
PHYSICAL REVIEW RESEARCH 4, 023106 (2022)

Lorentz violation in Dirac and Weyl semimetals
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We propose a correspondence between the description of emergent Lorentz symmetry in condensed-matter
systems and the established general effective field theory for Lorentz violation in fundamental theories of
spacetime and matter. This correspondence has potential implications in both directions. We illustrate the
proposal by investigating its consequences for the spectral and transport properties of Dirac and Weyl semimetals.
Particular realizations of this framework give rise to Dirac nodal spectra with nodal lines and rings. We
demonstrate a bulk-boundary correspondence between bulk topological invariants and drumhead surface states
of these Dirac nodal semimetals. We calculate their transport coefficients in leading-order perturbation theory,
thereby characterizing the unconventional electromagnetic response due to small deviations from emergent
Lorentz invariance. Some prospective future applications of the correspondence are outlined.
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I. INTRODUCTION

The realization that space and time are closely intertwined
revolutionized physics over a century ago. Since then, the
Lorentz symmetry of spacetime has become a cornerstone
of our best theoretical description of fundamental particles
and fields, which is an amalgamation of general relativity
and the Standard Model. In recent years, another role for
Lorentz symmetry has appeared, as an emergent property
of certain condensed-matter systems such as semimetals and
some unconventional superconductors. The existence of math-
ematically related symmetries in these two different contexts
suggests intriguing prospects for interdisciplinary advances,
including the cross transferral and exploitation of concepts
and methods.

The present work draws on a specific parallel between
prospective deviations from Lorentz symmetry in high-energy
physics and departures from emergent Lorentz symmetry
in condensed-matter systems. In high-energy physics, estab-
lishing a consistent unified theory of gravity and quantum
physics remains an open challenge. Any such theory can be
expected to generate small but observable deviations from
known physics, which could include tiny violations of Lorentz
invariance. In condensed-matter physics, Lorentz symmetry
is explicitly broken in low-energy phases of matter. However,
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the electronic energy bands in a crystalline solid can exhibit
an emergent Lorentz symmetry at low energies that governs
the dynamics of quasiparticle excitations above the ground
state. The explicit or spontaneous breaking of this symmetry
is then manifested as various electronic phases of the system.
Here, we provide a general perspective for establishing the
correspondence between these two types of Lorentz violation,
and we examine some specific consequences in the context of
semimetals.

A powerful field-theoretic technique for describing low-
energy signals arising in an underlying high-energy theory
is effective field theory [1]. The prospective Lorentz viola-
tions emerging from a unified theory of gravity and quantum
physics are described in a general and model-independent way
by an effective field theory known as the Standard-Model
Extension (SME) [2–4]. This framework can be used to clas-
sify, enumerate, and interpret the various possible physical
effects of departures from Lorentz symmetry. It also forms
the basis for numerous precision experimental searches for
Lorentz violation [5], with a reach in some cases exceeding
sensitivity to the Planck-scale effects expected to govern the
behavior of spacetime and matter in the underlying unified
theory.

A field-theoretic approach is also widely used in studies of
condensed-matter systems with emergent Lorentz symmetry.
For example, Dirac materials with isolated band touching
points host quasiparticles with dynamics governed by the
Dirac equation, thereby intrinsically implementing quantum
electrodynamics in the presence of gauge potentials. For de-
scriptions of Dirac and Weyl semimetals [6–11], it is thus
natural to adopt field-theoretic methods and their lattice
implementations [12–34]. Examples with emergent Lorentz
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symmetry in 2 + 1 dimensions also exist, including the
high-temperature superconducting state of cuprates with two-
dimensional d-wave pairing symmetry [35–39], surfaces of
various topological insulators [40–44], and graphene [45,46],
a two-dimensional sheet of carbon atoms arranged on a hon-
eycomb lattice.

The thesis of the present work is that the comprehensive
SME framework for Lorentz violation provides a basis for
the classification and phenomenological exploration of gen-
eral quasiparticle excitations in the band structures of Dirac
and Weyl materials, and that in turn the features of emer-
gent Lorentz symmetry in these materials offer insights into
aspects of Lorentz violation in the SME framework. The im-
plications of this thesis are substantial in both directions. On
one side, it offers prospects for the description, realization,
and perhaps even design of novel phases of matter based
on the general SME framework. On the other side, the ex-
istence of phases of matter realizing an emergent Lorentz
violation implies the potential to shed light on open challenges
in the SME context, such as the theoretical issue of quan-
tum stability and the physical meaning of large coefficients
for Lorentz violation [47], and ambiguities in radiative cor-
rections [3,48–54]. Potential mathematical implications also
exist on both sides. For example, for many simple types of
Lorentz violation, a consistent dynamical spacetime cannot
be accommodated by Riemann geometry and instead may
require a generalization such as Finsler geometry [4,55]. The
correspondence proposed here thus leads us to anticipate that
Finsler geometry plays a role in quasiparticle dynamics in
Dirac and Weyl semimetals and, conversely, that these sys-
tems can serve as laboratories for analogues of fundamental
particle dynamics governed by Finsler geometry, including
scenarios that are experimentally accessible but mathemati-
cally intractable.

The goal of the present work is to pave the way for future
comprehensive studies of these ideas and to illustrate some
of the benefits of this thesis. Here, we focus specifically on
implications of the SME framework for emergent Lorentz
symmetry in the low-energy effective theory of various types
of Dirac and Weyl semimetals. Special cases previously con-
sidered correspond to particular terms in the SME formalism.
For Weyl semimetals, certain violations can be parametrized
by a single axial background gauge field, and the electromag-
netic response has been analyzed with field-theoretic methods
[12–17,19–28]. Studies of related systems have considered
some additional types of Lorentz violations [29–34]. These
and other systems are described here using SME-based lat-
tice models, which provide a starting point for understanding
higher-order contributions in the energy bands at energy
scales relevant in real materials and allow for nonperturbative
effects in SME coefficients for Lorentz violation. We thereby
find novel phases of matter, such as nodal Dirac semimetals
arising from Lorentz-violating tensorial spin-orbit couplings.
For these models, we investigate the topological properties
of the nodal lines and rings, and we characterize the surface
bound states. In high-energy physics, the SME is typically
viewed as a perturbative framework, and in the present context
this perspective is well suited to order-by-order computa-
tions of semimetal transport coefficients in powers of the
fine-structure constant and the SME coefficients for Lorentz

violation. We analyze the leading effects of all coefficients
for Lorentz violation on the electromagnetic response of
Dirac materials, revealing an unconventional response in the
presence of tensorial spin-orbit couplings along with various
velocity anisotropies.

The paper is organized as follows. Section II is dedicated
to a brief introduction of the SME. In Sec. III, we formulate
lattice Hamiltonians based on the SME and study their energy
bands for the cases of a background axial gauge field and
a background tensorial spin-orbit coupling. In Sec. IV, we
characterize the nontrivial topology of the bands in terms
of their bulk topological invariants and their surface states.
Section V presents perturbative calculations of transport coef-
ficients in the SME, including for a background axial gauge
field, a background tensorial spin-orbit coupling, and velocity
anisotropies. Finally, Sec. VI provides a summary of our find-
ings and an outlook on some interesting open issues for future
investigation.

II. SME BASICS

Small departures from exact Lorentz invariance in nature
could arise in an underlying unified theory such as strings
[56,57]. A general description of the ensuing Lorentz viola-
tions appearing at attainable energy scales can be formulated
using effective field theory [58], yielding the SME frame-
work [2–4]. The SME degrees of freedom include those of
all known elementary particles and their interactions. The
SME action consists of the Einstein-Hilbert action for general
relativity coupled to the action for the standard model, to-
gether with all possible terms formed from Lorentz-violating
operators that respect general coordinate invariance. Each
Lorentz-violating term is constructed using a background field
that remains unaffected by Lorentz transformations of the
experimental system of interest. The background field is cou-
pled to an operator formed from dynamical fields to yield a
term in the action that is a scalar under general coordinate
transformations. The components of the background field are
called coefficients for Lorentz violation. In a realistic effective
field theory of this type, any terms that break CPT symmetry,
which is the product of charge conjugation C, parity inversion
P, and time reversal T, must also break Lorentz invariance
[2,59]. The set of SME coefficients therefore controls CPT
violation as well as Lorentz violation. Reviews of the SME
can be found in Refs. [60–63].

In the present work, we are interested in the behavior of
electromagnetically coupled spin- 1

2 quasiparticle excitations
in condensed-matter systems, so the relevant SME limit is
that of a single species of spin- 1

2 Dirac fermions subject to a
U(1) gauge interaction. For practical purposes, we further re-
strict our analysis to the minimal nongravitational SME [2,3].
Terms in the Lagrange density of this version of the SME con-
tain only field operators of mass dimensions d � 4, a feature
shared by established descriptions of electronic quasiparti-
cle properties in Weyl and Dirac semimetals. More general
SME contributions, including field operators with d > 4 in
the nonminimal SME [64–67] and gravitational field operators
[4,68–70], may well also be of interest for condensed-matter
systems, but an investigation of their roles in this context lies
beyond our present scope.
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With the above considerations in mind, we are led to focus
on the following flat-spacetime SME limit [47]:

S = 1

2

∫
d4x ψ̄ (i�μDμ − M )ψ + H.c. (1)

In this expression, ψ denotes a four-component spinor field,
and ψ̄ := ψ†γ 0 is its Dirac conjugate, as usual. The gener-
alized Dirac and mass matrices, �μ := γ μ + δ�μ and M :=
m + δM, are composed of the ordinary Lorentz-symmetric
pieces γ μ and m and Lorentz-violating contributions δ�μ

and δM. Minimal coupling to the vector potential Aμ is
implemented via the conventional U(1)-covariant derivative
Dμ = ∂μ + iqAμ with the particle charge q. Repeated space-
time indices are understood to be summed over, and our
conventions for the Minkowski metric, the Levi-Civita sym-
bol, and the Dirac matrices are ημν = diag(1,−1,−1,−1),
ε0123 = +1, {γ μ, γ ν} = 2ημν , γ5 = iγ 0γ 1γ 2γ 3, and σμν =
i
2 [γ μ, γ ν]. Unless stated otherwise, we work in natural units
h̄ = c = e = 1.

To expose the spacetime-transformation behavior of the
various components of δ�μ and δM, it is customary to de-
compose these quantities in terms of the 16 Dirac matrices as
follows:

δ�μ := cνμγ ν + dνμγ5γ
ν + eμ + i fμγ5 + 1

2 gκλμσ κλ,(2a)

δM := aμγ μ + bμγ5γ
μ + 1

2 Hμνσ
μν. (2b)

Here, the SME coefficients aμ, bμ, cμν , dμν , eμ, fμ, gλμν ,
and Hμν control the type and size of deviations from Lorentz
symmetry, and in the present flat-spacetime context, they may
consistently be assumed to be constant. Without loss of gener-
ality, cμν and dμν can be taken as traceless, cμν as symmetric,
Hμν as antisymmetric, and gκλμ as antisymmetric in its first
two indices. The coefficients aμ, bμ, eμ, and gκλμ parametrize
CPT-odd behavior, while cμν , dμν , fμ, and Hμν are associated
with CPT-even physics.

We remark in passing that in certain limits of the SME,
various coefficients for Lorentz violation lead only to sup-
pressed effects or become entirely undetectable. For example,
in the present flat-spacetime, single-fermion situation, a judi-
ciously chosen field redefinition removes aμ from the action
rendering these coefficients unobservable [2,3,68]. Likewise,
the fμ coefficients can be completely absorbed into cμν by
rescaling the Dirac matrices [71,72] and are thus superfluous.
For perturbatively small SME coefficients, additional leading-
order transformations exist that either remove certain further
SME coefficients from the action in Eq. (1) or demonstrate
their equivalence to other coefficients in the Lagrange density.

The set {14, γ5, γ
μ, γ5γ

μ, σμν} spans the space of (4 × 4)
matrices, so that the parametrizations (2a) and (2b) contain
all possible nontrivial corrections to the free Dirac equation
with fewer than two derivatives. It follows that general spin- 1

2
quasiparticle excitations in condensed-matter systems, includ-
ing ones not yet realized experimentally, are encompassed by
the action in Eq. (1), with all generalizations to higher deriva-
tives contained in the full SME. This broad scope, together
with an abundance of existing theoretical SME explorations
in high-energy physics, establishes the SME as a valuable
framework for understanding, modeling, and predicting key
features of Weyl and Dirac semimetals.

Examples of this assessment can readily be identified.
Spin-independent and spin-dependent anisotropies in the
Fermi velocity are associated with the SME coefficients cμν

and dμν , respectively. Furthermore, semimetals with Weyl
nodes separated by 2bμ in four-momentum space are known
to be governed by the bμ contribution in the SME [23].
Many aspects of the action in Eq. (1) have been investi-
gated in high-energy physics, such as its general plane-wave
dispersion and propagation; explicit eigenspinor solutions,
spin sums, and propagators; field redefinitions; canonical field
quantization; classical-particle limit; statistical physics; and
its phenomenology [2,3,47,68,71–97]. Further results, which
may also include SME terms of higher mass dimensions or
involve the QED extension of this action, can be found in
Refs. [53,54,66,98–117]. Therefore, Eq. (1) comes with a
well-developed toolkit for applications in condensed-matter
systems. Part of this work will outline in more detail how
known results for Weyl and Dirac semimetals closely mesh
with SME physics of bμ and cμν .

The action in Eq. (1) also permits investigations of band
structures that are possible in principle, but have not yet been
established. We will illustrate this capability of the SME in
the context of its gκλμ contribution. The associated dispersion
can be extracted as usual via a plane-wave ansatz ψ (x) ∼
exp(−ik · x), kμ = (k0, k), in the modified Dirac equation
emerging from the action in Eq. (1). This dispersion can only
depend on gκλμ through Kκλ := gκλμkμ and Lκ := gκλμkλkμ,
and an explicit calculation yields

0 = (k2 − m2)2 − 4K2(k2 + m2) − 4K4

+ 16L2 + 16Kκ
λKλ

μKμ
νKν

κ , (3)

where K2 := KμνKμν . In general, the latter represents a
quartic equation in the energy variable k0 for a given three-
momentum k. Its four roots correspond to particle and
antiparticle states with two spin degrees of freedom each.
Exact expressions for the roots can be given, but they are not
particularly transparent. However, leading-order results, valid
for |gκλμ| � 1, can be found from

k2 − m2 � ±4
√

1
2 K2m2 − L2. (4)

Here, it is understood that Kκλ and Lκ are constructed with
the zero-order roots kμ± := (±√

k2 + m2, k). The ± signs
in Eq. (4) and in kμ± are uncorrelated, so that all the usual
degeneracies are typically lifted.

The antisymmetric structure of gκλμ in its first two indices
results in 24 independent components. For many purposes, it
is useful to decompose them into Lorentz-irreducible pieces:

gκλμ = g(M )
κλμ + εκλμ

νg(A)
ν − 1

3

(
ηκμg(T )

λ − ηλμg(T )
κ

)
, (5a)

where

g(M )
κλμ := + 1

3 (gκλμ + gκμλ + ηκμgλν
ν )

− 1
3 (gλκμ + gλμκ + ηλμgκν

ν ), (5b)

g(A)
ν := − 1

6εκλμνgκλμ, (5c)

g(T )
κ := +ηλμgκλμ = gκλ

λ. (5d)
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Here, g(A)
ν and g(T )

κ each contain four independent compo-
nents and denote the fully antisymmetric and trace pieces,
respectively. The mixed-symmetry piece g(M )

κλμ is nonaxial,

εκλμνg(M )
κλμ = 0, and traceless, ηλμg(M )

κλμ = 0. These eight con-

straints leave g(M )
κλμ with 16 independent components. At

leading order, mg(A)
ν can be absorbed into bν , and g(T )

κ can be
removed with a field redefinition. For these reasons, we will
focus on g(M )

κλμ in this work.

III. LATTICE MODELS

Lattice models whose low-energy theory contains desired
terms in the SME can be constructed in various ways. Here,
we illustrate this fact by taking the minimal SME as our
starting point and constructing the corresponding lattice Bloch
Hamiltonians via a Wilson map for every spatial direction j,

−i∂ j �→ v sin k j =: v j (k), (6a)

m �→ m + B
3∑

j=1

[1 − cos(k j )] =: μ(k). (6b)

Here, k = (k1, k2, k3) is the lattice momentum in the Brillouin
zone [−π, π ]3 where we choose the lattice spacing as the
length unit. The electromagnetic vector potential is introduced
on the lattice by the Peierls substitution, k �→ k − A, where
A = (A1, A2, A3). The lattice parameters m and B control the
gap structure of the model: for sgn(m)sgn(m + B) > 0, the
energy bands are gapped, while for m = 0 the gap closes at
discrete points in the Brillouin zone, realizing a semimetal.
The parameter v is the Fermi velocity at k = 0.

Incorporating the temporal direction indicated by the in-
dex μ = 0 in δ�μ of Eq. (2a) needs some care, since it
provides the link between the equations of motion obtained
from the action in Eq. (1) and the Hamiltonian [47,68]. Here,
we assume �0 = γ 0 for simplicity, whereupon δ�0 = 0. This
requirement restricts the number of nonzero elements of the
Lorentz-violating background fields. Specifically, we will be
setting cλ0 = gκλ0 = dλ0 = e0 = f0 = 0 in our lattice models.
Then, the generic Hamiltonian based on the Dirac-fermion
sector of the minimal SME given by Eq. (1) takes the form

H (k) = γ 0� jv j (k − A) + γ 0M(k − A) + A0, (7)

where, again, a sum over the repeated index j is under-
stood. For the explicit form of the free Hamiltonian, consult
Ref. [118].

In the following, we consider two cases in detail: the well-
studied Weyl semimetal with nonzero bμ and cνμ background
fields and a novel Lorentz-violating Dirac semimetal with a
nonzero gκλν background field.

A. The b and c terms: Weyl semimetals

An effective microscopic model for Weyl semimetals
based on the b term of Eq. (1) has been considered in
Refs. [12–17,19–28]. Note that the conventions for the b term
employed in the SME action of Eq. (1) are different from
those typically used in the condensed-matter context. First,
the Lagrangian employed in Eq. (1) is Hermitian by construc-

tion. Second, the b term occurring in the SME comes with
the opposite sign relative to the corresponding term in, e.g.,
Ref. [12].

Keeping only the b and c terms nonzero among the
Lorentz-violating background fields and setting Aμ = 0, we
arrive at the following lattice Hamiltonian from Eqs. (6) and
(7):

Hbc(k) = γ 0γ j[ṽ j (k) − b jγ5] + γ 0μ(k) − b0γ5, (8)

where ṽ j = (δ j
l + c j

l )vl . As of now, we will suppress the
explicit dependence of ṽ = (ṽ1, ṽ2, ṽ3) and μ on k for brevity.
For a purely timelike background field bμ = (b0, 0), the dis-
persion has the form

E t
bc = ±

√
(|ṽ| ± b0)2 + μ2, (9)

where the signs are chosen independently. For a purely space-
like background field bμ = (0, b), the dispersion reads

E s
bc = ±

√
|ṽ⊥b|2 +

(√
|ṽ‖b|2 + μ2 ± |b|

)2

, (10)

where ṽ‖b := (ṽ · b/|b|2)b and ṽ⊥b := ṽ − ṽ‖b are the compo-
nents of ṽ parallel and normal to b, respectively.

The closed form of the dispersion in the general case is
cumbersome. However, for μ ≡ 0, it simplifies to E0

b (k) =
±[b0 + |ṽ ± b|]. This is useful in deducing the general dis-
persion for m = 0 and small bμ near k = 0 as

Ebc(k) = ±[b0 + |v(13 + c)k ± b|] + O(B2), (11)

with B employed in Eq. (6b) and c is the symmetric matrix
with elements c j

l . This result shows the presence of Weyl
nodes at energies E±

0 = ±b0 + O(B2) and momenta k±
0 =

±(13 + c)−1b/v + O(B2) for b �= 0 if and only if cb �= −b.
For a singular 13 + c the Weyl nodes span the kernel of 13 + c
[23]. For c �= 0, the linear dispersion around the nodes is
reoriented and acquires anisotropic velocities v(1 + ca) along
the principal direction a of c with eigenvalue ca.

We note here that allowing c0μ �= 0 can also modify
the Weyl cones. Setting bμ = 0 for simplicity, taking c =
(c00/3)13 to enforce the vanishing trace cμ

μ = 0, and after
appropriate field redefinitions [98], we find the dispersion for
m = 0 near k = 0 as

E t
c(k) = ±v|(1 − 4c00/3)k| + 2vc · k, (12)

where c = (c01, c02, c03). Thus, the cones are tilted when c �=
0 while their opening angle is controlled by c00, resulting in
type-I and type-II Weyl semimetals [8,119,120].

B. The g term: Dirac nodal semimetals

We will now focus on the g term, defined in Eq. (1),
and its understanding within the context of semimetals. For
Aμ = 0, keeping only the g term and having set gκλ0 = 0 in
the Hamiltonian formulation, we have

Hg(k) = γ 0γ jv j (k) + 1
2γ 0σκλgκλ jv j (k) + γ 0μ(k), (13)

from Eqs. (6) and (7). In the remainder of this paper, we
will only consider the effect of the mixed component g(M )

κλμ of
Eq. (5) and set g(A)

μ = g(T )
μ = 0.
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TABLE I. Nodal lines of Eg0 and Eg1 stated in Eqs. (16) and
(17), respectively, near the Dirac point for g0 and g1 with a vanishing
eigenvalue ga, gc, or gb.

Condition Nodal direction in principal axes

|ga| � 1, |gb| � 1 (±√
2(g2

b − 1),±1, 1)

|gb| � 1, |gc| � 1 (1, ±√
2(g2

c − 1), ±1)

|gc| � 1, |ga| � 1 (±1, 1, ±√
2(g2

a − 1))

As we discard the 4 components gκλ0, we can parametrize
the remaining 12 components of the mixed piece in terms of
two (3 × 3) matrices g0 and g1 with spatial components

(g0)i j := g0i j, (14a)

(g1)i j := 1

2
εikl gkl j, (14b)

with the Levi-Civita symbol εikl = εikl in three dimensions.
We note from Eq. (5d) that g(T )

0 = −tr(g0) and g(T )
k =

−εki j (g1)i j , where k is a spatial component. Similarly, from
Eq. (5c), g(A)

0 = tr(g1) and g(A)
k = εki j (g0)i j . In what follows,

we will set g(T )
μ = g(A)

μ = 0, which renders the matrices g0

and g1 symmetric and traceless. In this case, they have 12
independent coefficients in total.

Then, the Hamiltonian of Eq. (13) takes the form

Hg = γ 0γ jv j + iγ j (g0v) j + γ jγ 5(g1v) j + γ 0μ, (15)

where we again omit dependences on k. The corresponding
dispersion can be written in closed form for some special
cases. For g1 = 0, we have

Eg0 = ±
√

|v‖g0 |2 + (|v⊥g0 | ± |g0v|)2 + μ2, (16)

where v‖g0 := (v · g0v/|g0v|2)g0v and v⊥g0 := v − v‖g0 are
the components of v parallel and perpendicular to g0v, respec-
tively. This spectrum is gapped everywhere except at the Dirac
point where μ = |v| = 0. For g0 = 0, we find

Eg1 = ±
√

|v‖g1 |2 +
(√

|v⊥g1 |2 + μ2 ± |g1v|
)2

, (17)

where v‖g1 := (v · g1v/|g1v|2)g1v and v⊥g1 := v − v‖g1 are
the components of v parallel and perpendicular to g1v, respec-
tively. We note that Eg0 and Eg1 are closely analogous to E t

bc
of Eq. (9) and E s

bc of Eq. (10), respectively, for the b term,
except (i) the parallel and perpendicular directions of v are
switched, and (ii) the b term is fixed and finite, whereas the g
terms vanish at the Dirac point along with v itself.

We now analyze the spectrum in a system with periodic
boundary conditions. We first give a geometric interpretation
of g0 and g1: since they are traceless, symmetric matrices,
they can be rotated to a set of orthogonal principal axes
labeled with (a, b, c), where they take the diagonal form
diag(ga, gb, gc) with ga + gb + gc = 0. Therefore, each such
matrix can be represented by a rotation to the principal coor-
dinate system (with three free parameters) and a combination
of reflections around two principal axes (with two free param-
eters). In the following, when needed we work in this principal
coordinate system, in which we denote v = (va, vb, vc).

ga

g b

g a
=

g b

g
b = g

c

g
a =

g
c

G
a =

0

G
a =

0

G
b

=
0

G
b
=

0

Gc = 0

Gc = 0

FIG. 1. Diagram of solutions for the nodal lines of Eg0 and Eg1

near the Dirac point, with Eg0 and Eg1 taken from Eqs. (16) and (17),
respectively. In the solid (blue) regions, there are nodal lines near
the Dirac point. The dark solid (blue) borders indicate that there are
nodal lines through the Dirac point. When two eigenvalues of g0 and
g1 are equal along the light solid (green) lines, there are nodal rings
in Eg1. The hatched (green) regions are where nodal rings also form
when the eigenvalues are not strictly equal. Analytical forms of the
solutions are obtained perturbatively near light solid (green) lines as
in Eq. (23a). There are no nodal lines along the dashed curves and
lines. The directions ga = 0, gb = −ga, and gb = 0 bisecting the dark
(blue) regions correspond to the cases in Table I.

Note that the double degeneracy of the original Dirac en-
ergy bands is lifted by the g term, except along certain lines
where g0v = 0 or g1v = 0, respectively, for the g1 = 0 or
g0 = 0 case. Of course, such degenerate lines exist only if one
of the eigenvalues of g0 or g1 vanishes.

Interestingly, the Dirac point may now be accompanied
by nodal lines at k �= 0 where the two central energy bands
are degenerate at Eg0 = ±|μ(k)| and Eg1 = 0. Such nodal
lines exist when |v‖g0 | = 0 and |v⊥g0 | = |g0v| for g1 = 0, or
|v‖g1 | = 0 and |v⊥g1 |2 + μ2 = |g1v|2 for g0 = 0. Since the
former can be obtained from the latter by setting μ = 0, we
will study the more general case of g0 = 0 nodal lines and
drop the indices 0 and 1 for brevity. Near the Dirac point with
m = 0, we can set μ = O(k2) → 0 compared to |v| = O(k),
and the two conditions coincide.

Since v‖g = 0, we may replace v⊥g = v and simplify the
condition for nodal lines to

v · g v = 0, (18a)

v · (g2 − 13)v = μ2, (18b)

where we have used v‖g ∝ v · g v and |gv|2 = v · g2 v for a
symmetric matrix g. The latter equations describe quadric
surfaces that can be brought to normal form by diagonalizing
the matrices g and g2 − 13, respectively.

If one of the eigenvalues vanishes, say ga = 0 = gb + gc,
then Eq. (18a) yields v2

b = v2
c . From Eq. (18b), we have
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v
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FIG. 2. The energy bands for g1 = diag(ga, 0, −ga ) with ga =
1.5 (in the dark blue region with gb = 0 in Fig. 1 and second row
of Table I) with the principal axes (a, b, c) = (x, y, z). The energy
of the two central bands is shown in (a, b) in units of v, and the
planes show the surface of zero energy. In (a, c), m = 0 and the ∞-
shaped nodal lines go through the Dirac point of Eg1(kx, ky, ±kx ). In
(b, d), m = 0.2v and the nodal lines are gapped out at the Dirac point
and turn into rings. The dashed lines in density plots (c, d) show
the nodal directions ky = ±√

2g2
a − 1kx through the Dirac point. We

have assumed B = v everywhere.

2(g2
b − 1)v2

b = v2
a . The nodal lines then exist for |gc| > 1.

Near the Dirac point, we can set μ → 0 compared to lin-
ear terms in v to find nodal lines along the four directions
(±√

2(g2
c − 1),±1, 1) in the principal basis. One expects that

these nodal lines should exist also when |ga| � 1 in approx-
imately the same direction. Indeed, we will show in the full
solution below that this is the case. The argument works simi-
larly for the other principal directions b and c, as summarized
in Table I.

Let us now look at the general case assuming nonzero
eigenvalues. Then we can solve Eq. (18a) for v2

c = (gav
2
a +

gbv
2
b )/(ga + gb) and replace in Eq. (18b) to find the set of

equations

gav
2
a + gbv

2
b = −gcv

2
c , (19a)

Gbv
2
a − Gav

2
b = −gcμ

2, (19b)

where

Ga = (gb − gc)(gbgc + 1), (20a)

Gb = (gc − ga)(gcga + 1). (20b)

Solving for v2
a and v2

b , we find

v2
a = Gav

2
c + gbμ

2

Gc
, (21a)

v2
b = Gbv

2
c − gaμ

2

Gc
, (21b)

with

Gc = (ga − gb)(gagb + 1). (21c)

(a) (b)

(c) (d)

Eg1/v

1

0
−1

kx ky

Eg1/v
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0
−1

kx ky

|Eg1|
v

kx

k
y

|Eg1|
v

kx

k
y

FIG. 3. The energy bands for g1 = gb diag(−2 − ε, 1, 1 + ε)
with gb = 0.75 and (a, c) ε = 0, (b, d) ε = 0.04, respectively, on
and near the line gb = gc in Fig. 1 with the principal axes (a, b, c) =
(x, y, z). The energy of the two central bands in (a, b) are in units of v

and show nodal rings of Eg1(kx, ky, kz ) on the planes (a) kx = ±kx0 =
±(2v/B)

√
(2g2

b − 1)/3 = 0.41 and (b) kx = ±√
k2

x0 + A(kz )ε [see
Eqs. (23a) and (23b)]. The nodal rings shown on the density plots
match well with the dashed (c) circle of radius

√
2|kx0| = 0.58 and

(d) ellipse defined in Eq. (22a). We have assumed m = 0 and B = v

for the lattice parameters.

Note that Eqs. (21a) and (21b) can be obtained from Eq. (19b)
by appropriate cyclic permutations of (a, b, c). This makes
sense since the choice of va, vc in Eq. (19b) is arbitrary.

The existence of nodal lines can be inferred from the rel-
ative signs of Ga, Gb, and Gc. Importantly, near the original
Dirac point, we may set μ → 0 compared to the linear terms,
and the nodal lines exist when Ga, Gb, and Gc all have the
same sign. These regions are shown in Fig. 1. As expected,
they include the cases with a single vanishingly small eigen-
value in Table I.

At the borders of these regions, say when Ga = 0, we have
gbgc + 1 = 0. Then, Gc = g2

bGb so that Gb and Gc have the
same sign. In the case of Eg1, μ �= 0 away from the Dirac
point and solutions for v2

a = (gb/Gc)μ2 exist when gb and
Gc have the same signs. Then, the second equation Gbv

2
c =

Gcv
2
b + gaμ

2 has solutions that form lines through the Dirac
point, along which Gbv

2
c ≈ Gcv

2
b near the Dirac point. In the

case of Eg0, nodal lines also exist in the plane va = 0 with
Gbv

2
c = Gcv

2
b exactly. The analysis is similar for the other bor-

ders when Gb = 0 or Gc = 0. Borders along which solutions
exist are shown with solid (blue) curves in Fig. 1.

We may also have Ga = 0 when gb = gc = −ga/2. Then,
Gc = −Gb = 3gb(2g2

b − 1) and the equations for the nodes
simplify to (v2

b + v2
c )/2 = v2

a = (gb/Gc)μ2, which have so-
lutions only for μ �= 0 when Gc/gb = 3(2g2

b − 1) > 0, hence
|gb| > 1/

√
2. Thus, these solutions exist only in the case of

Eg1 and form closed nodal rings around the Dirac point at
the intersection of the surfaces formed by v2

b + v2
c = 2v2

a and
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v2
a = (gb/Gc)μ2. The nodal rings exist along the solid (green)

lines in Fig. 1.
Clearly, the nodal rings do not appear or disappear dis-

continuously as we vary the eigenvalues. Instead, we expect
that there is a region around the lines of equal eigenvalues in
Fig. 1 for which nodal rings exist in the spectrum of Eg1. We
can see this for gb � 1/

√
2, where we expect the rings to be

close to the Dirac points. For gb ≈ gc, we can use v ≈ vk and
μ ≈ Bk2/2 to find to the lowest order in ε := (gc − gb)/gb

that, when projected to the b-c plane, the nodal rings form an
ellipse

ζbk2
b + ζck2

c = ζak2
a0, (22a)

where

k2
a0 = (

2g2
b − 1

) 4v2

3B2
, (22b)

ζa = 2 + ε, ζb = 1 + 4

3
ε, ζc = 1 + 4g2

b − 5

3
(
2g2

b − 1
)ε. (22c)

In the full k space, the nodes are found on the surface

k2
a = k2

a0 + A(kc)ε, (23a)

where

A(kc) = 5g2
b − 1

3
(
2g2

b − 1
)k2

c − 4

3
k2

a0. (23b)

When gb = gc > 1/
√

2, ε = 0 exactly and we find a circular
nodal ring with radius

√
2|ka0| in the b-c plane at ka = ±ka0.

We have checked numerically that nodal rings exist for the
hatched (green) regions in Fig. 1.

On the lattice, the growing effect of μ(k) away from the
Dirac point can cause the nodal lines of Eg1 to close into an
∞ shape. The nodal lines of Eg0 = ±|μ|, on the other hand,
continue away from the Dirac point to the Brillouin zone edge.
In Figs. 2 and 3, we plot typical dispersions exemplifying the
topology of nodal lines.

IV. TOPOLOGY OF THE BAND STRUCTURE

A. Topological invariants

The topologically nontrivial nodal structure of the dis-
persion for a system with periodic boundary conditions can
be characterized by bulk topological invariants. For exam-
ple, for the b term, the Chern number of the Hamiltonian
(8) with respect to the momenta perpendicular to b and as
a function of the momentum component q parallel to b is
Cb(q) = ±�(|q| < |b|), where the step function �(s) is 1 if s
is true and zero otherwise. The nonzero values of Cb signify
the topological nature of the Weyl semimetal.

For the g term, we utilize the chiral symmetry of the Hamil-
tonian (15) when g0 = 0 under the chiral operator C = iγ 0γ 5,

{Hg1 ,C} = 0, (24)

to define an integer-valued winding number as a topological
invariant. In the chiral eigenbasis, where we have C = σz ⊗ 12

- 1.0

- 0.5

0

0.5

1.0

(a)

kx

ky

kz

q p (b)

kz

kx

ky

q

p

(c)

kx

k
y

(d)

ky

k
z

WC

FIG. 4. The winding number WC (p) for (a, c)
g1 = diag(ga, 0, −ga) with ga = 1.5 and (b, d) g1 =
gb diag(−2 − ε, 1, 1 + ε) with gb = 0.75, ε = 0.04. The plots
in (a) and (b) show the calculated nodal lines and rings, respectively,
with the cyclic direction q used to define the winding number
contained in the (orange) plane normal to the (green) plane of p. As
the plane containing q scans values of p, the projection of the nodal
lines forms regions with WC (p) = ±1. In (d), we take ε = 0. The
values of the other parameters are m = 0 and B = v.

and Hg = σx ⊗ hx + σy ⊗ hy, the winding number is defined
as

WC[Hg1 ] := 1

2π i

∮
∂ ln det h(q)

∂q
dq ∈ Z, (25)

where h = hx − ihy and q is a cyclic lattice momentum vari-
able. The winding number is a function of p, the momentum
perpendicular to the cyclic momentum direction parametrized
by q. For example, consider a two-dimensional system with
momenta (p, q), where p is normal to q. If the system contains
a pair of Dirac points with opposite chiralities at (±p0, 0),
the winding number reads WC (p) = ±�(|p| < |p0|). The sign
here is determined by the orientation of the Dirac points with
respect to the direction of integration over q.

We now demonstrate the topological characterization of
the nodal lines and rings using this winding number under
chiral symmetry. In Figs. 4(a) and 4(b), we sketch the two
cases corresponding to Figs. 2(a) and 3(a). Taking p to be the
lattice momentum parallel to the green-shaded plane and the
cyclic direction q normal to it, we can see that as the (orange)
plane containing q and p scans the green plane (sampling
different p), two Dirac points emerge at the intersection with
the nodal lines and move within the plane. Therefore, we
expect the winding number WC (p) = ±1 when p is sampling
the area enclosed by the nodal lines, as sketched by the black
and white shaded areas on the green plane. As the planes are
rotated, the existence of other nodal lines and rings can lead
to a partial cancellation of the winding number, since they
contribute opposite signs to overlapping areas of p.
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Ey±
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FIG. 5. Bulk-boundary correspondence for Hg1 with g1 given
by Eq. (26) and ga = 0.9: (a) the contour of nodal lines, (b) the
projection of nodal lines on the kx-kz plane showing Emin

g1
(kx, kz ) :=

minky Eg1 (kx, ky, kz ), (c) the winding number WC (kx, kz ) with cyclic
integration along ky, and (d) the two lowest (closest to zero) energy
bands Ey±

g1
in an open geometry along the y direction with a lattice

size Ny = 150 and color showing the relative wavefunction weight
Lδ (ψ ) for δ = 3 sites near the boundary [see Eq. (28)].

We show the results of a numerical calculation of the wind-
ing numbers in Figs. 4(c) and 4(d) corresponding to the cases
shown in Figs. 4(a) and 4(b), respectively, of the same figure.
The parametrization of the plane of p in Fig. 4(c) is the same
as that used in Fig. 2(a). In Fig. 4(d), the plane of p is tilted by
45◦ in the kx-ky plane compared to Fig. 4(a) so as to resolve
the two nodal rings in the spectrum. As expected, the partial
overlap of the two rings at this angle leads to an area with
winding number +1 − 1 = 0.

B. Surface states

For a topological system with open boundaries, surface
bound states may arise depending on the surface orientation
and the nature of the bulk topology. For example, for the Weyl
semimetal with b �= 0 (see Sec. III A), the generic dispersion
for a boundary that is not orthogonal to b is an energy sur-
face terminating at a contour that contains the projections of
Weyl nodes on the boundary and whose curvature depends
on the direction of the boundary. Thus, as is well known,
generic constant-energy contours for bound states on such
open boundaries are open “Fermi arcs” [8] terminating on the
contour containing the Weyl-node projections.

The topological winding number WC calculated in the pre-
vious section corresponds to zero-energy bound states on
surfaces terminating the bulk normal to the direction of the
cyclic momentum q. These bound states are eigenstates of the
chiral operator with an eigenvalue equal to sgn(WC ) and, thus,
their energy is pinned to zero by the chiral symmetry. There-
fore, with open boundary conditions on surface terminations
parallel to the green planes in Figs. 4(a) and 4(b), we expect
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�0.5

0
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1.0 0
0.2
0.4
0.6
0.8
1.0
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g1
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FIG. 6. Bulk-boundary correspondence for Hg1 with g1 given by
Eq. (26) and ga = 1.3. Panels show the same data as in Fig. 5.

to obtain zero-energy surface bound states for all momenta p
along the surface for which WC (p) �= 0. Such surface bound
states form a flat band over a finite area of p and, thus, have
been called “drumhead” surface states.

The existence and the properties of such surface bound
states can be studied in a number of ways that incorporate
the physics near the boundary. In the continuum formulation,
one needs to impose the boundary conditions judiciously so
that the resulting Hamiltonian is self-adjoint [121,122]. Here,
instead, we study surface spectra by terminating the lattice
Hamiltonians appropriately to form open boundaries.

To simplify the choice of the boundary along lattice direc-
tions and still be able to resolve surface states with opposite
chiral eigenvalues, we choose g0 = 0 and

g1 = ga

⎛
⎝1 0 0

0 0 −1
0 −1 −1

⎞
⎠, (26)

where the columns and rows are along the lattice directions
j. Then, gb = −φga, gc = φ−1ga, with the golden ratio φ =√

5+1
2 , and the eigenvectors of g1 are

a :

⎛
⎝1

0
0

⎞
⎠, b :

⎛
⎝ 0

φ−1

1

⎞
⎠, c :

⎛
⎝ 0

−φ

1

⎞
⎠. (27)

Thus, implementing the conditions in Fig. 1, an ∞-shaped
nodal line is expected for

√
φ−1 ≈ 0.786 < |ga| < 1. For

|ga| = 1, the two ∞-shaped nodal lines become tangent and
for |ga| > 1 open into nodal rings. The directions of nodal
lines passing through the Dirac point (for m = 0) and the
orientation of the nodal rings are now tilted relative to the
lattice directions.

In Figs. 5 and 6, we present numerical results for ga =
0.9 and ga = 1.3, respectively, corresponding to the cases
with ∞-shaped nodal lines and rings. In Figs. 5(a) and 6(a),
the contours of near-zero energy states in the bulk Brillouin
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zone (kx, ky, kz ) are shown as a density plot of |Eg1 | with
Eg1 of Eq. (17). In Figs. 5(b) and 6(b), a two-dimensional
projection of the minimum energy on the kx-kz plane, Emin

g1
:=

minky Eg1 (kx, ky, kz ), is presented. This illustrates the expected
path that pairs of Dirac points traverse as the plane containing
the cyclic momentum q := ky used for calculating the winding
number scans values of p := (kx, kz ). This winding number is
plotted in Figs. 5(c) and 6(c).

Finally, in Figs. 5(d) and 6(d) we plot the lowest two
energies (i.e., those closest to zero) in a geometry with open
boundaries along the y direction, forming bands Ey±

g1 (kx, kz )
as a function of momenta along the periodic directions. These
bands contain both bulk and surface bound states. At momenta
p = (kx, kz ) for which there are states in the bulk gap, we
would expect the lowest energies to be surface bound states.
Such p should also correspond to nonzero values of WC (p).
In order to distinguish bulk and surface bound states, we
calculate a measure of edge localization of a wavefunction ψ ,

Lδ (ψ ) =
∑

0�|y−yb|�δ

|ψ (y)|2/‖ψ‖2, (28)

where yb are the positions of the boundaries along the y
direction, and δ is the number of sites in the vicinity of the
boundary. For a normalized state, ‖ψ‖2 = 1.

The results presented in Figs. 5 and 6 clearly show the
expected bulk-boundary correspondence between the bulk
topological invariant WC and the existence of surface bound
states. For ga = 0.9 (Fig. 5), the states in the bulk gap are
found close to the surface with half of their weight within a
layer of thickness that is 2% of the length of the system in the
open direction. For ga = 1.3 (Fig. 6), the bound states have
nearly all their weight in the same layer.

V. TRANSPORT

Topological semimetals are known to exhibit novel trans-
port phenomena. In particular, it has been shown that the
Hall conductivity in Weyl semimetals, induced by an applied
electromagnetic field, can be derived from the chiral anomaly
related to the action in Eq. (1) with nonzero b coefficients
[14–16,20]. In this view, one may rotate away the b term
from the action at tree level by an appropriate chiral rotation
of the Dirac fields. As the partition function is not invari-
ant under the same rotation, quantum corrections induce a
nonconservation of chiral charge in the system. These obser-
vations provide a strong link between the microscopic theory
of Weyl semimetals and the continuum effective action. In
this section, we generalize the effective-action approach to
transport phenomena and exhaust all possible induced fermion
currents generated by quantum corrections at leading order in
the coefficients in Eq. (1). We follow the conventions outlined
in Refs. [99,123]; i.e., natural units h̄ = c = ε0 = 1 are used.

A. Fermion current

From the perspective of the continuum action, a systematic
way to approach the calculation of induced currents starts
with the effective action in (3 + 1)-dimensional Minkowski
spacetime,

Z (A) =
∫

Dψ̄Dψ eiS, (29)

where S is the action of the SME fermion sector stated in
Eq. (1), which is minimally coupled to an electromagnetic
field. Furthermore, D indicates a path integral over appropri-
ate Dirac spinor field configurations. The latter Z (A) encodes
the response of the system to an electromagnetic background
field described by the four-potential Aμ. By definition, the
induced fermion current is then given by

〈 jμ〉 =
∫
Dψ̄Dψ[ψ̄�μψ]eiS∫

Dψ̄Dψ eiS

= 1

Z (A)

(
−i

δ

δAμ(x)

)
Z (A). (30)

In the latter formula, �μ is defined as in Eq. (1), δ
δAμ

denotes
the functional derivative for Aμ, and we have set the charge
q = 1. The low-energy fluctuations around the vacuum are
therefore obtained by integrating out the fermion fields:

Z (A) =
∫

Dψ̄Dψ exp

(
i
∫

d4x ψ̄�Aψ

)

= det(�A), (31)

with the modified Dirac operator �A based on Eq. (1) and
minimally coupled to Aμ. In the limit of a weak electro-
magnetic coupling, this form of the effective action can be
expanded as a series in powers of Aμ or, equivalently, in
powers of the electromagnetic coupling:

Z (A) = det(�)eS(A), (32a)

where � = i/∂ − m is the standard Dirac operator and

S (A) = −
∞∑

n=1

(−i)n

n

∫
dx1 · · · dxn f (x1, x2, . . . , xn), (32b)

with

f (x1, x2, . . . , xn) = tr[/A(x1)GF (x2 − x1) × · · ·
× /A(xn)GF (x1 − xn)]. (32c)

Here, /A := γ μAμ and GF is the fermion propagator formally
containing corrections from coefficients for Lorentz violation
at all orders. The trace is computed with respect to the matrix
structure in spinor space. Using this form of the effective
action, the leading and subleading terms in the electric charge
contributing to the induced current are given by

〈 jμ〉 = �μνAν + VμλκAλAκ , (33)

where i�μν is the vacuum polarization at order q2 and iVμλκ

is the three-photon vertex correction defined as the sum of
all one-particle-irreducible diagrams contributing to the two-
and three-point correlation functions in the effective theory,
respectively. Note that we have ignored the first-order term in
Z (A), which is linear in Aμ. In QED, this term vanishes due to
Furry’s theorem. In general, it does not vanish for each of the
controlling coefficients in Eq. (1). However, at leading order
it does so for all coefficients that can give a nonzero contri-
bution to the induced current. For further details regarding the
calculation of induced currents, see also Refs. [124,125].

Thus, the linear and quadratic response for any given co-
efficient in Eq. (1) can be evaluated simply by computing the
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modified vacuum polarization or vertex function either by per-
turbative calculation or otherwise. In this work, we will focus
only on the linear response and truncate at leading order in
both the electromagnetic coupling and coefficients for Lorentz
violation. In the perturbative approach, the response is given
by the one-loop vacuum polarization with first-order correc-
tions from coefficients for Lorentz violation. Incorporating
the C, P, and T properties of each coefficient in Eq. (1), the
generalization of Furry’s theorem reveals that the only coeffi-
cients which give a nonzero contribution to the induced linear
response at this order are the b, g, and c terms [99]. We note
that by the same logic only the d and H terms are potentially
relevant for nonlinear response. However, it was previously
found by explicit calculation that these contributions to the
modified vertex function vanish [100]. Since all other coeffi-
cients in Eq. (1) may be neglected in Lorentz-violating QED
due to field redefinitions, our results presented in this section
encompass all possible effects in the low-energy response of
the system at leading order in Lorentz violation. While the
result for the b term has already been widely explored in the
context of Weyl semimetals, we establish the method of the
effective action outlined here by reproducing known results
which have been calculated by independent methods.

B. Chiral anomaly of the b term

Recall from the previous section that the linear induced
current is related to the vacuum polarization of the underlying
theory. In the case of bμ �= 0, the vacuum polarization has
been previously calculated [50]. The Hall conductivity for
spacelike bμ with b2 < m2 is known to vanish [16]. Thus, we
consider the regime b2 > m2 characterized by the following
nonzero contribution:

i�μν

b = 1

2π2
εμναβbβ pα

√
1 − m2

|b2| . (34)

It is worth commenting that this result is ambiguous with re-
spect to the chosen regularization scheme and could be shifted
by an undetermined constant [3,48–52]. However, the addi-
tional microscopic details in the condensed-matter setting, in
particular the requirement that the Hall current vanish for
spacelike bμ, enforce this constant to be zero. For an extensive
discussion, see Ref. [12].

Equation (34) immediately gives the induced current

〈 jμ〉 = �
μν

b Aν (p)

= 1

2π2

√
1 − m2

|b2|ε
μναβbβ (−ipα )Aν (p)

= 1

4π2

√
1 − m2

|b2|ε
μναβbβFαν, (35)

where Fμν = ∂μAν − ∂νAμ is the electromagnetic field
strength tensor in configuration space. For m2 = 0, this agrees
with the result obtained via calculation of the chiral anomaly
using the Fujikawa method [15] where the latter is given in
position space. From Eq. (35), we can easily identify the
conductivity of the medium generated by bμ from the spa-
tial components of the current via 〈 ji〉 = σ i jE j . Using E =
−∇φ − ∂A

∂t and taking the x component of the current, we

FIG. 7. Diagrams contributing to the one-loop modified vacuum
polarization at leading order in g. Effective vertices are indicated by
“•” and denote a Lorentz-violating vertex insertion. See Ref. [99] for
details.

obtain the well-known Hall conductivity

σ xy = 1

2π2

√
|b2| − m2εxyl b̂l , (36)

where b̂l is the lth component of the unit vector b̂ := b/|b|
pointing along the spatial part b.

C. Novel effects of the g term

We proceed now to the calculation of the induced fermion
current associated with the g term. Before presenting the main
results, it is worth pointing out a few subtleties. Recall from
Eq. (5) in Sec. II that the g term can be decomposed into three
irreducible representations of the Lorentz group, with the fully
antisymmetric part g(A)

μ , the trace piece g(T )
μ , and the mixed-

symmetry part g(M )
κλμ. The induced current generated by g(A)

μ

is redundant with that of the b term. This can be understood
from the fact that mg(A)

μ can be rotated to a b-like contribution
due to the field redefinitions mentioned in Sec. II. As was
also described, the trace component g(T )

μ is unphysical and can
also be removed from Eq. (1) without loss of generality. Thus,
any new and physically relevant result must come from g(M )

κλμ,
which was our initial motivation for setting g(A)

μ = g(T )
μ = 0

starting from Eq. (14).
The one-loop vacuum polarization is straightforward to

compute in the perturbative regime via Feynman diagrams. In
Fig. 7, we show the diagrams needed for the modified vacuum
polarization where vertices corresponding to an insertion of
g(M )

κλμ are denoted by the symbol •. Note that while the first
class of diagrams, (1) and (2), involve modified QED vertices,
diagrams (3) and (4) involve a chirality flip on the internal
fermion line. Thus, it is expected that the induced current
be proportional to m in contrast to the corresponding results
generated by b. For a complete list of the associated Feynman
rules, see Ref. [99].

Proceeding with standard techniques to calculate the loop,
we find

〈 jμ〉 = �μνAν = − im

2π2
F (p2, m2)

× [
g(M )

μνα p2 + pλ
(
pνg(M )

λμα − pμg(M )
λνα

)]
pαAν, (37a)
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where we introduced a dimensionless parameter x :=√
p2/2m as well as a dimensionless function

p2F (p2, m2) := F̂ (x), (37b)

such that

F̂ (x) = 1 − ln[1 + 2x(
√

x2 − 1 − x)]

2x
√

x2 − 1

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − ln[1+2|x|(|x|+
√

|x2|+1)]

2|x|
√

|x2|+1
, x2 < 0

1 − sin−1(x)
x
√

1−x2 , 0 < x2 < 1

1 − iπ+ln |1+2x(
√

x2−1−x)|
2x

√
x2−1

, x2 > 1.

(37c)

Note that F̂ (|x| → 0) = 2|x|2/3 + O(|x|4) and F̂ (|x| →
∞) = 1 + O[ln |x|/|x|2] for x2 < 0 as well as F̂ (x →
0) = −2x2/3 + O(x4) and F̂ (x → ∞) = 1 + O[ln(x)/x2]
for x2 > 0. It is worthwhile to note that this result is finite
and thus there are no ambiguities related to divergences or
the regularization scheme. This can be understood from the
momentum structure appearing in the vacuum polarization.
Note that each factor in Eq. (37a) appears with three factors
of momenta. Thus, any divergence related to the vacuum
polarization generated would need to be absorbed by a corre-
sponding counterterm proportional to the g term, three factors
of ∂μ, and two factors of Aμ. However, it is clear that there
is no such counterterm that would be gauge-invariant and
renormalizable. Thus, in the minimal SME, defined by Eq. (1),
which is gauge-invariant and renormalizable by construction,
no such divergence can appear. Additionally, it should be un-
derstood that this result is valid for any irreducible component
of gμνα , and we have simply assumed that g(A)

μ = g(T )
μ = 0 in

the final result so that gμνα = g(M )
μνα .

We note that while 〈 jμ〉 is a gauge-invariant quantity, the
same is not obvious of the right-hand side of Eq. (37a). Using
the definition of the electromagnetic field-strength tensor Fμν

in momentum space, we can recast Eq. (37a) in a way where
gauge invariance is manifest:

〈 jμ〉 = m

2π2 p2
F̂ (x)

(
g(M )

μνα pλ − 1

2
g(M )

λνα pμ

)
pαFλν. (38)

Following the discussion of Sec. III A, it is of interest to make
the connection of this result to the components of gκλν which
are relevant in the Hamiltonian formulation of the model, i.e.,
when g(M )

κλ0 = 0.
Parametrizing in terms of the matrices g0 and g1 of

Eqs. (14a) and (14b) and denoting the momentum four-vector
as pμ = (ω, p), the charge density 〈ρ〉 := 〈 j0〉 and the spatial
current 〈j〉 take the form

〈ρ(ω, p)〉 = mωF̂ (x)

2π2 p2
[(g0p) · E + (g1p) · B], (39a)

〈j(ω, p)〉 = mF̂ (x)

2π2 p2
p[(g0p) · E + (g1p) · B]. (39b)

Here, we have assumed that the applied electromagnetic back-
ground field obeys the source-free Maxwell equations.

Thus, g0 and g1 characterize, respectively, the electric
conductivity tensor and the magnetoelectric response of the
system. Remarkably, for g1 �= 0 the application of a magnetic

field pulse can result in both a charge density and an electric
current. For example, for static electromagnetic fields E (r)
and B(r), we find 〈ρ〉 = 0 and

〈j〉 = m

2π2
[∇(g0∇) · E′ + ∇(g1∇) · B′], (40a)

where the fields are obtained via E′(r) = ∫
d3r′ F̃ (r −

r′)E(r′) and similarly for B′(r). The integration kernel follows
from a Fourier transform of Eq. (37b). We employ the follow-
ing asymptotic form of Eq. (37b) that is valid for x2 < 0 and
has the correct asymptotic behavior for |x| → 0 and |x| → ∞:

F̂ (x)|x2<0 ∼ |x|2
|x|2 + 3/2

. (40b)

Then,

F̃ (r) =
∫

d3p
(2π )3

F (−|p|2, m2)e−ip·r ≈ e−√
6m|r|

4π |r| . (40c)

Thus, the kernel is approximately a screened Coulomb poten-
tial.

D. The c term

To complete the list of coefficients for Lorentz violation
that give a nonzero induced current at leading order in Lorentz
violation, we consider the c term. In this case, the antisymmet-
ric and trace components of c can be removed via appropriate
field redefinitions following a similar reasoning as that for the
g term. Thus, in our derivation we retain only the symmetric,
traceless components of cμν . The one-loop vacuum polariza-
tion at leading order in Lorentz violation is then given by

〈 jμ〉 = − 1

6π2

{
K̂1(x)[cμν p2 − pμ(p · c)ν − pν (p · c)μ]

+ p · c · p

(
K̂2(x)ημν + K̂3(x)

pμ pν

p2

)}
Aν, (41a)

with the dimensionless functions

K̂1(x) =
[

5

3
+ 1

ε
+ ln

(
μ̄2

m2

)]

+
(

1 + 1

2x2

)
Ĉ(x) + 1

x2
, (41b)

K̂2(x) =
[

2

3
+ 1

ε
+ ln

(
μ̄2

m2

)]

+ 4x4 − 2x2 + 1

4x2(x2 − 1)
Ĉ(x) − 1

2x2
, (41c)

K̂3(x) = − 3

4x2(x2 − 1)
Ĉ(x) + 1 + 3

2x2
, (41d)

where, again, x =
√

p2/2m and we have used dimensional
regularization to evaluate the divergent pieces of the diagram,
thus introducing the unphysical mass scale μ̄2 = μ2

r eγE /4π ,
with γE the Euler-Mascheroni constant. Furthermore, μr is an
arbitrary reference mass scale needed for dimensional consis-
tency. For brevity, we have also introduced the dimensionless
function

Ĉ(x) =
√

x2 − 1

x
ln[1 + 2x(

√
x2 − 1 − x)]. (41e)
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Note that Ĉ(x → 0) = −2 + 2x2/3 + O(x4) and Ĉ(x →
∞) = ln[−1/(4x2)] + O(ln[−1/(4x2)]/x2).

In this case, there are divergent pieces that appear in the
loop evaluation. The divergent pieces can be removed by
appropriate counterterms in a gauge-invariant, renormalizable
way [99]. One possible option would be to utilize the on-
shell renormalization scheme, which has the advantages that
the fermion mass m appearing in the Lagrangian retains the
meaning of the physical mass as opposed to the running mass
and effectively removes the unphysical mass scale μ̄2 from the
vacuum polarization. In effect, the Lagrangian parameters will
evolve with the choice of reference scale [99]. Irrespective
of the choice of renormalization scheme the full expression
we obtain is in agreement with the general considerations
presented in Ref. [3].

Finally, we come to the form of the induced current in
which gauge invariance is manifest:

〈 jμ〉 = − i

8π2

[
K̂1(x)cμα pνFνα + K̂2(x)cαβ pβFμ

α

+ K̂3(x)cαβ pβ pμ pνFαν

]
. (42)

Taking into account the components relevant to the Hamilto-
nian formulation, where cμ0 = 0, we find that the charge and
current densities can be written as

〈ρ〉 = i
K̂2(x)

8π2
(cp) · E, (43a)

〈j〉 = i
K̂2(x)

8π2
(cp) × B, (43b)

respectively, where we recall the matrix (c)i j = ci
j = −ci j .

VI. SUMMARY AND OUTLOOK

This paper proposes a correspondence between the field-
theoretic description of emergent Lorentz symmetry in
condensed-matter systems and the SME framework, which is
the comprehensive effective field theory for Lorentz violation
appropriate for studies of fundamental theories of spacetime
and matter. The correspondence provides a foundation for
classifying and characterizing general quasiparticle excita-
tions using the SME, and conversely it implies that features
of emergent Lorentz symmetry in certain materials can yield
insights into Lorentz-violating properties of spacetime and
matter.

The body of this work focuses on emergent Lorentz invari-
ance in three-dimensional Dirac materials as viewed from the
general perspective offered by the SME. The correspondence
with the SME enables the classification of field-theoretic
terms in the action governing departures from emergent
Lorentz symmetry, according to the mass dimension and
spinor structure of the operator. This permits the construction
of lattice Hamiltonians that incorporate all types of Lorentz
violations around the original Lorentz-symmetric Dirac nodes
of the material.

Part of our investigations involve the study of changes to
the Dirac nodal structure arising from the presence of specific
types of SME coefficients for Lorentz violation. We discuss a
modification of the Dirac operator, known as the b term and
previously examined in the literature, which leads to a Weyl

semimetal with two nodes of opposite chirality separated in
momentum and/or energy. We also consider another modi-
fication of the Dirac operator called the g term, previously
unexplored in the condensed-matter context, that describes
Dirac nodal semimetals with intersecting Dirac lines and/or
Dirac nodal rings. The bulk topological invariants and the
existence and properties of surface bound states are explored.
The band structures associated with the b and g terms are
strikingly different, a noteworthy feature given that the C-, P-,
and T-symmetry properties of the Hamiltonian components
involving (g0)i j and (g1)i j of Eq. (14) are identical to those
involving b j and b0, respectively, as can be verified from Table
1 of Ref. [99]. The general effective action describing P- or T-
symmetry violation in semimetals must therefore incorporate
both terms, which generate distinct band structures.

Another part of our investigation concerns the transport
coefficients for various types of semimetals. At leading order
in perturbation theory, we calculate the transport coefficients
for the b and g terms and for another modification of the Dirac
operator called the c term. Interestingly, even at perturbatively
small values, the g term modifies the Maxwell equations in
the material in unconventional ways. In particular, the current-
and charge-density response of the material is determined by
the second derivatives of nonlocal screened electromagnetic
fields, as given in Eqs. (39) and (40).

The correspondence proposed here between deviations
from emergent Lorentz symmetry in materials and the SME
framework suggests various future research topics spanning
condensed-matter and high-energy physics. Several of these
arise directly from the approach and results obtained in the
present work. For example, the lattice models for a few types
of minimal SME coefficients remain to be investigated in
detail, including ones such as cλ0 and gκλ0 that are disregarded
here to minimize complications in the Hamiltonian descrip-
tion. The associated band structures, topological invariants,
and bound surface states would be interesting to establish.
An intriguing open issue in the general case is the identifi-
cation of appropriate boundary conditions and the resulting
surface states in the presence of Lorentz-violating terms. For
the b term associated with Weyl semimetals, the most general
boundary conditions can be found through self-adjoint exten-
sions of the Hamiltonian [122], and it would be valuable to
generalize this method to other SME coefficients.

Our study of transport coefficients could also be broad-
ened. While we have exhausted the list of minimal coefficients
for Lorentz violation that lead to a nonvanishing induced
current at leading order, certain SME coefficients in the action
of Eq. (1) may generate a nonvanishing fermion current from
the vacuum polarization when evaluated at second and higher
orders in Lorentz violation. Arguments analogous to Furry’s
theorem suggest that a nonzero current is to be expected
from contributions such as the d and H terms in Eq. (1).
Second-order effects from the b, c, and g terms may also in-
duce a nonlinear fermion current through the modified vertex
function. It would be of interest to investigate the transport
coefficients nonperturbatively, by including the full dispersion
for large SME coefficients.

Intriguing open issues in the broader context are also
suggested by the correspondence between the SME and
condensed-matter systems. The full SME incorporates addi-
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tional terms with field operators of mass dimensions d > 4,
along with couplings to all known gauge fields and gravity
[4,64–70]. These terms represent a large set of modifications
to the Dirac operator that as yet remain unexplored in the
condensed-matter context, so there is considerable potential
for the discovery and possibly even the design of interesting
and novel materials with emergent Lorentz symmetry viola-
tion. In the other direction, condensed-matter systems offer
prospects for informing SME physics. Issues in the SME
such as the conditions for quantum stability, the interpreta-
tion of scenarios with large coefficients for Lorentz violation,
and the understanding of ambiguities in radiative corrections
could be addressed in the context of materials with departures
from emergent Lorentz symmetry, both via methods from
condensed-matter theory and through material realizations of
SME systems in the laboratory.

Another interesting angle to pursue is the connection to
Finsler geometry. In the SME, the trajectory of the centroid
of a fermion or scalar wavepacket in the presence of Lorentz
violation is known to correspond to a geodesic in a Riemann-
Finsler spacetime [55,126–133]. We therefore anticipate that
Finsler geometry underlies the motion of quasiparticles in
Dirac and Weyl semimetals and other materials exhibiting
departures from emergent Lorentz symmetry. This situation
offers the potential for interdisciplinary advances in several
directions. For example, results in Finsler geometry can be
expected to provide insights into the physics of various ma-

terials with emergent Lorentz symmetry, while these systems
in turn provide analogue models and laboratory realizations
for challenging mathematical issues. Overall, the numerous
topics open for investigation across these seemingly disparate
subjects offer rich prospects for future advances.
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