. Compression of quantum reference frames

In both models, the reference frame states are constructed
on nR qudits, which is a (dnR )-dimensional system. However,
here we show that the reference frame states can be com-
pressed into a much smaller system. Indeed, the dimension
of the state is given by the effective dimension

dR := dim (Span{UR(�)}U∈SU(d ) ), (D1)

which, as we show in the following, grows only polynomially
in nR.

Since we always use entangled reference frames, UR =
(U ⊗ I )⊗

nR
2 . By Schur-Weyl duality, we have the decompo-

sition

UR �
⊕

λ∈YnR/2

(Uλ ⊗ Imλ
) ⊗ I⊗ nR

2 . (D2)

Therefore dR, which is equal to the rank of the twirled state∫
dU UR(�), satisfies the upper bound

dR �
∑

λ∈YnR/2

d2
λ

� |YnR/2| max
λ∈YnR/2

d2
λ

�
(nR

2
+ 1

)(d2−1)
. (D3)

The last bound is quite straightforward to obtain; see, for
instance, Ref. ([92], Eqs. (6.16) and (6.18)). Therefore we
can compress the reference frame state to a system of much
smaller dimension, which reduces exponentially the cost of
quantum memory during idle time. The cost can be further
reduced at the price of a small recovery error using the com-
pression protocols in Refs. [56–58].

2. Computational efficiency of implementation

At first sight, our encoding and decoding may appear to
necessitate sampling from the Haar measure on SU(d ) in
order to be implemented [see Eqs. (3) and (4)]. From a compu-
tational complexity standpoint, this would be a problem, since
to implement a random Haar unitary one needs an exponential
number of two-qubit gates and random bits [59]. Luckily,
our encoding and decoding do not require sampling from the
Haar measure, but rather only from a distribution which agrees
with it upto the t th moment, for appropriate t . Such equivalent
distributions are known as unitary t-designs [37–44], and are
more efficient to implement.
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Specifically, let U be a unitary representation on Cd×d and
Pt,t (U ) be a matrix whose entries are polynomials of order t
in the coefficients of U and of order t in the coefficients of U ∗,
and let EU∼ν[ f (U )] be the expectation value of a function f
according to measure ν. We then say that EU∼νHaar [Pt,t (U )],
where νHaar denotes the Haar measure, admits a unitary t-
design.

Proposition 3 (Encoder and decoder as designs). The en-
coder Ecov(XL) and decoder Dcov(XC) admit unitary (nC +
nR/2 + 1)-designs for all XL ∈ Lin(HL), XC ∈ Lin(H⊗n

C ).
Proof. We start with the encoder. Expanding the definition

Eq. (3), one can write

Ecov(·) = EU ∼Haar[(U
⊗nCE (U †

L (·)UL)U †⊗nC )

⊗ ((I ⊗ U )⊗nR/2ψ (I ⊗ U †)⊗nR/2)]. (D4)

Recall from Sec. A 1 that the representation of U used on
all the individual qudits is the same faithful representation
of SU(d ). As such, the logical and computational represen-
tations are related via a linear isomorphism, VC �→L, satisfying
UL = VC �→LUV †

C �→L for all logical and computational unitary
representations UL and U . Since the Hilbert spaces involved
are finite dimensional, and VC �→L, E are linear maps, it follows
that the matrix entries of the terms in square brackets in
Eq. (D4), are polynomials of order (nC + nR/2 + 1) in the
coefficients of U and of the same order in the matrix entries
of U ∗. Hence it is a unitary (nC + nR/2 + 1)-design.

In the case of the decoder, we have

Dcov(·) = EU∼Haar
[
UL ◦ D ◦ U−1

C ⊗ MU
]
(·), (D5)

where

MU (·) :=
∑

s⊂{1,...,sR}
Tr [(·)|ηU 〉〈ηU |s ⊗ Perr,sc ], (D6)

with |ηU 〉 = (U ⊗ I)m|η0〉, and |η0〉 := ⊕
λ dλ|+

λ 〉 ⊗
|+

mλ
〉, sR · 2m = nR. Similarly to as in Eq. (D4), the

term UL ◦ D ◦ U−1
C (·) in Eq. (D5), when evaluated on any

input, has matrix entries which are polynomials of order
n + 1 in the coefficients of U and also of the same order in
the coefficients of U ∗. Hence observing the form of Eq. (D6),
we conclude the proof. �

Reference [43] devises and quantifies a method to approx-
imate unitary t-designs. We start with a strategy to construct
a random unitary U over N qubits on sites labeled 1 to N :
Pick an index l uniformly from [N − 1] and a unitary denoted
Ul,l+1, drawn from the Haar measure on SU(4), which acts on
the two neighboring qubits, l and l + 1. Repeat the above k
times and multiply the unitaries together. The resultant unitary
is U and it is sampled from a distribution which we denote
ν(k).

In our case if the qudits each consist of N qubits, we
can use this procedure to construct an approximate covari-
ant encoding as follows: We record the random sequence of
k nearest neighbor unitaries Ul,l+1. We first apply it to the
logical qubits and encode via E , and then apply the recorded
random sequence nC + nR/2 times to the computational and
reference frame qubits. The resultant encoder is

Eν(k)
cov (·) := EU∼ν(k)

[
UC ◦ E ◦ U−1

L (·) ⊗ UR(�)
]
. (D7)

Similarly, one can use the procedure to produce the approxi-
mate decoder,

Dν(k)
cov (·) := EÛ∼ν(k)

[(
ÛL ◦ D ◦ Û−1

C ⊗ MÛ

)
(·)]. (D8)

From [43] it follows that∥∥Eν(k)
cov − Ecov

∥∥
� � εcov, (D9)∥∥Dν(k)

cov − Dcov

∥∥
� � εcov, (D10)

if

k = 170, 000 N�log(4(nC + nR/2 + 1))�2(nC + nR/2 + 1)8.1

× (2N (nC + nR/2 + 1) + 1 + log(1/εcov)), (D11)

which scales polynomially in both nC and nR (recall lower
bounds on εcov, in Propositions 1 and 2). Since sampling a
polynomial number of times from SU(4) can be performed
efficiently, both the approximate encoder Eν(k)

cov and decoder
Dν(k)

cov can be efficiently implemented in nC and nR so long
as the reference frame state � and measurement MÛ can be
efficiently constructed. It is also important to note that, under
the application of an arbitrary number of transversal gates, the
errors in Eqs. (D9), (D10) do not grow [44].

APPENDIX E: DETAILS OF THE NUMERICAL
CALCULATIONS

In this section, we introduce the numerical experiments we
implemented.

We use the “five-qubit code” [54] (5 computational qubits;
one logical qubit) as the subroutine encoding and decoding
pair, and calculate the performance of our SU(2) covariant
code. The “five-qubit code” can correct arbitrary single qubit
errors on its code space. It is realized by the following encod-
ing:

|0L〉 → 1/4(|00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉),

|1L〉 → 1/4(|11111〉 + |01101〉 + |10110〉 + |01011〉
+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉).

After this encoding, arbitrary single qubit errors can be de-
tected with stabilizer measurements with 4 ancilla qubits.
Depending on the measurement outcome, a correction will be
performed, and then the original logical qubit will be obtained
by doing the inverse of the encoding map.

In our experiment, not only erasure errors but also other
common error types like dephasing errors and depolarizing er-
rors are considered. For erasure errors, we use the generalized
sine states as the reference frame state. This is given by |φ〉 ∝∑J

j= jmin

sin(π j/J )√
2 j+1

|I ( j)〉〉. After encoding with Ug, it becomes

|φg〉 ∝ ∑J
j= jmin

sin(π j/J )√
2 j+1

|U ( j)
g 〉〉. The probability density func-

tion of the outcome h with covariant POVM {dUh, |ηh〉〈ηh|},
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|ηh〉 = ⊕ j |U ( j)
h 〉〉 is then given by:

p(h|g) =
∣∣∑

j
sin(π j/J )√

2 j+1
Tr

[
U ( j)

gh−1

]∣∣2∣∣∑
j sin(π j/J ) · √

2 j + 1
∣∣2 . (E1)

For i.i.d. depolarizing and dephasing errors, we use nR/2
Bell states |φ〉 = |+〉⊗nR/2 as the reference frame state. Af-
ter encoding with Ug, it becomes |φg〉 = |+

g 〉⊗nR/2. When
measuring these states, we will get a set of Uh with nR/2
elements: {Uh,1, ...,Uh,nR/2}. From this set we will get a final

Uh, which maximizes 〈+
h |(∑nR/2

i=1 |+
h,i〉〈+

h,i|)|+
h 〉, and can

be regarded as the best representation of these measurement
outcomes.

We also tested our protocol in the situation where one
fifth of the reference frame qubits go through the completely
depolarizing/dephasing error channel. For this case, an algo-
rithm similar as majority voting is first used. For each Uh,i,

we calculate 〈+
h,i|(

∑nR/2
i=1 |+

h,i〉〈+
h,i|)|+

h,i〉. The smallest
one fifth outcomes will be regarded as affected by noise.
The remaining set will be used to get the final Uh which is
the best representation of these outcomes.

After getting Uh, we perform the decoding according to
it and then calculate the performance. We analyze how the

performance changes as a function of the size of the reference
frame state.

To calculate the performance, we first calculate the entan-
glement fidelity as defined in Eq. (A2). For the five-qubit code,
we get:

Fent,5−code =
∫

dg p(h|g) Fent,5−code(g, h), (E2)

where p(h|g) is the probability to get measurement outcome
Uh with encoding Ug, and Fent,5−code(g, h) is the entanglement
fidelity using Ug in encoding and Uh in decoding. For every
reference frame size considered (2m for the sine state and nR

for the Bell states), we randomly generated 400 unitaries Ug

from the Haar measure, and calculated their average entangle-
ment fidelity, giving us the final Fent,5−code.

To calculate the worst-case error εcov,5−code, we use the re-
lationship between the worst-case error and the entanglement
error in Eq. (A7). Notice that the whole process of encoding,
noisy evolution, and decoding in the considered case is a
qubit covariant channel. Therefore its Choi state can always
be decomposed as λ|+〉〈+| + (1−λ)

3 (I − |+〉〈+|), for a
λ ∈ [0, 1]. Thus its worst-case error is equal to one minus the
entanglement fidelity. Thus we can bound the worst-case error
by εcov,5−code � 2 · (1 − Fent,5−code ).
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Quantum Reference Frames: The Operational Meaning of Spin,
Phys. Rev. Lett. 123, 090404 (2019).

[30] A. Vanrietvelde, P. A. Hoehn, F. Giacomini, and E. Castro-
Ruiz, A change of perspective: switching quantum reference
frames via a perspective-neutral framework, Quantum 4, 225
(2020).

[31] A.-C. de la Hamette, T. D. Galley, P. A. Hoehn, L.
Loveridge, and M. P. Mueller, Perspective-neutral approach
to quantum frame covariance for general symmetry groups,
arXiv:2110.13824.

[32] P. A. Hoehn, M. P. E. Lock, S. A. Ahmad, A. R. H.
Smith, and T. D. Galley, Quantum relativity of subsystems,
arXiv:2103.01232.

[33] A.-C. de la Hamette and T. D. Galley, Quantum reference
frames for general symmetry groups, Quantum 4, 367 (2020).

[34] P. Hayden, S. Nezami, S. Popescu, and G. Salton, Error Correc-
tion of Quantum Reference Frame Information, PRX Quantum
2, 010326 (2021).

[35] A. Acín, E. Jané, and G. Vidal, Optimal estimation of quantum
dynamics, Phys. Rev. A 64, 050302(R) (2001).

[36] G. Chiribella, G. M. D’Ariano, and M. F. Sacchi, Opti-
mal estimation of group transformations using entanglement,
Phys. Rev. A 72, 042338 (2005).

[37] R. Oliveira, O. C. O. Dahlsten, and M. B. Plenio, Generic
Entanglement Can Be Generated Efficiently, Phys. Rev. Lett.
98, 130502 (2007).

[38] O. C. O. Dahlsten, R. Oliveira, and M. B. Plenio, The emer-
gence of typical entanglement in two-party random processes,
J. Phys. A: Math. Theor. 40, 8081 (2007).

[39] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and
approximate unitary 2-designs and their application to fidelity
estimation, Phys. Rev. A 80, 012304 (2009).

[40] A. W. Harrow and R. A. Low, Random Quantum Circuits
are Approximate 2-designs, Commun. Math. Phys. 291, 257
(2009).

[41] I. T. Diniz and D. Jonathan, Comment on “Random quantum
circuits are approximate 2-designs” by A. W. Harrow and R. A.
Low (Commun. Math. Phys. 291, 257 (2009)), Commun. Math.
Phys. 304, 281 (2011).

[42] L. Arnaud and D. Braun, Efficiency of producing random uni-
tary matrices with quantum circuits, Phys. Rev. A 78, 062329
(2008).

[43] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Local
random quantum circuits are approximate polynomial-designs,
Commun. Math. Phys. 346, 397 (2016).

[44] Y. Nakata, C. Hirche, M. Koashi, and A. Winter, Efficient
Quantum Pseudorandomness with Nearly Time-Independent
Hamiltonian Dynamics, Phys. Rev. X 7, 021006 (2017).

[45] D. Aharonov and M. Ben-Or, Fault-tolerant quantum compu-
tation with constant error, in Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, El Paso Texas
USA, STOC ’97 (ACM Press, New York, 1997), pp. 176–188.

[46] V. Bužek, R. Derka, and S. Massar, Optimal Quantum Clocks,
Phys. Rev. Lett. 82, 2207 (1999).

[47] A. Kubica and R. Demkowicz-Dobrzański, Using Quantum
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