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Fermi surface segmentation in the helical state of a Rashba superconductor
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We investigate the quasiparticle excitations in the Fulde-Ferrell–type helical state of a superconductor with
inversion symmetry breaking and strong Rashba spin-orbit coupling. We restrict to a state with single finite
momentum of Cooper pairs in the helical phase that is determined by minimization of the condensation energy.
We derive the dependence of quasiparticle dispersions on the Rashba coupling strength and external field. It
leads to a peculiar momentum-space segmentation of the corresponding Rashba Fermi surface sheets. We show
that it may be directly visualized by the method of quasiparticle interference that identifies the critical points of
the segmented sheets and can map their evolution with field strength, bias voltage, and Rashba coupling. We also
indicate a strategy for how to determine the finite Cooper-pair momentum from experimental quantities. This
investigation has the potential for a more detailed microscopic understanding of the helical superconducting state
under the influence of Rashba spin-orbit coupling.
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I. INTRODUCTION

In a superconductor (SC) with small orbital pair break-
ing a new state may become stable at larger fields where
the conduction electrons are not bound in BCS pairs (−k ↑
, k ↓) but rather in pairs (−k + q ↑, k + q ↓) with finite
center-of-mass momentum 2q characterized by a gap func-
tion �(r) = �q exp(iqr). This Fulde-Ferrell (FF) state [1]
and the related Larkin-Ovchinnikov (LO) state [2] with both
(q,−q) momenta involved is well studied theoretically, in
superconductors of various dimensionality [3,4] as well as
in condensed quantum gases [5,6]. Convincing evidence for
the experimental realization of this state at low temperatures
and high fields is, however, rather scarce, which may be
due to the sensitivity to impurities [7–9] and orbital pair
breaking [10,11]. There are unconventional heavy fermion
superconductors [8] and organic superconductors [12,13] as
well as Fe pnictides [14,15] where its appearance has been
suggested. The existence of the FF or LO phases in these
cases is mostly inferred from thermodynamic anomalies [16]
in the low-temperature high-field sector of the phase diagram
or from NMR experiments [17] and they may be used to map
out the phase boundaries.

However, such experiments do not address the microscopic
nature of this state deep inside the FF-type phase. The latter, to
which we will exclusively restrict, is stabilized by a tradeoff
between the loss of condensation energy due to the kinetic
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energy of pairs with center of mass momentum and gain in
Zeeman energy due to population imbalance of spin states
[18,19]. This tradeoff depends on the momentum position on
the Fermi surface (FS) and therefore generally the latter is
segmented into regions where the pairs are still stable with
finite 2q (paired region) and where they are unstable (unpaired
region). The relative size of these FS segments depends on
the field strength with the paired region vanishing above the
critical field of the FF phase. This microscopic structure of
the FF state has not been probed in practice due to lack of
suitable techniques. It was proposed in Ref. [20] that the
scanning tunneling microscopy (STM) based quasiparticle
interference (QPI) method is a promising candidate for this
purpose. However, as a feasibility study only the inversion
symmetric superconductor was investigated in this paper.

In reality inversion symmetry at the superconductor sur-
face is broken and some of the promising SC materials have
layered structure with broken two-dimensional (2D) inversion
symmetry in the layers or even have bulk noncentrosymmetric
structure with complete lack of inversion symmetry. Then
Rashba-type spin-orbit coupling exists and will greatly mod-
ify both the FF-type states as well as QPI spectral features. In
particular the Fermi surface will be doubled into two Rashba
Fermi surfaces with different spin texture. This important
case is therefore worthy of a separate theoretical investigation
presented in this paper. There is an important distinction,
however, to the common FF case where the Zeeman term leads
to different Fermi sphere radii of up and down spin electrons,
whereas under the presence of a dominating Rashba coupling
the two Rashba band (λ = ±1) Fermi spheres are shifted
perpendicular to the field by a certain amount proportional
to the field strength. This leads immediately to stable Cooper
pairs with finite momentum 2q that grows with field strength
characterized by a (s-wave) gap function �qλ exp(iqr). This
commonly called “helical” state [21] is therefore of the FF
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type but has a somewhat different composition of the conden-
sation energy than in the original Zeeman dominated FF case.

Some aspects of the helical state including Rashba cou-
pling and Zeeman term have been studied before, concerning
mostly critical field curves [22–25]. Here we focus on the mi-
croscopic consequences of the Rashba coupling and its image
in the QPI spectrum [26]. As a prerequisite we derive the
quasiparticle excitation spectrum in the paired and unpaired
segments of momentum space the sizes of which depend on
the field strength. The corresponding QPI spectrum is cre-
ated by scattering of quasiparticles from randomly distributed
dilute impurities at the surface. We consider normal charge
as well as Ising-type magnetic impurities. Our momentum-
resolved QPI analysis has a twofold aim: Both the Rashba
doubling of Fermi surface sheets as well as their segmentation
in the helical state due to the appearance of unpaired states
may be investigated as function of field strength, bias voltage,
Rashba coupling, and chemical potential. In this way one
may get a more microscopic understanding of the peculiar
helical superconducting state. In particular we show that it is
possible to obtain a direct experimental measure of the pair
momentum 2q by analyzing the characteristic wave vectors
of the QPI image. The Rashba case with its helical phase is
more amenable to such QPI analysis because the latter may
appear already at small fields whereas the conventional FF
phase requires generally very high fields.

The model for the Rashba superconductor is introduced
in Sec. II and the Bogoliubov quasiparticle excitations are
derived in Sec. III following a method introduced by Cui et al.
in Ref. [27] for the inversion symmetric case without Rashba
term (see also Ref. [20]). In Sec. IV we calculate the corre-
sponding Green’s functions and quasiparticle density of states
(DOS) for the helical phase. In the main part of Sec. V we
derive the QPI spectrum in Born approximation (BA) using a
model for impurity scattering that contains both normal and
magnetic scattering, transformed to the Rashba band states.
Finally in Sec. VI we discuss the numerical results in detail
and Sec. VII presents the summary and conclusion.

II. MODEL DEFINITION

Here we introduce the commonly used band-structure
model including the Rashba coupling originating from inver-
sion symmetry breaking. We use the periodic form to obtain
the proper periodicity of spectral images in the later QPI
calculations but we also relate this to the Rashba mechanism
in parabolic approximation. The latter is more suitable for
discussing fundamental properties of Rashba bands like the
splitting of FS sheets and their shifting caused by the external
field. Subsequently a minimal model for the superconducting
state introduced in Ref. [21] will be briefly described and the
Hamiltonian for the helical phase discussed.

A. Normal state Rashba bands and states

The 2D Rashba Hamiltonian in an external field is given by
[21]

H0 =
∑

k

�
†
kh0k�k, h0k = ξkσ0 + (αgk + b) · σ, (1)

in the spin representation. Here �
†
k = (a†

k↑, a†
k↓) are con-

duction electron spinors and εk = −2t (cos kx + cos ky) with
−π � kx, ky � π is the periodic tight binding (TB) conduc-
tion band dispersion which is more suitable for the later
treatment of the QPI spectrum. Here t > 0 is the hopping
element leading to a conduction band half-width Dc = 4t and
ξk = εk − μTB. The chemical potential μTB in the periodic
band model therefore lies in the interval −Dc � μTB � Dc

and is referenced to the band center εk = 0. It is necessary
to map this to the 2D parabolic band model for μTB � 0
with εk = ε0 + k2/2m. Here ε0 = −Dc is the bottom of the
band and m = 2/Dc is its effective mass. The chemical po-
tential referenced to the band bottom is then given by μ =
μTB − ε0 � 0. Furthermore b = μBB is the Zeeman energy
scale given by the applied magnetic field B. The inversion
symmetry breaking Rashba spin-orbit coupling is odd under
inversion with g−k = −gk, explicitly gP

k = (ky,−kx, 0)/kF =
(sin θk,− cos θk, 0) in the parabolic band model where θk is
the azimuthal angle of k counted from the kx axis where the
Fermi wave number is kF = (2mμ)

1
2 and vF = kF /m is the

Fermi velocity. To stay consistent with the tight binding model
dispersion we will take the periodic form

gTB
k = (sin ky,− sin kx, 0), (2)

where both forms are normalized, i.e., |gP
k| = 1 and

|gTB
k |max = √

2. Equivalence in the limit of small wave vectors
kx, ky � π demands that the Rashba coupling constants in
the two models are then related by αP = kF αTB. We suppress
indices TB and P in the following and rely on the context.
Diagonalization of the Hamiltonian in Eq. (1) leads to

H0 =
∑
kλ

εkλc†
kλckλ,

εkλ(b) = ξk + λ|αgk + b| ≡ ξk + λζ+
k , (3)

where εkλ(b) denotes the Rashba split and Zeeman shifted
bands (referred to μ) which have eigenfunctions correspond-
ing to helicities λ = ±1. Here we introduce the auxiliary
functions ζ±

k = |αgk ± b|. In zero field the two Rashba bands
are given by

ε0
kλ = ξk + λ|αgk| = 1

2m
(k + λk0)2 − μ̃, (4)

where k0 = 1
2

|α|
μ

kF and μ̃ = μ(1 + 1
4

α2

μ2 ). This describes two
parabolic dispersions shifted by k0. The ensuing two Fermi
spheres have radii given approximately by kλ

F = kF − λk0 =
kF (1 − λ

2
|α|
μ

) for moderate Rashba coupling |α| � μ. Then

their relative difference (k−
F − k+

F )/kF = |α|/μ is a direct
measure for the strength of the Rashba coupling. The oper-
ators �

†
k = (c†

k+c†
k−) (λ = ±) creating the helical eigenstates

|kλ〉 = c†
kλ|0〉 are obtained [28] from

�
†
k = �

†
kSk, Sk = 1√

2

[
1 ie−iθk

ieiθk 1

]
, (5)

where θk = − tan−1(gkx/gky)= tan−1(sin ky/ sin kx ) → tan−1

(ky/kx ) where the second and last expression correspond to
TB and parabolic models, respectively. For finite but small in-
plane field b = b(cos φ, sin φ, 0)(b � α), where φ defines the
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FIG. 1. (a) Splitting of Rashba Fermi surface sheets ∼|α|/μ
(dashed) and opposite shifting of their centers by ±qs along the ky

axis for large field (full); blue/red, λ = ±1. Magnetic field b ‖ x
axis and perpendicular shift vector qs ‖ y axis. Here and in the
following figures, we set (TB model) μ = −2.8t and α = 0.6t . (b,
c) Corresponding TB dispersions along kx .

field angle with respect to planar axes, the Rashba dispersions
of Eq. (3) in the parabolic model can be written explicitly as

εkλ(b) = 1

2m
(k + λk0)2 − μ̃ + λsαb sin(θk − φ), (6)

where we defined sα = sign(α). This leads to Rashba Fermi
sheets with a radius given by

kλ
F (θk, φ) = kλ

F − 1

2μ
kF λsαb sin(θk − φ), (7)

where we assumed the physical hierarchy of energy scales
according to (b < |α| < μ < 2Dc). An example for the ge-
ometry of Rashba Fermi surface sheets is shown in Fig. 1.
The effect of the field on the two Rashba sheets may be
easily understood by considering the relative change com-
pared to the zero-field value kλ

F as a function of the angle θk.
For momentum (anti)parallel to the field with θk = φ + π, φ

there is no change and kλ
F (θk, φ) = kλ

F . For the perpendicu-
lar case with θk = φ + π/2, φ + 3π/2, we have kλ

F (θk, φ) =
kλ

F ∓ 1
2 kF λsα (b/μ). Thus the two Rashba sheets are shifted

perpendicular to the field in opposite directions by the amount

qs = b

2μ
kF = mμBB

kF
= b

vF
. (8)

While the splitting of Rashba sheets is a measure for the
coupling |α| their shifting perpendicular to B is determined
by field strength alone. These basic Rashba characteristics
are shown in Fig. 1(a) as it results from the split and shifted
dispersions in Figs. 1(b) and 1(c).

B. Superconducting state with finite momentum pairing

In this paper we do not discuss the possible mechanisms
behind the superconducting gap formation in noncentrosym-
metric compounds without inversion symmetry; for an
excellent review see Ref. [29]. In these materials with Rashba
spin-orbit coupling, phonons [30] as well as spin fluctuations
[31–33] may be the driving mechanism for Cooper pair forma-
tion. In any case it is important to realize that, independent of
the mechanism, the gap function contains spin-singlet as well
as triplet components due to the inversion symmetry breaking
presented by the Rashba term [29,34].

In addition here we consider the possibility of a com-
mon overall momentum 2q of Cooper pairs due to the
pair-breaking effect of the external field in conjunction with
Rashba spin-orbit coupling. One should expect that the size
of q is correlated with the shift of the Rashba FS sheets [22]
perpendicular to the field as given by Eq. (8). The real value of
q should be evaluated by the minimization of the condensation
energy in the helical SC phase as is demonstrated in Sec. III.
As mentioned in the introduction one may consider more
general pair states with multiple pair momenta qi as possible
ground states [23,25], in particular the LO-type “stripe phase”
[21] with (q,−q) pair momenta. It was shown in Ref. [22]
that the single q helical phase can be stable in a large part
of parameter space. We restrict to this case here as the most
tractable representative case that shows the paired/depaired
momentum space segmentation even though it may not be
the true ground state for all parameter space. This has also
a technical reason. For states with multiple qi pair vectors
the explicit calculation of the QPI spectral function Eq. (51)
becomes difficult to carry out. Furthermore the technique
employed here is not able to treat cases like the stripe phase
where the gap amplitude is modulated in real space.

Of the many possible choices of gap functions we use the
minimal model introduced by Kaur et al. [21] which reduces
to the spin-singlet form in the limit α = 0. In the helical
basis it is characterized by two gap functions �k

qλ for the two
Rashba sheets. The resulting mean field pair Hamiltonian in
helicity representation is described by

HMF =
∑
kλ

εk+qλc†
k+qλck+qλ

− 1

2

∑
kλ

[
�k

qλc†
k+qλc†

−k+qλ + �k∗
qλc−k+qλck+qλ

]
(9)

where the gap equation for the fully symmetric state of the
helical phase as defined below is given by

�k
qλ = −

∑
k′λ′

′Vλλ′ (kk′)〈c−k′+qλ′ck′+qλ′ 〉. (10)

The summation has to be constrained over the segments of
momentum space k′ where the pair states exist, i.e., where the
quasiparticle excitations from the ground state have positive
energy E τ

k′qλ > 0 [see Eq. (19)]. Due to this constraint which
is indicated by the prime on the sum Eq. (10) is not practical
for obtaining �k

qλ(b). We rather pursue a different route later
on by deriving an expression for the condensation energy as a
functional of the helical gap and determine the latter and the
pair vector by direct minimization of this functional.

Here we use the special simple gap model proposed by
Kaur et al. [21] to which we restrict and we only briefly de-
scribe its ingredients. It assumes a singlet gap for the limiting
case α = 0 belonging to an irreducible representation � with
a basis function f� (k). Turning on a finite α creates an addi-
tional k dependence resulting from the helical spin structure.
For small fields b < |α| the latter may be eliminated by a
phase transformation ��k

q± → ± exp(∓iθk )��k
q± (we later keep

the same symbol for the transformed gap) which is associated
with a correspondingly transformed effective interaction that
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takes the form [21]

V̂ = −V� (kk′)
2

(σ0 − σx ) = −V� (kk′)
2

[
1 −1

−1 1

]
, (11)

where V� (kk′) = V �
0 f� (k) f� (k′) (V �

0 > 0). Inserting this
two-band pairing interaction into the gap equation [Eq. (10)]
leads to the condition ��k

q− = −��k
q+. The opposite sign of

the two gaps is enforced by the opposite spin texture on the
two Rashba bands. We want to investigate the appearance
of unpaired low-energy normal quasiparticles in the helical
phase and their signature in the QPI spectrum. As a first step
we use a gap function representation that does not already
by itself have nodal points or lines in order to avoid having
both quasiparticles from the nodal regions and the depaired
regions. Therefore, as in Ref. [21] we restrict to the trivial
representation with f� (k) = 1 leading to (suppressing now
�) a gap ��k

qλ = �qλ without explicit k dependence. Then
the total BCS Hamiltonian including the mean field energy
constant is given by

HBCS = HMF + 1

2

∑
kλ

|�qλ|2
V0

. (12)

Introducing the Nambu spinors ψ
†
kqλ = (c†

k+qλ, c−k+qλ) we

may write HMF = ĤMF + E0 where

ĤMF = 1

2

∑
kλ

ψ
†
kqλĥkqλψkqλ, E0 = 1

2

∑
kλ

εk+qλ. (13)

The constant term E0 may be simplified using Eq. (15) below.
The summation over λ eliminates the second term leading to
E0 = 1

2

∑
kλ ξk+q. The Hamilton matrix in Nambu space is

given by

ĥkqλ =
[
εk+qλ −�qλ

−�∗
qλ −ε−k+qλ

]
. (14)

Using the symmetries ξk = ξ−k and gk = −g−k the diagonal
elements are obtained as

εk+qλ(b) = ξk+q + λ|αgk+q + b| = ξk+q + λζ+
kq,

ε−k+qλ(b) = ξk−q + λ|αgk−q − b| = ξk−q + λζ−
kq,

(15)

where we defined the auxiliary Rashba functions ζ±
kq =

|αgk±q ± b| where both signs on the right are taken simul-
taneously as + or −. We also introduce symmetric (s) and
antisymmetric (a) combinations explicitly given by

εs
kqλ = 1

2 (εk+qλ + ε−k+qλ)

= 1
2 (ξk+q + ξk−q) + λ 1

2 (ζ+
kq + ζ−

kq) ≡ ξ s
kq + λζ s

kq,

εa
kqλ = 1

2 (εk+qλ − ε−k+qλ)

= 1
2 (ξk+q − ξk−q) + λ 1

2 (ζ+
kq − ζ−

kq) ≡ ξ a
kq + λζ a

kq.

(16)
They fulfill the even/odd symmetry relations εs

−kqλ = εs
kqλ

and εa
−kqλ = −εa

kqλ, respectively. Here we defined ξ s,a
kq =

1
2 (ξk+q ± ξk−q) and ζ s,a

kq = 1
2 (ζ+

kq ± ζ−
kq). In the formal limit

of no Rashba coupling (α = 0) this simplifies to ζ s
kq = |b|

and ζ a
kq = 0. In this case the two Rashba bands εkλ [Eq. (3)]

become the Zeeman split bands with effective spin index λ.

Now we can split the diagonal matrix elements in the Hamil-
tonian into symmetric and antisymmetric parts and using the
symmetry relations we arrive at

ĥkqλ = εa
kqλτ0 +

[
εs

kqλ −�qλ

−�∗
qλ −εs

kqλ

]
. (17)

We note that in the following we will also use the prop-
erty

∑
kλ εa

kqλ = 0 which is due to the antisymmetry of εa
kqλ.

Hereby the summation over k runs over the paired and un-
paired regions as defined below.

III. BOGOLIUBOV TRANSFORMATION FOR PAIRED
AND DEPAIRED STATES

The first part in the k-symmetrized Hamiltonian in Eq. (17)
is already diagonal. The second part can now be diagonalized
by a Bogoliubov transformation to quasiparticle states created
by αkλ and βkλ with the corresponding Hamiltonian expressed
as

HMF =1

2

∑
kλ

[|E+
kqλ|α†

kαk + |E−
kqλ|β†

kβk
]

+ 1

2

∑
kλ

′

⎧⎨
⎩

εs
kqλ − Ekqλ; E τ

kqλ > 0
εs

kqλ + εa
kqλ; E+

kqλ
< 0

εs
kqλ − εa

kqλ; E−
kqλ

< 0

⎫⎬
⎭.

(18)

Here the quasiparticle energies are given by (τ = ±, τ̄ = ∓):

E τ
kqλ = Ekqλ + τεa

kqλ = E τ̄
−kqλ,

Ekqλ = [
εs2

kqλ + �2
qλ

] 1
2 = E−kqλ.

(19)

When for a given k and λ: E τ
kqλ > 0 (τ = ±), one has a stable

Cooper pair state with pair momentum 2q for this wave vector
k and band λ. If, on the other hand, E+

kqλ
< 0 or E−

kqλ
< 0 the

pair state is broken and only unpaired quasiparticle states exist
at the wave vectors k + q and −k + q. Note the remarkable
fact that although for these wave vectors |E±

kqλ
| are normal

quasiparticle excitations their energy nevertheless contains the
gap size �qλ determined by the paired states. This is because
in the coherent helical ground state the unpaired electrons and
holes also experience the pairing molecular field sustained by
the paired electrons, even though they do not contribute to it.
The mean field energy constant [last term in Eq. (18)] in the
two cases is different because of the additional condensation
energy in the paired state.

Therefore the corresponding Bogoliubov transformations
for the two cases are also different: For the paired states it is
given by [27]

E τ
kqλ > 0 :

[
ck+qλ

c†
−k+qλ

]
=

[
u∗

kλ vkλ

−v∗
kλ ukλ

][
αkλ

β
†
kλ

]
, (20)

whereas for the depaired states it may be written as [27]

E+
kqλ < 0 :

[
ck+qλ

c†
−k+qλ

]
=

[
u∗

kλ vkλ

−v∗
kλ ukλ

][
α

†
kλ

β
†
kλ

]
,

E−
kqλ < 0 :

[
ck+qλ

c†
−k+qλ

]
=

[
u∗

kλ vkλ

−v∗
kλ ukλ

][
αkλ

βkλ

]
. (21)
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Explicitly the transformation coefficients are given by

u2
kλ = 1

2

(
1 + εs

kqλ

Ekqλ

)
, v2

kλ = 1

2

(
1 − εs

kqλ

Ekqλ

)
. (22)

These coefficients fulfill the well-known relations

u2
kλ − v2

kλ = εs
kqλ

Ekqλ

, 2ukλvkλ = �qλ

Ekqλ

. (23)

Note the important fact that only the symmetrized Rashba
band energies εs

kqλ appear in the transformation coefficients
ukλ and vkλ. However, both momentum-symmetric εs

kqλ and
antisymmetric εa

kqλ contribute to the superconducting quasi-
particle energies E τ

kqλ in Eq. (19). This result of the analysis
could not have been anticipated a priori.

The total BCS Hamiltonian, including the constant energy
in Eq. (12), is then obtained as

HBCS = HMF + 1

2

∑
kλ

′ |�qλ|2
V0

= 1

2

∑
kλ

(|E+
kqλ|α†

kαk + |E−
kqλ|β†

kβk )

+ 1

2

∑
kλ

′

⎧⎪⎪⎨
⎪⎪⎩

εs
kqλ − Ekqλ + |�qλ|2

V0

εs
kqλ + εa

kqλ + |�qλ|2
V0

εs
kqλ − εa

kqλ + |�qλ|2
V0

⎫⎪⎪⎬
⎪⎪⎭. (24)

Here the second term 〈HBCS〉 is equal to the total ground state
energy EG(q,�q±) of the helical FF-type state. As in Eq. (18)
the sum extends over the upper value for paired states with
E±

kqλ
> 0 whereas the lower values correspond to a sum only

over the unpaired states with E+
kqλ < 0 or E−

kqλ < 0, respec-
tively. These conditional sums are indicated by the prime. The
helical SC ground state energy may be rewritten explicitly as
(see also Appendix A)

EG(q,�q±) = 1

2

∑
λ

[
N

(
|�qλ|2

V0

)

−
∑

k

(Ekqλ − εs
kqλ) +

∑
k

[E+
kqλ�(−E+

kqλ)

+ E−
kqλ�(−E−

kqλ)]

]
. (25)

This energy functional should be minimized with respect to
q and �q± for Rashba coupling α and field strength b. It
contains the possibilities of the helical (q �= 0, |�qλ| > 0),
BCS (q = 0, |�0λ| > 0), and unpolarized normal (b = 0, q =
0,�qλ = 0) states. For the latter the ground state energy is

E0
G =1

2

∑
kλ

(
ε0

kλ − ∣∣ε0
kλ

∣∣) =
∑
kλ

fkλε
0
kλ,

ε0
kλ =εs

kqλ(q = 0, b = 0) = ξk + λ|αgk|,
(26)

where fk = �(−ε0
kλ) is the zero temperature Fermi function

for the unpolarized Rashba split bands ε0
kλ [cf. Eq. (4)]. The

minimization problem is greatly simplified by the equal size
of the gaps |�q±| = �q in the model defined by Eq. (11).
Although strictly this holds only for q=0 we will also keep

FIG. 2. (a) Contour plots of SC condensation energy Ec < 0 in
the helical state in the (q, �q ) plane for typical field b = bx̂ with
b < α. (b, c) Field dependence of helical gap size �q, and (half-)
pair momentum q = qŷ, corresponding to the minimum in panel (a).
Here and in the rest of the paper, we set �0 = 0.3t , α = 2�0 = 0.6t .

this minimization constraint for the helical case. The pairing
potential strength V0 in Eq. (11) and in the ground state energy
Eq. (25) is related to the BCS gap size �0 and Rashba cou-
pling α by the simplified single gap equation obtained from
Eq. (10) in the limiting BCS case b, q = 0 at zero temperature.
Then all momentum states are paired and the sum over k is
unrestricted:

1

V0
= 1

2N

∑
kλ

1

2Ekλ

�(εc − |εkλ|), (27)

where the BCS zero-field quasiparticle energy is Ekλ = [ε02
kλ +

�2
0]

1
2 . Here ξc is an effective cutoff of the pairing potential

(�0 < ξc < 2Dc). In the following calculations the gap size
�0 is used directly as a fixed input parameter, then the cutoff
may be absorbed in the effective coupling constant V0 by
deleting the � function. We stress again that Eq. (27) is only
used for determination of V0 (occurring below in Ec) as a
function of input parameters �0 and α.

For finding the ground state by numerical minimization it
is useful to subtract the normal state energy from the ground
state energy in Eq. (25) to obtain the superconducting con-
densation energy Ec = EG − E0

G according to

Ec(q,�q±) = 1

2

∑
λ

[
N

( |�qλ|2
V0

)
−

∑
k

{(
Ekqλ − ∣∣ε0

kλ

∣∣)
+ (

εs
kqλ − ε0

kλ

) + [E+
kqλ�(−E+

kqλ)

+ E−
kqλ�(−E−

kqλ)]
}]

. (28)

Note that the asymmetric εa
kqλ Rashba energies of Eq. (16)

enter only in the unpaired quasiparticle contribution (last
term). Using the pure singlet gap constraint �q± = ±�q the
minimization of Ec(q,�q) with respect to �q and q for fixed
field b and Rashba coupling α determines the equilibrium
gap �(q, b, α) and wave vector q(b, α) characterizing the
helical state. We have to keep in mind, however, that the
pairing model of Eq. (11) is only strictly valid in the low
field limit b/α � 1. An example of the condensation energy
minimum formation in the (q,�q ) plane and the resulting
�q(b), q(b) dependence for small fields and fixed α is shown
in Fig. 2. The dependence of �q(b) is directly correlated with
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FIG. 3. (a–c) Quasiparticle dispersions |E τ
kqλ| in Eqs. (18) and

(19) for different fields along the BZ path �(0, 0), M(π, π ), X (0, π ),
�(0, 0). (a) Fully paired BCS state with E τ

kqλ > 0 for all k. (b) One
branch (dashed blue) touches zero leading to the appearance of
unpaired states at the touch points. (c) Finite segment of unpaired
states has formed due to E+

kq− < 0 along �M and �X segments corre-
sponding to the arc in the spectral function of Fig. 4. (c) Comparison
of quasiparticle DOS, ρq(ω), corresponding to panels (a)–(c) for
the Rashba-BCS state (b = 0, q = 0, �0) and helical state (b, q �=
0, �q ). The low energy DOS appears due to normal quasiparticles in
the unpaired momentum space region characterized by the |E τ

kqλ| � 0
region in panels (a)–(c) and the arc regions in Fig. 4.

behavior of the excitation spectrum in Fig. 3. As long as
low-energy quasiparticles from the depaired FS segments are
absent �q(b) stays constant, but it decreases rapidly when the
quasiparticle dispersion touches zero energy for b/�0 � 0.5
and the associated DOS becomes finite. Correspondingly the
(half-)pair momentum q(b) increases very slowly from BCS
value q(0) = 0 in the low field regime and exhibits a crossover
to rapid increase with b at b/�0 � 0.5. This is similar to

the q(b) behavior found in Refs. [24,35]. In Ref. [35] it was
argued that above the crossover field q(b) ∼ qs and below it is
suppressed to q(b) ∼ (α/|μ|)qs by a small prefactor. We also
note that in Ref. [23] a vanishing q(b) was obtained in the low
field region.

IV. GREEN’S FUNCTIONS IN THE HELICAL RASHBA
SUPERCONDUCTING STATE AND QUASIPARTICLE DOS

The Green’s functions in the FF-type superconducting state
are needed for the calculation of quasiparticle DOS and inter-
ference spectra. Using Eq. (17) we obtain

Ĝqλ(k, iωn) = (iωn − ĥkqλ)−1

= 1

(iωn − E+
qkλ

)(iωn + E−
qkλ

)

×
[

iωn + εs
kqλ − εa

kqλ −�qλ

−�∗
qλ iωn − εs

kqλ − εa
kqλ

]
.

(29)

The normal and anomalous Green’s functions elements
Gτ,τ ′

qλ (k, iωn) satisfy the following symmetry relations:

G11
qλ(−k, iωn) = −G22

qλ(k,−iωn), (30)

and likewise

G12∗
qλ (−k, iωn) = G21

qλ(k,−iωn). (31)

The spectral function corresponding to the above Green’s
function is obtained as

Aλ
kq(ω) = − 1

π
Im{tr[Ĝqλ(k, ω + iη)]}η→0+

=
∑

τ

δ
(
ω − E τ

qkλ

)
.

(32)

Now using the symmetry relation E τ
−kqλ = E τ̄

kqλ (with τ = ±
and τ̄ = ∓) one can define the symmetrized spectral function
according to

Āλ
kq = 1

2

[
Aλ

kq(ω) + Aλ
−kq(ω)

] = 1
2

[
Aλ

kq(ω) + Aλ
kq(−ω)

]
.

(33)
Using Eq. (32) they may be obtained for paired as well as

unpaired regions as

Āλ
kq(ω) = 1

2

∑
τ

[
δ
(
ω − ∣∣E τ

kqλ

∣∣) + δ
(
ω + ∣∣E τ

kqλ

∣∣)]
. (34)

This result agrees with the expression that may be directly
inferred from the quasiparticle Hamiltonian of Eq. (18).
Summation over quasiparticle momenta k then leads to the
quasiparticle DOS, ρqλ(ω), for Rashba band λ in the helical
state with pair momentum 2q according to

ρqλ(ω > 0) = 1

2N

∑
k

[δ(ω − |E+
kqλ|) + δ(ω − |E−

kqλ|)].
(35)

This presentation for the DOS is perfectly adequate for its
numerical evaluation and will in fact be used later. However,
to elucidate the distinction between conduction bands without
spin-orbit coupling (α = 0) treated previously [20,27] and the
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present Rashba split bands it is illuminating to evaluate this
expression partly analytically, except for a remaining momen-
tum angle integration. For that purpose we can simplify the
expressions in Eq. (16) when q/kF � 1 and k � kF k̂ is close
to the Fermi surface. Then ξ s

k � ξk and ξ a
k � qvF cos(θk −

θq) with vF = kF /m and the orthogonal pair momentum
and field directions defined by θq = π

2 (q = qŷ) and b =
bx̂. Furthermore this leads to gk+q � gk � (ky

F ,−kx
F , 0)/kF =

(sin θk,− cos θk, 0). Using these approximations we get (ξk =
k2/2m − μ)

εs
kqλ ≡ εkλ = ξk + λ|αgk| = ξk + λ|α|,

εa
kqλ = (vF q + λb) sin θk.

(36)

In this approximation the superconducting quasiparticle ener-
gies [Eq. (19)] then simplify to

E τ
kqλ = [

(ξk + λ|α|)2 + �2
qλ

] 1
2 + τ (vF q + λb) sin θk. (37)

The quasiparticle DOS ρ(ω) may be evaluated [20,27] as

ρq(ω > 0) = 1

4π

∑
λ

ρn
λ (0)

∫ 2π

0
dθ

∫ h̄ωc

0
dε

×
[
δ(ω − |E+

kqλ|) + δ(ω − |E−
kqλ|)

]
, (38)

where ρn
λ (0) = ρn(0) = m/2π is the normal state DOS equal

for both Rashba bands. With the angle-independent bare
Rashba dispersion ε0

kλ = ξk + λ|α| denoted by ε we can write

E τ
kqλ = [

ε2 + �2
qλ

] 1
2 + τ (vF q + λb) sin θk. (39)

Introducing now Ê τ
θqλ = ω − τ (vF q + λb) sin θ , the ε integra-

tion leads to the partial radial DOS at angle θ = θk:

ρ̂qλ(ω, θ ) = 1

2

( |Ê+
θqλ|

[|Ê+
θqλ|2 − |�qλ|2]

1
2

+ |Ê−
θqλ|

[|Ê−
θqλ|2 − |�qλ|2]

1
2

)
,

(40)
and the total DOS is then given by

ρq(ω) = 1

2π

∑
λ

ρn
λ (0)

∫ 2π

0
dθρ̂qλ(ω, θ ), (41)

which has four contributions due to two quasiparticle branches
for each of the two Rashba split bands characterized by
(τ, λ) = (±,±). They have the same form and are determined
by their different energies Ê τ

θqλ which are explicitly given by

Ê±
θq+ = ω ∓ (vF q + b) sin θ, Ê±

θq− = ω ∓ (vF q − b) sin θ.

(42)
Note that because of the helical spin polarization of Rashba
states the Zeeman contribution for a fixed field direction is
now also proportional to sin θ since the spins are locked with
respect to crystal axes for |α| � |b|. This is an essential
difference to the inversion symmetric case without Rashba
spin-orbit coupling where they can align parallel to the b
field [20,27] and therefore no dependence on the momentum
angle θ appears in this case. An example of the quasipar-
ticle DOS using the general form of Eq. (35) is shown in
Fig. 3(d), together with the quasiparticle dispersions |E τ

kqλ|
[Figs. 3(a)–3(c)] in Eq. (35). As the field increases and un-
paired states appear in the helical phase the corresponding

FIG. 4. Evolution of the spectral function in Eq. (34) with field
b at frequency ω = 0.5�0: (a) b = 0.5�0 with q(b)/π = 0.005,
and �q(b) = �0; (b) b = �0 with q(b)/π = 0.035, and �q(b) =
0.75�0; (c) b = 1.5�0 with q(b)/π = 0.06, and �q(b) = 0.59�0.
The dashed lines are corresponding to the bare (normal state) Rashba
contours at ω = 0 in zero field [Eq. (4)].

low-energy normal quasiparticles close to the zero energy line
in Figs. 3(a)–3(c) gradually fill up the SC gap. It is important
to note that a zero energy quasiparticle DOS appears although
the helical SC order parameter has no nodes, either in k space
or in real space. This is rather a consequence of the presence of
FS sheets of unpaired states defined by |E τ

kqλ| = ω. Their evo-
lution with field b for constant frequency is shown in Fig. 4.
The lenslike quasiparticle sheets appear close to the direction
of the helical momentum q and grow with field strength for
both Rashba sheets λ = ±1.

V. QUASIPARTICLE INTERFERENCE SPECTRUM

Now we turn to the main object of this paper, the calcula-
tion of the quasiparticle interference spectrum in the helical
phase which should show in a very straightforward manner
the effect of the sofar hypothetical momentum-space seg-
mentation of quasiparticles into paired and unpaired regions
determined by field b and Cooper pair momentum 2q. This
effect contains the microscopic essence of the helical su-
perconducting state. For this purpose it is also necessary to
define a simple model for the surface-impurity scattering of
quasiparticles and transform it to the basis of helical Rashba
band states. In practice the impurities are adsorbed atoms
or molecules at the surface with very small area concentra-
tion, and therefore the QPI spectrum is in fact determined
by single-impurity site scattering processes [36]. These dilute
surface impurities with weak scattering potential are not detri-
mental to the stability of the bulk FF-type helical state.

A. Normal and magnetic impurity scattering

We consider the two most frequent cases of normal charge
(c) impurities and magnetic moment (m) impurities being
responsible for electron scattering at the surface of the Rashba
FF-type superconductor. In the normal state, using spin repre-
sentation of conduction electrons the isotropic scattering from
impurities located at random sites Ri is described by

Uc(r − Ri ) = U0σ0δ(r − Ri ),

Um(r − Ri ) = U1σzδ(r − Ri )
(43)

for the charge and exchange scattering, respectively. In the
latter case we assumed an Ising-type classical local moment
〈Sz(i)〉 at site i oriented along the z direction by a uniaxial
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potential, i.e., U1 = 1
2 Jex〈Sz(i)〉, where Jex is the on-site ex-

change constant. This leads to a Hamiltonian

Himp =
∑
ikk′σ

Uσ a†
k′σ akσ ei(k′−k)Ri , Uσ = U0 + σU1 (44)

in spin representation describing the scattering by random
impurities at the surface where q̃ = k′ − k is the momentum
transfer. It has to be transformed to the helical eigenstates of
the Rashba bands defined by Eq. (5). Furthermore in the super-
conducting state we must use appropriate scattering matrices
in Nambu (particle-hole) space according to the replacement
(U0,U1) → (U0τz,U1τ0) where τz and τ0 are corresponding
Pauli and unit matrices, respectively [37]. Then we obtain

Himp =
∑

ikk′λλ′

[
U0Ṽ

0
λλ′ (kk′)τz

+ U1Ṽ
1
λλ′ (kk′)τ0

]
c†

k′λckλ′ei(k′−k)Ri .

(45)

Here the momentum dependent scattering form factors
Ṽ 0,1

λλ′ (kk′) are introduced by the transformation to helical
eigenstates |kλ〉 of each Rashba band according to Eq. (5).
They are obtained from the transformation matrix in this equa-
tion according to

Ṽ 0
λλ′ (kk′) =

∑
σ

S∗
σλ(k′)Sσλ′ (k),

Ṽ 1
λλ′ (kk′) =

∑
σ

σS∗
σλ(k′)Sσλ′ (k).

(46)

Explicitly we obtain in helicity space (λλ′) effective
momentum-dependent c and m scattering potentials given,
respectively, by

{
Ṽ 0

λλ′ (kk′)
} = 1

2

[
1 + ei(θk−θk′ ) i(e−iθk − e−iθk′ )
i(eiθk − eiθk′ ) 1 + e−i(θk−θk′ )

]
,

{
Ṽ 1

λλ′ (kk′)
} = 1

2

[
1 − ei(θk−θk′ ) i(e−iθk + e−iθk′ )

−i(eiθk + eiθk′ ) −(
1 − e−i(θk−θk′ )

)]
.

(47)
These scattering matrices are Hermitian, fulfilling the rela-
tions Ṽ κ∗

λλ′ (k, k′) = Ṽ κ
λ′λ(k′, k) (κ = 0, 1). Since we use the

periodic TB band model for the QPI calculation in the next
section we also must use the periodic form of the phase
angle θk = tan−1(sin ky/ sin kx ) in the above expressions ap-
propriate for the TB model. Note that one has to be careful
to pick the right branches so that the polar angle covers

the whole interval [0, 2π ]. This is guaranteed if we define
θ0

k = tan−1[| sin(ky)/ sin(kx )|] and choose θk in the whole
BZ −π � kx, ky � π in counterclockwise fashion in the four
quadrants (I–IV) (±kx > 0,±ky > 0) according to

(I) θk = θ0
k , (II) θk = π − θ0

k ,

(III) θk = θ0
k + π, (IV) θk = 2π − θ0

k .
(48)

In the helicity representation the scattering matrix includes
nondiagonal interband terms λ �= λ′ even though we started
from a scattering potential diagonal in spin quantum numbers.
Both momentum dependence and interband features of the
scattering play a role in the QPI spectrum.

B. QPI spectrum in the Born approximation

The Fourier component of the surface charge modulation
corresponding to momentum transfer q̃ = k′ − k (not to be
confused with Cooper pair momentum 2q) and bias voltage
ω = eV induced by the scattering from random impurities is
given by (per impurity site) [26,37]

δN (q̃, ω) = − 1

π
Im

[
�̃(q̃, iωn)

]
iωn→ω+iδ,

�̃(q̃, iωn) =
1

N

∑
kλλ′

[
τzĜλ(k, iωn)t̂λλ′ (kk′, iωn)Ĝλ′ (k′, iωn)

]
11,

(49)

where t̂λλ′ (kk′)(iωn) is the scattering t matrix due to the impu-
rity scattering potential [Eq. (45)] and the index (11) projects
out the electron part of the Nambu matrix. Since the effective
scattering in Himp is momentum dependent due to helical
transformation we treat it only in BA for weak scattering. As
a matter of experience the QPI spectra in momentum space
do not strongly depend on this simplification [37]. In the Born
case the t matrix is frequency independent and simply given
by

t̂ c
λλ′ (kk′) = U0Ṽ

0
λλ′ (kk′)τz, t̂ m

λλ′ (kk′) = U1Ṽ
1
λλ′ (kk′)τ0,

(50)
in the normal (charge) and exchange (magnetic) scattering (c
and m) cases, respectively. Inserting this in Eq. (49), using
the explicit FF-type Green’s function [Eq. (29)], and defining
�̃(0,1)(q̃, iωn) = U(0,1)�0,1(q̃, iωn) we obtain the final result
of the QPI spectrum function (suppressing the pair momentum
index q everywhere)

�̃κ (q̃, iωn) = 1

N

∑
kλλ′

Ṽ κ
(1)λλ′ (kk′)

[(
iωn + εs

kλ − εa
kλ

)(
iωn + εs

k′λ′ − εa
k′λ′

) − (−1)κ�λ�λ′

(iωn − E+
kλ)(iωn + E−

kλ)(iωn − E+
k′λ′ )(iωn + E−

k′λ′ )

]
(51)

for the two cases of normal (c, κ = 0) and magnetic (m, κ =
1) scattering, respectively, whereby the sign constraint �+ =
−�− = �(q, b) for the gap functions has to be kept. In
this sum we are using the BA scattering matrix from
Eq. (47), the quasiparticle energies from Eq. (19), and the
(anti)symmetrized normal state dispersions from Eq. (16).
The value of the SC gap is obtained from the minimization

procedure of Eq. (28). Note that only the real part of the
scattering matrix Ṽ κ

(1)λλ′ (kk′) = ReṼ κ
λλ′ (kk′) which, due to the

Hermiticity of Eq. (47), is symmetric under exchange of all
indices enters the expression for �̃κ (q̃, iωn). Likewise the
imaginary part Ṽ κ

(2)λλ′ (kk′) = ImṼ κ
λλ′ (kk′) must be antisym-

metric under this exchange and because the expression in
parentheses in Eq. (51) is symmetric the summation over it
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gives zero. The real symmetric scattering matrix elements in
Eq. (51) in the charge (κ = 0) and magnetic (κ = 1) impurity
cases are obtained from Eq. (47) as

{
Ṽ 0

(1)λλ′ (kk′)
}=1

2

[
1 + cos(θk − θk′ ) sin θk − sin θk′

− sin θk + sin θk′ 1+cos(θk − θk′ )

]
,

{
Ṽ 1

(1)λλ′ (kk′)
}=1

2

[
1−cos(θk − θk′ ) sin θk + sin θk′

sin θk + sin θk′ −1+cos(θk − θk′ )

]
.

(52)

The difference between the two is due to the different influ-
ence of helical spin texture in the two scattering mechanisms.

VI. DISCUSSION OF NUMERICAL QPI RESULTS: THE
STM IMAGE OF MOMENTUM SPACE SEGMENTATION

The QPI method is well suited to observe the typical
changes of quasiparticle sheets in momentum space connected
with the appearance of the FF-type helical phase. The most
characteristic feature is the reappearance of Fermi surface
sheets for small frequencies ω < �0 due to the pair break-
ing of combined Zeeman shift and Rashba splitting effects.
The latter happens primarily for Cooper pairs with momenta
−k + q, k + q close to the direction of the shift vector qs of
Rashba Fermi surfaces which is perpendicular to the applied
field. As a function of applied QPI voltage ω = eV and field
strength the unpaired sheets represented by the quasiparticle
spectral functions undergo typical changes which contain in-
formation about the microscopic structure of the helical state.
In particular it will give direct evidence for the Cooper pair
momentum 2q being perpendicular to the applied field and
more importantly under favorable conditions it should be pos-
sible to estimate its magnitude from analyzing characteristic
momenta q̃i of the QPI image.

In the following we will therefore discuss the typical QPI
charge images δN (q̃, ω) expected in experiment which we
derived in the previous section for the charge and magnetic
impurity scattering cases. It will turn out that the two are
to a certain extent complementary. They will present mainly
the same features due to the same quasiparticle energy de-
nominators in Eq. (51) but with different intraband/interband
intensity distribution due to the coherence factors in the
numerator which contain different signs (−1)κ for the two
scattering mechanisms. Furthermore the momentum depen-
dence of effective scattering matrices in Eq. (52) is different
in the two cases. In order to achieve sufficient numerical
accuracy for detailed QPI image structure we have to use an
enhanced size for the SC gap scale �0 which will be set to
0.5α throughout.

First, as a reference, we will briefly discuss the QPI image
in the zero-field BCS case with conventional Cooper pairs,
i.e., q = 0, of Fig. 5 (see also Ref. [20]). In Fig. 5(a) the
spectral function presents two almost isotropic and feature-
less Rashba split Bogoliubov quasiparticle sheets (full lines)
which show an additional splitting due to the doubling of
particle-hole branches by the superconducting gap. For fre-
quencies ω slightly above the gap size their radii are close
to the Fermi wave vectors kλ

F of the normal state (dashed
lines) given in Sec. II A. In this case it is well known that the
QPI image generated by all scattering events across the two

FIG. 5. Reference spectral function (a) and QPI spectrum
(b) for the Rashba-BCS phase (b, q = 0; �0 = 0.3t ; α = 2�0 ) for
ω � �0.

spheres is again spherical with the doubling of the radius to
approximately 2kλ

F as is indeed seen in Fig. 5. For frequen-
cies ω slightly below the gap �0 this QPI image is rapidly
extinguished.

In distinction in the helical phase with superconducting or-
der parameter �qλ corresponding to finite pair momentum 2q
the regions in k space where Bogoliubov energy E+

kqλ
< 0 or

E−
kqλ

< 0 are depaired and have normal quasiparticle energies
|E+

kqλ
| or |E−

kqλ
| starting from zero and hence lead to quasipar-

ticle sheets even for ω < |�qλ|. They are presented by plotting
the spectral functions of Eq. (34) for various bias voltage
eV = ω or frequencies in the left columns of Figs. 6 and 7 (see
also Fig. 4). The segmentation of k space into paired regions
without low-energy quasiparticles (small |ky|) and unpaired
regions with quasiparticle sheets (large |ky|) is clearly seen
for the different frequencies. Here the inner/outer Rashba

FIG. 6. Evolution of the spectral function (a, d, g) and corre-
sponding QPI spectrum for the Rashba-helical FF-type phase: (b,
e, h) charge scattering QPI and (c, f, i) magnetic scattering QPI,
with frequency [first row, ω = 0.5�0; second row, ω = 0.7�0; third
row, ω = 0.9�0], and at field b = 0.5�0 with q(b)/π = 0.005,
and �q(b) = �0. Note that interband scatterings are contributed
mostly from the nonmagnetic impurities, whereas magnetic impu-
rities mainly lead to intraband scatterings.
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FIG. 7. Evolution of the spectral function (a, d, g) and corre-
sponding QPI spectra for the Rashba-helical FF-type phase: (b, e,
h) charge scattering QPI and (c, f, i) magnetic scattering QPI, with
field b and at frequency ω = 0.5�0. The first, second, and third rows
correspond to b = 0.5�0 with q(b)/π = 0.005, and �q(b) = �0;
b = �0 with q(b)/π = 0.035, and �q(b) = 0.75�0; and b = 1.5�0

with q(b)/π = 0.06, and �q(b) = 0.59�0, respectively.

FSs (dashed lines) correspond to λ = ±1 and the blue/red
bent lenses to quasiparticle sheets |E τ

kqλ| = ω correspond to
τ = ±1. For small ω [panel (a)] the first sheet appears in the
inner Rashba band λ = −1 and then on the outer one λ = +1
increasing in size with increasing ω [panels (d) and (g)]. They
end at the tip positions characterized by polar angles θk where
E τ

kqλ = ω. The large curvature at these points leads to a small
group velocity and hence large DOS contribution from their
vicinity. Hence they may appear prominently in the integrated
QPI spectrum, however as mentioned before the momentum
dependent scattering matrix elements also influence the inten-
sity.

From a comparison of the model calculation for the seg-
mented Fermi surfaces (more precisely equal-energy surfaces
at bias voltage ω = eV ) and its associated theoretical QPI
spectrum with the experimental one it is possible to investigate
the details of the pair-breaking effect in the helical phase on
the quasiparticle spectrum. In Fig. 6 we give a comparison
between calculated spectral functions (left column) in the
helical phase and its associated predicted QPI spectra and
show their evolution as a function of frequency or bias voltage
for constant field (center and right column for charge and
magnetic impurity scattering, respectively). We can identify
a selection of the characteristic possible intraband (λ = λ′)
and interband (λ �= λ′) scattering vectors q̃i (i = 1–6) defined
in the left column as intense or at least enhanced features in
the QPI image in the center and right column. These cor-
respondences are indicated in the panels with white arrows.
Particularly prominent and easy to identify are the tip-to-tip
scattering vectors q̃4 for nonmagnetic and q̃2 and q̃6 for mag-
netic scattering. The other characteristic QPI vectors map out
the whole Fermi surface arc segments of the spectral function

in the left column. In reverse this means that an experimental
QPI spectrum in the helical phase of a Rashba superconductor
allows one to reconstruct the segmented Fermi surface sheets
that appear as a consequence of the depairing of Cooper pairs
the momenta of which are primarily oriented along the helical
q vector. It is also noteworthy that the intensity distribution
of the QPI spectrum is to a certain extent complementary for
nonmagnetic and magnetic scattering, emphasizing different
regions of q̃ space: The interband scatterings appear most
prominent for nonmagnetic impurities, whereas magnetic im-
purities mainly lead to intraband scatterings. This is due to
the different coherence factors (numerators) in Eq. (51) and
angular dependences of the effective scattering matrices in
Eq. (52) for the two cases.

Figure 7 presents results for the field evolution of QPI as
an alternative to the previous one. Now the frequency is fixed
to ω = 0.5�0 and the field is varied in the low field regime
b < α of the helical phase (the zero-field BCS case is already
presented in Fig. 5 and the first row is identical to the one in
Fig. 7). Whereas in the previous figure the quasiparticle sheets
simply extend their dimension along the Rashba circle with
increasing ω now the increasing field changes their shape and
may lead to a doubling. This means the field evolution of the
QPI spectrum in central and right columns are also distinct.
It is again possible to identify characteristic scattering vectors
in the latter that correspond to those connecting the various
sheets in the spectral function.

Altogether our analysis demonstrates that an experimental
magnetic/nonmagnetic QPI spectrum and its frequency and
field evolution should contain enough information to map out
the segmented quasiparticle sheets in the helical phase with
finite Cooper pair momentum which is at the heart of this FF-
type Rashba superconducting state.

Finally one may ask whether the information contained in
the QPI images allows one to extract the size of the Cooper
pair momentum q as a function of field from the experimental
data. We note that none of the thermodynamic experimental
methods can achieve this. Since the q vector for moderate
fields has only a small fraction of the BZ extension and be-
cause it enters in a complicated manner in the spectrum of
Eq. (51) one may not expect a direct identification in the QPI
images of Figs. 6 and 7. However, it is possible to derive
an empirical relation for its estimation from experimental
quantities for small fields. For this purpose we note that the
frequency dependent tips of the spectral functions at polar an-
gles θτ

kλ in the left column of Figs. 6 and 7 are characterized by
the following conditions: (i) their quasiparticle energy fulfils
E τ

kqλ = ω and (ii) they lie very close to the original (dashed
lines) Rashba Fermi spheres with radius kλ

F (Sec. II A). On
these spheres Eq. (37) reduces to

E τ
kqλ � �q + τ (vF q + λb) sin θτ

kλ ≡ ω. (53)

We can determine the angles θτ
kλ at the tip positions from

the geometry depicted in Figs. 6(a), 6(d) and 6(g). To be
specific let us consider the upper part (τ = −1) of the inner
sheet (λ = −1) extended along the Rashba sphere with radius
k−

F . Its right (θR) and left (θL = π − θR) tips are connected
by characteristic vector q̃2 which is prominently seen in the
corresponding magnetic QPI spectrum [Fig. 6(c)]. Then we
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obtain cos θR = q̃2

2k−
F

. The sheet with a value 0 < θR < π/2
exists only when ω > �q − (vF q − b) ≡ ω0 or equivalently
when ω′ = ω − ω0 > 0. Then we may resolve Eq. (53) to
obtain a phenomenological

q(b, ω′) = b

vF
+ ω′

1 − sin θR(ω′)
, (54)

where the first term is the Rashba FS shift qs of Eq. (8). The
Cooper pair momentum q(b) is then obtained from the extrap-

olation to small ω′ → 0 where sin θR(ω′) = [1 − q̃λ
2

2kλ
F

]
1
2 → 1

in this limit. It has to be obtained from the experimentally
observed q̃2(ω′). A similar procedure may be applied to other
characteristic QPI vectors q̃i to obtain q(b). In principle this
opens a way to determine the Cooper pair momentum 2q(b)
directly from STM-QPI experiments.

VII. CONCLUSION AND OUTLOOK

In this paper we investigated microscopic features of the
helical phase in Rashba superconductors with isotropic and
equal magnitude of the gap function on the two Rashba
bands. The latter have helical spin texture enforced by the
strong Rashba spin-orbit coupling. In a magnetic field they are
shifted perpendicular to the field by an amount proportional to
its size. Therefore Cooper pairing in a state with nonvanishing
pair momentum 2q will be favored.

Using the approximations for large Rashba coupling we
derived the condensation energy as a function of q. Mini-
mization leads to the dependence of pair momentum and gap
size on the applied field. At the same time we computed
the quasiparticle energies in the helical state. Their most in-
teresting aspect is a segmentation of momentum space into
regions where Cooper pairs are stable and gapped Bogoliubov
excitations exist and other regions spread around the direction
of the overall pair momentum where pair breaking due to
large kinetic energy destroys the Cooper pairs and leads to
normal low-energy quasiparticles with corresponding Fermi
surface sheets. These are present despite the fact that the gap
�k

qλ = �qλ is nodeless in k space and real space.
We investigate this basic microscopic structure of the he-

lical state, a coherent superposition of paired and unpaired
states with associated peculiar evolution of Fermi surface (sur-
faces of constant energy) topology as a function of field and
frequency. In this paper we have shown that the technique of
quasiparticle interference is well suited to address this central
property of Rashba superconductors with finite momentum
Cooper pairing. It is able to monitor the appearance of the
segmented Fermi surface sheets of unpaired quasiparticles as
a function of field strength and bias voltage until they evolve
into those of the normal state Rashba sheets for large values of
these tuning parameters. Due to the helical frozen spin texture
the QPI images obtained for charge and magnetic impurity
scattering on the surface show considerable difference and
are complementary in the intensity distribution. Furthermore
following some of the characteristic wave vectors of the seg-
ments one may derive an estimate for the size of the pair
momentum 2q which is not accessible by other experimental
means.

The FF-type helical phase in the Rashba superconductor is
more amenable to such QPI investigations because it appears
already for small fields and does not require the extremely
large fields of the genuine FF phase in the inversion sym-
metric superconductors. It may also occur more frequently
since there is a considerable number of inversion symmetry
breaking (noncentrosymmetric) superconductors known by
now. In particular such QPI investigations for the helical phase
should be possible in layered superconductors with strong 2D
character which has been assumed in our analysis.

ACKNOWLEDGMENT

A.A. acknowledges the support of the Max Planck
POSTECH/Hsinchu Center for Complex Phase Materials.

APPENDIX A: DERIVATION OF THE
SUPERCONDUCTING CONDENSATION ENERGY

Here we give a brief derivation of Eq. (28) used to find
the (q,�q) values by minimization. First we note that the
ground state energy 〈HBCS〉 for the paired states [first row in
curly brackets in Eq. (24)] may also be written in different
equivalent forms given below:

〈HBCS〉paired = 1

2

∑
kλ

′
[
εs

kqλ − Ekqλ + |�qλ|2
V0

]

= 1

2

∑
kλ

′
[

2εs
kqλv

2
kλ − |�qλ|2

V0

]

= 1

2

∑
kλ

′
[
εs

kqλ − Ekqλ + |�qλ|2
2Ekqλ

]

= 1

2

∑
kλ

′
[
εs

kqλ − εs2
kqλ

Ekqλ

− |�qλ|2
2Ekqλ

]
. (A1)

Here the prime denotes summation over paired states only
with E±

kqλ
> 0. Using the first form above the total ground

state energy obtained from the mean field approximation and
Bogoliubov transformation is originally given by

EG(q,�q±) = 1

2

∑
λ

[
N

(
|�qλ|2

V0

)
+

∑
k

εs
kqλ

+ 2
∑

k

εa
kqλ�(−E+

kqλ)

−
∑

k

E−
kqλ�(E+

kqλ)�(E−
kqλ)

]
. (A2)

In the zero-field normal state (b = 0, q = 0,�qλ = 0) where
εa

kqλ = 0 and E±
kqλ = |ε0

kλ| > 0 this ground state energy re-
duces to

E0
G = 1

2

∑
kλ

(
ε0

kλ − ∣∣ε0
kλ

∣∣) =
∑
kλ

fkλε
0
kλ,

ε0
kλ = εs

kqλ(q = 0, b = 0) = ξk + λ|αgk|, (A3)

where fk = �(−ε0
kλ) is the zero temperature Fermi function

for the unpolarized Rashba split bands ε0
kλ [cf. Eq. (4)]. The
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condensation energy for the minimization is then given by
Ec = EG − E0

G.
To obtain a more symmetric form for EG and Ec we now

use the identity

�(E+
kqλ)�(E−

kqλ) = 1 − �(−E+
kqλ) − �(−E+

kqλ), (A4)

which holds because both E±
kqλ

cannot be simultaneously neg-
ative since their sum E+

kqλ
+ E−

kqλ
= Ekqλ > 0. Inserting this

into Eq. (A2) and using
∑

k εa
kqλ = 0 we obtain after some

simple rearrangements the symmetrized form of the ground
state energy

EG(q,�q±) = 1

2

∑
λ

[
N

( |�qλ|2
V0

)
−

∑
k

(
Ekqλ − εs

kqλ

)

+
∑

k

[E+
kqλ�(−E+

kqλ) + E−
kqλ�(−E−

kqλ)]

]

(A5)

given before in Eq. (25). Subtracting the normal state energy
of Eq. (A3) we obtain again the condensation energy expres-
sion given in Eq. (28).

APPENDIX B: PROOF OF VANISHING
CHARGE CURRENT

In the normal state of an interacting electron system the
total charge current must be zero according to a generalized
Bloch theorem [38]. In the BCS superconductor with only
(k,−k) pairs present this is still true. It is known that even in
the FF state without Rashba coupling the total charge current
vanishes although the pairs have finite common momentum
2q. This is due to the fact that the current is the pair-
momentum derivative of the total energy which must vanish in
the ground state [27]. Here we show that this still holds for the
case of finite Rashba coupling. The charge current operator
is commonly given in terms of Bloch operators creating spin
σz eigenstates [27]. After a unitary transformation to helical
states (λ = ±) in the Rashba system we obtain (in units of e)

Jc
q = 1

m

∑
k

[(k + q)c†
k+q+ck+q+ − (k − q)c†

−k+q−c−k+q−].

(B1)

Transforming to Bogoliubov quasiparticle states with
Eqs. (20) and (21) we obtain for the y component
(qy = q, ky = k) of the current

〈
Jc

q

〉 = 1

2m

∑
kλ

[2q|vkλ|2θH (E+
kqλ)θH (E−

kqλ)

+ (q + k)θH (−E+
kqλ) + (q − k)θH (−E−

kqλ)]. (B2)

Now we consider again the total ground state energy Eq. (24),
using an equivalent form for the paired term according to
Eq. (A1) and the relation

∑
kλ εa

kqλ = 0:

〈HBCS〉 = 1

2

∑
kλ

⎧⎪⎪⎨
⎪⎪⎩

2εs
kqλv

2
kλ − |�qλ|2

V0
, E τ

kqλ > 0

εk+qλ(b) + |�qλ|2
V0

, E+
kqλ

< 0

εk−qλ(−b) + |�qλ|2
V0

, E−
kqλ < 0

⎫⎪⎪⎬
⎪⎪⎭.

(B3)
Then, using similar small-q approximation as in Sec. IV, we
arrive at the identity

∂〈HBCS〉
∂q

= 1

2

∑
kλ

⎧⎨
⎩

2qv2
kλ, E τ

kqλ > 0
q + k, E+

kqλ
< 0

q − k, E−
kqλ < 0

⎫⎬
⎭ = 〈

Jc
q

〉
. (B4)

Because the condensation energy of Eq. (28) is given
by Ec(q,�q ) = EG(q,�q ) − E0

G where EG = 〈HBCS〉 is the
helical ground state energy [Eq. (25)] and E0

G is the con-
stant normal state energy [Eq. (26)] it means that 〈Jc

q 〉 =
∂Ec(q,�q )/∂q, i.e., the charge current in the helical state
with (q,�q ) is equal to the q derivative of the condensation
energy in that state. Since the true values of (q,�q ) are
those where Ec(q,�q ) is a minimum [Fig. 2(a)] it means that
∂Ec(q,�q )/∂q = 0 vanishes and therefore the charge current
〈Jc

q 〉 [Eq. (B2)] in the helical state with the true (q,�q) also
vanishes, similar to the inversion symmetric case [27]. We
conclude that also in the presence of the Rashba coupling we
have vanishing charge current 〈Jc

q 〉 = 0 in the ground state.
This situation may be different for the spin current which is
already nonzero in the zero-field phase of the Rashba super-
conductor [39].
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