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Spectral analysis of current fluctuations in periodically driven stochastic systems
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Probability current fluctuations play an important role in nonequilibrium statistical mechanics, and are a
key object of interest in both theoretical studies and in practical applications. So far, most of the studies were
devoted to the fluctuations of the time-averaged probability current, the zero-frequency Fourier component of
the time-dependent current. However, in many practical applications the fluctuations at other frequencies are of
equal importance. Here we study the statistics of all the probability current’s Fourier component in periodically
driven stochastic systems. We restrict our study to “trapped” systems where the degrees of freedom of the system
cannot achieve arbitrarily large values as time becomes large, in contrast to, e.g., diffusing systems. First, we
discuss possible methods to calculate the current statistics, valid even when the current’s Fourier frequency is
incommensurate with the driving frequency, breaking the time periodicity of the system. Somewhat surprisingly,
we find that the cumulant generating function (CGF), that encodes all the statistics of the current, is composed
of a continuous background at any frequency accompanied by either positive or negative discontinuities at
current’s frequencies commensurate with the driving frequency. We show that cumulants of increasing orders
display discontinuities at an increasing number of locations but with decreasing amplitudes that depend on
the rational frequency ratio. All these discontinuities are then transcribed in the behavior of the CGF. As the
measurement time increases, these discontinuities become sharper but keep the same amplitude and eventually
lead to discontinuities of the CGF at all the frequencies that are commensurate with the driving frequency
in the limit of infinitely long measurement. We demonstrate our formalism and its consequences on three
types of models: an underdamped Brownian particle in a periodically driven harmonic potential; a periodically
driven run-and-tumble particle; and a two-state system. Our results show a rich and interesting structure in
experimentally accessible and important objects: the fluctuations of alternating currents as a function of their
frequency.
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I. INTRODUCTION

Equilibrium statistical mechanics is a mature framework
that provides a calculation scheme for the ensemble aver-
ages and the fluctuations of many quantities of interest, with
only mild assumptions on the system, e.g., thermodynamic
equilibrium and short-range interactions. In practice, how-
ever, equilibrium systems are the exception rather than the
norm. Despite many efforts, no equivalent general framework
is known for systems which are far from thermal equilib-
rium. Characterizing the mean value and fluctuations for most
quantities of interest remains a challenging task, even in the
relatively simple cases of a system in a nonequilibrium steady
state [1–3] or a periodically driven system [4–6].

Important progress has been achieved in the 1950s for
systems which are close to thermal equilibrium, in the form
of the fluctuation-dissipation relations [7]. These relate the
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equilibrium fluctuations of a system to the rate of dissipation
when the system is weakly driven away from equilibrium.
The fluctuation-dissipation relations were later found to be
the near-equilibrium limit of the Gallavotti-Cohen fluctuation
relations derived in the 1990s, which constitute rare exact
results holding arbitrarily far from equilibrium. They imply
a fundamental symmetry on the distributions of the entropy
production [8,9] and of the probability currents [10] in the sys-
tem and naturally extend the fluctuation-dissipation relations.
While they hold both for entropy production and currents for
nonequilibrium steady-state systems [8,10,11], in periodically
driven systems they hold only for entropy production [12] but
generically not for the currents [13].

Even more recently, thermodynamic uncertainty relations
have been derived and proven to hold arbitrarily far from
equilibrium [14–16]. These relations bound the probability
current fluctuations in the system through explicit relations
between these fluctuations and the mean entropy produc-
tion. They imply that decreasing the current fluctuations in
the steady state comes at a cost in terms of the entropy
production. Recently, these relations were extended to period-
ically driven systems too [17–21]. Both the Gallavotti-Cohen
and the thermodynamic uncertainty principle hold for ar-
bitrary systems, but are of most practical interest in small
systems where large fluctuations occur with a nonvanishing
probability.
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In this study we consider the fluctuations of the probability
current’s Fourier components in stochastic nonequilibrium
systems that are subject to time-periodic driving. The fluctu-
ations of the zero-frequency probability current (commonly
referred to as the “dc current”) are tightly related to both
the Gallavotti-Cohen and the thermodynamic uncertainty re-
lations described above. They were thus studied intensively
for systems which are subject to a time-independent thermo-
dynamic forcing that breaks detailed balance, driving them
into a nonequilibrium steady state [22–30]. However, only
few works were dedicated to other Fourier components of
the currents. To the best of our knowledge, only the zero-
frequency current fluctuations [31,32] and the fluctuations
of the current’s Fourier component corresponding to the fre-
quency of the periodic forcing [33] have been investigated in
periodically driven stochastic systems.

The motivation to study the statistics of the probability
current’s Fourier components is natural from a theoretical per-
spective since these fluctuations are a simple generalization
of the fruitful zero-frequency Fourier component. In addition
to the theoretical motivation, probability current fluctuations
are of interest from a practical point of view too. Often, these
fluctuations have important implications. This is commonly
the case when the currents in a periodically driven system,
e.g., the ac electric currents in any device, can affect a sys-
tem which is sensitive to a different frequency range, e.g., a
measuring device that is sensitive to the electric fields in some
frequency range. In such cases, the electromagnetic radiation
generated by the ac electric currents is detected in the measur-
ing device. If there were no current fluctuations in the driven
system, then the currents at the driving frequency would not
affect the measuring device, as they are out of the frequency
range of the measuring device. However, due to the thermal
environment, the driven system generically does have current
fluctuations on a very broad range of frequencies. Current
fluctuations in this frequency range are thus a source of noise
impacting the measuring device. Hence, the frequency depen-
dence of the current fluctuations in the periodically driven
system is of great importance.

An interesting example that demonstrates the importance
of current fluctuations is the Paul trap, commonly used to
trap ions [34]. In this system, a high-frequency alternating
electric current is driven through the trap’s electrodes. This
electric current generates a time-dependent electromagnetic
field that traps the ions. However, due to the thermal noise
in the electrodes, the electric current is fluctuating. Fluctua-
tions of the current at the trapping frequency (which is not
at the same frequency as the driving frequency) heat the
ions, and limit many applications. Commonly, the heating
rate of the ions is orders of magnitude higher than expected
by standard thermal noise considerations [35]. The exact
reason for this anomalous heating is yet poorly understood,
and understanding the frequency dependence of the current
fluctuations might be useful to better understand this phe-
nomenon. We note that although in the case of ion traps
the current is an electric current of charged particles, it
is mainly the current fluctuations, not density fluctuations,
that are affecting the ions. Therefore, although our results
were derived for systems of noninteracting particles, they
can be applied for current fluctuations in electric circuits in

systems where the electron-electron interactions can be ne-
glected.

In this paper we study the statistics of all the Fourier
components of the probability current when a stochastic
Markovian system is periodically driven at a given driving
frequency. Our main object of interest is the cumulant generat-
ing function (CGF) of the current Fourier components, which
encodes the full information on the current statistics. First,
we use the Oseledets theorem to extend the framework of
the current cumulant generating function from the case where
the driving frequency is commensurate with the Fourier’s
frequency of the current to the case of incommensurate fre-
quency as well. We then discuss two methods for calculating
the probability current CGF: For commensurate frequen-
cies, the CGF can be calculated directly from the Floquet
spectrum of the tilted operator, with the same method used
for the zero-frequency current CGF in periodically driven
systems [31–33]. However, for incommensurate frequencies
this method cannot be applied since the tilted operator de-
pends on both frequencies and is hence aperiodic. A different
method is thus used: it exploits the Floquet representation
of the density propagator in terms of the driving frequency
together with the specific relations between the density and
the current’s Fourier frequencies to calculate all the cumulants
(i.e., the connected moments) of the probability current distri-
bution.

Surprisingly, we find that the CGF has a structure similar to
the famous Thomae’s function [36], namely, it is composed of
a continuous “background” for frequencies which are incom-
mensurate with respect to the periodic driving, accompanied
by (positive or negative) discontinuities at commensurate
frequencies. The integer denominator of the rational ratio
between the commensurate frequencies at which the discon-
tinuities appear can be directly related to the order of the
cumulant that has a discontinuous behavior at this frequency.
Moreover, we explain how our results are modified for a finite
time experiment, where the discontinuities are smoothed into
continuous peaks that get sharper as the duration of the mea-
surement increases. This general behavior is demonstrated
on a Brownian particle in a periodically driven harmonic
potential and a periodically driven trapped run-and-tumble
particle, where analytical results for the first two cumulants
can be obtained, and in a two-state system where the cumulant
generating function can be numerically evaluated.

The setup studied in this paper seems at first sight similar
to the stochastic resonance setup, where a bistable system
coupled to a noise source is weakly perturbed by time-periodic
forcing (see [37] for a review on stochastic resonance). How-
ever, we mention some key discrepancies to note between
these setups. The main object of interest in stochastic reso-
nance is the response of the system to the driving as a function
of the noise intensity, where the response of the system is
usually the transitions between the two metastable states at
the driving frequency. In other words, the interest in stochastic
resonance is in the case where the driving frequency coincides
with the fixed Fourier frequency of the current between the
two metastable states. In contrast, we consider a quite generic
periodic driving, with a fixed noise intensity that is not nec-
essarily weak and does not necessarily have two metastable
states. We are interested in the frequency dependence of
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the fluctuations and not on the noise intensity dependence.
Finally, we consider the full current statistics, and not only
the average current as in stochastic resonance.

The paper is organized as follows: In Sec. II we detail
the general setting that we consider and give the main tech-
nical background needed to obtain our results. In Sec. III
we provide a short summary of our main results and their
implications. In Sec. IV we derive a general expression for
the time-averaged ac current and its variance and discuss
briefly the behavior of higher-order cumulants. In Sec. V we
show how to apply our results to simple exactly solvable sys-
tems. Finally, in Sec. VI we conclude and give some insights
on new unexplored directions. Some technical details of the
computations and complicated expressions are relegated to
the Appendixes. In particular, in Appendix A we derive the
expression of the cumulants for arbitrary order.

II. SETUP: PERIODICALLY DRIVEN
MARKOVIAN SYSTEMS

A. Markov propagator

In this paper we consider the statistics of the current’s
Fourier components in a periodically driven stochastic system.
To this end, we assume that the evolution of the probabil-
ity distribution associated with the system is Markovian, as
detailed in what follows. The microstate of the system, for
example, the position of a particle in space, is denoted by
the vector x. We assume that the d-dimensional space of all
x is simply connected.1 The probability distribution of all
the microstates at time t is uniquely characterized by the
initial state of the system, which for simplicity we assume
to be a specific microstate x0, as well as by the propagator
G(x, t |x0, t0), which is the transition probability density to be
in a final state x at time t , provided that the system was at x0

at time t0. It satisfies the Fokker-Planck equation [38]

∂t G = L(x,∇x, t )G,

L(x,∇x, t ) = −
∑

β

∂xβ
Fβ (x, t ) +

∑
β,γ

∂xβ ,xγ
Dβγ (x, t ), (1)

where here and in the following we use greek letters for the
indices of the microstate space. The initial condition is given
by

G(x, t0|x0, t0) = δd (x − x0), (2)

where δd (x) = ∏d
β=1 δ(xβ ) is the d-dimensional Dirac delta

function. By virtue of probability conservation, the propagator
is normalized to unity,

∀ t � t0,
∫

dx G(x, t |x0, t0) = 1. (3)

Throughout the paper we assume that the drift Fβ (x, t )
and diffusion Dβγ (x, t ) in Eq. (1) are both explicitly time
dependent, nonsingular, and time periodic with cycle time Td .
We denote the corresponding fundamental angular frequency

1This assumption is necessary to obtain our results. Although a
generalization to nonsimply connected domains is possible, we do
not consider these cases here.

by ωd = (2π )/Td , and we refer to it as the driving frequency,
as this time dependence is what drives the system out of
equilibrium. We will only consider cases where the system
has a unique well-defined time-periodic stationary state in the
limit t → ∞ which is independent on the initial position x0.
An important class of systems that are not encompassed by
the framework of this paper are diffusing systems.

Equation (1) can be formally solved by

G(x, t |x0, t0) = T e
∫ t

t0
dτ L(x,∇x,τ )

δd (x − x0), (4)

where T is the time-ordering operator. Exploiting the discrete
time-translation symmetry of the system L(x,∇x, t + Td ) =
L(x,∇x, t ) for any time t , we expand the propagator using
Floquet theory as [39,40]

G(x, t |x0, t0) =
∞∑

k=0

e−λk (t−t0 ) fk (x, t )gk (x0, t0), (5)

where the functions fk and gk are the eigenvectors UTd fk =
e−λkTd fk and U †

Td
gk = eλkTd gk of the operators

UTd (t ) = T e
∫ t+Td

t dτ L(x,∇x,τ ), (6)

U †
Td

(t0) = T e− ∫ t0+Td
t0

dτ L†(x0,∇x0 ,τ )
, (7)

and where

L†(x,∇x, t0) =
∑

β

Fβ (x, t0)∂xβ
+
∑
β,γ

Dβγ (x, t0)∂xβ ,xγ
(8)

is the adjoint of the evolution operator L(x,∇x, t ). The Flo-
quet eigenvalues λk’s are ordered in the following way:

Re(λ0) = 0 < Re(λ1) � Re(λ2) � · · · (9)

and thus all but λ0 have positive real part. Under our assump-
tions, the periodic solution is unique [12] and the eigenvalue
λ0 = 0 is nondegenerate. On the other hand, as (t − t0) → ∞,
we obtain that

G(x, t |x0, t0) −−−→
t→∞ f0(x, t )g0(x0, t0). (10)

As this stationary state is independent of x0, the eigenfunc-
tion g0(x0, t0) must be independent of both x0 and t0. It is
convenient to choose g0(x0, t0) = 1, so that the associated
eigenfunction f0(x, t ) is positive and normalized to unity.
Note that we assume this steady state to be nonsingular, i.e.,
f0(x, t ) > 0 for x in a finite domain. More generally, exploit-
ing the identities

G(x, t |x0, t ) = δd (x − x0), (11)∫
dy G(x, t |y, τ )G(y, τ |x0, t0) = G(x, t |x0, t0) (12)

one can show that the eigenfunctions fk (x, t ) and gk (x0, t ) are
biorthogonal and satisfy a completeness relation∑

k

fk (x, t )gk (x0, t ) = δd (x − x0), (13)

∫
dx fk (x, t )gl (x, t ) = δk,l , (14)

where in the last equation δk,l is the Kronecker delta,
δk,l = 1 if k = l and δk,l = 0 otherwise. As the propagator
has a unique time-periodic expression limn→∞ G(x, nTd +
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t |x0, t ) = f0(x, t ), the fluctuations of the microstates have a
finite large-t limit, i.e.,

∀ α, ∀ p � 0,

lim
n→∞ |〈xα (nTd + τ )p〉| =

∣∣∣∣
∫

dd x xp
α f0(x, τ )

∣∣∣∣ < ∞, (15)

which clearly discards diffusive systems where Var(xα (t )) ∝ t
from our study.

B. Currents, alternating currents, and their statistics

So far we discussed the probability propagator in peri-
odically driven systems. Next, let us discuss the probability
current and its fluctuations. The probability current vector at
time t and position x, denoted by J(x, t ), is defined through
the continuity equation [38]

∂t G + ∇x · J = 0. (16)

Using Eq. (1), it is given by

Jα (x, t ) = Fα (x, t )G(x, t ) −
∑

β

∂xβ
Dαβ (x, t )G(x, t ),

where here and in what follows Jα (x, t ) is the αth component
of Jα (x, t ), xα is the αth component of x, and ẋα is the αth
component of ẋ, the time derivative of the variable x(t ).

For simplicity, we focus our attention on the state-space
integral of the above current, given by

Jα (t ) =
∫

dx Jα (x, t ). (17)

The generalization of our results for the position-dependent
current is straightforward. As we are interested in all the
Fourier components of the current, it is useful to write them
explicitly,

Jα (ωc) ≡ lim
t→∞

1

t

∫ t

0
dτ cos(ωcτ )Jα (τ ), (18)

where for simplicity we used the cos transform.2

Whereas the equations above can be used to define and
calculate the average current and its Fourier components, it
cannot be used to calculate their fluctuations. To define and
calculate current fluctuations, one has to consider a quantity
associated with a single realization of the system, and whose
average over the ensemble of realizations coincides with the
above current. Let us first demonstrate the standard way this
is done for the zero-frequency Fourier component, before
generalizing this method to all other Fourier components. For
any specific trajectory x(t ), we associate an empirical zero-
frequency probability current, using

J̃α (t ) = 1

t

∫ t

0
ẋα (τ )dτ ≡ Qα (t )

t
, (19)

where we have also introduced Qα (t ), the fluctuating charge
along the αth component [41], which is useful in what follows.
Note that while the vocabulary used is similar to electrical

2A similar quantity can be defined with a sin function instead of the
cos.

systems, we do not assume that the system is an electrical
system (although this can be the case); the term “charge” sim-
ply refers to the time integral of the probability current. The
above definition of the empirical current is useful since the
average empirical current 〈J̃(t )〉, where averaging is done over
noise realizations, equals the space integral of the Fokker-
Planck current, defined in Eq. (17) [42,43]. As t → ∞, this
average also coincides with the zero-frequency component
ωc = 0 of Eq. (18). As this empirical current is defined per
realization, it is a stochastic quantity and it is possible to
calculate not only its average value, but also its fluctuations.
An additional important point is that ergodicity implies that in
the limit t → ∞, the empirical current of a specific realization
converges to its ensemble average, i.e., to the Fokker-Planck
current as well. Therefore, no ensemble averaging is required
in this limit.

The above definitions for the zero Fourier frequency empir-
ical current and fluctuating charge can be easily generalized to
any other Fourier frequency in the following way. For a given
realization, the empirical alternating current at frequency ωc

is defined as

J̃ωc;α (t ) = 1

t

∫ t

0
dτ ẋα (τ ) cos(ωcτ ), (20)

and in the t → ∞ it converges to the ωc Fourier coefficient of
the current, namely, to Jα (ωc) defined in Eq. (18).

The corresponding empirical (fluctuating) alternating
charge at frequency ωc is defined as

Qωc;α (t ) = t J̃ωc;α (t ) =
∫ t

0
dτ ẋα (τ ) cos(ωcτ )

= [xα (τ ) cos(ωcτ )]τ=t
τ=0 + ωc

∫ t

0
dτ xα (τ ) sin(ωcτ ).

(21)

Note that the term “fluctuating” corresponds to a random
quantity that differs from one realization to the next and
should not be confused with the term “alternating.” The ran-
dom variable Qωc;α (t ) is a functional of the whole path x(τ )
for all τ ∈ [0, t]. However, Qωc;α (t ) can be calculated for any
specific realization of the system using the above integral.

Taking ωc = 0 for the empirical alternating current and
charge, the empirical direct charge defined in Eq. (19) is re-
covered. As we consider a simply connected space, this direct
charge is path independent and is only a function of the initial
and final positions, namely, Qωc=0;α (t ) = xα (t ) − xα (0). The
probability distribution function (PDF) Pωc=0,α (Q; t ) of this
zero-frequency (or direct) charge Q0,α (t ) can be obtained from
the large-time limit of the propagator G(x, t |x0, 0) → f0(x, t )
and is given in the latter by

Pωc=0,α (Q; t ) →
∫

dx f0(x, t )δ(xα − x0,α − Q). (22)

For all other values of the frequency ωc, the empirical alter-
nating charge is path dependent, and therefore computing the
probabilty distribution function Pωc,α (Q; t ) of the alternating
charge is a nontrivial task. It turns out to be simpler in this case
to consider instead its moment-generating function (MGF)

〈eμQωc ;α (t )〉x0 ≡
∫ ∞

−∞
dQ eμQPωc,α (Q; t ), (23)
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where the average 〈. . . 〉x0 is taken over all the stochastic
trajectories starting from the same initial state x(0) = x0. This
generating function can also be written as

〈eμQωc ;α (t )〉x0 =
∫

dx Gμ(x, t |x0), (24)

where the function Gμ(x, t |x0, 0) evolves in time according to
the so-called ”tilted” operator [44]

∂t Gμ = Lμ(x,∇x, t )Gμ, (25)

Gμ(x, 0|x0) = δd (x − x0). (26)

The tilted operator can be written as

Lμ(x,∇x, t ) =
2∑

k=0

[μ cos(ωct )]kLk (x,∇x, t ), (27)

where

L0 = L(x,∇x, t ),

L1 = Fα (x, t ) −
∑

β

∂xβ
[Dαβ (x, t ) + Dβα (x, t )],

L2 = Dαα (x, t ). (28)

Similarly to the case of the propagator, one can formally
express the solution as

Gμ(x, t |x0) = T e
∫ t

0 dτ Lμ(x,∇x,t )δd (x − x0). (29)

We note, however, that in contrast to L(x,∇x, t ) which is
periodic by construction, Lμ(x,∇x, t ) is not necessarily time
periodic, as it has periodic components varying with both
frequencies ωc and ωd . Only in the case where these frequen-
cies are commensurate, does Lμ(x,∇x, t ) become periodic.
In what follows, we first address the commensurate case, and
then the more challenging case of incommensurate frequen-
cies.

C. Commensurate frequencies

Let us first consider the case where the frequencies of the
drive ωd and of the charge ωc are commensurate. In this case,
the corresponding cycle times Td and Tc are also commensu-
rate, and there exist two natural numbers n, m ∈ N, such that

T = nTd = mTc < ∞, (30)

and consequently the tilted operator is periodic with a finite
period T , namely, Lμ(x,∇x, t + T ) = Lμ(x,∇x, t ). Utilizing
this periodicity, it is possible to apply the same method com-
monly used for calculating the zero-frequency current fluctua-
tion in periodically driven systems [31–33]. This is done using
the Floquet theory. To this end, we define the operators

UT ;μ(t ) = T e
∫ t+T

t dτ Lμ(x,∇x,τ ), (31)

U †
T ;μ(t0) = T e− ∫ t0+T

t0
dτ L†

μ(x0,∇x0 ,τ )
. (32)

Introducing the common ordered set of Floquet eigenvalues
of these operators {λk (μ), Re[λ0(μ)] < Re[λ1(μ)] � · · · }
and their associated respective eigenfunctions f μ

k (x, t ) and
gμ

k (x0, t ), we may express the MGF as

〈eμQωc ;α (t )〉x0 =
∑

k

e−λk (μ)t ak (t ; x0), (33)

where the functions ak (t ; x0) = ∫
dx f μ

k (x, t )gμ

k (x0, 0) are
periodic in t with period T . In contrast to the propagator
G(x, t |x0), the tilted propagator Gμ(x, t |x0) does not
propagate a probability distribution, and its eigenvalue
with lowest real part λ0(μ) is nonzero in general, apart
for μ = 0 where Lμ=0(x,∇x, t ) = L(x,∇x, t ). Using the
Floquet theory, the cumulant generating function (CGF) in
the large-time limit reads as

χμ(ωc) ≡ lim
t→∞

1

t
ln〈eμQωc ;α (t )〉x0 = −λ0(μ)

=
∞∑

p=1

Qα
p (ωc) μp, (34)

where Qα
p (ωc) corresponds to the large-time limit of the

rescaled cumulant of the alternating charge

Qα
p (ωc) ≡ lim

t→∞

〈
Qp

ωc;α (t )
〉
co

t
= −∂ p

μλ0(μ)
∣∣
μ=0

. (35)

Here, the subscript co refers to a connected correlation
function, and p is the order of the cumulant. The limit in
this equation is well defined as the cumulants scale at most
linearly with time. The specific form of the CGF obtained
here is consistent with the probability distribution function
(PDF) Pωc (Q; t |x0) of the alternating charge Qωc;α (t ) taking
a large deviation scaling form in the large-time limit. By
definition, the MGF

〈eμQωc ;α (t )〉x0 = P̃ωc (Q; t |x0), (36)

where P̃ωc (s; t |x0) is the (two-sided) Laplace transform of the
PDF Pωc (Q; t |x0) at the specific value s = −μ. Taking the
inverse Laplace transform, we obtain, using a saddle-point
approximation in the large-time-t limit, that the atypical
fluctuations of the alternating charge are described by the
large deviation form

Pωc (Q; t |x0) =
∫
C

ds

2iπ
〈es(Q−Qωc ;α (t ))〉x0 
 e−t �ωc ( Q

t ), (37)

where C is the Bromwich contour and we have used the
notation (common in large deviation theory)

A(x, t ) 
 e−tB( x
t ) ⇔ − lim

t→∞
1

t
ln A(at, t ) = B(a).

The Gärtner-Ellis theorem states rigorously that the large
deviation function �ωc (J ) is given by the Legendre transform
of the CGF, i.e.,

�ωc (J ) = max
μ

[μ J − χωc (μ)], (38)

which can simply be understood as a result of a saddle-point
approximation for large Q and t with J = Q/t = O(1). Using
that all the nonzero cumulants have the same time scaling
O(t ), we also expect the central limit theorem to hold for the
long-time typical fluctuations of the alternating charge. The
corresponding distribution is Gaussian with fluctuations of
order

√
Var(Qωc;α (t )) = O(

√
t ) around the average value

Pωc,α (Q; t ) ≈
exp

(
− (Q−〈Qωc ;α (t )〉)2

2 Var(Qωc ;α (t ))

)
√

2π Var
(
Qωc;α (t )

) . (39)
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D. Incommensurate frequencies

We now consider the situation where the frequency ωd

of the drive and ωc of the current are incommensurate. As
the tilted operator Lμ(x,∇x, t ) is not periodic, we cannot
use a Floquet expansion to describe the tilted propagator
Gμ(x, t |x0) and it is not obvious how to compute the limit
in Eq. (34). However, one can use Oseledets’ multiplicative
ergodic theorem [45] to show, nevertheless, that this limit is
well defined for any frequency ωc. This implies in particular
that all the cumulants scale at most linearly in time in this
more generic case.

A naive way to compute the CGF in this case is to consider
a series of frequencies ωc(n), commensurate with ωd for any
finite n but that converges to the desired incommensurate
value of ωc as n → ∞. The CGF can then be calculated for
any n using the technique described in Sec. II C for commen-
surate frequencies, and in the limit n → ∞ one can hope to
estimate χμ(ωc). However, this naive approach only works if
the CGF χμ(ωc) is a continuous function of ωc (at a fixed
value of μ). Surprisingly, we prove below that for commensu-
rate frequencies this is not the case, though it is a continuous
function for incommensurate values.

III. MAIN RESULTS

Let us summarize our main results and their consequences.
We first state the exact conditions under which these results
hold: the system is any periodically driven system on a simply
connected state space, with a fundamental frequency ωd and
a gapped Floquet spectrum, i.e., with a nonzero gap between
the zero and first nonzero Floquet eigenvalues Re(λ0) = 0 <

Re(λ1). For these systems, the moments of the microstates are
finite (15). We show analytically that under these conditions,
the cumulant generating function (CGF) χμ(ωc) of the alter-
nating current in direction α is not a continuous function of
the current’s frequency ωc in the large-time limit. The CGF
varies smoothly for any current frequency ωc incommensurate
with the frequency ωd of the drive, but displays additional
discontinuities at commensurate frequencies. This feature can
be explained by considering the behavior of the rescaled cu-
mulants Qα

p (ωc) of order p � 1 as a function of the current
frequency ωc. Let us first mention the explicit results, derived
in Sec. IV, for the average alternating charge

Qα
1 (ωc) = lim

t→∞

〈
Qωc;α (t )

〉
t

= −ωc

∞∑
n=0

Im
[
Cn

0

]
δωc,nωd , (40)

where C0 is the Fourier coefficient defined through Eqs. (48)
and (49). For the variance of the alternating charge, we obtain

Qα
2 (ωc) = lim

t→∞
Var

(
Qωc;α (t )

)

t

= Qb,α
2 (ωc) + Qd,α

2 (ωc), (41)

where Qb,α
2 (ωc) is the continuous “background” cumulant

(hence the superscript b) which is nonzero at any frequency

ωc, and is given by

Qb,α
2 (ωc) =

∞∑
l2=1

∞∑
k=−∞

ω2
c (λl2 − ikωd )C−k,k

0,l2

(λl2 − ikωd )2 + ω2
c

, (42)

whereas Qd,α
2 (ωc) is a zero almost everywhere discontinuous

function (hence the superscript d) that is nonzero only for
ωc = nωd/2 with integer n, given by

Qd,α
2 (ωc) = −

∞∑
n=1

∞∑
l2=1

∞∑
k=−∞

∑
σ=±1

ω2
c Cσn−k,k

0,l2
δ2ωc,nωd

2[λl2 + i(σωc − kωd )]
,

and in both equations the coefficients Ck1,k2
l1,l2

are defined
through Eqs. (54) and (58).

More generally, we show analytically that higher-order
cumulants of even order, namely, with p = 2r and r ∈ N∗,
are the sum of a generically nonzero continuous background
Qb,α

2r (ωc), and of a discontinuous part Qd,α
2r (ωc) displaying

discontinuities at frequencies

ωc = n

2z
ωd , n ∈ N∗, 1 � z ∈ N � r. (43)

Similarly, we show analytically that the cumulants of odd
order, with p = 2r + 1 and r ∈ N, have zero continu-
ous background Qb,α

2r+1(ωc) = 0 and their discontinuous part
Qα

2r+1(ωc) = Qd,α
2r+1(ωc) displays discontinuities at frequen-

cies

ωc = n

2z + 1
ωd , n ∈ N∗, 0 � z ∈ N � r. (44)

Note that the number of discontinuities generically increases
with the order p of the cumulant. However, the height of these
discontinuities decreases with the order p, and goes to zero
at the p → ∞ limit, making χμ(ωc) a continuous function
at incommensurate ωc. Depending on the specific periodic
driving in the system, it may well be that some Fourier coeffi-
cients of G(x, t |x0, 0) are not present and consequently some
of the discontinuities in Eqs. (43) and (44) will not appear
in the pth-order cumulant Qd,α

p (ωc). However, no additional
discontinuities than those in Eqs. (43) and (44) can appear.

The discontinuous behavior of the cumulant generating
function is a result of the long-time limit: one clearly does not
expect any discontinuity of the cumulant generating function
at finite time. We show that at large, but finite time t , the
behavior of the cumulant generating function is qualitatively
the same, but as expected the discontinuities in the spectrum
of the cumulants are smeared over a typical frequency scale
of order ∼t−1. The presence of these peaks of nonzero width
for finite t can have important impact on measurements in
experiments: a device with a working frequency ωc placed
in an environment that has driving frequency ωd is subject
to dissipation that depends nontrivially on the ratio ωc/ωd . In
particular, choosing a value of this ratio within a window of
order ∼t−1 to a rational value p/q with q relatively small can
lead to a substantial increase (or decrease) of the dissipation,
which can be very useful experimentally.
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IV. DERIVATION OF THE FIRST TWO CUMULANTS
AND DISCUSSION ON HIGHER ORDER

In this section we derive explicitly the analytical expression
of the first two cumulants in the long-time limit and discuss
the structure of cumulants of arbitrary order p � 1. We rele-
gate the detailed derivation of these cumulants to Appendix A.

A. Average alternating current

Let us first compute the finite time average alternating
charge 〈Qωc;α (t )〉. For x(0) = 0, it reads as

〈
Qωc;α (t )

〉 = ωc

∞∑
l1=0

∫ t

0
dt1 e−λl1t1Cl1 (t1) sin(ωct1)

+ ωc

∞∑
l1=0

e−λl1tCl1 (t ) cos(ωct ), (45)

where we have used

〈xα (t )〉 =
∫

dx xαG(x, t |0, 0) (46)

=
∞∑

l1=0

e−λl1 t
∫

dx xα fl1 (x, t )gl1 (0, 0).

=
∞∑

l1=0

e−λ1tCl1 (t ). (47)

We use the index l1 to ease the generalization to higher-order
cumulants in what follows. The second line in the above equa-
tion was obtained by applying Eq. (5) to express G(x, t |0, 0)
in terms of fl1 and gl1 . Finally, in the third line we have defined
the coefficients

Cl1 (t ) =
∫

dx xα fl1 (x, t )gl1 (0, 0) (48)

=
∞∑

k=−∞
Ck

l1 eikωd t (49)

which are by construction periodic functions of t with a fun-
damental frequency ωd and can thus be expanded as in the
second line (49). Note that 〈xα (t )〉 is a real function of t .
Therefore, if the Floquet eigenvalue λl1 is real, the associated
function Cl1 (t ) must also be real and C−n

l1
= Cn

l1
∗ (we denote

by z∗ here and in the following the complex conjugate of

z). If the Floquet eigenvalue λl1 is complex, it comes in a
complex-conjugate pair, say λ∗

l1
= λl1+1, and correspondingly

one must have Cl1 (t ) = Cl1+1(t )∗, which yields C−n
l1

= Cn
l1+1

∗.
Inserting this expansion into Eq. (45), we obtain in the regime
where t � λ−1

1

〈
Qωc;α (t )

〉 ≈ ∞∑
k=−∞

[
Ck

0

ω2
c − k2ω2

d

[
ω2

c − k2ω2
d cos(ωct )eikωd t

+ ikωdωceikωd t sin(ωct )
]

+
∞∑

l1=1

Ck
l1

ω2
c

ω2
c + (λl1 − ikωd )2

]
. (50)

As λ0 = 0 we know that Ck
0

∗ = C−k
0 , thus the rescaled al-

ternating charge takes the following scaling form in the
double scaling limit t → ∞, ωc − nωd → 0 with φ = (ωc −
nωd )t = O(1) fixed:〈

Qωc;α (t )
〉

t
≈ −ωc Jn((ωc − nωd )t ),

Jn(φ) = −Re
[
Cn

0

] 2

φ
sin

(
φ

2

)2

+ Im
[
Cn

0

] sin (φ)

φ
. (51)

Taking the limit in Qα
1 (ωc) = limt→∞ 〈Qωc;α (t )〉/t , the ex-

pression above can be simplified to obtain

Qα
1 (ωc) = −ωc

∞∑
n=0

Jn(0)δnωd ,ωc

= −ωc

∞∑
n=0

Im
[
Cn

0

]
δωc,nωd . (52)

This structure is clearly discontinuous in the t → ∞ limit as
any term for ωc �= nωd decays as 1/t . The average alternating
charge Qα

1 (ωc) is zero for any frequency ωc �= nωd that is not
a harmonic of the driving frequency ωd as one could have
naively guessed: there is no average probability current in
periodically driven systems, except at frequencies which are
integer multiples of the driving frequency.

B. Variance of the alternating charge

Next, we turn to the computation of the variance of the
alternating charge. To this end, we first compute the connected
two-time correlation function:

〈xα (t1)xα (t2)〉co =
∫

dx1dx2x1,αx2,α[G(x2, t2|x1, t1) − G(x2, t2|0, 0)]G(x1, t1|0, 0)

=
∞∑

l1,l2=0

∫
dx1dx2x1,αx2,α e−(λl1 t1+λl2 t2 ) fl1 (x, t1)gl1 (0, 0)

[
eλl2 t1 fl2 (x2, t2)gl2 (x1, t1) − fl2 (x2, t2)gl2 (0, 0)

]
. (53)

In analogy to Eq. (48), we define the time-periodic coefficients

Cl1,l2 (t1, t2) =
∫

dx1dx2x1,αx2,α fl2 (x2, t2)gl2 (x1, t1) fl1 (x, t1)gl1 (0, 0), (54)
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with which we can write

〈xα (t1)xα (t2)〉co =
∞∑

l1,l2=0

e−(λl2 t2+λl1 t1 )[eλl2 t1Cl1,l2 (t1, t2) − Cl1 (t1)Cl2 (t2)]. (55)

Using that g0(x, t ) = 1, one can check from Eqs. (54) and (48) that Cl1,l2=0(t1, t2) = Cl2=0(t2)Cl1 (t1). For t2 > t1 � λ−1
1 , we can

then approximate the connected correlation as

〈xα (t1)xα (t2)〉co ≈
∞∑

l2=1

e−λl2 (t2−t1 )C0,l2 (t1, t2). (56)

The variance of the alternating charge is obtained at finite but large time t � λ−1
1 as

Var
(
Qωc;α (t )

) = 2ω2
c

∞∑
l2=1

∫ t

0
dt2 sin(ωc t2)

∫ t2

0
dτ e−λl2 τC0,l2 (t2 − τ, t2) sin(ωc t2 − τ )

+ 2ωc

∞∑
l2=1

cos(ωc t )
∫ t

0
dτ e−λl2 τC0,l2 (t − τ, t ) sin(ωc t − τ ) + Var(xα (t )) cos2(ωct ). (57)

Inserting the Fourier expansion of the coefficients

C0,l2 (t − τ, t ) =
∞∑

k1,k2=−∞
Ck1,k2

0,l2
eiωd [(k1+k2 )t−k1τ ], (58)

it yields the following expression:

Var
(
Qωc;α (t )

) ≈ −
∞∑

k1,k2=−∞

∑
σ1,σ2=±1

∞∑
l2=1

σ1σ2 Ck1,k2
0,l2

ω2
c ei[ωd (k1+k2 )−(σ1+σ2 )ωc] t

2

2[λl2 + i(k1ωd − σ1ωc)]

2 sin
{
[ωd (k1 + k2) − (σ1 + σ2)ωc] t

2

}
ωd (k1 + k2) − (σ1 + σ2)ωc

+
∞∑

k1,k2=−∞

∑
σ1,σ2=±1

∞∑
l2=1

ωc

2i
σ1C

k1,k2
0,l2

ei[ωd (k1+k2 )−ωc (σ1+σ2 )]t

λl2 + i(k1ωd − σ1ωc)
+ Var(xα (t )) cos2(ωct ), (59)

where we have used the representation

sin(ωct ) =
∑

σ=±1

(−σ )

2i
e−iσωct . (60)

We consider systems for which the cumulants of the micro-
states have a finite large-t limit (15), such that the term
proportional to Var(xα (t )) in this expression can be discarded
from the computation of Qα

2 (ωc) = limt→∞ Var(Qωc;α (t ))/t .
Note that this is quite different from diffusive systems, which
however do not fulfill our hypotheses and thus do not enter
the class of systems considered in this paper. Similarly, the
first term in the second line of (59) remains finite in the limit
t → ∞ and does not contribute to Qα

2 (ωc). Taking the limit
Qα

2 (ωc) = limt→∞ Var(Qωc;α (t ))/t of (59) gives

Qα
2 (ωc) = Qb,α

2 (ωc) + Qd,α
2 (ωc), (61)

where the continuous background Qb,α
2 (ωc) corresponds to the

term for which σ1 = −σ2 in the first line of Eq. (59) and reads
as

Qb,α
2 (ωc) =

∞∑
l2=1

∞∑
k=−∞

ω2
c (λl2 − ikωd )C−k,k

0,l2

(λl2 − ikωd )2 + ω2
c

, (62)

and the discontinuous part corresponds to the term for which
σ1 = σ2 in the first line of Eq. (59) and reads as

Qd,α
2 (ωc) = −

∞∑
n=1

∞∑
l2=1

∞∑
k=−∞

∑
σ=±1

ω2
c Cσn−k,k

0,l2
δ2ωc,nωd

2[λl2 + i(σωc − kωd )]
.

(63)

It generally presents discontinuities for any integer or half-
integer ratio of ωc by ωd but some discontinuities might not
appear if the corresponding coefficients Cσn−k,k

0,l2
are zero. In

contrast to Qα
1 (ωc), which is zero at all frequencies except

those that satisfy ωc = nωd , the rescaled variance Qα
2 (ωc)

is generically nonzero for any frequency ωc and equal to
Qb,α

2 (ωc) away from the integer and half-integer multiplica-
tions of ωd . Therefore, there are current fluctuations even at
frequency with no average current. This is expected, as there
are current fluctuations even in equilibrium systems.

C. Higher-order cumulants and the continuity of the CGF

The expressions for higher-order cumulants can be ob-
tained explicitly too, but are quite cumbersome. In Ap-
pendix A we derive the general expression for the cumulants
and in Appendixes B and C we, respectively, give explicit ex-
pressions for the third and fourth cumulants of the alternating
charge.
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To nevertheless justify our conclusion that the CGF is a
discontinuous function at ωc which is commensurate with the
driving frequency ωd , we next consider the structure of the p-
order cumulant (the exact expression is given in Appendix A).
Similarly to Eq. (59) for p = 2, the general expression of
Qα

p (ωc) is a sum over the p Fourier modes k1, . . . , kp asso-
ciated with the driving frequency ωd coming from the p-times
connected correlation function 〈∏p

k=1 xα (tk )〉co and a sum over
σ1, . . . , σp coming from the mode representation of sin(ωctk )
in Eq. (60) for k = 1, . . . , p. As we show in Appendix A,
the leading time-dependent contribution to t−1Qωc;α (t ) of the
strings {k1, . . . , kp}; {σ1, . . . , σp} is given at finite but large
time by

t−1Ip({k1, . . . , kp}; {σ1, . . . , σp}; t ) =
∫ t

0

dτ

t
ei�pτ , (64)

where

�p = ωd

p∑
j=1

k j − ωc

p∑
j=1

σ j . (65)

In the infinite-time limit t → ∞, the only terms in the sum-
mation over the strings {k1, . . . , kp}; {σ1, . . . , σp} that have
nonzero contribution to Qp(ωc), are the terms for which
Eq. (64) has a nonzero limit. This is not the case for most
strings {k1, . . . , kp} and {σ1, . . . , σp} and only when �p = 0
does Eq. (64) has a nonzero limit (equal to 1), namely, when
the right-hand side of Eq. (65) vanishes.

There are several important consequences of the above
observation. Let us therefore focus on the equation for the
resonance condition of the pth cumulant

ωd

p∑
j=1

k j − ωc

p∑
j=1

σ j = 0. (66)

This equality holds when both sums are zero independently
p∑

j=1

k j = 0,

p∑
j=1

σ j = 0 (67)

or when ωc and ωd reach some commensurate values

ωc

ωd
=
∑p

j=1 k j∑p
j=1 σ j

. (68)

For incommensurate ωd and ωc, Eq. (68) cannot hold since
both the numerator and denominator in the right-hand side of
the equation are integers. Therefore, the only valid resonance
condition corresponds to the case where both quantities in
Eq. (67) are zero. One would thus expect in general the cumu-
lants Qα

p(ωc) to have both a continuous background Qb,α
p (ωc)

coming from the resonance condition (67) and a discontinuous
part Qd,α

p (ωc) coming from the resonance condition (68).
However, remembering that σ j = ±1, the second line of

Eq. (67) cannot vanish for odd values of p and the continuous
background is therefore zero for odd cumulants. Thus, for
incommensurate frequencies all the odd cumulants are exactly
zero. For even values of p, there are strings such that each
of the sums in Eq. (67) vanish independently, and therefore
generically even cumulants have a nonzero continuous back-
ground Qb,α

p (ωc).

Next, let us consider commensurate frequencies. In this
case, there are two options for the condition in Eq. (65) to
hold: either Eq. (67) holds, or instead Eq. (68) can hold. For
even values of p, the latter case is possible whenever the
relation between ωc and ωd is of the form

ωc = n

2z
ωd , n ∈ N∗, 1 � z ∈ N � p

2
(69)

since
∑

j k j can take any integer value, whereas
∑

j σ j is
bounded between −p and p (skipping every other value).
Similarly, for odd values of p, Eq. (65) can hold when

ωc = n

2z + 1
ωd , n ∈ N∗, 0 � z ∈ N � p − 1

2
. (70)

In both the even and odd cases we expect contributions to the
cumulants in addition to those that appear in the incommensu-
rate cases. Therefore, generically they have discontinuities at
these specific commensurate frequencies. Note that depending
on the specific periodic driving that one imposes, some of
the discontinuities in Eqs. (69) and (70) may very well not
appear in the pth-order cumulant Qd,α

p (ωc) but no additional
discontinuities can appear.

At this point, one can rightfully suspect that the cumulant
generating function χμ(ωc), which holds the discontinuity of
every cumulant, is for fixed μ an everywhere discontinuous
function of the alternating charge’s frequency ωc. However,
as we show in Appendix A 4, it is a continuous function
for frequencies ωc incommensurate with ωd , similarly to the
Thomae’s function [36], as the magnitudes of the discontinu-
ities decrease with p and eventually vanish as p → ∞.

Before turning to some specific exactly solvable examples,
we next show how to obtain the expression of the CGF in the
limit ωc � ωd .

D. Large-ωc limit of the CGF

In the case ωc � ωd , a simplified expression for the tilted
operator Lμ(x,∇x, t ) can be obtained. The bare dynamics that
evolves over the period Td is not fast enough to change over
a period Tc � Td , such that the terms depending on ωc can
be replaced in practice by their cycle average value over the
period Tc, i.e.,

Lμ(x,∇x, t )Gμ(x, t |x0) ≈ Lμ(x,∇x, t )
ωc Gμ(x, t |x0),

Lμ(x,∇x, t )
ωc = L(x,∇x, t ) + μ2

2
Dαα (x, t ), (71)

where A
ωc = T −1

c

∫ Tc

0 A(t )dt . In the specific case where
Dαα (x, t ) = Dαα (t ) is independent of x, one can show that the
tilted propagator can be simply expressed as a function of the
bare propagator as

Gμ(x, t ) ≈ G(x, t |x0, 0)e
μ2

2

∫ t
0 Dαα (τ )dτ . (72)

From this result, one obtains that as ωc → ∞

χμ(ωc) = lim
t→∞

1

t
ln
∫

dx Gμ(x, t ) ≈ μ2

2
Dαα

ωd
, (73)

Qp(ωc) = ∂ p
μχμ(ωc)

∣∣
μ=0

≈ δp,2Dαα
ωd

, (74)

where Dαα
ωd = T −1

d

∫ Td

0 Dαα (τ )dτ . In particular, it implies
that both the typical and atypical fluctuations of the alternating
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charge are Gaussian in the ωc → ∞ limit. On the other hand,
taking the same limit ωc � ωd in Eq. (62), one obtains

Qb,α
2 (ωc → ∞) =

∞∑
l2=1

∞∑
k=−∞

(λl2 − ikωd )C−k,k
0,l2

= lim
t→∞

1

t

∫ t

0
dτ
〈
xα (t2)ẋα (τ )

〉
co

∣∣
t2=τ

= Var(ẋα )
ωd

2
. (75)

The variance of the alternating charge can thus expressed in
this limit as

Qb,α
2 (ωc) ≈ Var(ẋα )

ωd

2
= Dαα

ωd
, ωc � ωd . (76)

The last equality is a consequence of the fluctuation-
dissipation theorem for the time-averaged quantities for
time-periodic quantities [46], which holds arbitrarily far from
equilibrium.

V. SPECIFIC EXAMPLES

We have derived general expressions for the first two cu-
mulants of the alternating charge. Next, we demonstrate these
results in specific examples, which are commonly used in
statistical mechanics and where a full analytical computation
is possible.

A. Underdamped Ornstein-Uhlenbeck

As a first example, we consider the following dynamics:

v̇(t ) = μ̇(t ) − �(t )[v(t ) − μ(t ) + �(t )x(t ) −
√

2D(t )η(t )],

ẋ(t ) = v(t ), (77)

where η(t ) is a Gaussian white noise with zero mean 〈η(t )〉 =
0 and variance 〈η(t1)η(t2)〉 = δ(t1 − t2). The damping �(t ),
trapping frequency �(t ), diffusion coefficient D(t ), and drift
μ(t ) are all time-periodic functions with fundamental angular
frequency ωd . Keeping track of both (x, v) at time t , the
system is Markovian and the general theory described in the
sections above applies to this case.

By linearity of the above equation, both the position x(t )
and the speed v(t ) are expressed as (infinite) linear combi-
nations of the Gaussian random variables η(τ ) for τ ∈ [0, t]
and thus also have Gaussian fluctuations. The same reasoning
applies to the empirical alternating charge Qωc;x(t ), which is
expressed as (infinite) sums of x(τ ) for τ ∈ [0, t]. It yields that
all the cumulants beyond the variance are zero, i.e.,

Qx
p(ωc) = 0, p > 2 (78)

χμ(ωc) = μQx
1(ωc) + μ2

2
Qx

2(ωc). (79)

A direct consequence is that the large deviation function takes
the quadratic form

�ωc (J ) =
[
J − Qx

1(ωc)
]2

2Qx
2(ωc)

. (80)

The joint bare propagator G(v, x, t |v0, x0, t0) of the speed v

and position x satisfies the equation

∂t G = − [v + μ(t )]∂xG + �(t )∂v{[v + �(t )x]G}
+ �(t )D(t )∂2

v G. (81)

While this problem can be studied in the most general case
where �(t ), �(t ), μ(t ), and D(t ) are all time dependent, we
consider a simpler analytically tractable example with con-
stant damping �(t ) = �0 and trapping frequency �(t ) = �0

and introduce the Fourier series

μ(t ) =
∞∑

k=−∞
μk eikωd t , D(t ) =

∞∑
k=−∞

Dk eikωd t , (82)

which correspond to periodic forcing of the drift and the diffu-
sion coefficients. We suppose that the functions μ(t ) and D(t )
are real, such that for all k, μk = μR,|k| + i sgn[k]μI,|k| and
similarly Dk = DR,|k| + i sgn[k]DI,|k|. In this case, the position
at time t , starting with the initial condition (x(0), v(0)) =
(0, 0) is given by

x(t ) =
√

�0

�0 − 4�0

∑
α=±1

α

∫ t

0
dτ e− (t−τ )

2 [�0−α
√

�2
0−4�0�0]

×
[
μ(τ ) + μ̇(τ )

�0
− η(τ )

]
. (83)

This expression allows to identify the Floquet spectrum λ0 =
0 < Re(λ1) � Re(λ2) and λk = +∞ for k � 3 with

λ1 = �0

2
−
√

�2
0 − 4�0�0

2
,

λ2 = �0

2
+
√

�2
0 − 4�0�0

2
. (84)

Using the expression of the position, one can show that

〈x(t )〉 =
√

4�0

�0 − 4�0

∫ t

0
dτ e− �0

2 τ

× sinh
(√

�2
0 − 4�0�0

τ

2

) [
μ(t − τ ) + μ̇(t − τ )

�0

]
.

(85)

Inserting the Fourier series of μ(t ) and taking the long-time
limit t � λ−1

1 , one can identify this expression with

〈x(t )〉 ≈
∞∑

k=−∞
Ck

0 eikωd t , (86)

which allows to obtain the expression of the coefficients

Ck
0 = (�0 + ikωd )μk

�0(�0 + ikωd ) − k2ω2
d

. (87)
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FIG. 1. Comparison between the time-averaged alternating cur-
rent 〈Qωc (t )〉/t (blue dots) computed numerically for a measurement
time t = 102 � Re(λ1)−1 = 1

2 for a periodically driven under-
damped Brownian particle with �0 = 2, �0 = 1, ωd = 1 and for
μ(t ) = 3/2 cos(2ωdt ) and the analytical expression at finite time
(orange line) given by inserting the coefficient Ck

0 given in (87) into
Eq. (51). The agreement is excellent.

Using this expression, we obtain the expression of the first
cumulant

Qx
1(ωc) =

∞∑
n=1

Q1,nδnωd ,ωc ,

Q1,n =μR,n�0n2ω2
d

[
�0(�0 − �0) + n2ω2

d

]− μI,n�
2
0�0nωd

�2
0�

2
0 + �0(�0 − 2�0)n2ω2

d + n4ω4
d

.

(88)

In Fig. 1, a comparison between the analytical result for
the rescaled average alternating charge 〈Qωc (t )〉/t and results
from a numerical simulations are plotted for a finite but large
time t = 102 � Re(λ1)−1 = 1

2 . The numerical simulation is
conducted by computing the evolution of random paths by
discretization of the Langevin equation (77) with a time step
of dt = 10−2 and averaging over the Gaussian noise. The
agreement between the finite-time expression and the numer-
ical simulations is excellent.

One can similarly compute the two-time correlation func-
tion

〈x(t1)x(t2)〉co = 〈x(t1)x(t2)〉 − 〈x(t1)〉〈x(t2)〉

=
∑

α1,α2=±1

2�0α1α2

�0 − 4�0
e− (t2−t1 )

2 [�0−α2

√
�2

0−4�0�0]

×
∫ t1

0
dτ e− (t1−τ )

2 [2�0−(α1+α2 )
√

�2
0−4�0�0]D(τ ).

(89)

From this expression, it is possible to identify the coefficients

Ck1,k2
0,l2

= 2�
3/2
0 Dk1√

�0 − 4�0

(δl2,1 − δl2,2)δk2,0

[�0 + ik1ωd ][2λl2 + ik1ωd ]
. (90)

One can check that for �0 < 4�0, we have that Im[λ1] =
Im[λ2] = 0 and Im[C0,0

0,l2
] = 0 while for �0 > 4�0 we have

λ1 = λ∗
2 such that C0,0

0,1 = C0,0
0,2

∗
. After simplifications, one can

FIG. 2. Comparison between the rescaled variance of the al-
ternating charge 〈Q2

ωc,x
(t )〉co/t (in blue) computed numerically

for a measurement time t = 102 for a periodically driven under-
damped Brownian particle with �0 = 2, �0 = 1, ωd = 1 and for
D(t ) = 3[1 + 1/2 cos(ωdt ) + 1/3 cos(3ωdt )] and the background
value Qb,x

2 (ωc ) (in orange) given in Eq. (92). In the inset we have
plotted a comparison between the difference between the numerical
result and the analytical expression for the background (in blue dots),
highlighting the presence of discontinuities at values of ωc corre-
sponding to half the Fourier components of D(t ), i.e., for ωc/ωd =
1
2 , 3

2 and the finite-time analytical prediction for the discontinuities
(in orange). The discrepancy between the numerical simulation and
analytical results is a consequence of the finite-time effects.

obtain explicitly the value of the rescaled variance of the al-
ternating charge by inserting the expression of the coefficients
(90) and of the spectrum (84) into (41) and (42):

Qx
2(ωc)

= �2
0ω

2
c D0

�2
0�

2
0 + �0(�0 − 2�0)ω2

c + ω4
c

−
∞∑

n=1

�2
0ω

2
c DR,n

[
�2

0�
2
0−�0(�0+2�0)ω2

c+ω4
c

]
[
�2

0�
2
0 + �0(�0 − 2�0)ω2

c + ω4
c

]2 δnωd ,2ωc

−
∞∑

n=1

2�3
0ω

3
c DI,n

(
�0�0 − ω2

c

)
[
�2

0�
2
0 + �0(�0 − 2�0)ω2

c + ω4
c

]2 δnωd ,2ωc .

(91)

Note that the continuous background

Qb,x
2 (ωc) = �2

0ω
2
c D0

�2
0�

2
0 + �0(�0 − 2�0)ω2

c + ω4
c

(92)

is identical to the variance of the fluctuating charge for a sys-
tem with constant diffusion coefficient D0, i.e., in the absence
of any periodic drive. The only effect of the periodic drive
is thus the emergence of the discontinuities at frequencies
ωc = nωd/2 for integer n. The continuous background of the
spectrum of Qb,x

2 (ωc) presents a local maximum Qb,x
2 (ωc =√

�0�0) = D0 for
√

�0�0. In Fig. 2, we show a comparison
between our analytical computation for the rescaled variance
Qx

2(ωc) as a function of ωc. The agreement is excellent for the
background Qb,x

2 (ωc) and fairly good for the discontinuities
(the deviations stem from neglecting some finite-time effects).
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FIG. 3. Plot of the rescaled fourth-order cumulant of the alter-
nating charge 〈Q4

ωc,x
(t )〉co/t (in blue) computed numerically for a

measurement time t = 102 computed numerically for a periodically
driven run-and-tumble particle with γ = 2, �0 = 1, ωd = 1 and
for v(t ) = 3[1 + 1/2 cos(ωdt ) + 1/3 cos(3ωdt )]. This even cumu-
lant displays both a continuous background as well as discontinuities
for ωc corresponding to values equal to half or a quarter of the Fourier
frequencies of v(t )4.

While the average alternating charge Qx
1(ωc) is indepen-

dent of the diffusion coefficient D(t ), the variance Qx
2(ωc) is

independent of the drift μ(t ). For a finite value of �0, one
has that Qx

2(ωc) → 0 as ωc → ∞ which is consistent with
the absence of a term of the form ∂2

x G in Eq. (81). Finally,
the overdamped limit can easily be obtained in this example
by taking the limit �0 → ∞. In this limit the microstate is
reduced to the only position x and the Fokker-Planck equa-
tion for the effective propagator G(x, t |x0, t0) reads as

∂t G = �(t )∂x{[x − μ(t )]G} + D(t )∂2
x G. (93)

The background variance reads as Qb
2(ωc) = D0ω

2
c/(�2

0 +
ω2

c ). In the limit ωc → ∞, one has that Q2(ωc) → D0,
which is consistent with the prefactor of ∂2

x G being D(t ) and
D(t )

ωd = D0.

B. Periodically driven run-and-tumble particle

We next consider a simple extension of the model dis-
cussed in the previous example to characterize a particle
subject to telegraphic noise confined in a time-varying poten-
tial, i.e.,

ẋ(t ) = −�(t )x(t ) + v(t )σ (t ), x(0) = 0, (94)

where σ (t ) = ±1 is a telegraphic noise with 〈σ (t )〉 = 0 and
〈σ (t1)σ (t2)〉 = e−2γ |t2−t1|. The noise σ (t ) is not Gaussian in
this framework, which in turn renders the alternating charge
Qωc;x(t ) not Gaussian either. Hence,

Qx
p(ωc) �= 0, p > 2. (95)

In Fig. 3, we have plotted the fourth-order rescaled cumulant
Qb,x

4 (ωc) for this specific model, showing indeed that it con-
verges to a nonzero value for any finite ωc. Note also that this
cumulant presents discontinuities at general frequencies of the
form ωc = nωd/4 with n an integer number.

At any time t , the process (x, σ ) is Markovian and this
problem is therefore covered by the general theory exposed
in the previous sections. The propagator Gσ,σ0 (x, t |x0, t0) sat-
isfies the equation

∂t Gσ,σ0 = − σv(t )∂xGσ,σ0 + �(t )∂x(xGσ,σ0 )

+ γ (G−σ,σ0 − Gσ,σ0 ). (96)

One can again obtain the value of the position at time t as

x(t ) =
∫ t

0
dτ e− ∫ t

τ
�(τ ′ )dτ ′

v(τ )σ (τ ). (97)

Let us consider the special case where �(t ) = �0 to keep
the model analytically tractable. We introduce the Fourier
series

v(t ) =
∞∑

k=−∞
vk eikωd t . (98)

As 〈x(t )〉 = 0, it yields immediately Q1(ωc) = 0. The two-
time connected correlation function reads as instead

〈x(t2)x(t1)〉co = e−�0(t1+t2 )
∫ t1

0
dτ1

∫ t2

0
dτ2

× e�0(τ1+τ2 )−2γ |τ1−τ2|v(τ1)v(τ2). (99)

Inserting the Fourier expansion of v(t ) and computing explic-
itly the integrals, we identify this equation for large but finite
time with

〈x(t2)x(t1)〉co ≈
∞∑

l2=1

e−λl2 (t2−t1 )
∞∑

k1,k2=−∞
Ck1,k2

0,l2
eiωd (k1t1+k2t2 ).

(100)

We thus obtain the gapped Floquet spectrum for this model
with

λ0 = 0 < λ1 = min(�0, 2γ ) � λ2 = max(�0, 2γ ), (101)

as well as the coefficients

Ck1,k2
0,2γ = vk1vk2

[�0 + 2γ + ik1ωd ][�0 − 2γ + ik2ωd ]
, (102)

Ck1,k2
0,�0

=
∞∑

n=−∞

vnvk1−nδk2,0

�0 + 2γ + i(k1 − n)ωd

×
(

2

2�0 + ik1ωd
− 1

�0 − 2γ + inωd

)
. (103)

Note that for this model, we expect a dynamical phase tran-
sition for �0 = 2γ where the two Floquet eigenvalues cross
each other. In this example, the background rescaled variance
of the alternating charge Qb

2(ωc) depends on the full time
oscillations of v(t ) and reads as

Qb,x
2 (ωc)

= 2γ |v0|2ω2
c(

�2
0 + ω2

c

)(
4γ 2 + ω2

c

) + ω2
c

�2
0 + ω2

c

×
∞∑

n=1

4γ |vn|2
(
4γ 2 + n2ω2

d + ω2
c

)
(
4γ 2 + n2ω2

d

)2 + 2
(
4γ 2 − n2ω2

d

)
ω2

c + ω4
c

.

(104)

023088-12



SPECTRAL ANALYSIS OF CURRENT FLUCTUATIONS IN … PHYSICAL REVIEW RESEARCH 4, 023088 (2022)

FIG. 4. Comparison between the rescaled variance of the al-
ternating charge 〈Q2

ωc,x
(t )〉co/t (in blue) computed numerically for

a measurement time t = 102 for a periodically driven run-and-
tumble particle with γ = 2, �0 = 1, ωd = 1 and for v(t ) = 3[1 +
1/2 cos(ωdt ) + 1/3 cos(3ωdt )] and the background value Qb,x

2 (ωc )
(in orange) given in Eq. (104). In the inset we have plotted the
difference between these two results showing that the agreement
is excellent apart from the presence of discontinuities at values of
ωc corresponding to half the Fourier components of v(t )2, i.e., for
ωc/ωd = 1

2 , 1, 3
2 , 2, 3. The measurement time is t = 102.

In Fig. 4 we show a comparison between this analytical re-
sult and the rescaled variance of the alternating charge for
the RTP model described above. The agreement is excellent
apart for values of ωc in close proximity to half integer
values of the Fourier components of v(t )2. Taking the limit
ωc → ∞ for finite γ , one obtains that Qb,x

2 (ωc) → 0, which
is consistent with the absence of term of the form ∂2

x G in
Eq. (96). On the other hand, taking the limit γ , vn → ∞ with
|vn|2/γ = O(1), one obtains the result for the overdamped
Brownian motion Qb

2(ωc) = D0ω
2
c/(�2

0 + ω2
c ) where D0 =

(|v0|2 + 2
∑

n>1 |vn|2)/(2γ ).

C. Two-level system

In the previous two examples, we were able to compute
the first few cumulants of the alternating charge. Achieving
a numerical computation of the fourth-order cumulant with
enough precision was a hard task that required ∼109 realiza-
tions. However, computing the cumulant generating function
itself beyond Gaussian models, even numerically, seems a
formidable task. We therefore consider next a different ex-
ample, where the cumulant generating function can actually
be evaluated numerically by a different method. Specifically,
we consider a two-level system, with a probability vector
|P(t )〉 = (p1(t ), p2(t ))T, where pi(t ) is the probability for
the system to be in state i at time t . |P(t )〉 evolves in time
according to a master equation

|Ṗ(t )〉 = R(t )|P(t )〉, R(t ) =
(−k1(t ) k2(t )

k1(t ) −k2(t )

)
, (105)

where R(t ) is periodic with angular frequency ωd . A given
realization of the process is a sequence of successive states
of the system i1 → i2 → · · · → in and the corresponding se-
quence of times tk at which the system jumped from state ik to
ik+1. For any realization, we define its empirical alternating

FIG. 5. Plot of the CGF χμ(ωc ) for the two-state system, with
μ = 3 and ωd = 1. The specific periodic driving k1(t ) and k2(t )
are described in Eq. (109). The blue line is the continuous back-
ground, calculated for incommensurate values of ωc, and the red dots
were calculated at frequencies commensurate with ωd = 1. The inset
shows a blowup of a small segment, where one can observe that the
function χμ(ωc ) for rational ωc is always away from the value of
χμ(ωc ) at irrational ωc.

charge at frequency ωc as

Qωc (t ) =
∑

k

(ik+1 − ik ) cos(ωctk ), (106)

where the sum is over the times tk < t where the system
jumps from one state to the other of the specific realization.
As in the continuous state systems, we are interested in the
fluctuations of this quantity as t → ∞. As the system is only
composed of two states, there is no cycle and therefore the
direct current (dc) corresponding to ωc = 0 is identically zero.
Recent progress has been made on this particular system [47]
and in particular an exact representation of the CGF has been
obtained for the dc currents. Adapting the method presented
in [47] to the alternating charge (see details in Appendix D),
we obtain

χμ(ωc) = − lim
t→∞

∫ t

0

dτ

t
[k1(τ ) + k2(τ )e−μ cos(ωcτ )yμ(τ )].

(107)

In that expression, the function yμ(t ) satisfies a first-order
nonlinear differential equation for fixed μ, which reads as [47]

ẏμ = (yμ − eμ cos(ωct ) )(k1 + k2e−μ cos(ωct )yμ). (108)

Using this particular representation, we show in Fig. 5 the
CGF χμ(ωc) as a function of ωc, calculated for μ = 3 and
the following rates:

k1(t ) = exp(cos(ωdt ) − 1),

k2(t ) = exp(−4 sin(5ωdt ) + 3 sin(7ωdt ) − 2). (109)

These rates are simply chosen as an illustration.
The blue line was calculated for the series of frequencies

ωc = n
10π

for integer values of n, incommensurate with ωd =
1. The red dots were calculated for the series of frequencies
ωc = n

m for m ∈ N∗ � 50 and all n ∈ N � 6m, commensu-
rate with ωd . Both the commensurate and incommensurate
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cases were estimated by first solving numerically the dif-
ferential equation (108) and then evaluating the integral in
Eq. (107) up to t = 2 × 104.

VI. CONCLUSION

In this paper we have computed explicitly the large-time
fluctuations of the alternating charge Qωc;α (t ) (defined as the
time-integrated instantaneous alternating current in direction
α) for a periodically driven stochastic system. We have shown
that the cumulant generating function of this quantity (and as
a consequence its large deviation function) is not a continuous
function of the frequency ωc of the charge. In particular, we
have shown that there exists both a continuous background for
any value of the charge and driving frequency, respectively
ωc and ωd , and additional peaks for commensurate pair of
frequencies. This general result has been confirmed by con-
sidering some exactly solvable models.

It would be interesting to test these fairly general results
experimentally, especially on systems where current fluctua-
tions play an important role, e.g., trapped ion setups. For this,
it is important to consider the finite-time version of the results.

We have focused our interest in this paper on systems with
a discrete gapped Floquet spectrum on a simply connected
domain, where the position of the particle is confined to a
finite portion of space. It would be interesting to consider
similar results for systems on a finite loop, where there might
be long-lasting average currents. Some simple exactly solv-
able cases can be considered, hinting that the cumulants of
the alternating charge behave quite differently in this case, but
obtaining a general result remains a challenge at the moment.
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APPENDIX A: DERIVATION OF THE CUMULANTS
OF ARBITRARY ORDER

We consider in this Appendix the cumulants of the alternat-
ing charge Qωc;α (t ) in the large-time limit for a gapped system,
i.e., Re(λ1) > λ0 = 0 where λ0, λ1 are the two lowest Flo-
quet eigenvalues associated to the “bare” evolution operator
L(x,∇x, t ), i.e., in the absence of tilting μ = 0 (in this case
the operator is periodic by definition and therefore the Floquet
theory can be applied). As seen in Sec. II, we expect that the
rescaled cumulants

Qα
p (ωc) = lim

t→∞

〈
Qp

ωc;α (t )
〉
co

t
(A1)

are of order O(1) at most [we recall that a function of time A(t )
is defined to be of order O(tα ) if 0 < limt→∞ t−αA(t ) < ∞].
In the following, we derive systematically for any value of p
its expression as a function of the parameters ωc, ωd and the
Floquet spectrum {λk, k ∈ N}. Before deriving this expres-
sion, we first use Eq. (21) to rewrite

Qωc;α (t ) = [xα (τ ) cos(ωcτ )]t
0 + qωc;α (t ),

qωc;α (t ) = ωc

∫ t

0
dτ xα (τ ) sin(ωcτ ). (A2)

For the systems that we are considering, we expect the av-
erage value and fluctuations of xα (t ) remain finite as t → ∞
[Eq. (15)]. We start by showing the following identity for the
infinite-time limit:

Qα
p (ωc) = lim

t→∞

〈
Qp

ωc;α (t )
〉
co

t
= lim

t→∞

〈
qp

ωc;α (t )
〉
co

t
. (A3)

1. Proof of identity (A3)

Let us first show that the CGF χμ(ωc) as defined in Eq. (34)
is identical to the CGF

χ̃μ(ωc) = lim
t→∞

1

t
ln〈eμqωc ;α (t )〉, (A4)

where we remind that

qωc;α (t ) = ωc

∫ t

0
dτ xα (τ ) sin(ωcτ ). (A5)

To show this identity, we use that

Qωc;α (t ) = qωc;α (t ) + xα (t ) cos(ωct ) − xα (0), (A6)

where xα (0) = x0 is fixed. We introduce the joint PDF Pt (q, x)
for the respective random variables qωc (t ) and the final posi-
tion x(t ). We use Bayes’ theorem as

Pt (q, x) = Pt (q|x)Pt (x), (A7)

where Pt (x) = G(x, t |x0, 0) is the PDF of the final position
x(t ) and Pt (q|x) is the PDF of qωc;α (t ) for a fixed final
position x(t ) = x. In the large-time limit, the final position
x(t ) remains finite for the trapped systems that we consider
[Eq. (15)] while one naturally expects that the random variable
qωc;α (t ) = O(t ). We thus expect the large deviation form

Pt (q|x) 
 e−t ϕ( q
t ,x), (A8)

while there is no large deviation form for the final position

− lim
t→∞

1

t
ln G(x, t |x0, 0) = λ0 = 0. (A9)

We may then show that on the one hand the MGF for Qωc;α (t )
reads as, in the large-time limit,

〈eμQωc ;α (t )〉 = e−μx0

∫
dx G(x, t |x0, 0)eμxα cos(ωct )

×
∫

dq eμqPt (q|x)


 e−μx0

∫
dx f0(x, t )eμxα cos(ωct )

×
∫

dQ

t
et[μQ−ϕ(Q,x)], (A10)

while on the other hand the MGF for qωc;α (t ) reads as

〈eμ qωc ;α (t )〉 = e−μx0

∫
dx G(x, t |x0, 0)

∫
dq eμqPt (q|x)


 e−μx0

∫
dx f0(x, t )

∫
dQ

t
et[μQ−ϕ(Q,x)].

(A11)
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Using a saddle point-approximation then naturally yields the
result

χμ(ωc) = χ̃μ(ωc) = max
Q,x

[μQ − ϕ(Q, x)], (A12)

showing that the additional term μxα cos(ωct ) is irrelevant in
this large-t limit. As the CGF for the two random variables
Qωc;α (t ) and qωc;α (t ) are identical, it yields immediately the
identity for the rescaled cumulants

Qα
p (ωc) = lim

t→∞

〈
Qp

ωc;α (t )
〉
co

t
= lim

t→∞

〈
qp

ωc;α (t )
〉
co

t
(A13)

of arbitrary order p. From this identification, we already ob-
tain that the system does not have a direct charge Qα

p (ωc =

0) = 0 for any p � 0. This is indeed expected, as nonzero
cumulants of the charge would imply some fluctuations of the
steady-state current, which are incompatible with our assump-
tion of simply connected microstate space. We note, however,
that in a compact domain and a nontrivial topology, e.g., a
particle on a ring, the empirical alternating and direct charges
are not defined as per the second line of Eq. (21). Indeed,
the fluctuation of the direct charge might be nonzero for such
systems [6].

2. General expression for the connected cumulants

In order to obtain the expression of the cumulant of order
p of qωc;α (t ) defined as

〈
qp

ωc;α (t )
〉
co =

〈
p∏

j=1

∫ t

0
dt j xα (t j ) ωc sin(ωct j )

〉
co

= p! ωp
c

∫ t

0
dtp· · ·

∫ t2

0
dt1

〈
p∏

j=1

xα (t j )

〉
co

p∏
j=1

sin(ωct j ), (A14)

where the times t � tp � tp−1 � · · · � t2 � t1 � 0 in the second line are ordered, one needs to use the general expression of
the p-times connected correlation functions 〈∏p

j=1 xα (t j )〉co. This term is conveniently expressed in terms of the lower-order
(n � p)-times (disconnected) correlation functions 〈∏n

j=1 xα (t j )〉 as follows [48]:

〈
p∏

k=1

xα (tk )

〉
co

=
p∑

k=1

(k − 1)!(−1)k+1
∑

π∈Pk (p)

∏
B∈π

k∏
i=1

〈∏
j∈Bi

x(t j )

〉
, (A15)

where π ∈ Pk (p) is an element of the groups of partitions of {1, . . . , p} into k blocks Bi’s with i = 1, . . . , k. We denote ni

the number of elements in block i of the partition π , with
∑k

i=1 ni = p, and each element within a given block is ordered, i.e
.,Bi(1) < · · · < Bi(ni ).

The n-times (disconnected) correlation functions 〈∏n
j=1 xα (t j )〉 can be computed explicitly by introducing the propagator

between each of the times t j’s, which results in〈
p∏

j=1

xα (t j )

〉
=
∫

dx1· · ·
∫

dxp

p∏
j=1

[x j,α G(x j, t j |x j−1, t j−1)] =
∞∑

l1,...,lp=0

[
p∏

j=1

e−λl j (t j−t j−1 )

]
Cl1,...,ln (t1, . . . , tp), (A16)

where t0 = 0. The third line is obtained by inserting the Floquet expansion (5) of the propagator where l1, . . . , lp refer to indices
in the Floquet spectrum and introducing the function

Cl1,...,lp (t1, . . . , tn) = gl1 (x0, 0)
∫

dxp xp,α flp (xp, tp)
p−1∏
j=1

∫
dx j x j,α fl j (x j, t j )gl j+1 (x j, t j ). (A17)

This function is periodic with fundamental frequency ωd in all its variables and can be expanded in Fourier series as

Cl1,...,lp (t1, . . . , tp) =
∞∑

k1,...,kp=−∞
C

k1,...,kp

l1,...,lp
ei
∑n

j=1 k jωd t . (A18)

Notice that as g0(x, t ) = 1 for all x and t , the term
∫

dx j x j,α fl j (x j, t j )gl j+1 (x j, t j ) connecting l j with l j+1 effectively becomes
independent of l j+1 for l j+1 = 0. Thus, this term simplifies as a product of smaller-order correlation function

Cl1,...,lp (t1, . . . , tn) = Cl1,...,l j (t1, . . . , t j ) × C0,...,lp (t j+1, . . . , tn), l j+1 = 0. (A19)

Note also that as λ0 = 0 in Eq. (A21) for l j+1 = 0, there exists a similar decoupling

p∏
m=1

e−λlm (tm−tm−1 ) =
j∏

m=1

e−λlm (tm−tm−1 )
p∏

n= j+2

e−λln (tn−tn−1 ), l j+1 = 0, (A20)

effectively disconnecting the correlations before t j+1 from the correlations after this time.
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Using the above and inserting (A16) and (A17) into Eq. (A21), taking the limit where t1 � λ−1
1 and δti = ti − ti−1 = O(1)

for i = 2, . . . , p, the connected correlation function simplifies to〈
p∏

j=1

xα (t j )

〉
co

≈
p∑

k=1

(k − 1)!(−1)k+1
∑

π∈Pk (p)

∏
B∈π

∞∑
l1,...,lp=0

(1 − δlp,0)δl1,0

p∏
j=2

e−μ j (l2,...,lp;π )δt j

k∏
i=1

[
C̃lBi (1),...,lBi (ni ) (tBi (1), . . . , tBi (ni ) )

]
,

(A21)

where, making explicit use of relation (A19), we have introduced the functions C̃l1 (t1) = δl1,0C0(t1) and for p > 1

C̃l1,...,lp (t1, . . . , tp) = δl1,0

p∏
k=2

(1 − δlk ,0)Cl1,...,lp (t1, . . . , tp). (A22)

The values of the strictly positive rates μ j (l2, . . . , lp; π ) > 0 for 2 � j � p depend on the specific partition π and read as,
supposing that j ∈ Bi,

μ j = λl j + λl j+1 (1 − δl j ,0) +
p∑

r= j+1

λlr

∏
m �=i

[δr∈Bm�( j − max{s ∈ Bm, s < r})], (A23)

with δr∈Bm = ∑
s∈Bm

δr,s. The values of λr’s for r > j are included in μ j if the times tr and t j do not belong to the same block
and t j is larger than all the times ts < tr belonging to the same block as r.

In particular, Eq. (A21) shows that the p-time connected correlation decays exponentially with the associated rate μ j as soon
as one of the time differences δt j = t j − t j−1 becomes large.

3. Proof of the general result

We are now able to prove our main claim by computing the general expression of Qα
p(ωc). Changing variables in the integrals

from the times t1, . . . , tp into δt2 = t2 − t1, δt3, . . . , δtp = tp − tp−1 and tp, we can rewrite Eq. (A14) as

〈
qp

ωc;α (t )
〉
co = p! ωp

c

∫ t

0
dtp

∫ tp

0
dδtp· · ·

∫ tp−
∑p

k=3 δtk

0
dδt2

〈
p−1∏
j=0

xα

(
tp −

j−1∑
k=0

δtp−k

)〉
co

p−1∏
j=0

sin

[
ωc

(
tp −

j−1∑
k=0

δtp−k

)]
. (A24)

It is clear that the variable tp is of order O(t ) in the large-t limit. The p-times connected correlation term in the integrand
〈∏p

j=1 xα (t j )〉co = 〈∏p−1
j=0 xα (tp −∑ j−1

k=0 δtp−k )〉co is given in Eq. (A21). This function does not decay with the final time tp for
fixed values of the δt j’s but rather is a periodic function of this variable. On the other hand, we have seen that this function
decays exponentially with all the variables δt j’s for 2 � j � p. We thus expect that the dominating contribution to the integral
will come from δt j = O(1) while tp = O(t ) in the large-t limit and we may safely replace the upper bounds tp −∑p

k= j+1 δtk in
the integral over δt j by +∞ in this limit.

Introducing the Fourier expansion of Cl1,...,lp (t1, . . . , tp) defined in Eq. (A18) and using the representation

sin(ωct ) =
∑

σ=±1

(−σ )

2i
e−iσωct , (A25)

one can express Eq. (A24) in the long-time limit as

〈
qp

ωc;α (t )
〉
co ≈ p! ωp

c

p∑
k=1

(k − 1)!(−1)k+1
∑

π∈Pk (p)

∏
B∈π

∞∑
l1,...,lp=0

(
1 − δlp,0

)
δl1,0

×
∞∑

k1,...,kp=−∞

∑
σ1,...,σp=±1

p∏
m=1

(−σm

2i

) k∏
i=1

[
δlBi (1),0

ni∏
k=2

(
1 − δlBi (k),0

)
C

kBi (1),...,kBi (ni )

lBi (1),...,lBi (ni )

]

×
∫ t

0
dtp

∫ ∞

0
dδtp· · ·

∫ ∞

0
dδt2

p∏
j=2

e−μ j (l2,...,lp;π )δt j

p∏
m=1

ei(kmωd −ωcσm )[tp−
∑m−1

n=0 δtp−n]

≈ p! ωp
c

p∑
k=1

(k − 1)!(−1)k+1
∑

π∈Pk (p)

∏
B∈π

∞∑
l1,...,lp=0

(
1 − δlp,0

)
δl1,0

∞∑
k1,...,kp=−∞

∑
σ1,...,σp=±1

p∏
m=1

(−σm

2i

)

×
∏k

i=1

[
δlBi (1),0

∏ni
k=2(1 − δlBi (k),0)C

kBi (1),...,kBi (ni )

lBi (1),...,lBi (ni )

]
∏p

j=2

[
μ j (l2, . . . , lp; π ) + i

∑p
l= j (σlωc − klωd )

] Ip({k1, . . . , kp}; {σ1, . . . , σp}; t ), (A26)
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where the function Ip({k1, . . . , kp}; {σ1, . . . , σp}; t ) is defined in Eq. (64) that we reproduce here:

t−1Ip({k1, . . . , kp}; {σ1, . . . , σp}; t ) =
∫ t

0

dτ

t
ei�pτ . (A27)

4. General expression of Qα
p(ωc)

Using the tools presented above it is possible to obtain the general expression for the cumulant of arbitrary order p. It reads
as

Qα
p (ωc) = p!

p∑
k=1

(k − 1)!(−1)k+1
∑

π∈Pk (p)

∏
B∈π

∞∑
k1,...,kp=−∞

∑
σ1,...,σp=±1

∞∑
l1,...,lp=0

(1 − δlp,0)δl1,0

×
p∏

j=1

(−σ j

2i

) ∏k
i=1

[
δlBi (1),0

∏ni
k=2(1 − δlBi (k),0)C

kBi (1),...,kBi (ni )

lBi (1),...,lBi (ni )

]
∏p

j=2

[
μ j (l2, . . . , lp; π ) + i

∑p
l= j (σlωc − klωd )

]ωp
c δ∑p

j=1 (ωd k j−ωcσ j ),0. (A28)

The Kronecker delta function in the second line of this ex-
pression ensures that the resonance condition is fulfilled. For
incommensurate frequencies, this happens only when Eq. (67)
holds but for commensurate frequencies, this also happens
when Eq. (68) holds.

We now explore, for a fixed μ, the continuity of the cumu-
lant generating function

χμ(ωc) =
∞∑

p=1

μp

p!
Qα

p (ωc). (A29)

As discussed above, each term of this series has specific
discontinuities as detailed in Eqs. (69) and (70). For a se-
quence of rational ratios that convergence to an irrational
ratio, namely, a sequence of (ni, mi ) and a corresponding ωi

c

ωi
c = ωd

ni

mi
, (A30)

such that a = limi→∞ ni/mi is an irrational number, the reso-
nance condition in Eq. (68) imposes that the cumulants which
display a discontinuity must be of increasing order pi. To this
end, let us examine carefully the denominator of Eq. (A28).
For any value of pi, the resonance condition imposes∑pi

j=1 k j∑pi
j=1 σ j

= ni

mi
. (A31)

For random strings {σ j, j = 1, . . . , p} and {k j, j = 1, . . . , p}
with the constraint of fulfilling the latter equation, the reso-

nance condition imposes the following equality:∣∣∣∣∣∣
pi∑

l= j

(σlωc − klωd )

∣∣∣∣∣∣ =
∣∣∣∣∣

j−1∑
l=1

(σlωc − klωd )

∣∣∣∣∣. (A32)

The left-hand side of this equation scales, in the large- j limit,
as O(

√
j). Thus, we expect the product appearing in the de-

nominator of Eq. (A28),

pi∏
j=2

⎡
⎣μ j + i

pi∑
l= j

(σlωc − klωd )

⎤
⎦, (A33)

to grow in modulus rather rapidly as a function of pi [as we
expect μ j = O(1), this term will be of order

√
pi!]. Therefore,

we expect that Qα
pi

(ωc)/(pi!) goes to zero as pi → ∞. The
discontinuous part of the CGF at frequency ωi

c is provided
by the terms Qα

p (ωc)/(p!) of order p > pi and these rescaled
cumulants are getting smaller and smaller as pi is increased,
we expect that in the limit where i → ∞, the discontinuities
vanish completely from the CGF.

APPENDIX B: EXPRESSION OF THE THIRD-ORDER
CUMULANT Qα

3 (ωc)

Let us now consider the cumulant of order p = 3. To obtain
its value, we first consider the three times connected correla-
tion function for t3 > t2 > t1 � 1:

〈xα (t1)xα (t2)xα (t3)〉co =
∞∑

l2,l3=1

3∏
j=2

e−λl j (t j−t j−1 )C0,l2,l3 (t1, t2, t3) −
∞∑

l3=1

3∏
j=2

e−λl3 (t j−t j−1 )C0,l3 (t1, t3)C0(t2). (B1)

Note that p = 3 is the first term for which there is more than one partition of {1, . . . , p} that gives a nonzero contribution to this
connected correlation, namely, {1, 2, 3} and {1, 3}{2}:

Qα
3 (ωc) = 3ω3

c

4i

∞∑
k1,k2,k3=−∞

∑
σ1,σ2,σ3=±1

∞∑
l3=1

σ1σ2σ3

λl3 + i(σ3ωc − k3ωd )
δ∑3

j=1 k jωd ,
∑3

j=1 σ jωc

×
[ ∞∑

l2=1

Ck1,k2,k3
0,l2,l3

λl2 + i[(σ2 + σ3)ωc − (k2 + k3)ωd ]
− Ck1,k3

0,l3
Ck2

0

λl3 + i[(σ2 + σ3)ωc − (k2 + k3)ωd ]

]
. (B2)
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This third-order cumulant is always zero if the frequencies ωc and ωd are incommensurate. It is only nonzero for frequencies of
the form ωc = nωd and nωd/3 for n ∈ N∗.

APPENDIX C: EXPRESSION OF THE FOURTH-ORDER CUMULANT Qα
4 (ωc)

One can use the expression of the connected four-point functions for t4 > t3 > t2 > t1 � 1 with δt j = t j − t j−1 for j = 2, 3, 4,
which reads as

〈xα (t1)xα (t2)xα (t3)xα (t4)〉co (C1)

=
∞∑

l2,l3,l4=1

4∏
j=2

e−λl j δt jC0,l2,l3,l4 (t1, t2, t3, t4) −
∞∑

l2,l4=1

e−λl4 (δt4+δt3 )−λl2 δt2C0,l2,l4 (t1, t2, t4)C0(t3)

−
∞∑

l3,l4=1

e−λl4 δt4−λl3 δt3−λl3 δt2C0,l3,l4 (t1, t3, t4)C0(t2) −
∞∑

l3,l4=1

e−λl4 δt4−(λl4 +λl3 )δt3−λl3 δt2

×[C0,l4 (t1, t4)C0,l3 (t2, t3) + C0,l4 (t2, t4)C0,l3 (t1, t3)] +
∞∑

l4=1

4∏
j=2

e−λl4 δt jC0,l4 (t1, t4)C0(t2)C0(t3). (C2)

The partition of {1, 2, 3, 4} that contributes besides the identity are for two blocks {1, 2, 4}{3}, {1, 3, 4}{2}, {1, 3}{2, 4},
{2, 4}{1, 3} and for three blocks {1, 4}{2}{3}. Using the explicit expressions for the rates μ j’s corresponding to each partition,
we obtain

Qα
4 (ωc) = 3ω4

c

2

∞∑
k1,...,k4=−∞

∑
σ1,...,σ4=±1

∞∑
l4=1

∏4
j=1 σ j

λl4 + i(σ4ωc − k4ωd )
δ∑4

j=1 k jωd ,
∑4

j=1 σ jωc

×
( ∞∑

l2,l3=1

Ck1,k2,k3,k4
0,l2,l3,l4∏3

n=2

[
λln + i

∑4
j=n(σ jωc − k jωd )

] + Ck1,k4
0,l4

Ck2
0 Ck3

0∏3
n=2

[
λl4 + i

∑4
j=n(σ jωc − k jωd )

]
−

∞∑
l3=1

Ck1,k3,k4
0,l3,l4

Ck2
0∏3

n=2

[
λl3 + i

∑4
j=n(σ jωc − k jωd )

] −
∞∑

l2=1

Ck1,k2,k4
0,l2,l4

Ck3
0[

λl4 + i
∑4

j=3(σ jωc − k jωd )
][

λl2 + i
∑4

j=2(σ jωc − k jωd )
]

−
∞∑

l3=1

1∑4
j=3

[
λl j + i(σ jωc − k jωd )

]
[

Ck1,k4
0,l4

Ck2,k3
0,l3

λl4 + i
∑4

j=2(σ jωc − k jωd )
+ Ck2,k4

0,l4
Ck1,k3

0,l3

λl3 + i
∑4

j=2(σ jωc − k jωd )

])
. (C3)

APPENDIX D: CUMULANT GENERATING FUNCTION
FOR THE ALTERNATING CHARGE

OF THE TWO-LEVEL SYSTEM

A convenient way to compute the CGF χμ(ωc) is to in-
troduce a counting vector |Ps(t )〉 (see [49] for details about
this method), such that the ith component of |Ps(t )〉 is the
ensemble average of eμQωc (t ) on trajectories that are in the state
i at time t . The initial condition is taken such that |Pμ(0)〉 =
|P(0)〉 at t = 0, and it evolves with time according to

|Ṗμ(t )〉 = Rμ(t )|Pμ(t )〉, (D1)

Rμ(t ) =
( −k1(t ) k2(t )e−μ cos(ωct )

k1(t )eμ cos(ωct ) −k2(t )

)
, (D2)

and Rμ(t ) is called the “tilted rate matrix.” The vector |Pμ(t )〉
can be (formally) expressed at any time t as

|Pμ(t )〉 = T e
∫ t

0 Rμ(τ )dτ |Pμ(0)〉, (D3)

where T is the time-ordering operator. Using this counting
vector method, the cumulant generating function is given by

[11]

χμ(ωc) = ln〈eμQωc (t )〉 = lim
t→∞

1

t
ln〈1|Pμ(t )〉

= lim
t→∞

1

t
ln〈1|T e

∫ t
0 Rμ(τ )dτ |P(0)〉, (D4)

where 〈1| = (1, 1). While this analytical formula is exact,
it is not very convenient as the time-ordered exponential in
Eq. (D3) is a complicated object and hard to compute in prac-
tice. To simplify the computation of the counting vector, we
first introduce a dynamical invariant of the process. We then
obtain an explicit expression for the counting vector |Pμ(t )〉
in terms of this dynamical invariant and finally compute the
CGF.

The derivation below follows the derivation provided in
[47], but generalizes it for all the current’s Fourier compo-
nents.

1. Dynamical invariant

A dynamical invariant corresponds to a matrix Fμ(t ) which
is diagonalizable, has time-independent eigenvalues that we
set here to ±1 for convenience, and satisfies for any time the
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differential equation

Ḟμ(t ) = Rμ(t )Fμ(t ) − Fμ(t )Rμ(t ). (D5)

A convenient way to parametrize a matrix satisfying the first
two properties is [47]

Fμ(t ) =
(

zμ(t ) [1 + zμ(t )]yμ(t )−1

[1 − zμ(t )]yμ(t ) −zμ(t )

)
, (D6)

with left and right time-dependent orthonormal eigenvectors
〈rσ (t )|l ′

σ (t )〉 = δσ,σ ′ with σ, σ ′ = ± that read as [47]

|l+(t )〉 =
(

1
1−zμ(t )
1+zμ(t ) yμ(t )

)
, (D7)

〈r+(t )| = 1

2

(
1 + zμ(t ) 1+zμ(t )

yμ(t )

)
,

|l−(t )〉 = 1

2

(
1 − zμ(t )

−[1 − zμ(t )]yμ(t )

)
,

〈r−(t )| = (
1 − 1+zμ(t )

1−zμ(t )
1

yμ(t )

)
.

For the matrix Fμ(t ) to satisfy Eq. (D5), the functions yμ(t )
and zμ(t ) need to satisfy the differential equations

ẏμ = (yμ − eμ cos(ωct ) )(k1 + k2e−μ cos(ωct )yμ),

żμ = k2e−μ cos(ωct )(1 − zμ)yμ − k1eμ cos(ωct ) (1 + zμ)

yμ

. (D8)

Any pair of initial values (yμ(0), zμ(0)) gives a valid dy-
namical invariant. Thus, choosing such a pair defines a valid
dynamical invariant. We focus here on the long-time be-
havior such that the initial condition is not relevant and
choose for convenience yμ(0) = 0 and zμ(0) = −1. The
equation for yμ(t ) has two fixed points: a stable fixed
point −k1(t )/k2(t )eμ cos(ωct ) < 0 and an unstable fixed point
eμ cos(ωct ) > 0. Note that starting from yμ(0) � 0, the solution
yμ(t ) oscillates around the stable fixed point and remains
negative at all time t . The equation for zμ(t ) is linear and can
be solved exactly. In particular, it is easy to realize that the
function zμ(t ) grows exponentially with time t as yμ(τ ) < 0
for any τ ∈ [0, t]:

zμ(t ) 
 e− ∫ t
0 dτ [yμ(τ )k2(τ )e−μ cos(ωcτ )+ k1 (τ )

yμ (τ ) eμ cos(ωcτ )]
. (D9)

In the large-time limit, the expressions of the eigenvectors in
Eq. (D10) simplify as

|l+(t )〉 ≈
(

1
yμ(t )

)
, 〈r+(t )| ≈ zμ(t )

2

(
1 y−1

μ (t )
)
,

|l−(t )〉 ≈ zμ(t )

2

( −1
yμ(t )

)
, 〈r−(t )| ≈ (

1 −y−1
μ (t )

)
.

(D10)

2. Expressing the counting vector and the CGF

Coming back to the problem of finding an expression for
the counting vector |Pμ(t )〉, one can check by using Eq. (D1)
together with Eq. (D5) that the following identity holds:

∂t [Fμ(t )|Pμ(t )〉] = Rμ(t )Fμ(t )|Pμ(t )〉. (D11)
It is then possible to express the counting vector |Pμ(t )〉 in the
basis of the eigenvectors |l±(t )〉 of Fμ(t ). In this basis, one has
that

|Pμ(t )〉 =
∑
σ=±

aσ (t )|lσ (t )〉, aσ (t ) = 〈rσ (t )|Pμ(t )〉. (D12)

Inserting this equation into Eqs. (D1) and (D11), one obtains
that for σ, σ ′ = ±

[〈rσ ′ (t )|Rμ(t )|lσ (t )〉 − 〈rσ ′ (t )|l̇σ (t )〉]aσ (t ) = δσ,σ ′ ȧσ (t ).
(D13)

Inserting the expressions of the eigenvectors in Eq. (D7), us-
ing the expression of the tilted rate matrix and the differential
equations (D8), one can then check that 〈rσ ′ (t )|Rμ(t )|lσ (t )〉 =
〈rσ ′ (t )|l̇σ (t )〉 for σ �= σ ′. On the other hand, Eq. (D13) yields

|Pμ(t )〉 =
∑
σ=±

aσ (0)e
∫ t

0 dτφσ (τ )|lσ (t )〉, (D14)

φ±(τ ) =〈r±(τ )|Rμ(τ )|l±(τ )〉 − 〈r±(τ )|l̇±(τ )〉. (D15)

We can now express |Pμ(t )〉 in the large-time limit as a
function of the two functions zμ(t ) and yμ(t ). Inserting the
expressions of the eigenvectors in Eq. (D10), using the expres-
sion of the tilted matrix Rμ(t ) and the differential equations in
Eq. (D8), one obtains at large time

|Pμ(t )〉 
 e− ∫ t
0 dτ [k1(τ )+k2(τ )e−μ cos(ωcτ )yμ(τ )]. (D16)

Finally, using Eq. (D4), we obtain the explicit expression of
the CGF as given in Eq. (107) of the main text.
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