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Quantum information scrambling in quantum many-body scarred systems
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Quantum many-body scarred systems host special nonthermal eigenstates that support periodic revival
dynamics and weakly break the ergodicity. Here, we study the quantum information scrambling dynamics
in quantum many-body scarred systems, with a focus on the “PXP” model. We use the out-of-time-ordered
correlator (OTOC) and Holevo information as measures of the information scrambling and apply an efficient
numerical method based on matrix product operators to compute them up to 41 spins. We find that both the
OTOC and Holevo information exhibit a linear light cone and periodic oscillations inside the light cone for
initial states within the scarred subspace, which is in sharp contrast to thermal or many-body localized systems.
The periodic revivals of OTOCs and Holevo information signify unusual breakdown of quantum chaos and are
not equivalent to the revival dynamics of state fidelity or local observables studied in the previous literature. To
explain the formation of the linear light-cone structure, we provide a perturbation-type calculation based on a
phenomenological model. In addition, we demonstrate that the OTOC and Holevo information dynamics of the
PXP model can be measured using the Rydberg-atom quantum simulators with current experimental technologies
and numerically identify the measurable signatures using experimental parameters.
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I. INTRODUCTION

Isolated quantum many-body systems eventually thermal-
ize under time evolution, and their subsystems relax to
equilibrium, leading to the emergence of ergodicity and sta-
tistical mechanics. During this process, any local information
preserved in the initial states scrambles into the entire system
and becomes unrecoverable. This kind of quantum thermal-
ization phenomenon has been illustrated by the eigenstate
thermalization hypothesis (ETH) in the past decades [1,2].
While numerous works have confirmed the universality and
correctness of the ETH in various scenarios [3–6], discovering
quantum many-body systems violating the ETH is still of
fundamental and practical importance. Known exceptions to
the ETH paradigm include the integrable [7] and many-body
localized (MBL) [8,9] systems, which have either exact or
approximate extensive conserved quantities to prevent the
systems from thermalization. Recently, in experiments with
Rydberg atoms, nonthermal periodic revival dynamics has
been observed after quenching the system from a special
high-energy Néel state [10,11]. Subsequent theoretical works

*These authors contributed equally to this work.
†lmduan@tsinghua.edu.cn
‡dldeng@tsinghua.edu.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

attribute this weak ergodicity breaking to a small fraction
of ETH-violating eigenstates (dubbed “quantum many-body
scars”) embedded in a sea of thermal eigenstates [12–14].
Here, we investigate the scrambling of quantum information
in many-body scarred systems (see Fig. 1 for a pictorial illus-
tration).

Quantum information scrambling describes the propaga-
tion and effective loss of initial local information in quantum
many-body dynamics. It has attracted considerable attention
in different contexts, including black hole thermodynamics
[15–17], quantum many-body quench dynamics [18–21], and
machine learning [22–24]. Except for a few pronounced in-
tegrable examples [25–35], for general quantum many-body
systems with short-range interactions obeying the ETH, the
Lieb-Robinson bound [36] restricts the correlation propaga-
tion within a linear light cone (analogous to the causal light
cone in relativistic theories). In contrast, strong disorders in
MBL systems prevent the local transport, resulting in a log-
arithmic light cone for information spreading [37–42] [see
Fig. 1(b) for a sketch]. Quantum many-body scars, as a new
thermalization class in many-body dynamics, possess the po-
tential to exhibit different information spreading behaviors
from the former two cases. Despite previous extensive stud-
ies of quantum many-body scars from various perspectives
[43–71], the exploration of quantum information scrambling
in quantum many-body scarred systems is still lacking hith-
erto.

In this paper, we apply the out-of-time-ordered correlator
(OTOC) and Holevo information as measures to study this
problem. We find that both the OTOC and the Holevo informa-
tion exhibit a linear light cone and periodic revival dynamics
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FIG. 1. (a) An illustration of the one-dimensional Rydberg-atom
array used for the measurement of OTOCs Fi j (t ) and Holevo in-
formation χ j (t ). Individual neutral atoms are trapped with optical
tweezers (vertical red beams). The global Rydberg laser (the horizon-
tal blue beam), with the Rabi frequency � and detuning �, couples
the atomic ground state |g〉 (black circles) with the Rydberg excited
state |r〉 (white circles). A pair of Rydberg atoms at the distance Ri j

shares the van der Waals repulsion Ui j = U0/R6
i j . (b) A schematic

illustration of the information scrambling dynamics in systems of
different thermalization classes.

inside the light cone for initial states within the scarred sub-
space, displaying distinct features from the ETH and MBL
cases [Fig. 1(b)]. Moreover, the persistent oscillations will
disappear and the information propagation speed will increase
once we choose generic high-energy initial states. The peri-
odic oscillations of OTOCs and Holevo information signify
unusual breakdown of quantum chaos and persistent backflow
of quantum information. Due to the action of interleaved
operators, the dynamics of OTOCs and Holevo information
actually involve both the scarred subspace and the thermal
eigenstate bath. We emphasize that their dynamics cannot be
readily deduced from the eigenstate decomposition of ini-
tial states, thus distinguishing our work from the previous
literature [12–14]. In order to explain the linear light-cone
structure, we further provide a perturbation-type calculation
in the interaction picture based on a phenomenological model
proposed in Ref. [43]. Finally, we propose an experiment with
Rydberg atoms to observe the predicted exotic OTOC and
Holevo information dynamics and numerically identify the
measurable signatures using experimental parameters.

II. MODEL

Motivated by the Rydberg-atom experiment [10], in the
limit of Rydberg blockade [72] the physics of quantum many-
body scars are extracted as the one-dimensional (1D) “PXP”
model with an open boundary condition [12,13]:

H =
L∑

j=1

Pjσ
x
j+1Pj+2, (1)

where Pj = (1 − σ z
j )/2, σ

x,y,z
j are Pauli matrices of the jth

qubit, L is the number of total qubits, and | ↓ (↑)〉 represents
the atomic ground (Rydberg excited) state |g(r)〉. Below we
always consider the dynamics within the constrained Hilbert
space (where computational bases with two nearby up spins

| · · · ↑↑ · · · 〉 are removed). The PXP Hamiltonian is noninte-
grable and chaotic according to the level statistics studies, yet
it holds a small fraction of ETH-violating scarred eigenstates
that support the periodic revival dynamics for initial states
within the scarred subspace (such as the Néel state |Z2〉 =
| ↑↓↑ · · · ↑↓〉). In contrast, for generic high-energy initial
states (such as |0〉 = | ↓↓ · · · ↓〉) the dynamics will quickly
become chaotic, and no revival occurs [12,13,44].

The OTOC utilizes the Heisenberg operator growth to char-
acterize the information scrambling and quantum chaos and is
defined as [17,73,74]

Fi j (t ) = 〈ψ |W †
i V †

j (t )WiVj (t )|ψ〉, (2)

where |ψ〉 is an initial pure state, Wi,Vj are local observ-
ables defined on sites i, j, and Vj (t ) = eiHtVje−iHt (h̄ = 1).
The OTOC directly connects to the squared commutator
Ci j (t ) = 〈ψ |[Wi,Vj (t )]†[Wi,Vj (t )]|ψ〉 by the relation Ci j (t ) =
2(1 − Re[Fi j (t )]), for unitary operators Wi,Vj . A simple phys-
ical picture for the OTOC is that if the Heisenberg operator
growth of Vj (t ) does not reach site i, then [Wi,Vj (t )] = 0
and Fi j (t ) = 1, whereas the equalities will break down when
sites i, j become correlated inside the causal region. Note
that the OTOCs Fi j (t ) consist of the forward and backward
Hamiltonian evolution, between which there exist interleaved
local operators Wi and Vj . Since the evolved quantum states
(e−iHt |ψ〉 or e−iHtWi|ψ〉) in general are not the eigenstates of
inserting operators Wi and Vj , the OTOC dynamics can be es-
sentially different from those of simple local observables. For
instance, in the study of MBL systems, people have realized
the distinction between the dynamics of OTOCs and common
two-point correlators: OTOCs exhibit a logarithmic light cone
and decay inside [37–42], whereas the two-point correlators
are bounded to be exponentially small due to the localization
nature [8,9]. In the following discussions, we mainly focus on
the ZZ-OTOC (W = σ z, V = σ z) and XZ-OTOC (W = σ x,
V = σ z).

The Holevo information (or Holevo χ quantity) origi-
nates from quantum information theory to upper-bound the
accessible information between two separate agents [75,76].
Consider that Alice prepares mixed states ρX in the set
{ρ1, ρ2, . . . , ρn} with probability {p1, p2, . . . , pn}, respec-
tively, and then sends ρX to Bob. With any kind of positive
operator-valued measures (POVMs), the amount of infor-
mation Bob can obtain about the variable X according to
the measurement outcome Y is bounded by I (X : Y ) � χ =
S(

∑n
i=1 piρi ) − ∑n

i=1 piS(ρi ), where I (X : Y ) is the mutual
information between X and Y , and S(ρ) = −Tr(ρ log ρ)
denotes the von Neumann entanglement entropy. Roughly
speaking, the Holevo information describes the distinguisha-
bility of states in the set {ρ1, ρ2, . . . , ρn}. For instance,
p1 = p2 = 1/2: If ρ1 = | ↑〉〈↑ |, ρ2 = | ↓〉〈↓ |, then χ = 1;
in contrast, if ρ1 = ρ2 = | ↑〉〈↑ |, then χ = 0. Compared with
OTOCs, Holevo information possesses richer information-
theoretic meanings, and its experimental measurement does
not require the inverse Hamiltonian evolution. We hence ex-
pect that Holevo information can be used to characterize
the information spreading dynamics and solve information-
theoretic problems in more quantum many-body systems
[77–79].
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FIG. 2. Information scrambling dynamics in quantum many-body scarred systems. (a)–(d) Spatiotemporal evolution of the ZZ-OTOCs
[(a) and (b)] and XZ-OTOCs [(c) and (d)] of the PXP model, calculated by the MPO method, with L = 41 and i = 21. The OTOCs Fi j (t )
exhibit linear light cones and periodic oscillations in (a) and (c) with the initial state |Z2〉, in contrast to the larger butterfly velocity and absence
of oscillations in (b) and (d) with the initial state |0〉. (e) and (f) The spatiotemporal evolution of the Holevo information χ j (t ) for the initial
state |Z2〉 (L = 41, by MPS) and |0〉 [L = 21, by exact diagonalization (ED)]. Initially, one-bit information is encoded in the central qubit. The
information travels ballistically and oscillates in (e), while it peaks and quickly diminishes in (f) [the peaks of χ j (t ) for j far from the central
qubit are too small to be distinguished; the red dashed lines are a guide to the eye]. All the color maps are interpolated to noninteger j to better
illustrate the light cone. (g) The frequency spectra of the ZZ-OTOC dynamics for the scarred eigenstates (marked by stars and squares) and
thermal eigenstates (marked by circles and crosses). (h) The log-scaled overlap between each eigenstate |En〉 and the |Z2〉 Néel state, L = 20,
calculated by ED.

Here, we regard the reduced Hamiltonian evolution on
subsystems as quantum communication channels in the orig-
inal setup of Holevo information [75] and use it to study the
information scrambling dynamics. Consider the Hamiltonian
evolution on two different initial states, |ψ〉 and σ x

i |ψ〉, taking
|ψ〉 to be a computational basis state (e.g., |Z2〉 or |0〉). In
other words, initially we have encoded one-bit information at
site i [| ↑ (↓)〉i]. We demonstrate how the one-bit information
scrambles into the entire system by computing the Holevo
information on site j:

χ j (t ) = S

(
ρ j (t ) + ρ ′

j (t )

2

)
− S[ρ j (t )] + S[ρ ′

j (t )]

2
, (3)

where ρ j (t ) and ρ ′
j (t ) are reduced density matrices of the jth

spin after the Hamiltonian evolution for the initial state |ψ〉
and σ x

i |ψ〉, respectively. χ j (t ) measures how much informa-
tion one could obtain by any local probe on the jth site for
these two sets of evolution.

III. NUMERICAL SIMULATIONS

In Fig. 2, we numerically compute the OTOC and Holevo
information for the PXP model as diagnoses of the in-
formation scrambling dynamics. Specifically, we apply an
efficient matrix-product-operator (MPO) method [30] to cal-
culate the ZZ-OTOC and XZ-OTOC up to L = 41 spins (see
Appendix C for algorithm details). We observe the follow-
ing features: For the initial state |ψ〉 = |Z2〉 [Figs. 2(a) and
2(c)], both the ZZ-OTOC and XZ-OTOC spread ballistically,
forming a linear light-cone structure with the butterfly ve-
locity vb ∼ 0.6 (inverse of the light-cone slope) [16,80–84];
inside the light cone, the OTOC dynamics show evident peri-
odic revivals with the period T ≈ 4.71, consistent with the

oscillation period of state fidelity and local observables in
Hamiltonian evolution [12,44]. Besides, the oscillations for
different sites j are synchronized, meaning that Fi j (t ) of dif-
ferent j have the same period T and reach the maxima at the
same time t . In contrast, for a generic high-energy initial state
such as |0〉 [Figs. 2(b) and 2(d)], the OTOCs have a larger
butterfly velocity vb ∼ 1 (information scrambles faster) and
decay without discernible periodic revivals inside the light
cone.

We emphasize that except for the ZZ-OTOC of the |Z2〉
initial state, the periodic oscillations of OTOCs inside the light
cone cannot be deduced from the approximate recurrence of
the |Z2〉 state under Hamiltonian evolution. For instance, in the
XZ-OTOC case, the inserting σ x

i operators will flip the |Z2〉
state partially out of the scarred subspace and introduce the
influence from the thermal eigenstate bath. In order to confirm
the generality of the revival behaviors, we numerically show
that the persistent and synchronized oscillations still appear
even if the initial states are replaced with scarred eigenstates.
We use the overlap between eigenstates |En〉 of the PXP
Hamiltonian and |Z2〉 [Fig. 2(h)], as well as the half-chain
entanglement entropy of |En〉 (see Appendix C for details),
to distinguish quantum many-body scars from typical thermal
eigenstates [12,13]. In Fig. 2(g), we transform the ZZ-OTOC
dynamics into the frequency domain and find the following:
For the case of initial states being scarred eigenstates, there
exist ω0 = 2π/T, 2ω0, 3ω0 peaks in the spectra for different
sites j, but not for the case of initial states being the generic
thermal eigenstates. Figure 2(g) indicates that the periodic
revivals of OTOCs are general phenomena for initial states
within the scarred subspace. The recurrence of quantum in-
formation signified by the OTOCs is not equivalent to the
recurrence of quantum states through Hamiltonian evolution,
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for which the energy eigenstates actually have no dynamics.
In Appendix C we further display the OTOC dynamics with
initial states being eigenstates of the PXP Hamiltonian and
superposition states of |Z2〉 and |Z ′

2〉 = (
∏L

i=1 σ x
i )|Z2〉.

Similar information scrambling dynamics also emerge
when probed by the Holevo information. As shown in
Fig. 2(e), for two sets of Hamiltonian evolution on |Z2〉 and
σ x

	L/2
|Z2〉, χ j (t ) initially vanishes everywhere except on the
central qubit, where one-bit local information is encoded. As
time evolves, nonzero Holevo information can be probed at
other sites j, which forms a linear light cone in spacetime
and also persistent oscillations inside the light cone with a
period T ≈ 4.73, consistent with the OTOC results. In com-
parison with the initial states |0〉 and σ x

	L/2
|0〉 [Fig. 2(f)], χ j (t )
peaks when the information wavefront arrives and eventually
diminishes for long time t , following the indistinguishability
of ρ j (t ) and ρ ′

j (t ) predicted by the ETH. The information
spreading velocity vh for the |Z2〉 case is vh ∼ 0.6, less than
that of the |0〉 case vh ∼ 0.9. Similarly, due to the action
of the σ x

	L/2
 operator, the Holevo information dynamics in-
volve both the scarred subspace and the thermal eigenstate
bath, which are further discussed in Appendix B. Figure 2(e)
is obtained by the time-evolving block decimation (TEBD)
algorithm [85,86] based on the matrix-product-state (MPS)
ansatz, which leverages the relatively low entanglement en-
tropy of scarred eigenstates and is not applicable to the |0〉
case [12,13].

IV. ANALYTICAL EXPLANATIONS

In this section, we provide analytical explanations for
the OTOC and Holevo information dynamics observed in
numerical simulations. First, we mention that the analytical
computation of OTOCs is a challenging task for general
quantum many-body systems, despite a few pronounced
solvable examples such as the Sachdev-Ye-Kitaev (SYK)
model [87–90]. For the PXP model, it is difficult to
directly deal with its OTOC dynamics by the perturbation
method since all the terms in the Hamiltonian have the
same interaction strength. However, the essential features
of the PXP model consist of two parts: the periodic
oscillations within and the chaotic dynamics out of the
scarred subspace, which we adopt a phenomenological
model proposed in Ref. [43] to effectively describe,
namely, H ′ = (�/2)

∑
i σ

x
i + ∑

i Ri,i+3Pi+1,i+2, where
Pi,i+1 = (1 − �σi · �σi+1)/4 and Ri, j = ∑

μ,ν Jμν
i j σ

μ
i σ ν

j (Jμν
i j

are random coupling constants, μ, ν = {x, y, z}) for a 1D
chain with L spins. H ′

0 = (�/2)
∑

i σ
x
i corresponds to

the periodic rotations in the PXP Hamiltonian, whereas
R = ∑

i Ri,i+3Pi+1,i+2 plays the role of thermalization
for states out of the scarred subspace. The L + 1
scarred eigenstates are all the x-direction Dicke states
H ′|s = L/2, Sx = mx〉 = mx�|s = L/2, Sx = mx〉 (mx =
−s,−s + 1, . . . , s − 1, s). Once we start the Hamiltonian
evolution from |ψ〉 = | ↑↑ · · · ↑〉, perfect quantum state
revivals with period T = 2π/� will be observed, imitating
most but not all the characteristics of the PXP model [43] (see
Appendix A for model details and relevant numerical results).

For the nontrivial situation of XZ-OTOC W1 = σ x
1 , Vr =

σ z
r with the initial state |ψ〉 = | ↑↑ · · · ↑〉, specially at

time points t = nT/2 (n = 0, 1, 2, . . .), the OTOCs are sim-
plified into F (r, t ) = (−1)n〈φ(t )|σ z

r |φ(t )〉, where |φ(t )〉 =
e−iH ′tσ x

1 |ψ〉. The physical picture for the formation of a lin-
ear light-cone structure in OTOC and Holevo information
dynamics is as follows: Without the action of σ x

1 , the state
|φ(t )〉 will undergo perfect periodic oscillations, and thus
F (r, t = nT/2) ≡ 1. However, now σ x

1 penetrates the scarred
subspace on the first site. The “heat flow” (such as a quasipar-
ticle created by the local quench [21]) leaks and propagates
ballistically through the entire system, leading to the decay of
OTOC F (r, t = nT/2) < 1 after the wavefront of heat flow ar-
rives. Note that in the setup of Holevo information dynamics,
we also have a Hamiltonian evolution term e−iHtσ x

	L/2
|Z2〉,
which has the same structure of |φ(t )〉. We hence deduce
that the dynamics of Holevo information and OTOCs are
closely related and follow the same physical picture. Indeed
the numerical results of the two criteria support each other
and exhibit similar information scrambling behaviors.

We use the interaction picture of H ′
0 to remove the

Rabi oscillation effect. For the early growth region of
OTOCs, we can split the evolution time t into r pieces
with �t = t/r, J�t  1, where J is the average en-
ergy scale of all the Jμν

i j . After some lengthy calculations,
shown in Appendix A, the deterioration of perfect oscilla-
tions at site r will be dominantly caused by an operator
product series R̂r ((r − 1)�t ) · · · R̂2(�t )R̂1(0) [R̂i(n�t ) =
eiH ′

0n�t Ri,i+3Pi+1,i+2e−iH ′
0n�t are operators in the H ′

0 interaction
picture], leading to

F (r, t ) ∼ 1 −
(aJt

r

)r

. (4)

Here, a is some model-dependent O(1) constant, and we have
generalized the special time points t = nT/2 to arbitrary t
before the wavefront arrives. Equation (4) depicts a linear light
cone t ∝ r/J in the early growth region of OTOCs.

Despite the fact that the OTOC dynamics have linear light-
cone structure both in the ETH and in many-body scarred
systems, the thermalization processes are pretty different:
In the ETH systems, when we start the Hamiltonian evo-
lution, thermalization happens everywhere globally on the
quantum state; in contrast, for many-body scarred systems,
according to the calculations above, the periodic revivals are
destroyed locally at some sites, and the deterioration effect
then propagates through the entire system. The global versus
local thermalization processes are reminiscent of the spin
correlation dynamics in global [20] versus local [21] quench
dynamics and can also explain the larger butterfly velocity for
the |0〉 initial state than that of the |Z2〉 initial state in OTOC
and Holevo information dynamics.

The perturbation-type calculations break down for the
OTOC and Holevo information dynamics deep inside the light
cone. As mentioned in the previous section, the persistent
and synchronized oscillations inside the light cone still appear
even if the initial states are replaced with scarred eigenstates
(see Appendix C, Figs. 7 and 9 ). We attribute the unusual
revival dynamics inside the light cone to the local rather than
global thermalization argued above and robustness of scarred
eigenstates against local perturbations: The quantum many-
body scars have been shown to present certain robustness
against perturbations and disorders [63–67]. Under some local

023095-4



QUANTUM INFORMATION SCRAMBLING IN QUANTUM … PHYSICAL REVIEW RESEARCH 4, 023095 (2022)

FIG. 3. Numerical simulations of the ZZ-OTOC (a) and Holevo
information (b) dynamics for the Rydberg-atom Hamiltonian ap-
proximated by H±, with the initial state |Z2〉, under experimental
parameters L = 21, � = 2, U1 = 12, U2 = 0.19, and � = 0.38 (by
ED). Contour lines of the OTOC and Holevo information χ are
projected on the j-t plane.

perturbations such as σ
x(z)
i( j) operators on the evolved quan-

tum states (e−iH ′tσ x
1 |ψ〉), thermalization happens locally and

propagates outwards. After the wavefront of thermalization
effect passes, the periodic oscillations are preserved to some
extent due to the robustness of scar eigenstates, leading to the
revival pattern observed in the OTOC and Holevo information
dynamics. This picture is also observed in Appendix A, Fig. 4,
and Appendix B, Fig. 5, and could be an interesting avenue for
future investigations.

V. EXPERIMENT PROPOSAL

Recent experimental progress has enabled the measure-
ments of information scrambling dynamics in well-controlled
synthetic quantum systems, including nuclear magnetic reso-
nance systems [91,92], trapped ions [93–96], and supercon-
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FIG. 4. Numerical simulations of the XZ-OTOC dynamics [(a),
(b), and (d)] and ZZ-OTOC dynamics (c) for the H ′ model, Eq. (A1),
with the initial states being (a) the |s = L/2, Sz = −L/2〉 Dicke state,
(b) the |s = L/2, Sz = −L/2 + 1〉 Dicke state, (c) the |s = L/2, Sz =
0〉 Dicke state, and (d) the Z2 Néel state (| ↑↓↑ · · · ↑↓〉). i = 1 in
Fi j (t ), L = 18, calculated by ED.

ducting qubits [97–100]. The PXP model can be naturally
realized with the Rydberg-atom platform [72,101,102], gov-
erned by the following Hamiltonian:

H = �

2

∑
i

σ x
i − �

∑
i

ni +
∑
i< j

Ui jnin j . (5)

σ x
i connects the atomic ground (|g〉) and Rydberg excited

(|r〉) state on site i with the Rabi frequency � and detun-
ing �. Two Rydberg atoms at distance Ri j share the van
der Waals repulsion Ui j = U0/R6

i j . ni = (1 + σ z
i )/2 denotes

the number of Rydberg states. In the parameter regime of
Rydberg blockade Ui,i+1 = U1 � � � Ui,i+2 = U2, ∀i, the
lowest U(1) symmetry sector

∑
i nini+1 = 0 of Hamiltonian

[Eq. (5)] approximately reduces to the PXP model, which
provides us an opportunity to experimentally measure the
ZZ-OTOC and Holevo information dynamics [see Fig. 1(a)].

The main difficulty in simulating OTOC dynamics lies
in the implementation of the inverse Hamiltonian evolu-
tion exp [−i(−H )t]. Fortunately, the PXP model has a
particle-hole symmetry operation (

∏
i σ

z
i )H (

∏
i σ

z
i ) = −H to

reverse the sign of H . For the Rydberg-atom Hamiltonian
[Eq. (5)], the

∏
i σ

z
i operator only changes the sign of the

Rabi oscillation term while keeping the detuning term and
Rydberg blockade structure intact. Below we denote the
Hamiltonians for experimental evolution and inverse evo-
lution as H± = ±(�/2)

∑
i σ

x
i − �

∑
i ni + U1

∑
i nini+1 +

U2
∑

i nini+2, where we only take the next-nearest-neighbor
interaction U2 into consideration in the error analysis due to
the sixth-power decay. Specifically, for the case of ZZ-OTOC
Fi j (t ) = 〈ψ |σ z

i σ z
j (t )σ z

i σ z
j (t )|ψ〉 and initial states |ψ〉 = |Z2〉

or |0〉, since σ z
i |ψ〉 = (−1)ni+1|ψ〉, we have

Fi j (t ) = (−1)〈ψ |ni|ψ〉+1〈Ψ j (t )|σ z
i |Ψ j (t )〉, (6)

where |Ψ j (t )〉 = e−iH−tσ z
j e−iH+t |ψ〉 and e−iH−t =

(
∏

i σ
z
i )e−iH+t (

∏
i σ

z
i ). The measurements of ZZ-OTOC

are hence reduced to the evaluation for the expectation
value of σ z

i on a time-dependent quantum state |Ψ j (t )〉.
The implementation of |Ψ j (t )〉 only requires Hamiltonian
evolution of Eq. (5) together with global and individual
Pauli-Z gates [72,101]. The measurement protocol for the
Holevo information is straightforward: preparing two initial
states |Z2(0)〉 and σ x

	L/2
|Z2(0)〉, evolving the system with H
independently, and finally doing quantum state tomography
for all the single-qubit density matrices to obtain χ j (t ) via
Eq. (3).

When approximating the PXP model using the lowest U(1)
symmetry sector of the Rydberg-atom Hamiltonian, the errors
mainly come from the invalidity of the condition U1 � � �
U2. Constrained by the geometry of 1D equally spaced atoms,
U1/U2 ∼ 64 is fixed, such that � around

√
U1U2 can best

fulfill the inequality above. Besides, we numerically observe
that a small nonzero � in H± can further eliminate the effect
of U2, which is probably due to the cancellation of −�

∑
i ni

and U2
∑

i nini+2 terms on the |Z2〉 initial state. The fact that
nonzero detunings amplify the signatures of quantum many-
body scars is reminiscent of the recent experiment [11] in
which periodically driven detunings stabilize the scar revivals,
and might be of independent research interest. In Fig. 3,
we display the numerical simulations of the ZZ-OTOC and
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FIG. 5. Kinetically constrained spin rotations of the PXP model and the relationship with Holevo information dynamics. The rotation
dynamics of Bloch vectors �a(t ) with the initial state (a) |Z2〉 and (b) σ x

	L/2
|Z2〉, L = 21. The dashed circles in (b) indicate the inverse rotation
regions, which match up with the contour of the linear light cone. The green and purple boxes are enlarged images for these regions. (c) focuses
on rotation dynamics for the three middle spins of |Z2〉 (left) and σ x

	L/2
|Z2〉 (right). Due to the kinetic constraints, the retarded spin rotations
lead to the periodic distinguishability of single-qubit reduced density matrices ρ j (t ) and ρ ′

j (t ). The Holevo information χ j (t ) hence forms the
persistent oscillation pattern inside the light cone.

Holevo information dynamics for the Rydberg-atom Hamil-
tonian approximated by H±, with the initial state |Z2〉, under
experimental parameters from Ref. [10] and an optimized �

to increase the oscillation contrast as much as possible (see
Appendix C for more details). The linear light-cone contour
and periodic oscillations inside the light cone can be readily
observed.

VI. CONCLUSIONS AND DISCUSSION

In summary, we have studied the information scrambling
dynamics in quantum many-body scarred systems. We found
an unconventional paradigm (a linear light cone with periodic
oscillations inside, revealed by OTOCs and Holevo informa-
tion) intrinsically distinct from the previously studied thermal
or MBL systems. Based on perturbation-type calculations
in the interaction picture, we provided analytical explana-
tions for this paradigm. In addition, we have also proposed
an experiment to measure the predicted exotic information
scrambling dynamics with current Rydberg-atom technolo-
gies.

Because of the forward and backward Hamiltonian evo-
lution and interleaved local operators, the periodic revivals
of OTOCs and Holevo information inside the light cone

cannot be directly deduced from the eigenstate decompo-
sition of initial states, thus distinguishing our work from
the previous literature. For initial states within the scarred
subspace, locally encoded information is retrievable else-
where even at late time, indicating persistent backflow of
quantum information and unusual breakdown of quantum
chaos. Our results present an information-theoretic perspec-
tive on quantum many-body scars, which would connect
to a number of possible directions for future studies, such
as Hilbert space fragmentation [59,60,103–105], the classi-
cal OTOC and chaos theory [44–46,106,107], robustness of
scarred eigenstates under perturbations [63–67], black hole
physics [77–79], and quantum technology applications in-
cluding quantum memory and quantum sensing [14,69,108].
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APPENDIX A: DETAILS OF ANALYTICAL DERIVATIONS

In this Appendix, we provide detailed analytical deriva-
tions of the OTOC dynamics in the early growth region, i.e.,
Eq. (4) in the main text, and relevant discussions. As men-
tioned in the main text, the essential features of the PXP model
can be described by a phenomenological model proposed in
Ref. [43]:

H ′ = H ′
0 + R = �

2

∑
i

σ x
i +

∑
i

Ri,i+3Pi+1,i+2, (A1)

where Pi,i+1 = (1 − �σi · �σi+1)/4 is the projector towards the
singlet state of spins i, i + 1, and Ri, j = ∑

μ,ν Jμν
i j σ

μ
i σ ν

j (Jμν
i j

are random coupling constants, μ, ν = {x, y, z}). The H ′
0 and

R terms characterize the periodic revivals and thermalization
effect in the PXP model, respectively. Below we consider a
1D open boundary chain with L 1

2 -spins.
The L + 1 scarred eigenstates of H ′ are all the

x-direction Dicke states |s = L/2, Sx = mx〉, namely,
the L + 1 states of the angular momentum s = L/2
with x component mx = −s,−s + 1, . . . , s − 1, s. For
instance, |s = 2, Sx = −2〉 = | − − − −〉, |s = 2, Sx =
0〉 = (| + + − −〉 + | + − + −〉 + | + − − +〉 + | − + +
−〉 + | − + − +〉 + | − − + +〉)/

√
6, where |±〉i are ±1

eigenstates of σ x
i . Since any Dicke state has an explicit

Schmidt decomposition, i.e.,

∣∣∣s = L

2
, Sx = l − L

2

〉
=

N∑
n=0

√
Pn(l )

∣∣∣s = N

2
, Sx = n − N

2

〉

⊗
∣∣∣s = L − N

2
, Sx=l − n−L − N

2

〉
,

(A2)

where Pn(l ) = (N
n

)(L−N
l−n

)
/
(L

l

)
and Pi,i+1|s = 1, Sx =

−1, 0, 1〉i,i+1 = 0 ∀i, we have Pi,i+1|s = L/2, Sx = mx〉 =
0 ∀i, mx. We hence deduce that

H ′
∣∣∣s = L

2
, Sx = mx

〉
= H ′

0

∣∣∣s = L

2
, Sx = mx

〉

= mx�

∣∣∣s = L

2
, Sx = mx

〉
. (A3)

These scarred eigenstates form an exact su(2) algebra
(while the scars in the PXP model form an approximate one)
[43], leading to the periodic revival dynamics governed by the
global Rabi oscillation term H ′

0, from initial states within the
scarred subspace (for example, the z-direction Dicke states
such as |ψ〉 = | ↑↑ · · · ↑〉). In contrast, initial states out of the
scarred subspace cannot be projected out by Pi,i+1 and thus are
affected by the Ri,i+3 terms and have chaotic dynamics.

The OTOC operator Fi j (t ) = 〈ψ |W †
i V †

j (t )WiVj (t )|ψ〉 can
be viewed as the overlap between two time-dependent quan-
tum states Fi j (t ) = 〈ψ2(t )|ψ1(t )〉:

|ψ1(t )〉 = Wie
iHtVje

−iHt |ψ〉,
|ψ2(t )〉 = eiHtVje

−iHtWi|ψ〉. (A4)

First of all, for the ZZ-OTOC case of the PXP model with
the initial state |Z2〉 (or the H ′ model above with the initial
state |ψ〉 = | ↑↑ · · · ↑〉), since |Z2〉 (|ψ〉) is the eigenstate
of the σ z

i( j) operator, the periodic revival dynamics of the
quantum state directly give us the periodic and synchronized
oscillations of the ZZ-OTOC Fi j (t ). Note that the oscilla-
tion period of the ZZ-OTOC is supposed to be T/2 = π/�,
which is indeed true for the H ′ model with perfect quantum
many-body scars. Because after T/2 evolution, |Z2〉 evolves
to |Z ′

2〉 = (
∏L

i=1 σ x
i )|Z2〉 (| ↑↑ · · · ↑〉 evolves to | ↓↓ · · · ↓〉),

which is again the eigenstate of the σ z
i( j). However, the pe-

riodic revival dynamics and emergent su(2) algebra of the
PXP model are not perfect [43], resulting in smaller peak
values of Fi j (t = (2n + 1)T/2) than those of Fi j (t = nT )
(n = 0, 1, 2, . . .). Eventually, we observe an overall oscilla-
tion period T = 2π/� in numerical simulations.

Specially for the PXP model, since we consider the dynam-
ics within the constrained Hilbert space (where computational
bases with two nearby up spins | · · · ↑↑ · · · 〉 are removed),
only the ZZ-OTOC dynamics for generic initial states |ψ〉
are legal, namely, within the constrained Hilbert space. The
XZ-OTOCs for the |Z2〉 initial state with Wi = σ x

i acting on
an up spin | ↑〉i are also legal and have well-defined physical
meanings in the overlap interpretation [Eq. (A4)]. Fortunately,
the problem of constrained Hilbert space does not appear in
the H ′ model above. Besides, the Holevo information dynam-
ics for general initial states are also not well defined, since
it will be difficult to locally encode one-bit information on
general entangled states, for example, the scarred eigenstates.

Now we consider the nontrivial XZ-OTOC dynamics of
H ′ with the initial state |ψ〉 = | ↑↑ · · · ↑〉. For W1 = σ x

1 , Vr =
σ z

r , t = nT/2 (n = 0, 1, 2, . . .), according to Eq. (A4),

|ψ1(t )〉 = σ x
1 eiH ′tσ z

r e−iH ′t |ψ〉 = (−1)nσ x
1 |ψ〉,

|ψ2(t )〉 = eiH ′tσ z
r e−iH ′tσ x

1 |ψ〉, (A5)

F (r, t ) = 〈ψ2(t )|ψ1(t )〉 = (−1)n〈φ(t )|σ z
r |φ(t )〉. (A6)

Here, by utilizing the property of state recurrence, we success-
fully convert the four-body OTOC into an observable average
on a time-dependent quantum state |φ(t )〉 = e−iH ′tσ x

1 |ψ〉.
In order to further explore the role of the R thermalization

term, we adopt the interaction picture of H ′
0 = (�/2)

∑
i σ

x
i

to remove the Rabi oscillation effect. We denote the quantum
states and operators in the interaction picture with hats:

|φ̂(t )〉 = eiH ′
0t |φ(t )〉, R̂(t ) = eiH ′

0t Re−iH ′
0t . (A7)

The quantum state evolution in the H ′
0 interaction picture is

i∂t |φ̂(t )〉 = R̂(t )|φ̂(t )〉, (A8)

|φ̂(t )〉 = Û (t )|φ̂(0)〉 = Û (t )σ x
1 |ψ〉,

Û (t ) = Tt

[
exp

(
−i

∫ t

0
dt ′R̂(t ′)

)]
, (A9)

where we have introduced the time ordering operator Tt . Ac-
cording to Eq. (A6), at the special time points t = nT/2, the
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OTOCs in the interaction picture have the expression

F (r, t ) = (−1)n〈φ̂(t )|eiH ′
0tσ z

r e−iH ′
0t |φ̂(t )〉

= (−1)n〈φ̂(t )|ei�σ x
r t/2σ z

r e−i�σ x
r t/2|φ̂(t )〉

= 〈φ̂(t )|σ z
r |φ̂(t )〉. (A10)

Below we consider the so-called early growth region of the
OTOC, namely, the time interval from t = 0 to the time t just
before the wavefront of heat flow arrives at site r. Then we can
split the evolution time t into r pieces with �t = t/r, J�t 
1 (J is the average energy scale of all the Jμν

i j ), to treat the
dynamics perturbatively:

Û (t ) =Tt

[
exp

(
−i

∫ t

0
dt ′R̂(t ′)

)]

=
r−1∏
n=0

exp

(
−i

∫ (n+1)�t

n�t
dt ′R̂(t ′)

)

≈
r−1∏
n=0

(1 − iR̂(n�t )�t ), (A11)

where

R̂(n�t ) =
∑

i

R̂i(n�t )

=
∑

i

(
eiH ′

0n�t Ri,i+3Pi+1,i+2e−iH ′
0n�t

)
. (A12)

According to Eqs. (A9) and (A10), besides the leading “1”
term in Eq. (A11), the OTOC F (r, t = nT/2) will be domi-
nantly influenced by the following operator product series:

(−i)r (�t )r R̂r ((r − 1)�t ) · · · R̂2(�t )R̂1(0)σ x
1 |ψ〉. (A13)

The operator product series equation (A13) vividly charac-
terizes propagation of the thermalization effect from site 1
to site r. Since H ′

0 only contains single-body operators, other
R̂i(n�t ) operator product series acting on σ x

1 |ψ〉 will either be
zero due to the projectors Pi,i+1 or be unable to reach site r and
affect the perfect revival dynamics there. Inserting Eq. (A13)
into Eq. (A10), we obtain that the leading correction term of
the OTOC F (r, t = nT/2) can be bounded by

||[σ z
r , R̂r ((r − 1)�t )R̂r ((r − 2)�t ) · · ·

R̂2(�t )R̂1(0)]±||(�t )r � (aJ�t )r, (A14)

where a is some model-dependent O(1) constant, [·]± denotes
commutator (−) and anticommutator (+) (depending on the
parity of r to choose which), and || · || denotes the operator
norm. The bound in Eq. (A14) does not depend on T or
� (which stands for the resolution in time), so we are able
to generalize the special time points t = nT/2 to arbitrary t
before the wavefront arrives. Finally, we have the following
OTOC behaviors in the early growth region:

F (r, t ) ∼ 1 −
(aJt

r

)r

. (A15)

Equation (A15) readily depicts a linear light-cone structure
t ∝ r/J in the early growth region. While we specifically
compute the XZ-OTOC of the phenomenological model

FIG. 6. The time-splitting MPO algorithm for OTOC calcu-
lations. The blue squares denote MPS tensors, and the white
(red) squares denote MPO tensors. All the rectangles stand for
the Trotterized Hamiltonian evolution blocks. The total evolu-
tion time t has been equally split into each part of Fi j (t ) =
〈ψ (t/2)|W †

i (−t/2)V †
j (t/2)Wi(−t/2)Vj (t/2)|ψ (t/2)〉 to reduce the

required bond dimension. The overall contraction of the tensor net-
work above will give the OTOC Fi j (t ).

[Eq. (A1)], the physical pictures of local thermalization
and ballistic propagation hold for other quantum many-body
scarred systems and other OTOCs and Holevo information
dynamics and can be applied to explain the linear light-cone
structure observed in numerical simulations. An additional
remark is that the perturbation calculations above are similar
to the derivations of the Kubo formula in the linear response
theory, and the correction term Eq. (A13) corresponds to the
rth-order response to the perturbation R̂(t ) [109].

Numerical simulations for the OTOC dynamics of the H ′
model are displayed in Fig. 4. The persistent and synchro-
nized oscillations are readily observed for initial states within
the scarred subspace in Figs. 4(a)–4(c). In contrast, for the
Z2 Néel state, OTOCs constantly decay to zero without any
revival. These numerical results further confirm the generality
of our conclusions to other models with quantum many-body
scars. In future studies it is also interesting to explore whether
the formation mechanisms of quantum many-body scars [14]
will affect the information scrambling dynamics in corre-
sponding models.

As mentioned in the main text, the persistent and synchro-
nized oscillations inside the light cone still appear even if the
initial states are replaced with scarred eigenstates or super-
position states of |Z2〉 and |Z ′

2〉 = (
∏L

i=1 σ x
i )|Z2〉 (see Figs. 7

and 9 ), which confirms that periodic revivals of OTOCs
are general phenomena for initial states within the scarred
subspace, not some fine-tuned results. We have attributed the
unusual revival dynamics inside the light cone to the local
rather than global thermalization and robustness of scarred
eigenstates against local perturbations. In this sense, the pe-
riodic revival behaviors of OTOCs in quantum many-body
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FIG. 7. Numerical simulations of ZZ-OTOC dynamics for the L = 20 PXP model in the open boundary condition, with initial states being

(a) 1√
2
(|Z2〉 + |Z ′

2〉), |Z ′
2〉 = ∏

i σ
x
i |Z2〉; (b)

√
2
3 |Z2〉 +

√
1
3 |Z ′

2〉; and (c)–(i) scarred and thermal energy eigenstates, marked by the same labels

in Fig. 8.

scarred systems are somewhat similar to the dynamics in time
crystals [105,110–112]: The ZZ-OTOC dynamics for the |Z2〉
initial state is an analog for the time crystals without per-
turbations, whereas the XZ-OTOCs for |Z2〉 and ZZ-OTOCs
for general initial states within the scarred subspace corre-
spond to the perturbed time crystals, which will exhibit certain
robustness and maintain the synchronized oscillations. This
topic might need deeper understanding and more powerful
techniques to deal with, and so it is expected to inspire
more analytical studies in the future. One possible direction
is about the relation with the classical OTOC and chaos
theory [44–46,106,107]. According to the quantum-classical

-10 0 10
-30

-20

-10

0

-10 0 10
0

2

4

6(b)(a)

FIG. 8. (a) Overlap between the |Z2〉 state and each energy eigen-
state |En〉 of a L = 20 PXP model with the open boundary condition.
(b) The half-chain entanglement entropy S for each energy eigen-
state. The scarred eigenstates form a special band at the top of
(a). The scars together with two thermal eigenstates in the bulk are
marked by labels consistent with those in Fig. 7.

correspondence principle, we may replace the quantum com-
mutators in the OTOC with classical Poisson brackets. By
utilizing the semiclassical Lagrangian of quantum many-body
scarred systems, such as the one proposed in Ref. [44] with
the time-dependent variational principle (TDVP), we are able
to compute the Poisson brackets ({·}P.B.) of some observables
such as {cos θi(t ), cos θ j (0)}P.B. ∼ sin θi(t ) ∂θi (t )

∂θi (0) (θ is the polar

angle on the spin- 1
2 Bloch sphere). The oscillating dynamics

of sin2 θi(t ) terms from some special initial states such as |Z2〉
will roughly lead to the periodic revivals of classical OTOCs.

APPENDIX B: MORE ABOUT HOLEVO INFORMATION
DYNAMICS

As mentioned in the main text, we regard the reduced
Hamiltonian evolution on subsystems as quantum communi-
cation channels in the original setup of the Holevo information
[75] and use it to study the information scrambling dynam-
ics. Through two sets of Hamiltonian evolution on different
initial states, |ψ〉 and σ x

i |ψ〉, we demonstrate how one-bit
local information at site i scrambles into the entire sys-
tem by computing the Holevo information on site j χ j (t ) =
S[(ρ j (t ) + ρ ′

j (t ))/2] − [S(ρ j (t )) + S(ρ ′
j (t ))]/2, where ρ j (t )

and ρ ′
j (t ) are reduced density matrices of the jth spin after

the Hamiltonian evolution for the initial state |ψ〉 and σ x
i |ψ〉,

respectively. χ j (t ) measures how much information one could
obtain by any local probe on the jth site for these two sets of
evolution. If the many-body dynamics follow the predictions
of ETH and the computational bases |ψ〉 and σ x

i |ψ〉 bear
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FIG. 9. Numerical simulations of ZZ-OTOC dynamics for the L = 20 PXP model in the periodic boundary condition, with initial states

being (a) 1√
2
(|Z2〉 + |Z ′

2〉), |Z ′
2〉 = ∏

i σ
x
i |Z2〉; (b)

√
2
3 |Z2〉 +

√
1
3 |Z ′

2〉; and (c)–(i) scarred and thermal energy eigenstates, marked by the same

labels in Fig. 10.

the same energy with respect to the Hamiltonian, at the late
time, local single-body density matrices ρ j (t ) and ρ ′

j (t ) will
become indistinguishable. The Holevo information χ j (t ) will
quickly peak when the effect of site i arrives and diminishes
close to zero afterwards (so does the case of |0〉 and σ x

	L/2
|0〉).
In contrast, we have observed persistent and synchronized
oscillations inside the light cone for the case of |Z2〉 and
σ x

	L/2
|Z2〉.
When unpacking the dynamics of Holevo information, we

find that the kinetic constraints of the PXP model play an
important role for the periodic oscillations inside the light
cone: According to the PXP Hamiltonian, each spin will rotate
freely around the x axis if both its neighbors are in the | ↓〉
state; otherwise its rotation dynamics are frozen. In Fig. 5,
we display all the single-qubit reduced density matrices used
for the computation of Holevo information. The density ma-
trix of a spin- 1

2 can be written as ρ = (I + �a · �σ )/2, where
�σ = (σx, σy, σz ) and �a is the Bloch vector on the Bloch sphere,
such that the dynamics of ρ(t ) can be fully parametrized by
�a(t ). For the PXP Hamiltonian and initial states being the z-
direction computational bases, ax(t ) ≡ 0. We plot the rotation
dynamics of (ay(t ), az(t )) in Figs. 5(a) and 5(b) with initial
states being |Z2〉 and σ x

	L/2
|Z2〉, respectively. Note that the
norm of �a(t ) is not a constant number due to the entangle-
ment between different spins. We can readily observe that the
rotation speeds of spins are not constant and are determined
by the orientations of neighbor spins.

In Fig. 5(a), for the initial state |Z2〉, all the spins ro-
tate anticlockwise, and the spin configuration has a two-site
translational symmetry (indicated by red and blue colors). In

contrast, in Fig. 5(b) for the initial state σ x
	L/2
|Z2〉, we find

some strange inverse rotation regions (spins rotate clockwise
for a short period). Interestingly, the positions of inverse ro-
tation regions match up with the contour of the linear light
cone to a good accuracy. These strange inverse rotations are
a direct result of the kinetic constraints: For the three middle
spins of σ x

	L/2
|Z2〉, | · · · ↑↓↓↓↑ · · · 〉, they are forbidden to
simultaneously rotate to the | ↑〉 state, resulting in the retarded
rotations of the j = 10 and j = 12 spins [see Fig. 5(c) for
a zoom-in image]. Moreover, this retarded rotation behavior
propagates outwards like a row of dominoes, forming a series
of inverse rotation regions indicated by the dashed circles. The
physical picture is as follows: On the antiferromagnetic back-
ground |Z2〉, we locally create a domain wall in the middle of
the spin chain | · · · ↑↓↓↓↑ · · · 〉, and the quasiparticle travels
ballistically in the following quench dynamics [21], which is
consistent with the local thermalization picture discussed in
the previous section.

In Fig. 5(b), after the inverse rotation regions, the an-
ticlockwise kinetically constrained rotations are no longer
affected, and the two-site translational symmetry is restored
inside the light cone. Because of the retarded rotations, the
spin orientations inside the light cone become periodically
distinguishable for the |Z2〉 and σ x

	L/2
|Z2〉 cases, leading to
the periodic oscillation pattern of the Holevo information
[compare Figs. 5(c) and 2(e)]. The analyses above once again
confirm the following conclusion: The unusual information
revival dynamics inside the light cone are due to the local
rather than global thermalization and robustness of scarred
eigenstates against local perturbations. After the wavefront
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FIG. 10. (a) Overlap between the |Z2〉 state and each energy
eigenstate |En〉 of a L = 20 PXP model with the periodic boundary
condition (eigenstates with log-scaled overlap less than −30 are not
shown to fit the plotting range). (b) The half-chain entanglement
entropy S for each energy eigenstate. The scarred eigenstates form
a special band at the top of (a). The scars together with two thermal
eigenstates in the bulk are marked by labels consistent with those in
Fig. 9.

of thermalization effect passes, the kinetically constrained
rotations are preserved, causing the persistent oscillations of
Holevo information inside the light cone.

APPENDIX C: NUMERICAL METHODS AND MORE
RESULTS

In this Appendix, we illustrate the numerical methods
used in the main text and provide more numerical results
of the OTOC and Holevo information dynamics in quantum
many-body scarred systems. We numerically simulate the ZZ-
and XZ-OTOC dynamics of the PXP model using the time-
splitting matrix-product-operator (MPO) method [30,84] up
to system size L = 41, with the maximum bond dimension
300 and a Trotter step dt = 0.05. Figure 6 displays a picto-
rial illustration of the algorithm. Specifically, we rewrite the
OTOC Fi j (t ) = 〈ψ |W †

i V †
j (t )WiVj (t )|ψ〉 as

Fi j (t ) =〈ψ (t/2)|W †
i (−t/2)V †

j (t/2)

× Wi(−t/2)Vj (t/2)|ψ (t/2)〉, (C1)

where |ψ (t/2)〉 = e−iHt/2|ψ〉. Usually in order to maintain
the simulation accuracy, we need to increase the bond di-
mension when extending the evolution time t , because of the
increase of entanglement entropy. Here, by equally splitting
the Hamiltonian evolution into each part of Fi j (t ), we are able
to reduce the support of the scrambled operators Vj (t ). For a
fixed evolution time, this algorithm leads to notable reduction
of the required bond dimension compared with previous MPO
algorithms [30,86].

We use the time-evolving block decimation (TEBD) algo-
rithm [85,86] based on the matrix-product-state (MPS) ansatz
to simulate the Holevo information dynamics for the PXP
model up to system size L = 41, with the maximum bond di-
mension 100 and a Trotter step dt = 0.05. The relatively low
entanglement entropy of scarred eigenstates [Figs. 8(b) and
10(b) ] makes the simulations for the |Z2〉 initial state much
more efficient; yet this advantage no longer exists for the |0〉
case. All the MPO- and MPS-based numerical simulations are
carried out with the ITENSOR library [113].

Numerical calculations for small system size (L ∼ 20) are
performed with the exact diagonalization (ED) method in the
constrained Hilbert space of the PXP model, for instance,
Figs. 2(f) and 3.

In the main text, we have shown that the OTOC dynamics
exhibit exotic periodic revivals inside the light cone for the
initial state |Z2〉. In Figs. 7 and 9, we present the ZZ-OTOC
dynamics of the PXP model for more general initial states
in the open boundary condition (with boundary terms σ x

1 P2

and PL−1σ
x
L ) and periodic boundary condition, respectively.

First the ZZ-OTOC dynamics for superposition states of |Z2〉
and |Z ′

2〉 = ∏
i σ

x
i |Z2〉 are displayed in Figs. 7(a) and 7(b).

Second, in Figs. 7(c)–7(i), we take the energy eigenstates of
the PXP Hamiltonian as initial states for the ZZ-OTOC cal-
culations. The eigenstates are marked with the corresponding
labels in Fig. 8. We observe that despite lower oscillation
contrast compared with the |Z2〉 case, the pattern of persis-
tent and synchronized oscillations for ZZ-OTOCs still exists
for the superposition states of |Z2〉 and |Z ′

2〉 [Figs. 7(a) and
7(b)], scarred energy eigenstates [Figs. 7(c)–7(g)], and also
general superposition states of scarred eigenstates. However,
the oscillation pattern is absent for typical thermal eigenstates
[Figs. 7(h) and 7(i)]. The numerical results indicate that the
periodic revivals of OTOCs inside the light cone are not some
fine-tuned results for the initial state |Z2〉, but a general phe-
nomenon for a certain class of states within the nonthermal
scarred subspace. The information scrambling dynamics for
quantum many-body scarred systems are intrinsically differ-
ent from the thermal or many-body localized systems. One
additional remark is that we have calculated the ZZ-OTOC
dynamics for all the scarred eigenstates marked in Fig. 8
and found that the periodic oscillation pattern always exists
while the oscillation contrast fades away for a few scarred
eigenstates near the ground state, which is probably due to
the finite-size effect.

In order to distinguish the scarred eigenstates and typical
thermal eigenstates, we show the overlap between the |Z2〉
state and each energy eigenstate |En〉 of the PXP Hamilto-
nian with the open boundary condition in Fig. 8(a), and the
half-chain entanglement entropy S of energy eigenstates in
Fig. 8(b) [12,13]. All the scarred eigenstates and two thermal
eigenstates in the bulk are marked by labels consistent with
those in Fig. 7. The half-chain entanglement entropy of two
scarred eigenstates near E = 0 is relatively larger compared
with other scarred eigenstates, which is probably due to the
open boundary condition. In order to rule out the possible
effects of boundary conditions, we display the corresponding
results of the PXP model with the periodic boundary condition
in Figs. 9 and 10. Compared with Figs. 7 and 8, these results
do not show distinct differences despite different boundary
conditions.

We present more numerical simulations of ZZ-OTOC and
Holevo information dynamics of the experimental Rydberg-
atom Hamiltonian [Eq. (5) and related H± in the main text]
in Fig. 11 to demonstrate their measurable signatures. In
Figs. 11(a) and 11(d), the experimental parameters are the
same as those used in Ref. [10], where � = 2, U1 = 24, U2 =
0.38, and � = 0. We observe that the periodic oscillations dis-
play a much lower contrast than that of the PXP model, which
is induced by the invalidity of the condition U1 � � � U2.
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FIG. 11. Numerical simulations of the ZZ-OTOC dynamics [(a)–(c)] and Holevo information dynamics [(d)–(f)] for the experimental
Rydberg-atom Hamiltonian, with the initial state |Z2〉 and experimental parameters: (a) and (d) L = 21, � = 2, U1 = 24, U2 = 0.38, and
� = 0; (b) and (e) L = 21, � = 1.5, U1 = 12, U2 = 0.19, and � = 0.19; and (c) and (f) L = 21, � = 2, U1 = 12, U2 = 0.19, and � = 0.38.

Constrained by the geometry of 1D equally spaced atoms,
U1/U2 ∼ 64 is fixed, such that � around

√
U1U2 can best

fulfill the condition above. With this motivation, we show
the results in Figs. 11(b) and 11(e), with parameters � = 1.5,
U1 = 12, U2 = 0.19, and � = 0.19. We observe that the oscil-
lation pattern could be identified more clearly. As mentioned
in the main text, we have further added a nonzero detuning
�, in order to offset the influence induced by U2. Through the
simple grid search optimization of the parameters � and �, in
Figs. 11(c) and 11(f), among several instances with relatively
high oscillation contrast, we display the one with parameters
� = 2, U1 = 12, U2 = 0.19, and � = 0.38, which is the 2D

view of Fig. 3 in the main text. The linear light-cone contour
and periodic oscillations inside the light cone can be readily
observed.

In the main text, we have numerically calculated
the XZ-OTOC dynamics of the PXP model. However,
XZ-OTOCs cannot be directly reduced to the observ-
able average form like Eq. (6) in the main text and
thus do not have a similar measurement scheme like
the ZZ-OTOCs. Several other methods such as the ones
based on randomized measurements [114] or classical
shadow estimations [115] might be modified and adopted
instead.
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V. Vuletić, and M. D. Lukin, Probing many-body dynamics
on a 51-atom quantum simulator, Nature (London) 551, 579
(2017).

[11] D. Bluvstein, A. Omran, H. Levine, A. Keesling, G.
Semeghini, S. Ebadi, T. T. Wang, A. A. Michailidis, N.
Maskara, W. W. Ho, S. Choi, M. Serbyn, M. Greiner, V.
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dence Principle for Many-Body Scars in Ultracold Rydberg
Atoms, Phys. Rev. X 11, 021021 (2021).

[47] S. Chattopadhyay, H. Pichler, M. D. Lukin, and W. W. Ho,
Quantum many-body scars from virtual entangled pairs, Phys.
Rev. B 101, 174308 (2020).

[48] N. Maskara, A. A. Michailidis, W. W. Ho, D. Bluvstein, S.
Choi, M. D. Lukin, and M. Serbyn, Discrete Time-Crystalline
Order Enabled by Quantum Many-Body Scars: Entanglement
Steering via Periodic Driving, Phys. Rev. Lett. 127, 090602
(2021).

[49] B. Mukherjee, S. Nandy, A. Sen, D. Sen, and K. Sengupta,
Collapse and revival of quantum many-body scars via Floquet
engineering, Phys. Rev. B 101, 245107 (2020).

[50] S. Moudgalya, S. Rachel, B. A. Bernevig, and N. Regnault,
Exact excited states of nonintegrable models, Phys. Rev. B 98,
235155 (2018).

[51] S. Moudgalya, N. Regnault, and B. A. Bernevig, Entanglement
of exact excited states of Affleck-Kennedy-Lieb-Tasaki mod-
els: Exact results, many-body scars, and violation of the strong
eigenstate thermalization hypothesis, Phys. Rev. B 98, 235156
(2018).

[52] M. Schecter and T. Iadecola, Weak Ergodicity Breaking and
Quantum Many-Body Scars in Spin-1 xy Magnets, Phys. Rev.
Lett. 123, 147201 (2019).

[53] V. Khemani, C. R. Laumann, and A. Chandran, Signatures
of integrability in the dynamics of Rydberg-blockaded chains,
Phys. Rev. B 99, 161101(R) (2019).

023095-13

https://doi.org/10.1088/1126-6708/2007/09/120
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1038/s42254-019-0090-y
https://doi.org/10.1038/s41567-018-0295-5
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevLett.124.200504
https://doi.org/10.1103/PhysRevResearch.3.L032057
https://doi.org/10.1007/JHEP03(2022)027
https://doi.org/10.1103/PhysRevB.97.144304
https://doi.org/10.1103/PhysRevB.98.060302
https://doi.org/10.1103/PhysRevB.98.144304
https://doi.org/10.1103/PhysRevLett.122.020603
https://doi.org/10.1103/PhysRevE.100.042201
https://doi.org/10.1038/s41567-019-0712-4
https://doi.org/10.1103/PhysRevLett.124.140602
https://doi.org/10.1103/PhysRevE.102.022201
http://arxiv.org/abs/arXiv:2111.01336
https://doi.org/10.1103/PhysRevB.104.104307
http://arxiv.org/abs/arXiv:2203.05494
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevB.95.024202
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1016/j.scib.2017.04.011
http://arxiv.org/abs/arXiv:1608.02765
https://doi.org/10.1002/andp.201600332
https://doi.org/10.1103/PhysRevB.96.174201
https://doi.org/10.1103/PhysRevLett.122.220603
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevX.10.011055
https://doi.org/10.1103/PhysRevX.11.021021
https://doi.org/10.1103/PhysRevB.101.174308
https://doi.org/10.1103/PhysRevLett.127.090602
https://doi.org/10.1103/PhysRevB.101.245107
https://doi.org/10.1103/PhysRevB.98.235155
https://doi.org/10.1103/PhysRevB.98.235156
https://doi.org/10.1103/PhysRevLett.123.147201
https://doi.org/10.1103/PhysRevB.99.161101


YUAN, ZHANG, WANG, DUAN, AND DENG PHYSICAL REVIEW RESEARCH 4, 023095 (2022)

[54] T. Iadecola, M. Schecter, and S. Xu, Quantum many-body
scars from magnon condensation, Phys. Rev. B 100, 184312
(2019).

[55] S. Moudgalya, N. Regnault, and B. A. Bernevig, η-pairing
in Hubbard models: From spectrum generating algebras
to quantum many-body scars, Phys. Rev. B 102, 085140
(2020).

[56] D. K. Mark and O. I. Motrunich, η-pairing states as true scars
in an extended Hubbard model, Phys. Rev. B 102, 075132
(2020).

[57] J.-Y. Desaules, A. Hudomal, C. J. Turner, and Z. Papić,
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