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Non-Hermitian waves in a continuous periodic model and application to photonic crystals
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In some non-Hermitian systems, the eigenstates in the bulk are localized at the boundaries of the systems.
This is called the non-Hermitian skin effect, and it has been studied mostly in discrete systems. In the present
work, we study the non-Hermitian skin effect in a continuous periodic model. In a one-dimensional system,
we show that the localization lengths are equal for all the eigenstates. Moreover, the localization length and
the eigenspectra in a large system are independent of the types of open boundary conditions. These properties
are also found in a non-Hermitian photonic crystal. Such remarkable behaviors in a continuous periodic model
can be explained in terms of the non-Bloch band theory. By constructing the generalized Brillouin zone for a
complex Bloch wave number, we derive the localization length and the eigenspectra under an open boundary
condition. Furthermore, we show that the generalized Brillouin zone also has various physical properties, such
as bulk-edge correspondence.
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I. INTRODUCTION

Classical waves, such as elastic waves, acoustic waves,
and electromagnetic waves, are fundamental research topics
in various fields of physics. In periodic structures, these waves
form band structures described in terms of the Bloch band
theory, and they are controllable. For example, a multilayer of
two dielectric media has a complete band gap of electromag-
netic waves propagating along the stacking direction [1]. As a
result, electromagnetic waves with frequencies within the gap
are forbidden to propagate in the photonic crystal.

In recent years, optical systems which incorporate non-
Hermiticity, such as gain and loss, have been attracting much
attention in theory and in experiment. Interestingly, non-
Hermiticity leads to remarkable phenomena which have no
counterpart to Hermitian systems. Non-Hermitian systems
with PT symmetry [2] are intensively studied in optics, and
they result in unidirectional transmission, retroreflection, and
so on [3–7]. In addition, topological edge modes can be cre-
ated in optical systems with periodically aligned gain and loss,
and they can be modulated by gain and loss [8–16]. Recently,
non-Hermitian topology stemming from complex eigenvalues
was also investigated [17,18]. We stress that these results are
unique to non-Hermitian systems.

In theoretical and experimental research on non-Hermitian
systems, a non-Hermitian skin effect plays a crucial role. In
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non-Hermitian crystals, this effect leads to localization of bulk
eigenstates at boundaries of the systems with open bound-
ary conditions [19–25]. Accordingly, the non-Hermitian skin
effect has rich physics, and phenomena caused by this ef-
fect are unique to non-Hermitian systems [26–29]. In fact,
the non-Hermitian skin effect was experimentally realized in
various physical systems [30–40]. In particular, an optical sys-
tem is a good platform to demonstrate phenomena associated
with the non-Hermitian skin effect [41–44]. Nevertheless, so
far, theoretical studies on the non-Hermitian skin effect have
been limited mostly to a tight-binding model. Therefore, in
a continuous model, such as a photonic crystal, the behavior
of bulk eigenstates in the non-Hermitian skin effect is still
unclear.

In this paper, we study a non-Hermitian wave in a contin-
uous periodic model. As examples, we focus on a toy model
and a photonic crystal and demonstrate that these systems ex-
hibit the non-Hermitian skin effect. Then we find remarkable
behavior of the non-Hermitian skin effect. Namely, the bands
under an open boundary condition are independent of the type
of open boundary conditions when the system size is large.
Moreover, the localization length is common for all the eigen-
states. We explain the behavior of the non-Hermitian skin
effect in terms of the non-Bloch band theory proposed in our
previous works. Importantly, we calculate the Brillouin zone
unique to non-Hermitian systems, called the generalized Bril-
louin zone, which reproduces the eigenspectra of the system.
In this case, the generalized Brillouin zone becomes a circle,
which accounts for the constant localization length of the
skin modes. Additionally, in the photonic crystal, we establish
bulk-edge correspondence between the Zak phase [45] defined
from the generalized Brillouin zone and the appearance of
topological edge modes.
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FIG. 1. (a) Eigenvalues with the open boundary condition,
ψ (0) = ψ (L) = 0 (red), and those with the periodic boundary con-
dition, ψ (0) = ψ (L) (black), in the toy model (3), where L is the
system size. The system parameters are set to be p = 10−2, λ =
10−1, and the system size is L = 10a. (b) Schematic figures of
extended eigenstates under a periodic boundary condition (top panel)
and localized eigenstates under an open boundary condition (bottom
panel) in the non-Hermitian skin effect.

II. NON-HERMITIAN SKIN EFFECT

Various waves in Hermitian continuous systems in physics
are described in terms of the Strum-Liouville equation, which
is a standard equation in Hermitian boundary-value problems.
In our work, we extend the Strum-Liouville equation to de-
scribe non-Hermitian waves. Thus, the wave equation with
frequency ω is given by

[
− d

dx
p(x)

d

dx
− i

2

(
λ1(x)

d

dx
+ d

dx
λ2(x)

)
+ v(x)

]
ψ (x)

=
(ω

c

)2
ψ (x), (1)

where c is a positive constant and ψ (x) is the wave function.
Here we take the convention of the time dependence of the
waves to be e−iωt . In Eq. (1), p(x), λ1,2(x), and v(x) are
complex periodic functions

p(x + a) = p(x), λ1,2(x + a) = λ1,2(x),

v(x + a) = v(x), (2)

where a is a lattice constant. Then the terms including λ1,2(x)
express an imaginary gauge potential [46]. We note that the
system becomes Hermitian when p(x) and v(x) are real func-
tions, λ∗

1(x) = λ2(x), and the operator on the left-hand side of
Eq. (1) is positive definite.

Now we explain the difference in eigenstates between open
and periodic boundary conditions. For example, we focus on
the toy model described by Eq. (1) with

p(x) = p, λ1(x) = λ2(x) = iλ sin2 2π

a
x, v(x) = 0, (3)

where p and λ are real constants. Importantly, the imag-
inary gauge potential represented by λ1,2(x) causes the

(b)(a)

FIG. 2. (a) Spatial distribution of the eigenstates under the
Dirichlet boundary condition (red) and under the Neumann boundary
condition (blue) in the toy model (3). These eigenstates are included
in the first and second bands. The system parameters are set to be
p = 10−2, λ = 10−1, and the system size is L = 10a. The insets are
extended figures in x ∈ [L − 1, L]. (b) Eigenvalues with the Dirich-
let boundary condition (red dots) and with the Neumann boundary
condition (blue dots). For comparison, we also show our results
for eigenspectra from the complex Bloch wave number (green) and
from the real Bloch wave number (black), corresponding to open and
periodic boundary conditions, respectively.

non-Hermitian skin effect. We show the eigenvalues of
the system with size L under open and periodic boundary
conditions in Fig. 1(a). Surprisingly, the bands under the pe-
riodic boundary condition and those under the open boundary
condition are different even in the limit of a large system
size, in contrast to Hermitian systems, where they become
asymptotically identical. The difference is caused by the non-
Hermitian skin effect. Namely, under a periodic boundary
condition, the eigenstates in the bulk extend over the system
[Fig. 1(b), top panel]. On the other hand, under an open
boundary condition, the non-Hermitian skin effect occurs, and
the bulk eigenstates are localized at either end of the system
[Fig. 1(b), bottom panel].

In Fig. 2(a), we show the spatial distribution of the eigen-
states with the Dirichlet boundary condition, ψ (0) = ψ (L) =
0, and those with the Neumann boundary condition, ψ ′(0) =
ψ ′(L) = 0. Obviously, these eigenstates depend on the bound-
ary conditions. Nevertheless, it is surprising that in the limit of
a large system size, the asymptotic bands under the Dirichlet
boundary condition are identical to those under the Neumann
boundary condition [Fig. 2(b)].

As another example, we focus on a photonic crystal, as
shown in Fig. 3(a). It is a multilayer in which two dielectric
media are alternately stacked along the x direction, and it is
uniform in the other directions. To include an effective gauge
potential for electromagnetic waves, we introduce anisotropy
of the dielectric tensor [47–49]. Thus, we assume that the
dielectric media with thickness di (i = 1, 2) have dielectric
tensors

ε̂i =
⎛
⎝εi,xx εi,xy 0

εi,yx εi,yy 0
0 0 ε

⎞
⎠ (i = 1, 2) (4)
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FIG. 3. (a) Photonic crystal with a system size of 50a under the perfect electric conductor (PEC) boundary condition and under the perfect
magnetic conductor (PMC) boundary condition, where a is the lattice constant. We set the system parameters as ε1,xx = ε1,yy = 1, ε1,xy = εyx =
0, ε2,xx = ε2,yy = 9 + 3i, ε2,xy = ε2,yx = 2, d1 = 0.4a, and d2 = 0.6a. (b) Eigenvalues with the PEC boundary condition (red), those with the
PMC boundary condition (blue), and those with a periodic boundary condition (black). The red and blue dots overlap each other. (c) Spatial
distributions of the eigenstates under the PEC boundary condition and those under the PMC boundary condition for various values of ky. In the
left and middle columns, the eigenstates have the minimum value of the real part of the eigenvalues included in the first band, denoted as ω1.
In the right column, the eigenstates have the maximum value of the real part of the eigenvalues included in the first band, denoted as ω2. We
show the real part of the magnetic field.

and permeability μi = 1 (i = 1, 2). We note that a real part
of permittivity means anisotropy of the phase velocity, and
an imaginary part of permittivity means anisotropy of the
optical gain and loss. Throughout this paper, we investigate
the reciprocal photonic crystal with ε̂T

i = ε̂i (i = 1, 2). The

lattice constant is d1 + d2 ≡ a. The electromagnetic waves in
the multilayer with the dielectric tensor ε̂(x) are described
by Maxwell’s equations. Importantly, when the electromag-
netic waves propagate in the xy plane, transverse-electric (TE)
modes are decoupled from transverse-magnetic (TM) modes
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because εxz, εzx, εyz, εzy = 0. In particular, for the TE modes,
the governing equation can be written in the form of Eq. (1).

In fact, by expressing the z component of the magnetic field
as Hz(x, y) = H (x)eikyy, we can get the wave equation:

{
− d

dx
ηyy(x)

d

dx
− i

2

[
−2kyηxy(x)

d

dx
+ d

dx
[−2kyηyx(x)]

]
+ k2

y ηxx(x)

}
H (x) =

(ω

c

)2
H (x), (5)

where c is the speed of light in vacuum and ηi j (x) (i, j =
x, y) are the components of the inverse of ε̂(x). We explain
the detailed derivation of Eq. (5) in Appendix A. When
ε̂†(x) �= ε̂(x), the system becomes non-Hermitian. In partic-
ular, when ηxy(x) and ηyx(x) take complex values, the terms
including the factors −2kyηxy(x) and −2kyηyx(x) in Eq. (5)
express the imaginary gauge potential, and these terms give
rise to the non-Hermitian skin effect.

In the system with size L along the x axis, by using COM-
SOL MULTIPHYSICS, we numerically calculate eigenvalues and
eigenstates under the perfect electric conductor (PEC) bound-
ary condition and those under the perfect magnetic conductor
(PMC) boundary condition [50]. We note that the PEC bound-
ary condition and the PMC boundary condition are given by
Ey(0) = Ey(L) = 0 and by Hz(0) = Hz(L) = 0, respectively.
In Fig. 3(b), as a manifestation of the non-Hermitian skin
effect, the bands in the open boundary conditions and those in
a periodic boundary condition are different even in the limit of
a large system size, similar to the toy model. In fact, for some
eigenvalues, the eigenstates are localized at the boundaries,
as shown in Fig. 3(c). Surprisingly, the bands with the PEC
boundary condition and those with the PMC boundary con-
dition are identical [Fig. 3(b)], although their eigenstates are
quite different [Fig. 3(c)]. It is worth noting that these states
are not discrete edge states but continuum bulk eigenstates. In
fact, at the boundaries, the density of these localized states is
different from that of discrete edge states.

We comment on the numerical simulation by using COM-
SOL MULTIPHYSICS. We discuss the time evolution of the
waves for the factor e−iωt throughout this paper. On the other
hand, in COMSOL MULTIPHYSICS, the convention of the time
evolution of the electromagnetic waves for the factor eiωt is
adopted. To incorporate this difference in the convention, in
the simulation by COMSOL MULTIPHYSICS, we take the input
parameters to be complex conjugate of the original ones; that
is, in the simulation, we input ε2,xx = ε2,yy = 9 − 3i instead
of 9 + 3i.

Thus, the non-Hermitian skin effect causes various remark-
able phenomena. In our work, we show that these phenomena
can be understood in terms of the non-Bloch band theory.

III. NON-BLOCH BAND THEORY

Eigenstates under a periodic boundary condition are de-
scribed in terms of a real wave number, stemming from
translational symmetry. In contrast, under an open boundary
condition, translational symmetry is violated, and such cases
are outside of the conventional Bloch theory. Nevertheless,
supposing that such cases can be described in terms of a
Bloch wave number, the non-Hermitian skin effect implies
that it takes complex values. Indeed, the non-Bloch band

theory proposed in our previous works [51–53] shows that
non-Hermitian periodic systems are described in terms of the
complex Bloch wave number. Now we explain the concept
of the non-Bloch band theory. To this end, we focus on a
non-Hermitian tight-binding system with a finite system size.
Here this system has discrete eigenvalues. Then, as the system
size increases, the eigenvalues become dense. Finally, in the
limit of a large system size, the discrete eigenvalues form con-
tinuous sets, being eigenspectra. From our previous works, the
eigenspectra are calculated from sets of the complex values of
β = eika, where k is the complex Bloch wave number. Each set
of the values of β forms a loop on the complex plane, and it is
called the generalized Brillouin zone. We note that these loops
become a unit circle under a periodic boundary condition.
The non-Bloch band theory provides a method to calculate
the generalized Brillouin zone reproducing eigenspectra. We
briefly explain a way to get the generalized Brillouin zone in
Appendix B.

In the present work, we extend the idea of the non-Bloch
band theory to a non-Hermitian continuous system described
by Eq. (1). Then we derive a formula of the generalized
Brillouin zone by using the non-Bloch band theory. When
we discretize the system by dividing the unit cell into N
equal parts, the operator on the left-hand side of Eq. (1) is
approximated by an N × N matrix (see Appendix C). Since
the non-Bloch band theory can be applied to this discrete
system, we can get the formula for the generalized Brillouin
zone. Finally, in the limit of N → ∞, we show that in the
continuous system, the generalized Brillouin zone becomes a
circle with the radius

r = exp

(
1

2

∫ a

0
dxIm

λ1(x) + λ2(x)

2p(x)

)
. (6)

We explain a way to derive Eq. (6) in Appendix C. In this
case, the imaginary part of the Bloch wave number Im(k) is
obtained by − 1

a ln r. We note that Eq. (6) is independent of the
complex potential v(x), although it leads to non-Hermiticity.
In Fig. 4(a), we show the complex Bloch wave number and
the generalized Brillouin zone which corresponds to an open
boundary condition. In Fig. 4(b), we also show the real Bloch
wave number and the conventional Brillouin zone.

From Eq. (6), we can calculate the eigenspectra of Eq. (1).
Because of the spatial periodicity (2), the solution of Eq. (1)
can be written in the form of the plane wave expansion:

ψ (x) =
∑

n

	

(
k + 2nπ

a

)
ei(k+ 2nπ

a )x, (7)

where k is the complex Bloch wave number on the generalized
Brillouin zone. Then we can derive the secular equation from
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FIG. 4. (a) Complex Bloch wave number and generalized Brillouin zone. The radius r is given in Eq. (6). (b) Real Bloch wave number
and Brillouin zone. (c) Eigenspectra from the generalized Brillouin zone (red) and those from the conventional Brillouin zone (black) in the
toy model (3). The system parameters are set to be p = 10−2 and λ = 10−1. (d) Reduced zone representation of the eigenspectra from the
generalized Brillouin zone. The gap 
 is given in Eq. (10).

Eq. (1) as

(ω

c

)2
	

(
k + 2nπ

a

)
−

∑
n′

{(
k + 2nπ

a

)
Pn−n′

(
k + 2n′π

a

)

+ 1

2

[
�1,n−n′

(
k + 2n′π

a

)
+

(
k + 2nπ

a

)
�2,n−n′

]

+ Vn−n′

}
	

(
k + 2n′π

a

)
= 0, (8)

where Pn,�i,n (i = 1, 2), and Vn are the Fourier coefficients
of the functions p(x), λi(x) (i = 1, 2), and v(x), respectively.
Therefore, by combining the generalized Brillouin zone with
Eq. (8), we can get the eigenspectra of the system.

IV. EXAMPLES

A. Toy model

In the toy model (3), we calculate the generalized Brillouin
zone and the eigenspectra in order to check that it really
reproduces the eigenvalues under an open boundary condition.
From Eq. (6), the generalized Brillouin zone is a circle with
the radius given by

r = exp

(
−aλ

4p

)
. (9)

As a result, from Eqs. (8) and (9), the eigenspectra can be
calculated as shown in Fig. 4(c). In Fig. 4(c), we also show
the eigenspectra of the system obtained from the conventional
Brillouin zone. Compared with Fig. 1(a), we can confirm
that our analytic calculation matches the results in the finite
system. In fact, in the limit of a large system size, both the
eigenvalues under the Dirichlet and Neumann boundary con-
ditions asymptotically become identical with the eigenspectra
from the generalized Brillouin zone, as shown in Fig. 2(b).

Thus, the eigenvalues are independent of the type of open
boundary conditions, although the corresponding eigenstates
are different [Fig. 2(a)]. This counterintuitive conclusion can
be obtained from the fact that the generalized Brillouin zone
is independent of boundary conditions of an open system.

We note that in a tight-binding model, a complex eigen-
spectrum in a periodic chain forms a closed loop on the
complex plane, and it surrounds eigenspectra in an open chain
in general [21,23]. In contrast, we find that the complex eigen-
spectrum obtained from the conventional Brillouin zone does
not form a loop, and it does not surround the eigenspectra
obtained from the generalized Brillouin zone, which never
occurs in non-Hermitian discrete systems. Such a distribution
of the eigenspectrum is unique to continuous systems [54].

Finally, we show the reduced zone representation of the
eigenspectra from the generalized Brillouin zone in Fig. 4(d).
Then, as an example, we analytically estimate the gap 


between the second and third bands at Re(k) = 0 as


 = λ2

8p
. (10)

We derive Eq. (10) in detail in Appendix D. With our param-
eters, the value of Eq. (10) matches the numerical result.

B. Photonic crystal with anisotropy and loss

In terms of the non-Bloch band theory, we can understand
the non-Hermitian physics of the photonic crystal as shown
in Fig. 5(a). As explained above, the Bloch wave number kx

becomes complex in the system. In fact, from Eq. (6), the
generalized Brillouin zone becomes a circle with the radius

r = exp

(
ky

2
Im

2∑
i=1

εi,xy + εi,yx

εi,xx
di

)
. (11)

Importantly, the non-Hermitian skin effect occurs even if the
dielectric tensor is symmetric. This means that the violation
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FIG. 5. (a) Photonic crystal. The photonic crystal is an alternate stacking of two media along the x direction, and it is extended along
the y and z directions. The components of the dielectric tensors are set to be ε1,xx = ε1,yy = 1, ε1,xy = εyx = 0, ε2,xx = ε2,yy = 9 + 3i, and
ε2,xy = ε2,yx = 2, and the thickness of the layer is set to be d1 = 0.4a and d2 = 0.6a, where a is a lattice constant. (b) Eigenspectra from the
generalized Brillouin zone (red) and those from the conventional Brillouin zone (black) for various values of ky.

of the Lorentz reciprocity is not necessarily required [55].
We note that Eq. (11) can also be derived by using a transfer
matrix. In Appendix E, we show that the transfer matrix can
give the generalized Brillouin zone.

In Fig. 5(b), we show the eigenspectra from the gener-
alized Brillouin zone with the complex kx and those from
the conventional Brillouin zone with the real kx for various
values of ky. We can confirm that these spectra are differ-
ent from each other. Importantly, the eigenspectra calculated
from Eq. (11) are expected to reproduce eigenvalues with
an open boundary condition in the limit of a large system
size, regardless of the details of open boundary conditions.
In fact, in comparison with Figs. 3(b) and 5(b), the eigen-
values under the PEC boundary condition and those under
the PMC boundary condition match the eigenspectra. Thus,
the asymptotic behavior of the system in the limit of a large
system size is independent of the type of open boundary
conditions. Remarkably, with the constant ky, the localization
length of all the eigenstates is common. This reflects that the
generalized Brillouin zone is a circle. The localization length
of the eigenstates is determined by the imaginary part of the
complex Bloch wave number, which is given by Im(kx ) =
0.04ky in our computation. Thus, for kya

2π
= 0.2, 0.3,−0.2, we

get Im(kx )a = 0.016π, 0.024π,−0.016π , respectively. This
means that for ky > 0 (ky < 0), the eigenstates are localized at
the left (right) end of the system and the localization lengths
are 1

|Im(kx )| 	 20a, 13a, 20a for the above three cases. The
conclusion obtained here is consistent with the non-Bloch
band theory, as mentioned above.

V. BULK-EDGE CORRESPONDENCE

In non-Hermitian systems, the bulk-edge correspondence
between a topological invariant defined in terms of the con-
ventional Brillouin zone and the appearance of topological
edge states was thought to be violated [56]. This is be-

cause the eigenvalues with an open boundary condition and
those with a periodic boundary condition are different. Hence,
eigenspectra calculated from the conventional Brillouin zone
cannot predict a bulk-gap-closing point and topological phase
transition under an open boundary condition. Thus, it is neces-
sary to discuss the bulk-edge correspondence in terms of the
non-Bloch band theory. Now we demonstrate the bulk-edge
correspondence in the photonic crystal by using the topologi-
cal invariant defined from the generalized Brillouin zone.

First of all, we focus on the photonic crystal with a finite
system size under the PEC boundary condition. Then, as
shown in Fig. 6(a), we change the termination of the system
so that we cut off the layer at the right end by the thickness s
and add to the layer at the left end by the same thickness. In
this case, the system size is unchanged. With the system size
L = 10a, we show the spectral flow through the change in s
and the center of position, defined as

〈x〉 =
∫ L/2
−L/2 dxx|H (x)|2∫ L/2
−L/2 dx|H (x)|2

, (12)

in Fig. 6(b). We find that 2n edge states appear in the band
gap between the nth bulk band and the (n + 1)th bulk band.
Furthermore, at the nth gap, n states are localized at the
right boundary, and the other n states are localized at the left
boundary.

As we change the termination in the finite system as shown
in Fig. 6(a), we change the unit cell in the bulk, so that the
boundaries of the unit cell match those of the whole system,
as shown in Fig. 6(c). Hence, the shift of the unit cell can be
represented by the parameter s. Then, according to [57], the
appearance of the edge states corresponds to the change in the
Zak phase through the change in the unit cell. In our work,
the Zak phase θn can be defined in terms of the generalized
Brillouin zone (see Appendix F). We note that the photonic
crystal belongs to class A in a kx-s plane, where kx is the
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FIG. 6. (a) Change in the photonic crystal via the change in the parameter s. The photonic crystal has a system size of 10a with the perfect
electric conductor (PEC) boundary condition. The system parameters are the same as in Figs. 3 and 5. (b) Eigenvalues as a function of s. We
also show the edge states localized at the right boundary (red) and those localized at the left boundary (blue). n expresses the band index.
(c) Configuration of the unit cell (red) for the spatial translation parameter s. (d) s dependency of the Zak phase θn.

complex wave number on the generalized Brillouin zone. In
fact, the integral of the Zak phase for the variable s is equiva-
lent to the Chern number defined in a kx-s plane. In Fig. 6(d),
we numerically calculate the s dependency of the Zak phase.
Thus, the values of the Zak phase change by −2π under the
change in s from 0 to 1. We note that at s

a = 0, 0.5, 1, the
values of the Zak phase are close to 0 and ±π , but they are not
quantized. This is because the off-diagonal components of the
dielectric tensor break the mirror symmetry in the x direction.
Our numerical results indicate that one mode is carried from
the left end to the right end per band. Thus, within the nth gap,
n states go out from the nth band at the right end, and n states
enter the nth band at the left end. Therefore, the existence
of the edge states coincides with the nontrivial topological
invariant, and we conclude that the edge states are topological.

VI. SUMMARY AND DISCUSSION

In this work, we studied the non-Hermitian waves de-
scribed in the wave equation (1) with a continuous periodic

model in terms of the non-Bloch band theory. As examples,
we investigated the toy model given in Eq. (3) and the pho-
tonic crystal shown in Fig. 5(a) and showed that the bulk
eigenstates in both systems exhibit the non-Hermitian skin
effect. We found that the asymptotic behavior of the sys-
tem in the limit of a large system size is independent of
the type of open boundary conditions, such as the Dirich-
let and Neumann boundary conditions in the toy model and
the PEC and PMC boundary conditions in the photonic
crystal. In fact, the asymptotic eigenvalues become identi-
cal with the eigenspectra calculated from the generalized
Brillouin zone. Remarkably, this means that the localiza-
tion length for all the skin modes is common because the
generalized Brillouin zone becomes a unit circle with the
radius given in Eq. (6). Furthermore, the generalized Bril-
louin zone gives various physical properties in non-Hermitian
systems. For example, we can establish the bulk-edge
correspondence between the Zak phase defined from the gen-
eralized Brillouin zone and the existence of the topological
edge states.
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The non-Hermitian skin effect in a continuous system was
studied in terms of non-Hermitian topology in Refs. [54,58].
These previous works showed that in a continuous system, the
non-Hermitian skin effect corresponds to the energy winding
number. In particular, Ref. [54] investigated the energy wind-
ing number in terms of the imaginary gauge transformation.
The imaginary gauge transformation reveals detailed proper-
ties of the non-Hermitian skin effect, such as the localization
length. Nevertheless, the imaginary gauge transformation dis-
cussed in Ref. [54] is limited to some specific models. On the
other hand, our work revealed that the non-Bloch band theory
is applicable to general Strum-Liouville-type non-Hermitian
continuous systems, where the imaginary gauge transforma-
tion may not be applicable. In fact, we found that all the
eigenstates have a common localization length in the system
described by Eq. (1) due to the circular shape of the gener-
alized Brillouin zone. Thus, the remarkable features of the
non-Hermitian skin effect are expected to be present in various
continuous systems, such as an elastic medium, an acoustic
medium, and a photonic crystal.

In this paper, we established the property that the localiza-
tion lengths of the skin modes are independent of eigenvalues
in a non-Hermitian system described by a second-order differ-
ential equation. Since various physical systems are described
in terms of the Sturm-Liouville equation, this conclusion is
applicable to a wide range of physical systems. Whether this
property holds in arbitrary non-Hermitian continuous systems
is left as future work.

Anisotropy and loss of a dielectric medium can be read-
ily achieved by natural hyperbolic materials [59,60] and
hyperbolic metamaterials [61–63]. Hence, we expect that
the photonic crystal discussed here can be experimentally
realized. In addition, dynamical Floquet modulation could
be another candidate for realizing the imaginary gauge po-
tential [64–66]. One can find a wide variety of possible
realizations because one-dimensional propagation of electro-
magnetic waves can be described by the wave equation (1) in
general. Interestingly, we can confine electromagnetic waves
in a photonic crystal by using anisotropy and non-Hermiticity
of a dielectric medium. Finally, theoretical and experimental
studies on the propagation of electromagnetic waves in two-
dimensional and three-dimensional non-Hermitian systems
are left as future works.
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APPENDIX A: WAVE EQUATION IN THE PHOTONIC
CRYSTAL

We show that Maxwell’s equation can be written in the
form of Eq. (5). In the following, we study a multilayer system

composed of two dielectric media, as shown in Fig. 5(a). The
dielectric tensor of the multilayer is given by

ε̂(x) =
{
ε̂1 (0 � x � d1),
ε̂2 (d1 � x � a), ε̂(x + a) = ε̂(x), (A1)

where

ε̂i =
⎛
⎝εi,xx εi,xy 0

εi,yx εi,yy 0
0 0 ε

⎞
⎠ (i = 1, 2) (A2)

and a = d1 + d2 is a lattice constant. We assume that the
permeability is 1 throughout this multilayer. Then Maxwell’s
equations are written as

∇ · H (r, t ) = 0,

∇ · [ε̂(x)E(r, t )] = 0,

∇ × E(r, t ) + μ0
∂

∂t
H (r, t ) = 0,

∇ × H (r, t ) − ε0ε̂(x)
∂

∂t
E(r, t ) = 0, (A3)

where ε0 and μ0 are the vacuum permittivity and the vacuum
permeability, respectively. In our work, we study the electro-
magnetic wave with frequency ω given by

H (r, t ) = H̃ (r)e−iωt , E(r, t ) = Ẽ(r)e−iωt . (A4)

In this case, Eq. (A3) can be rewritten in the form of an
eigenvalue equation [1]:

∇ ×
(

1

ε̂(x)
∇ × H̃ (r)

)
=

(ω

c

)2
H̃ (r), (A5)

where c is the speed of light in vacuum. For convenience, let
us denote 1

ε̂(x) as

1

ε̂(x)
≡ η(x) =

⎛
⎝ηxx(x) ηxy(x) 0

ηyx(x) ηyy(x) 0
0 0 η

⎞
⎠. (A6)

Now we focus on the transverse-electric (TE) modes propa-
gating in the xy plane in the multilayer, which means that the
electromagnetic waves are independent of the z coordinate.
In this case, the TE modes have a magnetic field normal
to the xy plane, H̃ (x, y) = H̃z(x, y)ẑ, and the electric field
in the xy plane, Ẽ(x, y) · ẑ = 0. Furthermore, we can rewrite
the magnetic field as H̃z(x, y) = H0(x)eikyy. Finally, for H0(x),
Eq. (A5) can be explicitly written as{

− d

dx
ηyy(x)

d

dx
− i

2

[
−2kyηxy(x)

d

dx
+ d

dx
[−2kyηyx(x)]

]

+ k2
y ηxx(x)

}
H0(x) =

(ω

c

)2
H0(x). (A7)

Thus, we have derived Eq. (5). This equation corre-
sponds to Eq. (1) with p(x) = ηyy(x), λ1(x) = −2kyηxy(x),
λ2(x) = −2kyηyx(x), and v(x) = k2

y ηxx(x). We note that the
system becomes Hermitian when ηxx(x), ηyy(x) ∈ R and
η∗

xy(x) = ηyx(x). This is the case for ε̂†(x) = ε̂(x).
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APPENDIX B: NON-BLOCH BAND THEORY

We briefly review the non-Bloch band theory [51]. To this
end, we focus on a one-dimensional tight-binding system with
an open boundary condition. The Hamiltonian of this system
is written as

H =
∑

n

N∑
i=−N

q∑
μ,ν=1

ti,μνc†
n+i,μcn,ν , (B1)

where c†
n,μ is a creation operator of a particle on the μth

sublattice in the nth unit cell. N represents the hopping range
of the particle, and q is the number of internal degrees of free-
dom in the unit cell. When t∗

−i,νμ �= ti,μν , the system becomes
non-Hermitian. Now, for the eigenvector

|ψ〉 = (. . . , ψ1,1, . . . ψ1,q, . . . , ψL,1, . . . , ψL,q, . . . )T, (B2)

the real-space eigenequation is given by

H |ψ〉 = E |ψ〉. (B3)

Then we can get the solution of Eq. (B3) as

ψn,μ =
∑

j

(β j )
nφ( j)

μ (μ = 1, . . . , q) (B4)

because of the spatial periodicity. Here β = β j is the solution
of the characteristic equation

det [H(β ) − E ] = 0, (B5)

where H(β ) is the non-Bloch matrix defined as

[H(β )]μν =
N∑

i=−N

ti,μνβ
i (μ, ν = 1, . . . , q). (B6)

In general, Eq. (B5) is an algebraic equation with an even
degree 2M = 2qN for β. From the above, we can calculate
the eigenvalues in a finite chain by combining Eq. (B5) and an
open boundary condition. In the limit of a large system size,
the discrete eigenvalues form dense sets, and the eigenspectra
can be obtained from the condition of the 2M solutions in
Eq. (B5), given by

|βM | = |βM+1|, (B7)

with

|β1| � · · · � |β2M |. (B8)

We note that the trajectories of βM and βM+1 satisfy-
ing Eq. (B7) are the generalized Brillouin zone. There-
fore, Eq. (B7) expresses the condition for the generalized
Brillouin zone.

APPENDIX C: GENERALIZED BRILLOUIN ZONE
IN CONTINUOUS SYSTEMS

We explain a way to get the generalized Brillouin zone
in a non-Hermitian continuous system described by the wave
equation[

− d

dx
p(x)

d

dx
− i

2

(
λ1(x)

d

dx
+ d

dx
λ2(x)

)
+ v(x)

]
ψ (x)

=
(ω

c

)2
ψ (x). (C1)

We focus on a unit cell with the lattice constant a in this
system. First of all, we divide the unit cell into N equal parts.
The size of each part δ is given by a

N . In this case, the unit
cell can be regarded as a tight-binding system with N sites.
Then the operator on the left-hand side of Eq. (C1) can be
approximated to the form of a matrix. In our work, we call this
matrix the non-Bloch matrix. Importantly, it is necessary to
discretize the operator by the central difference method. This
is because when the system becomes Hermitian, the operator
including λ1(x) and λ2(x) should have a skew symmetry. As a
result, the non-Bloch matrix can be explicitly written as

H(β ) =

⎛
⎜⎜⎜⎜⎜⎝

AN B1 CNβ−1

C1 A1
. . .

. . .
. . .

. . .
. . . AN−2 BN−1

BNβ CN−1 AN−1

⎞
⎟⎟⎟⎟⎟⎠, (C2)

where

Aj = p(x j ) + p(x j+1)

δ2
+ v(x j ),

Bj = − p(x j )

δ2
− i

λ1(x j ) + λ2(x j+1)

4δ
,

Cj = − p(x j )

δ2
+ i

λ1(x j+1) + λ2(x j )

4δ
(C3)

for j = 1, . . . , N and β = eika. We note that xN+1 = x1.
Hence, we can get the characteristic equation of the non-Bloch
matrix, written as

(
1

δ2

)N N∏
j=1

[
p(x j ) + iδ

4
[λ1(x j ) + λ2(x j+1)]

]
β

+
(

1

δ2

)N N∏
j=1

[
p(x j ) − iδ

4
[λ1(x j+1) + λ2(x j )]

]
β−1

+(β independent term) = 0. (C4)

Since Eq. (C4) is a quadratic equation for β, from Eq. (B7),
the condition for the generalized Brillouin zone is given by

|β1| = |β2|. (C5)

Now, by combining Eq. (C5) and Vieta’s formulas, we can
get the absolute value of β which gives the radius of the
generalized Brillouin zone:

r′ =
√√√√∣∣∣∣∣

N∏
j=1

p(x j ) − iδ
4 [λ1(x j ) + λ2(x j+1)]

p(x j ) + iδ
4 [λ1(x j+1) + λ2(x j )]

∣∣∣∣∣. (C6)

Finally, in the limit of N → ∞, Eq. (C6) can be calculated as

lim
N→∞

r′ = exp

(
1

2

∫ a

0
dxIm

λ1(x) + λ2(x)

2p(x)

)
. (C7)

This is the main result [see Eq. (6)] of our study on non-
Hermitian waves in the continuous system. Whether our
results depend on other difference procedures or not is left
as future work.
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APPENDIX D: BAND GAP IN THE TOY MODEL

We show a way to derive Eq. (10). The toy model intro-
duced is given by

p(x) = p, λ1(x) = λ2(x) = iλ sin2 2π

a
x, (D1)

and v(x) = 0 in Eq. (C1). In this case, from Eq. (C6), the
imaginary part of the complex Bloch wave number is calcu-
lated as

Im(k) = − λ

4p
. (D2)

Now the Fourier coefficients of these functions are obtained
as

Pn = pδ0,n, �1,n = �2,n = iλ

2

(
δ0,n − 1

2
δ2,n − 1

2
δ−2,n

)
,

(D3)
and Vn = 0, where δn,m is the Kronecker delta:

δn,m =
{

0 if n �= m,

1 if n = m.
(D4)

Importantly, in order to calculate the gap 
 between the
second band and the third band, we take only the states
	(k ± 2π

a ) as the basis of the secular equation (8) because the
other states do not contribute to the gap. Then we can get the
eigenvalue equation∣∣∣∣∣C(k+) + iλ

2 k+ − � − iλ
4 k

− iλ
4 k C(k−) + iλ

2 k− − �

∣∣∣∣∣ = 0, (D5)

where k± = k ± 2π
a , C(k) ≡ pk2, and � ≡ ( ω

c )2. By solving
Eq. (D5) in the generalized Brillouin zone, we can get the sec-
ond band �2(Re(k)) and the third band �3(Re(k)). Therefore,
the gap between these bands at Re(k) = 0 can be given by


 = �3(0) − �2(0) = λ2

8p
. (D6)

APPENDIX E: TRANSFER MATRIX

We describe a way to get the generalized Brillouin
zone (11) in the photonic crystal by using a transfer matrix.
First of all, we focus on the nth unit cell in the multilayer.
In the dielectric medium with ε̂1, the eigenstate of the wave
equation (A7) is expressed as a plane wave. Then the magnetic
field in (n − 1)a < x < (n − 1)a + d1 can be written as

H0(x) = Aneik1,+[x−(n−1)a] + Bneik1,−[x−(n−1)a]. (E1)

Similarly, in the dielectric medium with ε̂2, the magnetic field
in (n − 1)a + d1 < x < na can be obtained by

H0(x) = Cneik2,+[x−(n−1)a−d1] + Dneik2,−[x−(n−1)a−d1]. (E2)

Here in Eqs. (E1) and (E2), ki,± (i = 1, 2) are wave numbers
of plane waves in each dielectric medium for a given value of
a frequency ω, and they are given by

ki,± = ky

2ηi,yy
(ηi,xy + ηi,yx )

± 1

2ηi,yy

√
k2

y (ηi,xy + ηi,yx )2 − 4ηi,yy

[
k2

y ηi,xx −
(ω

c

)2]
.

(E3)

Furthermore, since the electric field is obtained from

E(r) = − 1

iωε0

1

ε̂
∇ × H (r), (E4)

in the photonic crystal, the y component of the electric field
can be expressed as

Ey(x) = 1

ωε0

{
An f1,+eik1,+[x−(n−1)a]

+ Bn f1,−eik1,−[x−(n−1)a]
}

(E5)

in (n − 1)a < x < (n − 1)a + d1 and

Ey(x) = 1

ωε0

{
Cn f2,+eik2,+[x−(n−1)a−d1]

+ Dn f2,−eik2,−[x−(n−1)a−d1]
}

(E6)

in (n − 1)a + d1 < x < na, where

fi,± = −kyηi,yx + ki,±ηi,yy (i = 1, 2). (E7)

Now, since both the magnetic field and the electric field are
continuous at x = (n − 1)a + d1 and at x = na, we can obtain
the conditions for the coefficients an, bn, cn, and dn as(

eik1,+d1 eik1,−d1

f1,+eik1,+d1 f1,−eik1,−d1

)(
An

Bn

)
=

(
1 1

f2,+ f2,−

)(
Cn

Dn

)
(E8)

and(
eik2,+d2 eik2,−d2

f2,+eik2,+d2 f2,−eik2,−d2

)(
Cn

Dn

)
=

(
1 1

f1,+ f1,−

)(
An+1

Bn+1

)
.

(E9)

Hence, from Eqs. (E8) and (E9), the transfer matrix can be
expressed as (

An+1

Bn+1

)
= T

(
An

Bn

)
. (E10)

Here since (
An+1

Bn+1

)
= β

(
An

Bn

)
(E11)

for β = eikxa is established due to the spatial periodicity, β is
an eigenvalue of the transfer matrix T . This means that the
absolute value of the eigenvalue of T gives the radius of the
generalized Brillouin zone r. We note that this is consistent
with the result of Ref. [67]. By combining the condition (C4)
and

det T = β1β2, (E12)

we can get

r =
√

|det T |. (E13)

Finally, since we have

det T = ei(k1,++k1,− )d1+i(k2,++k2,− )d2 , (E14)

the radius of the generalized Brillouin zone can be given as

r = exp

(
ky

2
Im

2∑
i=1

εi,xy + εi,yx

εi,xx
di

)
. (E15)

Importantly, Eq. (E15) matches Eq. (11).
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APPENDIX F: ZAK PHASE

For convenience, we write Eq. (5) as

�̂H (x) =
(ω

c

)2
H (x). (F1)

For Eq. (F1), we define the inner product between two states
|ψ〉 and |φ〉 as

〈φ|ψ〉 =
∫ a

0
dx φ∗(x)ψ (x). (F2)

In Eq. (F1), from the Bloch theorem, the eigenstates can be
expressed as

H (x) = eikxxukx (x), (F3)

where kx is the complex Bloch wave number in the general-
ized Brillouin zone (11). Then the periodic part of the Bloch

function satisfies

�̂kx ukx,n(x) =
(ωn

c

)2
ukx,n(x), (F4)

where n is the band index. Furthermore, ukx,n(x) is normalized
as

〈ukx,n|ukx,n〉 = 1. (F5)

In this case, we can define the Zak phase as

θn = i
∫ 2π

0
dθ

〈
ukx,n(x)

∣∣∣∣ d

dθ

∣∣∣∣ukx,n(x)

〉
, (F6)

where θ is the real part of kx. When the system becomes
Hermitian, it has the conventional Brillouin zone, and Eq. (F6)
is equivalent to the conventional Zak phase [45]. We note that
the value of the Zak phase depends on the configuration of
the unit cell. The Zak phase takes real values because of the
normalization condition (F5). In addition, the Zak phase is
defined in terms of modulo 2π under the gauge transformation
|ukx,n〉 → eiγ (kx )|ukx,n〉 [γ (kx ) ∈ R].
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