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Strong spin-exchange recombination of three weakly interacting 7Li atoms
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Quantifying the nonuniversal three-body losses in ultracold atomic gases has been a long-standing problem.
We go beyond earlier approaches to solve this problem by using a model that includes realistic pairwise
interaction potentials and the exact three-atom spin structure. With this model we can successfully explain
experimental observations for weakly interacting 7Li and 87Rb atoms. Capturing the exact spin structure, we are
able to reveal a strong three-body spin-exchange recombination mechanism. In addition, we predict a regime of
low three-body recombination rate in the 7Li system that is advantageous for a variety of many-body experiments.
This work opens avenues to study spin-involved few-body processes in quantum gases.
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I. INTRODUCTION

Three-body recombination (TBR), the process in which
three free particles collide to form a two-body molecule
whose binding energy is kinetically distributed among the
molecule and free particle, ubiquitously occurs in a vast
variety of systems in diverse research fields including as-
trophysics [1–3], chemistry [4–6], ultracold plasmas [7–9]
and ultracold atomic systems [10–28]. In trapped ultra-
cold atomic clouds, for instance, this exothermic process
usually causes heating and atom loss, and therefore lim-
its the lifetime and density of Bose-Einstein condensates
(BECs) [10,11]. In addition, this loss puts restrictions on the
quantum sensitivity of BECs for precision measurements [12],
the persistent current of atomtronic circuits [13], and the
stability of quantum droplets [14–18]. However, TBR can
also be used as a tool to probe Efimov physics [19] and
three-body correlations [20–22], cool and even purify ultra-
cold ensembles [23,24], and generate effective three-body
interactions [25–27]. The atom loss can be affected by the
trap and many-body environment in experimental realizations,
making it difficult to determine the TBR rate [22,28]. While
in the strong interaction regime the TBR rate is successfully
described by universal formulas [29,30], quantifying the TBR
rate in weakly interacting atomic gases remains a huge chal-
lenge and a numerical approach for it is highly desirable.

TBR occurring in weakly interacting ultracold atomic
gases is also a good candidate for understanding fundamen-
tal chemistry, given that the reactants can be prepared in a
full quantum regime with extremely high control over all
external and internal degrees of freedom [31–33]. In addi-
tion, experimental milestones of detecting the products have
been achieved in the past few years by combining hybrid
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atom-ion traps and resonance-enhanced multiphoton ioniza-
tion techniques [34–36]. This leads to identifying the entire
chemical reaction pathway of TBR on the level of full
quantum state-to-state resolution regarding the electronic, vi-
brational, rotational, hyperfine, and even magnetic quantum
numbers. In these experiments [34–36], several propensities
in TBR processes, such as two atoms conserving their total
parity, total spin, and magnetic projection of total spin when
forming weakly bound molecular products, are established for
87Rb atoms and also explained using the hypothesis that the
third atom does not flip its internal spin. Although frequently
implemented in previous works for enabling three-body calcu-
lations [37–40], this hypothesis may not be generally valid, as
is indicated in Ref. [41] for strongly interacting 39K atoms.
Therefore, whether the hypothesis and the propensities es-
tablished in the 87Rb system are applicable for other species
remains an open question.

In this work we investigate the TBR process for weakly
interacting ultracold 7Li and 87Rb atoms in an external mag-
netic field using a multichannel framework. We successfully
quantify the TBR rate and, for 7Li, identify two dominant re-
combination pathways. One pathway involves spin exchange
between the created molecule and the remaining free atom,
demonstrating the violation of the aforementioned hypothe-
sis. The rest of the paper is organized as follows: Section II
briefly introduces the spin models employed in our three-body
calculations. In Sec. III we investigate the TBR process of 7Li
atoms in the vicinity of a zero crossing of two-body scatter-
ing length at B = 850 G and analyze the origin of a strong
spin-exchange recombination mechanism in this regime. For
comparison, the TBR process of 7Li atoms near a different
zero crossing at B = 578 G and that of 87Rb atoms at B = 1
G are studied in Sec. IV. A conclusion is drawn in Sec. V.

II. SPIN MODELS

We follow Ref. [41] to write down the Hamiltonian H0,
describing three alkali-metal atoms at infinite separation in an
external magnetic field B as

H0 =
∑

σ1σ2σ3

(
T + Eσ1 + Eσ2 + Eσ3

)|σ1σ2σ3〉〈σ1σ2σ3|, (1)
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where T is the kinetic energy operator, and Eσa and |σa〉
denote the channel energy and the corresponding internal
spin state, respectively, of atom a (a = 1, 2, 3), which are B
dependent. Adiabatically, each state |σ 〉 can be unambigu-
ously traced back to a hyperfine state | f , m f 〉 at zero field
or forward to a |ms, mi〉 state at infinite field [42]. Here, f
denotes the quantum number of atomic total spin f summing
up the electronic spin s and nuclear spin i, and m f , mi, and
ms are the corresponding magnetic quantum numbers. Even
though commonly ( f , m f ) is used for labeling σ , we note that
(ms, mi ) = σ is more appropriate in this work given that the
considered magnetic fields are high.

In addition to H0, we assume that the three atoms interact
in a pairwise manner, V = V12 + V23 + V13. The pairwise po-
tential,

Vab = V S
ab(rab)PS

ab + V T
ab(rab)PT

ab, (2)

consists of singlet V S
ab and triplet V T

ab components in the
electronic ground configuration of two alkali-metal atoms,
where rab represents the distance between atoms a and b,
and PS

ab (PT
ab) describes the projector on the electronic singlet

(triplet) state of pair (a, b). We use realistic molecular poten-
tials for V S

ab and V T
ab in this work. We refer to the interaction

model in Eq. (2) as the full multichannel spin (FMS) model.
Several approximations can be made for simplifying the three-
body calculation by restricting the way the atoms interact with
each other. One frequently used restriction requires the third
(spectating) atom to be fixed to the initial spin state for the
other two atoms to interact, referred to as the fixed spectating
spin (FSS) model in Ref. [41]. The pairwise interaction under
such restriction is expressed as

V FSS
ab = Vab

∣∣σ in
c

〉〈
σ in

c

∣∣, (3)

where |σ in
c 〉 denotes the initial spin state of atom c, and

(a, b, c) = (1, 2, 3), (2, 3, 1), or (3,1,2). We also construct an
optimized spin (OPS) model via

V OPS
ab =

∑
σc∈Dc

Vab|σc〉〈σc|, (4)

where Dc represents the spin states of atom c that play a
dominant role in the collision. It is apparent that the OPS
model is equivalent to the FSS model when Dc → {σ in

c } and
to the FMS model when Dc includes all single-particle spin
states.

Once the spin model is given, we use the Alt-Grassberger-
Sandhas (AGS) equation [43] to calculate the partial TBR
rate Kd

3 for the decay process into a specific atom-molecule
channel at zero collisional energy, see Appendix A. Here d
labels both the molecule and the corresponding decay channel.
The total rate, K3 = ∑

d Kd
3 , therefore sums up all partial con-

tributions. We define K3 such that dn/dt = − 1
2 K3n3, where n

denotes the density of the atomic gas. This definition is consis-
tent with those in Refs. [41,44–46], while it differs from that
in Ref. [47] by a factor of 2. In our calculations we truncate
the molecular orbital angular momentum quantum number l
up to lmax and implement a cutoff on the relative momentum
between the atom and the molecule, see Appendix A.

FIG. 1. (a) Three-body recombination length in units of the Bohr
radius a0 for 7Li in the |ms = −1/2, mi = 1/2〉 state. The stars
denote the result from the FSS model with lmax = 10, while the
squares denote the results of the FMS model with lmax = 4. The
dotted and dashed lines correspond to the calculations using the OPS
model with lmax = 4 and 10, respectively. The experimental data
at 2.5 μK are taken from Ref. [47]. (b) The corresponding partial
contributions of the decay channels A and B in the FSS(lmax = 10)
and FMS(lmax = 4) calculations. The stars and squares represent the
same results as in (a). The light purple area indicates the strong
three-body spin-exchange regime.

III. STRONG SPIN-EXCHANGE TBR

We investigate a system of three 7Li atoms at zero en-
ergy initially prepared in the same |ms = −1/2, mi = 1/2〉
state, which corresponds to | f = 1, m f = 0〉 in conventional
notation. We study the system in an external magnetic field
varied between 847 and 885 G, covering a zero crossing of
the two-body s-wave scattering length at B = 850 G, where
experimental data for the TBR rate are reported in Ref. [47].
The singlet and triplet potentials are taken from Ref. [48]. For
comparison, we follow Ref. [47] to define the recombination
length Lm via

K3 = 328.2
h̄

m
L4

m, (5)

where m denotes the mass of the atom.
Figure 1(a) compares our results to the experimental mea-

surement in Ref. [47]. The result of the FMS calculation with
lmax = 4 is in good agreement with the experimental results at
the considered magnetic fields. However, that of the FSS cal-
culation with lmax = 10 only agrees with experiment for B �
860 G but deviates from the experimental measurement for
B � 860 G. The difference in performance between the two
approaches does not result from the truncation of the quantum
number l , since our additional FSS calculation with lmax = 4
leads to only a small shift compared to that with lmax = 10,
not shown in Fig. 1(a) though. Therefore we attribute the
invalidity of the FSS model to its incapability to represent
some important three-body channels.

By analyzing our FMS result, we find two dominant prod-
uct channels, which together contribute more than 50% to the
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total TBR rate among more than 300 involved products in our
model. We identify that one dominant product channel (decay
channel A) consists of the energetically shallowest s-wave
molecule with a projection quantum number of total two-
body spin M2b = msa + mia + msb + mib = 0 plus a free atom
in its initial |msc = −1/2, mic = 1/2〉 spin state. This decay
channel is included in the FSS model, and the corresponding
contributions to the recombination length are similar in both
the FSS and FMS calculations as shown in Fig. 1(b). How-
ever, the other dominant product channel (decay channel B)
consisting of the shallowest s-wave molecule with M2b = −1
plus a free atom in the |msc = −1/2, mic = 3/2〉 state is not
represented in the FSS model. The spin-exchange recombi-
nation to decay channel B becomes increasingly important
with decreasing magnetic field at B � 860 G and ultimately
dominates over that to decay channel A when B � 855 G,
leading to a rapid enhancement of the loss rate. Moreover, its
contribution matches very well with the deviation between the
FSS calculation and the measurement at B � 860 G.

Allowing the third atom to switch from its initial
|msc = −1/2, mic = 1/2〉 to the |msc = −1/2, mic = 3/2〉
spin state, we arrive at an OPS model with Dc =
{(−1/2, 1/2), (−1/2, 3/2)}. This OPS model gives results
consistent with the measurement, when we truncate the
molecular orbital angular momentum quantum number l at
lmax = 4 and 10. The results are also in line with the values
we calculated with the FMS model, demonstrating again that
the truncation of l has a minor influence on our calculation.

In Ref. [47], the enhancement of the TBR rate at B �
855 G is suggested to be governed by a two-body length scale
L′

e that is determined by the two-body scattering length and
effective range parameter. In contrast, our analysis demon-
strates that it originates from a single specific atom-molecule
product channel coupled to the three-body incoming state via
the spin-exchange recombination mechanism. In general, the
two-body quantity L′

e is not able to describe this three-body
spin-exchange process. It remains an open question why L′

e
works beyond its capacity to explain the TBR rate qualita-
tively [47].

The three-body channels with |msc = −1/2, mic = 3/2〉
become important in the present calculation because their
small energy separations to the incoming threshold lead to
large multichannel couplings, see Appendix B. However, the
observed effect that three 7Li atoms recombine predominantly
into decay channel B seems counterintuitive at first glance,
since decay channel A is less separated from the three-body
incoming threshold than decay channel B in the considered
magnetic field regime, see Appendix C. To explain the strong
recombination into decay channel B, we use an approach
similar to that in Ref. [35], in which the TBR rate to a
specific decay channel is explained by the overlap of the
product molecule state and a zero energy scattering state of
two atoms forming that molecule. However, the original treat-
ment of Ref. [35] is based on the hypothesis that the third
atom does not flip its internal spin during the TBR process
and cannot describe the recombination process into decay
channel B. Therefore we extend this treatment by taking into
account the interaction with the third atom and the exact three-
body spin structure and study the overlap Od = α〈ψd |(P+ +
P−)Vα|ψscat〉α , see Appendix D. We use α = (a, b) to label

FIG. 2. Components of OA and OB as a function of magnetic
field. Here rvdW denotes the characteristic length scale for the van
der Waals interaction between two atoms [42].

the pair (a, b) that forms the molecule d . |ψd〉α and |ψscat〉α
denote the state of molecule d plus a free atom and that of a
zero-energy scattering complex of the pair (a, b) plus a free
atom, respectively [49]. The interaction term (P+ + P−)Vα

that couples |ψscat〉α and |ψd〉α is derived from a perturba-
tive analysis of the AGS equation, see Appendix D. P+ and
P− denote the cyclic and anticyclic permutation operators,
respectively. We use Od to explain the dominances of decay
channels A and B as it captures the overall trend and relative
magnitude of the TBR rates at the considered magnetic fields,
see Appendix D.

The overlaps OA and OB are written as

Od = 2
∑

σ d
2b,σ

scat
2b

Cσ d
2bσ

scat
2b

〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ in
c

〉
, d = A, B, (6)

where Cσ d
2bσ

scat
2b

≡ α〈ψd |Pc
+|σ d

2bσ
d
c 〉〈σ scat

2b σ in
c |Vα|ψscat〉α repre-

sents the spatial part of Od , which can be simplified as
Cσ d

2bσ
scat
2b

= 〈φd | 1
2 qd , σ

d
2b〉〈qd , σ

scat
2b |Vα|φscat〉α , see Appendix D.

We use Ps
+ and Pc

+ to denote the permutation operator P+
acting only on the spin and coordinate space and σ2b =
(msa , mia ; msb, mib ) for the spin state of the pair (a, b). We as-
sume that |σ2b〉 is properly symmetrized as in Ref. [41]. Here
φd and φscat represent the radial wave functions of molecule d
and the two-body scattering state, respectively. Furthermore,
qd denotes the magnitude of the relative momentum between
the free atom and molecule d .

We find that the field-independent spin coupling matrix
〈σ d

2bσ
d
c |Ps

+|σ scat
2b σ in

c 〉 picks out only a few specific elements
of C that contribute to the overlap Od . For both decay chan-
nels A and B, there are only two contributions of which the
corresponding spin states and spin coupling matrix elements
are listed in Table I. Implementing the results of Table I into
Eq. (6), we get

OA = 2CA1S1 + CA4S4 ,

OB = CB1S2 + CB3S3 . (7)

The above expression shows explicitly that the interplay be-
tween two specific elements of the spatial part matrix C
determines the overlap Od . Figure 2 shows that 2CA1S1 and
CB3S3 are the most significant contributions at B � 855 G and
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TABLE I. Nonzero elements of 〈σ d
2bσ

d
c |Ps

+|σ scat
2b σ in

c 〉 and the corresponding spin states for decay channels A and B. We use σ A
2b =

{A1,A2, . . . ,A8}, σ B
2b = {B1,B2, . . . ,B6}, and σ scat

2b = {S1,S2, . . . ,S8} to label these two-body spin states in the order of increasing two-body
channel energy. Note that σ in

c = (−1/2, 1/2) in all cases.

d σ d
c σ d

2b σ scat
2b 〈σ d

2bσ
d
c |Ps

+|σ scat
2b σ in

c 〉
A (−1/2, 1/2) A1 = (−1/2, 1/2; −1/2, 1/2) S1 = (−1/2, 1/2; −1/2, 1/2) 1
A (−1/2, 1/2) A4 = (−1/2, 1/2; 1/2, −1/2) S4 = (−1/2, 1/2; 1/2, −1/2) 1/2
B (−1/2, 3/2) B1 = (−1/2, −1/2; −1/2, 1/2) S2 = (−1/2, −1/2; −1/2, 3/2) 1/2
B (−1/2, 3/2) B3 = (1/2, −3/2; −1/2, 1/2) S3 = (1/2,−3/2; −1/2, 3/2) 1/2

B � 855 G, respectively. The enhanced behavior of 2CA1S1

and CB3S3 thus explains the dominance of decay channels
A and B in each magnetic field regime. We find that these
enhancements originate from the influence of the Feshbach
resonance at B = 894 G on the molecular wave function
φA and that of the Feshbach resonance at B = 845 G on
the two-body scattering wave function φscat, respectively, see
Appendix E.

IV. LOWER FIELD ZERO CROSSING AND
COMPARISON TO 87Rb

For comparison, we investigate the TBR rate near a differ-
ent zero crossing of the two-body scattering length at B = 578
G in the same spin state of 7Li [51]. Table II shows that K3 at
B = 850 G is higher by two orders of magnitude than that at
B = 578 G, where the comparable values of K3 predicted by
the FSS and FMS models indicate no strong spin-exchange
process. We note that decay channel B becomes less important
at B = 578 G, see Appendix D. However, the scenario of 7Li
at B = 578 G is still in contrast with the 87Rb system, where
the FSS and FMS calculations yield nearly identical results.
Therefore we conclude that the model with the fixed spectat-
ing atom’s spin state works very well for 87Rb at low magnetic
fields but not for 7Li. In general, the TBR rates from our calcu-
lation agree with experimental values [20,47] within a factor
of 2 or 3. The deviation could come from our numerical trun-
cations or from the experimental uncertainty in the number of
atoms. For instance, by implementing a larger lmax = 10 with
the OPS model we get K3 = 2.0 × 10−26 cm6/s at B = 850 G,
which agrees better with the experimentally measured value
1.3(0.4) × 10−26 cm6/s [47].

Our prediction of low TBR rate suggests that 7Li at B ≈
578 G is a good candidate for the first realization of quan-
tum gas purification experiments via three-body loss [24]
and the creation of big time crystals [52]. Other interesting

TABLE II. K3 from the FMS and FSS models for 7Li at B = 850
G (H) and B = 578 G (L), and for 87Rb in the | f = 1, mf = −1〉
state at B = 1 G. In these calculations we take lmax = 4 for 7Li and
lmax = 10 for 87Rb. The numbers are presented in units of cm6/s. The
singlet and triplet potentials for 87Rb are taken from Ref. [50].

Atom FSS FMS Expt.

7Li(H) 1.0 × 10−27 3.8 × 10−26 1.3(0.4) × 10−26 [47]
7Li(L) 1.7 × 10−28 1.2 × 10−28 <2.3 × 10−27 [47]

87Rb 4.0 × 10−29 4.0 × 10−29 8.6(3.6) × 10−29 [20]

phenomena like the matter wave bright soliton [53–56] and
the weak collapse of a Bose-Einstein condensate [57], which
have been experimentally studied, can also be investigated in
this specific case, where an extremely small slope 0.01a0/G of
the two-body scattering length to magnetic field leads to easy
and precise control of the required weak attractive interaction.

V. CONCLUSION

We have studied the three-body recombination process of
ultracold 7Li atoms near two zero crossings of the two-body
scattering length at B = 850 G and 578 G. In the vicinity of
850 G, we get a good agreement with the measured recombi-
nation rate and reveal a prominent spin-exchange three-body
recombination pathway requiring one atom to flip its nuclear
spin when the other two colliding atoms form a molecule. We
attribute the prominence of this pathway to the influence of the
Feshbach resonance at B = 845 G on the two-body scattering
wave function. The strong spin-exchange effect increases the
recombination rate by about two orders of magnitude com-
pared to our results around 578 G in the same spin state. Our
approach can also be applied to other species to explore the
complicated but important multichannel three-body recom-
bination process and to analyze the rich interplay between
the translational, vibrational, rotational, electronic spin, and
nuclear spin degrees of freedom.
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APPENDIX A: AGS EQUATION AND TBR RATE

We solve the AGS equation in momentum
space [41,45,46,58],

Uα0(z) = 1
3 G−1

0 (z)[1 + P+ + P−]

+ [P+ + P−]Tα (z)G0(z)Uα0(z) , (A1)

via a numerical approach combining the separable expansion
method and the two-body mapped grid technique [41,46].
Here G0 = (z − H0)−1 is the free Green’s operator, and Tα =
(1 − VαG0(z))−1Vα represents the generalized two-body tran-
sition operator for the pair α = (a, b). P+ and P− denote the
cyclic and anticyclic permutation operators, respectively. The
three-body transition operator Uα0, whose elements describe
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FIG. 3. Channel energy Ech in units of EvdW = h̄2/(mr2
vdW ) of

three 7Li atoms with Mtot = 0. The solid and dashed lines represent
the three-body channels with σc = (−1/2, 1/2) and (−1/2, 3/2),
respectively. The dotted lines correspond to other σc. The incoming
three-body channel is the lowest one.

the transition probabilities from the initial free-atom state to
product states of a dimer plus a free atom, is closely related
to the TBR rate K3. In this paper we define the partial re-
combination rate Kd

3 to each specific molecular product d
as [41,45,46,58]

Kd
3 = 24πm

h̄
(2π h̄)6qd |α〈ψd |Uα0(z)|ψin〉|2, (A2)

where |ψin〉 and |ψd〉 represent the initial and product states,
respectively. qd is the magnitude of the momentum of the free
atom relative to the center of mass of molecule d . In our cal-
culations, we take the zero energy limit z → 0 from the upper
half of the complex energy plane and therefore fix the total
orbital angular momentum quantum number J = 0. The pro-
jection quantum number of the total spin angular momentum
Mtot = ∑

a msa + ∑
a mia (a = 1, 2, and 3) should also be

fixed during the scattering process, Mtot = 0 in the present
case. We also implement truncations lmax on the orbital an-
gular momentum quantum number l related to the relative
movement of the atoms constituting the molecule and qmax on
the magnitude of the momentum q of the third atom relative to
the molecule’s center of mass. In particular, qmax = 20 h̄/rvdW

is used throughout the entire paper, and lmax is stated explicitly
when the results are presented in the main text. It is worth not-
ing that the sufficiency of qmax = 20 h̄/rvdW is demonstrated
for addressing the three-body parameter in Refs. [41,46] and
additionally checked for our present study by comparing to
a larger cutoff qmax = 40 h̄/rvdW. For more details about our
numerical approach, we refer the reader to Refs. [41,46].

APPENDIX B: THREE-BODY CHANNEL ENERGY

Figure 3 shows the three-body channel energy Ech =
Ea + Eb + Ec with Mtot = 0 for 7Li atoms. One can see that
the channel energy separations are in general smaller than
those for 39K atoms [41]. In particular, for those with σc =
(−1/2, 3/2), the two lowest channels are extremely close,
with energy separations less than 0.25 EvdW, to the three-body

FIG. 4. Energy separations �Ed of decay channels A and B from
the incoming threshold as a function of magnetic field.

incoming channel when B > 800 G. According to the analysis
in Ref. [41], this can lead to strong multichannel couplings to
the incoming channel.

APPENDIX C: ASYMPTOTIC ENERGY OF
DECAY CHANNELS A AND B

To illustrate the energy separations of the product chan-
nels from the incoming channel, we calculate �Ed = Ed

2b +
Eσ d

c
− Eσ in

a
− Eσ in

b
− Eσ in

c
for d = A or B, where Ed

2b denotes
the energy level of molecule d and Eσ d

c
represents the corre-

sponding shift due to the third atom. In the zero energy limit
considered in this work, �Ed is simply connected to qd via
�Ed = −3q2

d/4m. Figure 4 shows the energy levels of both
decay channels are shifted towards the incoming threshold
with the increase of the magnetic field and |�EA| persists
to be smaller than |�EB| in the considered magnetic field
regime. These energy separations explain the dominance of
decay channel A at B � 860 G. However, it is in contrast with
our observation that KB

3 is much larger than KA
3 at B � 855 G.

APPENDIX D: TBR RATE FROM Od

To get the expression of Od in the main text, we rewrite
Eq. (A1) as

Uα0(z) =
∞∑

n=0

U (n)
α0 (z) (D1)

with

U (n)
α0 (z) = {[P+ + P−]Tα (z)G0(z)}n 1

3 G−1
0 (z)[1 + P+ + P−].

(D2)

Since α〈ψd |U (0)
α0 (z)|ψin〉 vanishes at zero energy, we look

into the next order term U (1)
α0 (z). The initial free-atom state is

taken as |ψin〉 = |p = 0, q = 0〉|σ in
a σ in

b σ in
c 〉, where p and q are

Jacobi momenta corresponding to the relative motion between
two atoms and that of the third atom to the center of mass of
them, respectively. |ψin〉 is fully symmetric so that

U (1)
α0 (z)|ψin〉 = [P+ + P−]Tα (z)|ψin〉. (D3)

We implement the partial wave expansion and switch from
the plane-wave basis |p, q〉 to |p, q〉|lLJMJ〉, where l and L
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are partial wave quantum numbers corresponding to p and
q, respectively. The initial and product states can then be
expressed as |ψin〉 = 1

4π
|p = 0, q = 0〉|0000〉|σ in

a σ in
b σ in

c 〉 and
|ψd〉α = |φd , qd〉α|ld ld 00〉|σ d

c 〉, where φd denotes the radial
wave function of molecule d . We define |ψscat〉α ≡ |φscat, q =

0〉α|0000〉|σ in
c 〉 to describe the state of a scattering complex

plus a free atom, where φscat is the radial two-body scattering
wave function at zero energy. Using these states and Eq. (D3),
we get

α〈ψd |U (1)
α0 (0)|ψin〉 = 1

4π
α〈ψd |[P+ + P−]Tα (0)|p = 0, q = 0〉|0000〉∣∣σ in

a σ in
b σ in

c

〉

= 1

4π
α〈ψd |[P+ + P−]Vα|φscat, q = 0〉|0000〉∣∣σ in

c

〉

= 1

4π
Od (D4)

with

Od = α〈ψd |[P+ + P−]Vα|ψscat〉α
= 2

∑
σ d

2b,σ
scat
2b

α〈ψd |Pc
+
∣∣σ d

2bσ
d
c

〉〈
σ scat

2b σ in
c

∣∣Vα|ψscat〉α
〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ in
c

〉

= 2
∑

σ d
2b,σ

scat
2b

∫
dq′

∫
dq′′

α〈ψd

∣∣∣∣q′′ + 1

2
q′, q′

〉∣∣σ d
2bσ

d
c

〉〈
σ scat

2b σ in
c

∣∣〈 − q′ − 1

2
q′′, q′′

∣∣∣∣Vα|ψscat〉α
〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ in
c

〉

= 2
√

2ld + 1
∑

σ d
2b,σ

scat
2b

〈
σ d

c

∣∣
α

〈
φd

∣∣∣∣1

2
qd , σ

d
2bσ

d
c

〉〈
qd , σ

scat
2b σ in

c

∣∣Vα|φscat〉α
∣∣σ in

c

〉〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ in
c

〉

= 2
√

2ld + 1
∑

σ d
2b,σ

scat
2b

α〈φd

∣∣∣∣1

2
qd , σ

d
2b

〉〈
qd , σ

scat
2b

∣∣Vα|φscat〉α
〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ scat
c

〉

= 2
√

2ld + 1
∑

σ d
2b,σ

scat
2b

φ
σ d

2b
d

(
1

2
qd

)
t
σ scat

2b
h (qd )

〈
σ d

2bσ
d
c

∣∣Ps
+
∣∣σ scat

2b σ in
c

〉
, (D5)

where

t
σ scat

2b
h (qd ) = 〈

qd , σ
scat
2b

∣∣Vα

∣∣φscat
〉
α

= 〈
σ scat

2b

∣∣〈p = qd

∣∣t l=0
α (z2b = 0)|pz = 0〉∣∣σ in

a σ in
b

〉
(D6)

is an element of the two-body s-wave t matrix t l=0 at two-
body energy z2b = p2

z/m = 0 with one momentum fixed on
the energy shell, which is commonly referred to as the half-
shell t matrix in nuclear physics [59,60]. The expression of
Eq. (6) in the main text is obtained by filling in ld = 0 for
d = A or B in Eq. (D5).

Figure 5(a) shows that the TBR rates calculated from Od

follow the overall trend of those given by the FMS calculation

FIG. 5. The TBR rates for decay channels A, B, and C calculated
from Uα0 by using the FMS model with lmax = 4 (Kd

3 ) or from U (1)
α0

by using Od (K̃d
3 ).

with lmax = 4 in our considered magnetic field regime. The
main feature that three free atoms recombine predominantly
into decay channel B at B � 855 G and into decay channel
A at B � 855 G is captured by Od . Similarly, Od captures
the overall trend and relative magnitude of the TBR rates
near a different zero crossing at B = 578 G, as is shown
in Fig. 5(b). However, the absolute magnitude of the TBR
rates cannot be correctly addressed by Od , indicating that
our multichannel numerical calculation is indispensable for
quantifying the TBR rates. Figure 5(b) also demonstrates that
the spin-exchange recombination pathway to decay channel B
is strongly suppressed near the zero crossing at B = 578 G.
We note that decay channel C in Fig. 5(b) corresponds to
the new shallow molecule with M2b = 0 appearing when the
magnetic field decreases over the Feshbach resonance position
at B = 845 G.

APPENDIX E: ANALYSIS ON CA1S1 AND CB3S3

We have demonstrated in the main text that OA is deter-
mined by CA1S1 at B � 855 G and OB is determined by CB3S3

at B � 855 G. Now we want to analyze which quantities make
these two components the most significant. For that we write
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FIG. 6. The molecular wave function evaluated at 1
2 qd (a) and

half-shell t-matrix evaluated at qd (b) relevant for the overlaps OA

and OB.

CA1S1 and CB3S3 as

CA1S1 = φ
A1
A

(
1
2 qA

)
tS1
h (qA),

CB3S3 = φ
B3
B

(
1
2 qB

)
tS3
h (qA). (E1)

Figure 6(a) shows that the large value of CA1S1 at B � 855 G
comes from φ

A1
A ( 1

2 qA). The increasing behavior of φ
A1
A ( 1

2 qA)
with the increase of magnetic field can be understood as fol-
lows. Molecule A becomes increasingly extended in the A1

channel when its energy level is shifted towards the threshold
of that channel. Eventually, the energy level of molecule A
merges with the threshold of the A1 channel at the Feshbach
resonance position of B = 894 G. As a result, φA increases
the amplitude of its A1 component in the large-distance
(or equivalently, low-momentum) regime, as is shown in
Figs. 7(a)–7(c). In combination with a simultaneously de-
creasing qA, this leads to a rapid increase of φ

A1
A ( 1

2 qA).

FIG. 7. (a)–(c) Molecular wave function φA at B = 855, 870,

and 885 G. (d)–(f) Two-body scattering wave function φscat at B =
855, 850, and 847 G. The solid lines highlight the σ

A1
2b component

for φA in (a)–(c) and the σ
B3
2b component for φscat in (d)–(f).

In contrast, the enhancement of CB3S3 at B � 855 G with
the decreasing magnetic field comes from that of tS3

h (qB), as
shown in Fig. 6(b). The behavior of tS3

h (qB) at B � 855 G can
be related to the Feshbach resonance at B = 845 G. In the
vicinity of this Feshbach resonance, the two-body scattering
state |φscat〉 increases the amplitudes of its closed channel
components at short range due to the coupling from the res-
onant molecular state, as is shown in Figs. 7(d)–7(f). This
leads to an enhanced component of the two-body half-shell
t matrix in the corresponding closed channels. In the present
case, S3 is one of the closed channels with enhanced compo-
nents. Therefore tS3

h (qB) increases when the magnetic field is
tuned towards the Feshbach resonance at B = 845 G. Simi-
larly, tS3

h (qB) is also enhanced in the vicinity of the Feshbach
resonance at B = 894 G.
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