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Gyrotactic mechanism induced by fluid inertial torque for settling elongated microswimmers
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Marine plankton are usually modeled as settling elongated microswimmers. We consider the torque induced
by fluid inertia on such swimmers, and we discover that they spontaneously swim in the direction opposite
to gravity. We analyze the equilibrium orientation of swimmers in quiescent fluid and the mean orientation in
turbulent flows using direct numerical simulations. Similar to well-known gyrotaxis mechanisms, the effect of
fluid inertial torque can be quantified by an effective reorientation timescale. We show that the orientation of
swimmers strongly depends on the reorientation timescale, and swimmers exhibit strong preferential alignment
in an upward direction when the timescale is of the same order of the Kolmogorov timescale. Our findings
suggest that the fluid inertial torque is a different mechanism of gyrotaxis that stabilizes the upward orientation
of microswimmers such as plankton.
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I. INTRODUCTION

Plankton play an important role in marine ecosystem. For
instance, plankton produce oxygen by photosynthesis and
transfer energy to zooplankton and other marine predators in
the food web. Many motile plankton migrate vertically to pur-
sue light or nutrients or to avoid predation [1–3]. The vertical
migration is driven by gravity and other physical and chemical
stimuli. The responses to these stimuli are known as gyrotaxis
[4], phototaxis [5], chemotaxis [6], etc. Gyrotaxis is one of the
important factors that influences the direction and efficiency
of vertical migration [4]. Bottom-heaviness [7] and fore-aft
asymmetry [8] are two well-known mechanisms of gyrotaxis.
Many plankton are denser or wider at their rear parts than the
front parts, and they are subjected to stabilizing torques due
to gravity that reorients them in the upward direction. Based
on these two mechanisms, gyrotactic swimmers are widely
studied by modeling them as pointwise motile particles that
swim relative to the fluid under a gravitational torque [9–16].

Gyrotaxis causes swimmers to preferentially swim in a
vertical direction [7,14,17,18] and to form spatial clustering
[10,12,15,16]. The magnitude of gyrotactic torque is crucial to
these phenomena, influencing not only the orientation but also
the intensity and location of patchiness. To quantify gyrotaxis,
it is important to identify possible mechanisms of gyrotaxis
and quantify their contributions. However, the question re-
mains whether there exist other mechanisms for gyrotaxis. In
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particular, the widely used point-particle model neglects the
effect of fluid inertial torque.

Recent studies indicated that the orientation of a spheroidal
particle is affected by a fluid inertial torque [19,20]. This
torque is a result of a convective fluid inertial effect when a
particle moves relative to the local fluid [21]. Motile plankton
are usually modeled as swimmers which move relative to the
local fluid. The relative motion is due to their motility and the
effect of gravitational settling, which results in a nonzero fluid
inertial torque on settling microswimmers such as plankton.
Interestingly, we find that elongated settling microswimmers
reorient themselves in an upward direction under the influence
of fluid inertial torque. Therefore, we suggest that fluid inertial
torque is an alternative mechanism of gyrotaxis, which is
different from the two well-known mechanisms of bottom-
heaviness and fore-aft shape asymmetry.

In this paper, we introduce the model of settling swimmers
and analyze their orientation in both quiescent and turbulent
flows. We show that the magnitude of fluid inertial gyrotaxis
depends on the shape and the swimming and settling speeds of
swimmers, and can be quantified by a dimensionless param-
eter that measures the timescale of reorientation under fluid
inertial torque.

II. FLUID INERTIAL TORQUE ON MICROSWIMMERS

Fluid inertial force and torque on a spheroid originate from
the leading-order effects of fluid inertia when the spheroid
moves relative to the fluid [21,22]. The Reynolds number of
a planktonic swimmer, Rep = |u − vp|L/γ , is usually much
smaller than unity, where γ is the kinematic viscosity of
fluid. The small Rep is due to small size L and weak motil-
ity of the swimmer that yields a small velocity difference
between the fluid u and the swimmer vp. In the regime of
Rep � 1, the fluid inertial correction for force is negligible
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FIG. 1. (a) A sketch of a settling elongated swimmer. ex , ey, and
ez are the base vectors of the global frame of reference. (b) A swim-
mer settling with the symmetry axis perpendicular to gravity. (c) A
swimmer settling with its symmetry axis parallel to the direction of
gravity.

because its magnitude is of the order of Rep and the swimmer
experiences Stokes drag [19,22]. However, the fluid inertial
torque can be significant compared to the Jeffery torque [23]
that represents the effect of fluid velocity gradients on the
rotation of swimmers. Reference [19] showed that the ratio
between the magnitudes of inertial torque and Jeffery torque
in turbulence is proportional to |u − vp|2/u2

η [19], where uη is
the Kolmogorov velocity scale. Hence, the fluid inertial torque
is not necessarily negligible when Rep � 1, especially when
a swimmer moves relative to the fluid at a significant speed. A
detailed dimensional analysis is provided in Appendix A.

Plankton usually satisfy the overdamped limit, which
means that the response time of their motion is much shorter
than the characteristic timescale of fluid motion [20]. In this
case, plankton are usually modeled as pointwise spheroidal
swimmers [9,10,12,14,15]. The inertia of a swimmer is ne-
glected, so its translational and rotational motion is governed
by kinematic equations. Following a similar approach in
Ref. [20], we obtain the model of a settling microswim-
mer (Fig. 1) with the influence of fluid inertial torque (see
Appendix A for details). The motion of a swimmer is gov-
erned by the following equations:

ṅ = ωp ∧ n, (1)

vp = u + vswimn + vsettle. (2)

Here, ωp is the angular velocity of the swimmer, and n is the
unit vector along its symmetry axis. The swimmer is assumed
to swim at a constant speed in the direction of n, and it is
advected by the local fluid with velocity u. Settling due to
gravity is taken into account by adding a settling speed vsettle.
In the overdamped limit, a swimmer settling in a fluid flow
satisfies the Stokesian flow assumption, and the settling speed
is expressed as [24]

vsettle = −v1ey − (v3 − v1)(ey · n)n, (3)

where v1 and v3 are the Stokesian terminal velocities of a
spheroid in a quiescent fluid with its symmetry axis orientated
orthogonal to and parallel to the gravity direction, respec-

tively. We specify the direction of y-axis ey as the direction
opposite to gravity, i.e., ey = −g/|g|.

The swimmer’s angular velocity is expressed as [20]

ωp = 1

2
ω + λ2 − 1

λ2 + 1
(n ∧ S · n)

+ M

γ
[vswimv1(ey ∧ n) − v1v3(ey · n)(ey ∧ n)], (4)

where the first two terms on the right-hand side originate
from the Jeffery torque [23], which represent the contributions
of local fluid vorticity ω and strain rate S, respectively. The
aspect ratio λ is defined as the ratio of the lengths between the
major and minor axes of the spheroidal swimmer, with λ = 1
for spheres and λ > 1 for elongated spheroids. The third term
on the right-hand side of Eq. (4) is the contribution of fluid
inertial torque, where the shape factor M only depends on λ.
M is zero for spheres and negative for elongated spheroids,
ranging from M = 0 for λ = 1, to M ≈ −0.1 when λ ranges
from 2 to 8 (see Appendix A). Therefore, spherical swimmers
are not subjected to fluid inertial torque. The contribution of
fluid inertial torque consists of two parts. For convenience, we
call the term Mvswimv1(ey ∧ n)/γ the swimming-settling term,
which denotes the coupling effect of swimming and settling.
Similarly, we call −Mv1v3(ey · n)(ey ∧ n)/γ the settling term,
which is only ascribed to the settling effect.

III. SWIMMERS IN A QUIESCENT FLUID

To understand how fluid inertial torque affects the orien-
tation of swimmers, we first analyze angular dynamics in a
quiescent fluid. Using Eq. (4), the rotation of a swimmer is
described as

dα

dt
= M

γ
(vswimv1 sin α − v1v3 cos α sin α). (5)

Here, α is the angle of n relative to ey [Fig. 1(a)], and thus
ny ≡ n · ey = cos α. From Eq. (5), a swimmer has three equi-
librium orientations:

α
(1)
0 = 0, α

(2)
0 = arccos

vswim

v3
, and α

(3)
0 = π, (6)

which correspond to (1) swimming upward against grav-
ity, (2) swimming with a fixed angle relative to the gravity
direction, and (3) swimming downward along the gravity
direction, respectively. Derived from Eq. (5), the first-order
linear equation of a small perturbation around the equilibrium
orientations, δα , reads

dδα

dt
= Mv1v3

γ
(Rv cos α0 − cos 2α0)δα, (7)

where Rv = vswim/v3. The solution of Eq. (7) is

δα = exp

[
Mv1v3

γ
(Rv cos α0 − cos 2α0)t

]
. (8)

Inserting Eq. (6) into (8), and with M < 0, we find α
(3)
0 is

always unstable and there is one and only one stable orien-
tation between α

(1)
0 and α

(2)
0 , depending on the value of Rv . In

general, the stable orientation is ny,0 = min(1, Rv ).
The dependence of ny,0 on Rv is due to the competition

between the swimming-settling term and the settling term,
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FIG. 2. Evolution of the orientation of swimmers ny over dimen-
sionless time t/τtrans in a quiescent fluid, where τtrans = γ /|M|v1v3 is
a timescale for the transient regime according to Eq. (8). Solid lines
represent the mean value of ny, and the colored areas represent the
ranges of mean ± standard deviation. Horizontal dashed lines stand
for the theoretical equilibrium orientation. Aspect ratio is λ = 8 for
all cases here.

which make opposite contributions to the orientation. The
swimming-settling term tends to align a swimmer in the up-
ward direction, whereas the settling term tends to align the
swimmer horizontally, as indicated in Refs. [19,20]. When
Rv < 1, the swimming-settling term does not overcome the
settling term, so the swimmer reaches an inclined orien-
tation where the two terms are balanced. When Rv � 1,
the swimming-settling term overcomes the settling term for
any orientation, so the swimmer rotates to swim upward.
Simulations in a quiescent fluid are performed to verify
the aforementioned theoretical analysis. Figure 2 shows that
swimmers with random initial orientation gradually approach
the theoretical equilibrium orientation after a transient time.
In the critical case of Rv = 1, swimmers takes a much longer
time to approach the stable orientation because the swimming-
settling term and the settling term are almost balanced at
ny ≈ 1, resulting in a small angular velocity.

IV. EFFECTIVE REORIENTATION DUE TO FLUID
INERTIAL TORQUE

Swimmers with Rv � 1 spontaneously swim in the upward
direction, which are similar to the well-known gyrotactic
swimmers with bottom-heaviness [7] or fore-aft asymmetry
[8,25]. The similarity can also be deduced from Eq. (4). The
fluid inertial term in Eq. (4) for elongated swimmers can be
written as −(ey × n)/2BI , where

BI = γ

2|M|vswimv1

[
1 − v3

vswim
(ey · n)

]−1
. (9)

This is similar to the widely used model of regular gyro-
taxis, −(ey × n)/2B [12,15,26], where B is the reorientation
timescale which quantifies how fast a swimmer recovers its
stable orientation under gyrotactic torque. BI can be regarded
as an effective reorientation timescale provided by fluid iner-
tial torque if BI > 0.

Equation (9) shows some characteristics of BI . First, only
nonspherical, settling swimmers experience the effective gy-

rotaxis. Spherical or nonsettling swimmers have a zero M
or v1, which yields infinite BI (zero fluid inertial torque).
Second, BI depends on the instantaneous orientation of a
swimmer because of the contribution of the settling term. The
dependence on orientation complicates the problem because
the reorientation timescale varies along the trajectory as the
swimmer rotates, and posterior knowledge of the mean orien-
tation of the swimmers is required to estimate the magnitude
of fluid inertial torque. However, BI is almost constant if
〈ey · n〉v3/vswim ≈ 0, i.e., the settling term is negligible. This
is justified when a swimmer swims much faster than it settles
or when a swimmer has 〈ey · n〉 ≈ 0 along its trajectory. The
first condition is true for typical plankton species (see Tables I
and II in Appendix C), and the latter is true when fluid inertia
torque is weak and the rotation of a swimmer is dominated by
random turbulent fluctuations. When we neglect the settling
term, BI is expressed as

BI ≈ γ

2|M|vswimv1
. (10)

With Eq. (10), we can quantify the magnitude of fluid inertial
gyrotaxis. When a swimmer settles or swims faster, or when
it has a larger M, it experiences a stronger gyrotactic effect
caused by fluid inertial torque.

V. ORIENTATION OF SWIMMERS IN TURBULENCE

Planktonic microswimmers in the ocean or estuaries live
in a turbulent environment, and their orientation controls
the direction and efficiency of vertical migration. There-
fore, it is necessary to understand how fluid inertial torque
influences the orientation of swimmers in turbulence. We
use Eulerian-Lagrangian direct numerical simulations to
obtain the trajectories of swimmers in a forced homoge-
neous isotropic turbulence (HIT), and focus on the statistics
of orientation. The HIT has a Taylor-Reynolds number
Reλ = u2

rms

√
15/(γ ε) = 60, where urms and ε are the root-

mean-square velocity and dissipation rate, respectively. The
incompressible Navier-Stokes equations are solved by a pseu-
dospectral method with 963 grid points to ensure the accuracy
of resolution at small scales. The statistics of each parameter
configuration are obtained by averaging over 40 uncorrelated
time samples of 120 000 trajectories. Details of the numerical
methods are provided in Appendix B.

First, we need to quantify the magnitude of fluid inertial
gyrotaxis relative to the turbulent motion. Turbulence influ-
ences the rotation of swimmers by the fluid velocity gradients
along their trajectories, as shown in Eq. (4). The magnitude
of the velocity gradients in a turbulent flow is of the order of
Kolmogorov timescale τη. Thus, we normalize BI with τη and
obtain


I ≡ BI/τη ≈ (2|M|�swim�settle )−1, (11)

where �swim = vswim/uη and �settle = (2v1 + v3)/3uη are the
dimensionless swimming and settling speeds. Note that we
assume v1 ≈ v3 and thus �settle ≈ v1/uη in Eq. (11) based on
the fact that 1 � v3/v1 < 1.7 for spheroids (see Appendix A).
Similar to the parameter 
 for gyrotaxis widely used in
Refs. [12,14–16], 
I quantifies the effective gyrotaxis pro-
vided by fluid inertial torque. According to the typical values
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TABLE I. Parameters of typical plankton species [27,28,39–41]. Data are mean values ± standard deviations. Empty table cells represent
unavailable data. Superscript1: Vsettle is calculated using Stokes settling velocity assuming that the density of Cochlodinium polykrikoides is
5.9% greater than the fluid density [29].

Species Width (μm) Length (μm) λ vswim (μm/s) Vsettle(μm/s)

Cochlodinium polykrikoides [39] Single cell 25.1 ± 2.7 40.8 ± 2.0 1.63 ± 0.25 391 ± 92 261

2-cells 25.3 ± 1.8 50.7 ± 0.9 2.00 ± 0.18 599 ± 126 291

4-cells 25.5 ± 0.7 102.3 ± 4.2 4.01 ± 0.27 800 ± 129 421

8-cells 29.0 ± 1.4 182.0 ± 10.9 6.28 ± 0.68 856 ± 108 651

Centropages typicus [28,41] early nauplius 57.0 ± 11.5 132.0 ± 16.0 2.31 ± 0.19 330 ± 210 50 ± 40
late nauplius 97.2 ± 22.1 225.0 ± 33.0 2.31 ± 0.19 720 ± 310 140 ± 70

Euterpina acutifrons [28] late nauplius 86.6 ± 18.7 200.0 ± 27.0 1080 ± 310 260 ± 50
Eurytemora affinis [28] late nauplius 87.4 ± 18.7 202.0 ± 27.0 1640 ± 400 182
Temora longicornis [28,40] late nauplius 133.3 ± 26.3 308.0 ± 36.0 570 ± 140 240 ± 70

copepod 129.0 ± 26.8 298.0 ± 38.0 820 ± 180 170 ± 240
Ceratium tripos [27] 73.5 167 164
Ceratium furca [27] 45.1 780 62
Akashiwo sanguinea [27] 42.2 300 54
Dinophysis acuminata [27] 32.4 332 32
Alexandrium minutum [27] 18.1 278 10
Prorocentrum minimum [27] 12.7 206 5

for oceanic plankton [9,11,27–29] (also see Appendix C),
we investigate swimmers within a parameter space of 0 �
�swim � 10, 0 � �settle � 1, and 1 � λ � 8. In most of this
parameter range, the settling term can be neglected because
〈ny〉v3/vswim ≈ 0, as shown in Fig. 3(a). Accordingly, we cal-
culate the range of 
I using Eq. (11). Figure 3(b) shows that

I varies over two orders of magnitude in the present study.
The decrease of 
I at increasing �swim and �settle reflects that
the ratio between the contributions of fluid inertial torque and
Jeffery’s torque increases as the relative velocity between the
swimmer and the fluid grows.

Figure 4(a) shows the instantaneous spatial distribution and
orientation of swimmers with 
I = 0.99, λ = 8. We observe
an obvious preferential alignment in the upward direction be-

cause the swimmers are subjected to a fluid inertial torque of
the order of fluid velocity gradients. However, only elongated
swimmers obtain upward orientation, as shown in Fig. 4(b).
Equations (9)–(11) show that the reorientation time is pro-
portional to |M|−1. Spherical swimmers have M = 0, which
indicates the fluid inertial torque vanishes and the reorienta-
tion time approaches infinity. In this case, the orientation of
swimmers is almost isotropic, and 〈ny〉 = 0. On the contrary,
elongated swimmers preferentially align in the upward direc-
tion. |M| is nonmonotonous to λ, which reaches the maximum
at about λ = 4 (see Appendix A). Therefore, among the four
aspect ratios we considered, 〈ny〉 is the largest when λ = 4
[Fig. 4(b)], in which case 
I is minimal. We note that swim-
mers with λ = 2 already show a strong preferential orientation

TABLE II. Dimensionless numbers of typical plankton species shown in Table I. The Kolmogorov scales of ocean turbulence is calculated
with γ = 1.058 × 10−6 m2 s−1, and the energy dissipation rate ε ranges from 1 × 10−9 to 1 × 10−6 m2 s−3 [42]. Rep is calculated with Rep =
vswimL/γ because vswim > Vsettle for many species in Table I. Superscript1: The values are calculated with λ = 2.3 similar to Centropages
typicus. Superscript2: The values are calculated with λ = 2.0.

Species �swim �settle M Rep St (×10−5) 
I

Cochlodinium polykrikoides [39] Single cell 2.17∼0.39 0.14∼0.03 −0.078 0.015 0.17∼5.52 20.7∼655.2
2-cells 3.32∼0.59 0.1∼0.03 −0.101 0.029 0.22∼6.95 9.1∼287.2
4-cells 4.44∼0.79 0.23∼0.04 −0.136 0.077 0.45∼14.11 3.6∼112.5
8-cells 4.75∼0.84 0.36∼0.06 −0.137 0.147 0.90∼28.51 2.1∼67.4

Centropages typicus [28,41] early nauplius 1.83∼0.33 0.28∼0.05 −0.114 0.041 1.29∼40.78 8.7∼274.2
late nauplius 3.99∼0.71 0.78∼0.14 −0.114 0.153 3.75∼118.48 1.4∼44.9

Euterpina acutifrons [28] late nauplius1 5.99∼1.06 1.44∼0.26 −0.114 0.204 2.96∼93.61 0.5∼16.1
Eurytemora affinis [28] late nauplius1 9.09∼1.62 1.01∼0.18 −0.114 0.313 3.02∼95.49 0.5∼15.2
Temora longicornis [28,40] late nauplius1 3.16∼0.56 1.33∼0.24 −0.114 0.166 7.02∼222.01 1.0∼33.1

copepod1 4.55∼0.81 0.94∼0.17 −0.114 0.231 6.57∼207.83 1.0∼32.5
Ceratium tripos2 [27] 0.93∼0.16 0.91∼0.16 −0.101 0.012 0.46∼14.60 5.9∼186.1
Ceratium furca2 [27] 4.32∼0.77 0.34∼0.06 −0.101 0.033 0.17∼5.50 3.3∼105.9
Akashiwo sanguinea2 [27] 1.66∼0.30 0.30∼0.05 −0.101 0.012 0.15∼4.81 9.9∼314.3
Dinophysis acuminata2 [27] 1.84∼0.33 0.18∼0.03 −0.101 0.010 0.09∼2.84 15.2∼481.8
Alexandrium minutum2 [27] 1.54∼0.27 0.05∼0.01 −0.101 0.005 0.03∼0.89 58.3∼1843.6
Prorocentrum minimum2 [27] 1.14∼0.20 0.03∼0.00 −0.101 0.002 0.01∼0.44 159.8∼5053.4
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FIG. 3. (a) Value of 〈ny〉v3/vswim in the parameter range of �swim

and �settle, using 〈ny〉 of swimmers with λ = 8 as an example.
(b) Value of 
I calculated with Eq. (11) in the parameter range of
�swim and �settle in the present study, with M = −0.135 correspond-
ing to swimmers with λ = 8.

in the upward direction, which means fluid inertial torque can
be significant even for slightly elongated swimmers.

Figure 4(c) shows the relation between 
I and the orien-
tation of swimmers. We observe that 〈ny〉 is approximately
proportional to 
−1

I , suggesting a strong correlation be-
tween the orientation of swimmers and 
I . The linearity
is the best when 
I is large, which can be explained by
the probability distribution of orientation of the swimmers.
For weak gyrotactic swimmers, the fluctuating turbulent ve-
locity gradients act as Gaussian noises, and the rotation of
gyrotactic swimmers is diffusive [17]. In this case, the orien-
tation of spherical gyrotactic swimmers obeys an equilibrium

FIG. 4. (a) Instantaneous spatial distribution of swimmers in
HIT. Black dots and tiny arrows stand for the position and swimming
direction of each swimmer, respectively. Colors represent the vertical
fluid velocity uy. Quantities are normalized by Kolmogorov velocity
and length scale, uη and η, respectively. Parameters of swimmers are
�settle = 0.5, �swim = 10, and λ = 2, corresponding to 
I = 0.99.
(b) 〈ny〉 of swimmers with different aspect ratio and �settle = 0.5 in
HIT. (c) Mean orientation 〈ny〉 vs 
−1

I with λ = 8. The slope of the
dashed line represents the relationship of 〈ny〉 ∝ 
−1

I . (d) De as a
function of �swim and �settle, obtained by the fitting distribution (12).

distribution [17,18],

g(ny) = βeny/β

2 sinh β
, with β = 1


τηDe
, (12)

where 
 is the gyrotactic parameter, and the effective ro-
tation diffusivity De is determined by the time correlation
of velocity gradients along the trajectories of swimmers,
i.e., De ∼ τcor/τ

2
η [17], where τcor is the correlation time.

Equation (12) is derived for spherical, nonsettling swimmers,
but we have verified that Eq. (12) fits well with the dis-
tribution of settling elongated swimmers under fluid inertial
torque in the present study. Figure 4(d) shows the best-fit De

for different �swim and �settle. De is expected to have little
dependence on �swim and �settle when they are both much
smaller than unity (which is the case for large 
I ). In this case,
swimmers have small relative velocity with respect to the fluid
and they almost follow streamlines. Therefore, the correlation
timescale of fluid velocity gradients along their trajectories
is τcor ∼ τη, so that De ∼ τ−1

η [17] and β ∼ 
−1. Moreover,
the probability distribution (12) gives the mean orientation
〈ny〉 = coth β − β−1, which yields 〈ny〉 ∝ β for small β. This
gives 〈ny〉 ∝ 
−1

I for large 
I , as shown in Fig. 4(c).

VI. CONCLUSIONS

The present study investigates the significance of fluid in-
ertial torque on settling microswimmers owing to the velocity
difference between the swimmers and fluid. The effect of fluid
inertial torque shares a similar mathematical form with regular
gyrotaxis mechanisms caused by bottom-heaviness or fore-aft
asymmetry. The fluid inertial torque stabilizes the orientation
of swimmers and allows them to swim in the upward direction
spontaneously. Therefore, we suggest that fluid inertial torque
is an effective mechanism of gyrotaxis for elongated settling
swimmers.

The magnitude of fluid inertial torque depends on the
shape, and swimming and settling speeds of a swimmer. Sim-
ilar to Ref. [26], we quantify the gyrotactic effect produced by
fluid inertial torque by BI , which is an effective reorientation
time measuring how fast a swimmer restores its stable ori-
entation under fluid inertial torque. From BI , we know some
characteristics of fluid inertial gyrotaxis. First, only elongated,
settling swimmers are subject to fluid inertial torque because
they have nonzero shape factor M and settling velocity v1 and
v3. Second, fluid inertial torque is stronger when swimmers
swim and settle faster, in which case BI is small. Third, BI

depends on the instantaneous orientation of swimmers due
to the effect of settling term in Eq. (4), but in the limit of
vswim � v3, BI is nearly independent with orientation and can
be approximated by Eq. (10). This limit holds for typical
plankton species and it allows for predicting BI from the gaits
of plankton without knowing their real-time orientation.

The orientation of swimmers under fluid inertial torque in
turbulence is strongly related to the dimensionless parameter

I . When 
I � 1, swimmers show strong alignment with up-
ward direction, yielding 〈ny〉 ≈ 1. When 
I � 1, 〈ny〉 ∝ 
−1

I
as a result of the diffusive effect of turbulent fluid veloc-
ity gradients. We also show that swimmers with λ = 2 are
strongly affected by fluid inertial torque, which implies that
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fluid inertial torque can be significant even when swimmers
are not strongly elongated.

Fluid inertial torque may have a potential impact on the
gyrotaxis for elongated planktonic swimmers, especially for
those forming long chains and thus having large swimming
and settling speeds [27,30]. The settling effect of microswim-
mers was often neglected in previous studies [9–16]. However,
our results demonstrate that neglecting settling will lead to
an underestimation of gyrotaxis because fluid inertial torque
vanishes without the settling effect. Moreover, unlike the two
well-known gyrotaxis mechanisms which contribute to the
rotation dynamics passively, the fluid inertial torque can be
tuned by the swimming speed. This feature provides the pos-
sibility for microswimmers to actively control the gyrotactic
reorientation time by adjusting their swimming velocity. As
a different mechanism of gyrotaxis, swimmers under fluid
inertial torque are also expected to sample specific flow re-
gions and form local clustering as bottom-heavy gyrotactic
swimmers do [12,14,16]. These phenomena are known to be
controlled by the dimensionless reorientation time 
 and the
swimming speed �swim. In the case with fluid inertial torque,
one has to consider the influence of settling as well because it
influences the reorientation time 
I .

The present study focuses on the fluid inertial torque in-
duced by the relative velocity between swimmer and local
fluid. We note that the current swimmer model is still ideal-
ized. For instance, it neglects the influence of fluid velocity
gradients and unsteadiness on the fluid inertial torque [31,32].
These effects could be important for swimmers in flows with
strong shear and deserve to be studied in the future.
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APPENDIX A: INERTIALESS POINT-PARTICLE MODEL
FOR A SETTLING SWIMMER

Following Refs. [19,20], here we derive the governing
equations for an elongated settling microswimmer [Eqs. (1)–
(4)]. Newton’s second law for a spheroidal particle is

mp
dvp

dt
= F, (A1)

mp
d

dt
[Ip(n)ωp] = T . (A2)

Here, mp is the particle mass, mf is the mass of fluid occupied
by the particle, and vp and ωp are the particle velocity and an-
gular velocity, respectively. Ip = Ip,i j is the rotational inertia
tensor per unit-mass of the particle,

Ip,i j = I⊥(δi j − nin j ) + I‖nin j, (A3)

where n is the particle swimming direction, I⊥ = a2(1 +
λ2)/5 and I‖ = 2a2/5, with a being the half length of the
minor axis of the particle, and λ is the aspect ratio defined

as the ratio between the length of the major and minor axes of
the particle. The force on a swimmer reads

F = FSt + F I + Fswimn + (mp − mf )g, (A4)

FSt = 6πaρfγA(u − vp), (A5)

F I = 9π

8
ρf a

2 max(λ, 1)|vp − u|
× [3A − I(ûs · Aûs)]A(u − vp). (A6)

The total force is the summation of Stokes drag force FSt

[33], the fluid inertial correction of force, or so-called Oseen
correction, F I [22,34], the swimming propulsion force Fswimn,
and the contributions of gravity and buoyancy, (mp − mf )g. In
Eq. (A5), ρf and γ are the density and kinematic viscosity of
fluid, respectively, and u is the fluid velocity at the particle
position. The translational resistant tensor A is defined as

Ai j = A⊥(δi j − nin j ) + A‖nin j, (A7)

where A⊥ and A‖ depend only on the aspect ratio λ of a
particle, and the expressions can be found in Refs. [20,35].
In Eq. (A6), ûs = (u − vp)/|u − vp|.

The torque on a particle reads

T = T J + T I , (A8)

T J = 6πaρfγC

(
1

2
ω − ωp

)
+ 6πaρfγH : S, (A9)

T I = Fβρf a
3 max(λ, 1)3

× [n · (vp − u)][n ∧ (vp − u)]. (A10)

Here, the Jeffery torque T J is related to the local fluid vorticity
ω and strain rate S [23], and C and H are rotational resistant
tensors [20,35],

Ci j = C⊥(δi j − nin j ) + C‖nin j, (A11)

Hi jk = H0εi jl nknl , (A12)

where C⊥, C‖, and H0 are given in Refs. [20,35]. The fluid in-
ertial torque T I depends on both the magnitude and direction
of the relative translational motion between particle and fluid
[21], and thus influences the orientation of particles whenever
they translate relative to the fluid, such as settling [19,20] or
swimming. In Eq. (A10), Fβ is a parameter depending only on
λ [21].

Now, we can evaluate the relative importance of fluid in-
ertial force and torque by comparing their magnitudes with
those of other terms. For inertial force, |F I |/|FSt| ∼ a|u −
vp|/γ = Rep. This suggests that F I is negligible in the limit of
Rep � 1. However, as discussed in Ref. [19], the magnitudes
of fluid inertial and Jeffery torques scale differently,

|T I |
|T J | ∼ |u − vp|2

|ω/2 − ωp|γ , (A13)

suggesting that the fluid inertial torque cannot be neglected
even in the limit of Rep � 1. Therefore, in the following
derivation, we neglect the inertial correction for the drag force
but still keep the inertial torque.
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Using Eqs. (A1)–(A10), we obtain the governing equa-
tions of the particle motion [20],

dv′
p

dt
= 1

St

[
A(u′ − v′

p) + Fswimτp

mpuη

n

+ (ρp − ρf )gτp

ρpuη

eg

]
,

(A14)

dω′
p

dt
= 1

St

[
I−1

p C′
(

1

2
ω′ − ω′

p

)
+ I−1

p H′ : S′

+A[n · (v′
p − u′)][n ∧ (v′

p − u′)]
]

+λ2 − 1

λ2 + 1
(n · ω′

p)(ω′
p ∧ n).

(A15)

Here, quantities with primes are nondimensionalized by Kol-
mogorov velocity scale uη and timescale τη. We note that the
inertial force correction F I has been neglected for the deriva-
tion of Eq. (A14) with Rep � 1, and we use the relationship
d (Ipωp)/dt = Ipdωp/dt + ωp ∧ (Ipωp) in Eq. (A15). The
Stokes number St = τp/τη quantifies the inertia of the swim-
mer, where τp ≡ (2a2λρp)/(9γ ρf ) is the particle translational
response time, and τη is the Kolmogorov timescale. For typi-
cal plankton species, St is usually much smaller than unity, as
shown in Table II. In the limit of St � 1, i.e., the overdamped
limit [20], Eqs. (A14) and (A15) can be further simplified,

vp = u + vswimn + vsettle, (A16a)

ωp = 1

2
ω + �(n ∧ S · n)

+ M

γ
[n · (vp − u)][n ∧ (vp − u)], (A16b)

where vswimn = Fswimτp

mp
A−1

‖ n, (A16c)

and vsettle = ρp − ρf

ρp
gτpA

−1eg. (A16d)

In the present study, we directly assign the value of vswim, and
we use an equivalent definition of vsettle [24],

vsettle = −v1ey − (v3 − v1)(ey · n)n, (A16e)

with ey = −eg,

v1 = ρp − ρf

ρp
gτpA−1

⊥ ,

v3 = ρp − ρf

ρp
gτpA−1

‖ ,

where v1 and v3 are the terminal settling speeds of a spheroid
in quiescent fluid, with symmetry axis perpendicular and par-
allel to gravity direction, respectively.

Using Eqs. (A16), we obtain the governing equation of the
angular velocity of a settling swimmer [Eq. (4)]. The shape
parameter M in Eq. (A16b) is only a function of aspect ratio
λ (Fig. 5), and is defined by M = AI⊥/C⊥, where I⊥ and C⊥

1 4 8 12 16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

FIG. 5. Shape factor M as a function of aspect ratio λ.

for elongated spheroids are as follows [20]:

I⊥ = 1 + λ2

5
a2, (A17a)

C⊥ = 8a2(λ4 − 1)

9λ[(2λ2 − 1)β − 1]
, (A17b)

with β = ln(λ + √
λ2 − 1)

λ
√

λ2 − 1
. (A17c)

For elongated spheroids,

A = 5

6π
Fβ

λ3

λ2 + 1
, (A17d)

with Fβ defined as [21]

Fβ = − πe2(420e + 2240e3 + 4249e5 − 2152e7)

315[(e2 + 1) tanh−1 e − e]2[(1 − 3e2) tanh−1 e − e]

+ πe2(420 + 3360e2 + 1890e4 − 1470e6) tanh−1 e

315[(e2 + 1) tanh−1 e − e]2[(1 − 3e2) tanh−1 e − e]

− πe2(1260e−1995e3+2790e5 − 1995e7)(tanh−1 e)2

315[(e2+1) tanh−1 e − e]2[(1−3e2) tanh−1 e − e]
,

(A18)

where e = √
1 − λ−2. For more details on these parameters,

readers can refer to Refs. [19–21].

APPENDIX B: DIRECT NUMERICAL SIMULATION OF
TURBULENCE AND SWIMMERS

We use an Eulerian-Lagrangian method to simulate swim-
mers in homogeneous isotropic turbulence. The dynamics of
the fluid phase is resolved in an Eulerian frame, while each
individual swimmer is tracked along the Lagrangian trajectory
using local instantaneous flow information at the swimmer
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position. The incompressible turbulence is directly simulated
by solving the Navier-Stokes equations,

∂u
∂t

+ u · ∇u = −∇pf

ρ
+ γ∇2u + F, (B1)

∇ · u = 0, (B2)

where t is the time and u is the fluid velocity. The symbols
pf and ρ denote the pressure and density of fluid, respec-
tively. An external force F is applied to the large scales and
injects energy in order to sustain turbulence and balances the
rate of viscous dissipation at the Kolmogorov scale η [36].
Three-dimensional periodic boundary conditions are applied
on the boundaries of the cubic domain with a size (2π )3. A
pseudospectral method is used for solving the Navier-Stokes
equations, and the 3/2 rule is utilized to reduce the aliasing
error on the nonlinear term. The turbulence Taylor-Reynolds
number is Reλ = urmsLλ/γ = 60, where urms is the root-
mean-square velocity, Lλ = urms

√
15γ ε−1. We use 963 grid

points to resolve the turbulent flow fluctuation. The maximum
wave number resolved is about 1.78 times greater than the
Kolmogorov wave number to ensure the accuracy of resolu-
tion at small scales [37]. A random flow with an exponent
energy spectrum is given as the initial flow field, and we use an
explicit second-order Adams-Bashforth scheme for the time

integration of Eqs. (B1) and (B2) with a time step smaller than
0.01τη [38].

After turbulence is fully developed, swimmers are released
in the flow field with random positions and orientations. Fluid
velocity and its gradients in Eqs. (2) and (4) are interpolated
by a second-order Lagrangian method at the particle position,
using fluid information at Eulerian grid points. Equations (1)
and (2) are integrated by a second-order Adams-Bashforth
scheme similar to time integration of the fluid phase. The
number of particles is 120 000 for each parameter configura-
tion, and the statistics in turbulence are obtained by averaging
over more than 40 uncorrelated time samples after the statis-
tics has reached a steady state.

APPENDIX C: TYPICAL PARAMETERS OF PLANKTON

Here, we summarize the parameters of typical plankton
species [27,28,39–41]. In Table I, we show the typical length,
aspect ratio, and swimming and settling speeds. In Table II,
we summarize the nondimensional parameters. The Rep and
St of these typical species are negligibly small, so the model
derived in Appendix A is applicable. We also estimate the
reorientation parameter 
I with Eq. (11). 
I is small for
fast-swimming species in turbulence with small energy dis-
sipation rate, indicating that the effect of fluid inertial torque
is significant.
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