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Geometrically robust linear optics from non-Abelian geometric phases
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We construct a unified operator framework for quantum holonomies generated from bosonic systems. For
a system whose Hamiltonian is bilinear in the creation and annihilation operators, we find a holonomy group
determined only by a set of selected orthonormal modes obeying a stronger version of the adiabatic theorem.
This photon-number independent description offers deeper insight as well as a computational advantage when
compared to the standard formalism on geometric phases. In particular, a strong analogy between quantum
holonomies and linear optical networks can be drawn. This relation provides an explicit recipe of how any linear
optical quantum computation can be made geometrically robust in terms of adiabatic or nonadiabatic geometric
phases.
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I. INTRODUCTION

Recent years have witnessed an increased interest in the no-
tions of Abelian and non-Abelian geometric phases (quantum
holonomies) beyond the gauge theories of elementary parti-
cles. The experimental and theoretical study of such phase
factors is relevant to the simulation of lattice gauge theories
[1,2], the understanding of symmetry groups [3,4], as well as
much of modern mathematics [5]. Moreover, their topological
properties give rise to quantum evolutions that are inherently
fault tolerant and might therefore be highly desirable assets
for quantum information processing [6–8].

These purely geometric transformations arise when a state
vector is parallel transported along a closed loop in a suitable
subspace. For adiabatic holonomies this subspace is usually
some (non)degenerate ground-state subspace [9,10]. In the
case of a nonadiabatic quantum holonomy, evolution takes
place in a subspace on which the mean energy vanishes, thus
making the evolution purely geometric [11]. Physical imple-
mentations rely, for instance, on atomic transitions [12,13],
the manipulation of trapped ions [14,15], or superconduct-
ing qubits [16,17], as well as controlled guiding of coherent
light [18,19] or photons [20]. The latter implementation is of
particular interest as the dimension of the relevant subspace
increases with a rising number of photons [21]. This hints at
a formulation of geometric phases that is independent of the
overall particle number to which the system is subjected.

In this article, we present an operator-based formalism for
the unified treatment of adiabatic and nonadiabatic quantum
holonomies in terms of a holonomic Heisenberg picture that
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generalizes the concept of an adiabatic Heisenberg picture
first introduced in Ref. [22]. It bears some resemblance to
(projective adiabatic) elimination procedures [23] and relies
on the usage of effective Hamiltonians [24,25] to describe
the geometric phase of a system. The holonomic Heisenberg
picture developed here employs a generalized parallel trans-
port condition that imposes the disappearance of Hamiltonian
dynamics on a specific set of solutions. Remarkably, in a
linear optical setting we find a quantum holonomy on the level
of superoperators that only depends on a set of selected or-
thonormal modes of the underlying system. Subsequently, this
eliminates the need for an explicit calculation of projectors
onto the relevant subspace, which becomes quickly unfeasible
for large bosonic systems. Besides offering a major computa-
tional advantage over the standard formalism, it also provides
deeper insight into the emergence of geometric phases in
second quantization. From our general argument it follows
that linear optical setups based on photonic holonomies can be
described equally by a holonomic scattering matrix in analogy
to the Reck-Zeilinger scheme [26]. Thus, it is possible to make
any linear optical computation geometrically robust by refer-
ring to auxiliary modes while undergoing cyclic evolution. We
benchmark our findings by studying a number of examples
which are important to modern quantum optics.

II. OPERATOR FORMULATION OF QUANTUM
HOLONOMIES

The treatment of bosonic many-particle systems can be
pursued elegantly by referring to a Fock representation. Here,
the Hilbert space of a system consisting of M modes is the
Fock space H = ⊗M

k=1 Hk defined as a finite tensor prod-
uct of single-mode Fock spaces Hk = Span{|n〉k | n ∈ N0}.
Starting from the multimode vacuum state |0〉 = |0, . . . , 0〉,
the Fock space H can be viewed as being generated from
the (unital ∗-) algebra A = ⊗M

k=1 Ak containing analytic
functions of creation and annihilation operators {âk, â†

k}k
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satisfying the canonical commutation relations [â j, â†
k] = δ jk

and [â j, âk] = [â†
j , â†

k] = 0. We express their relation as H ∼=
A |0〉, which says that any multimode state |�〉 ∈ H can be
expanded as |�〉 = F̂ (â†

1, . . . , â†
M ) |0〉, where

F̂ =
∑

p1,...,pM∈N0

cp1,...,pM

(â†
1)p1

√
p1!

. . .
(â†

M )pM

√
pM!

,

with
∑

p1,...,pM
|cp1,...,pM |2 = 1.

Let us consider a time-dependent Hamiltonian Ĥ (t ) be-
longing to A . While the general evolution of a quantum state
|�(t )〉 is subject to Schrödinger’s equation i d

dt |�〉 = Ĥ |�〉,
a quantum holonomy transforms the state in a manner that
is independent of the spectrum of Ĥ (t ) or runtime T . Cer-
tainly not any solution to Schrödinger’s equation will be of
such nature, but only those belonging to a subset of solutions
K (t ) = {|η j (t )〉} j . As these states evolve purely geometri-
cally, they shall satisfy 〈η j |η̇k〉 = 0, thus being independent
of the systems dynamics. More formally, we will summarize
the latter as 〈 d

dt 〉K = 0 being a condition for the parallel
transport of a quantum state. Expanding the solutions in K
in terms of an orthonormal basis {|ψ j〉} j of a subspace Hψ as
|ηk (t )〉 = ∑

j Ujk (t ) |ψ j (t )〉 with initial condition |ηk (0)〉 =
|ψk (0)〉, and employing the law for parallel transport leads
to the first-order differential equation (Û −1 ˙̂U ) jk = (Ât )k j =
〈ψ j |ψ̇k〉. A formal solution is given by the time-ordered

matrix exponential Û (T ) = T e
∫ T

0 Ât dt . In this context, and
throughout the article, Hψ plays the role of a geometrically
protected subspace. Here we are not interested in arbitrary
evolutions but in those that represent a loop γ (t ) through the
subspace, that is, Hψ (0) = Hψ (T ). The unitary is then given

by a path-ordered matrix exponential Û (γ ) = Pe
∮
γ

Â known
as a quantum holonomy [10,11]. The connection might then
be expressed through its anti-Hermitian components (Â) jk =
〈ψk| d |ψ j〉 mediating parallel transport along the loop γ .
In order for expectation values to coincide on the subspace
Hψ , any mode âk in A must evolve according to âk �→
Û †(γ )âkÛ (γ ). This implies that the Heisenberg equation of
motion for a purely holonomic evolution reads

〈 ˙̂ak〉Hψ
= 〈[âk, Ât (γ )]〉Hψ

+ 〈∂t âk〉Hψ
, (1)

which means that the generator of dynamics is now given
by a parallel transport map Ât (γ ) = Û †(γ )ÂtÛ (γ ) instead of
a general Hamiltonian. Having determined the evolution of
modes âk from Eq. (1), then characterizes adiabatic changes
of any function F̂ (âk, â†

k ) in the algebra A .
For concreteness, if we consider K to be the set of adi-

abatic solutions, the states {|ψ j (t )〉} j form an orthonormal
basis for the degenerate ground-state subspace Hψ = H0 of
the Hamiltonian Ĥ (t ). When traversing this loop slowly, by
which we mean the |ψ j (t )〉 change only gradually when com-
pared to the energy gap between H0 and the excited states
of the system, we recover the adiabatic Heisenberg picture
[22]. To be more precise, note that adiabatic solutions only
approximate the evolving state governed by Schrödinger’s
equation up to first order of 1/(T �ε), where �ε is the energy
gap between the ground and excited states. As an elementary
example consider the adiabatic propagation through the zero-

eigenvalue eigenspace H0 of a nonlinear Kerr medium [27]
Ŵ (α, ξ )Ĥ0Ŵ †(α, ξ ), with Ĥ0 = â†â(â†â − 1) and Ŵ (α, ξ ) =
eαâ†−α∗âe

ξ∗
2 â2− ξ

2 (â† )2
describing the combined process of coher-

ent displacement and single-mode squeezing. The action of â
onto H0 is governed by the connection Ât = �̂0Ŵ †∂tŴ �̂0,
with �̂0 = |0〉 〈0| + |1〉 〈1|. Evaluating Eq. (1) leads to non-
linear equations of adiabatic motion,

〈 ˙̂a〉H0
= (α̇∗α − α̇α∗) 〈â〉H0

+ α̇(μ − ν∗) 〈â†â〉H0
− c.c.,

where μ = cosh |ξ | and ν = ei arg(ξ ) sinh |ξ |. The emergence
of nonlinear equations of motion is a generic feature of the
operator description of parallel transport, both adiabatic and
nonadiabatic. This is due to the connection Â = �̂ψd�̂ψ re-
quiring the computation of subspace projectors �̂ψ onto Hψ .
Due to the generally highly nonlinear form of these projec-
tors in terms of bosonic modes, the computation of quantum
holonomies can be an extremely challenging task.

For completeness, note that the above argument extends
to any eigenspace with energy εn(t ). When level crossing is
neglected, i.e., if n 
= m, then εn(t ) 
= εm(t ) for all t ∈ [0, T ],
and as a result the degeneracy of each energy level does
not change. The overall time evolution of âk under the adi-
abatic assumption (long runtime T ) is then determined by
the composite unitary

⊕
n ei

∫ T
0 εn(t )dtÛn(γ ) with Ûn(γ ) being

the holonomy acting on the nth eigenspace of the system
Hamiltonian, and

∫ T
0 εn(t )dt accounting for dynamical con-

tributions. Note that at first glance the parallel transport
condition 〈 d

dt 〉K = 0 might be violated in an eigenspace with
εn(t ) 
= 0. However, this can always be accounted for by
multiplying the solutions in K with the dynamical phase
ei

∫ T
0 εn(t )dt . Therefore, strictly speaking, the composite unitary

is not a fully geometric quantity but has dynamical contribu-
tions due to these relative (energy-dependent) phase factors.

III. LINEAR QUANTUM OPTICS

The general concepts described thus far can, in principle,
be applied to any bosonic system. In the following, we will
show that in a linear optical setting, that is, the Hamiltonian
Ĥ (t ) is bilinear in the creation and annihilation operators,
certain symmetries arise that offer a deeper insight into the
emergence of geometric phases. Consider a system of M
bosonic modes that interact according to such a bilinear
Hamiltonian. Suppose further that there is a set of orthonormal
modes {�̂ j (t )}K<M

j=1, whose excitations (action on |0〉) span a
subspace Hψ = {|ψl〉 , l ∈ N} on which the mean energy of
the Hamiltonian Ĥ vanishes. In Appendix A we show that the
second-quantization formulation of the condition 〈 d

dt 〉K = 0

is given as [�̂ j, [Ĥ , �̂
†
k ]] = 0. This implies 〈ψl | Ĥ |ψm〉 = 0

for any l, m ∈ N, thus ensuring that the evolution is indeed
of purely geometric origin. In the same way, we can view
the solutions in K as being created by operators η̂

†
k (t ), k =

1, . . . , K , which then must satisfy the Heisenberg equation of
motion. With the ansatz η̂

†
k (t ) = ∑

j U jk (t )�̂†
j (t ) and the con-

dition for parallel transport, this yields

0 = [η̂ j, ˙̂η†
k ] =

K∑
l=1

U∗
l jU̇lk +

K∑
l,m=1

U∗
l jUmk (At )ml , (2)
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where we introduced the operator-valued connection (At ) jk =
[�̂k,

˙̂�†
j ] = [�̂k, ∂t �̂

†
j ]. If we now consider a cyclic evolution

of the system, i.e., for j = 1, . . . , K we have �̂
†
j (0) = �̂

†
j (T )

resembling a loop γ , the solution to Eq. (2) is formally given
by the path-ordered integral superoperator Uγ = Pexp

∮
γ
A.

Now, the time evolution of a mode η̂
†
k is given by the mapping

η̂
†
k (T ) = Uγ [η̂†

k (0)].
Strikingly, in this formulation one avoids the usage of

projectors onto the relevant subspace altogether, thereby
drastically simplifying the computational effort needed to de-
termine the geometric evolution. Starting at a point where
η̂

†
k (0) = â†

k , it becomes evident that Uγ can be viewed as the
scattering matrix of the linear optical network being restricted
to purely geometric evolutions of the bosonic modes. Note
that, because only K < M modes are relevant to the final
output of the network, there are M − K remaining auxiliary
modes that act as mediators for a purely geometric evolution.
This result can be related to the standard formalism on geo-
metric phases [10,11] by noting that Uγ [â†

k] = Û †(γ )â†
kÛ (γ ),

with Û (γ ) = Pe
∮
γ

Â being the more familiar form of the
holonomy. The associated connection can be obtained from
Âμ = ∑

j,k (Aμ) jk â†
j âk being bilinear in the creation and anni-

hilation operators. In contrast to a nonlinear optical setting,
here the projection onto the relevant subspace is incorpo-
rated implicitly into the connection, thus providing an elegant
photon-number independent description.

A. Geometric picture of operator holonomies

From a geometric point of view, the η̂
†
k (t ) are the horizontal

lifts of a curve γ in the Grassmann manifold GM,K contain-
ing K-dimensional subspaces spanned by the operators {�̂†

j } j

(Fig. 1). Moreover, it can be easily verified that the connec-
tion is anti-Hermitian, (A)†

jk = −(A)k j , and transforms as a
proper gauge potential A �→ G−1AG + G−1dG under a uni-
tary mixing of operators �̂

†
j �→ ∑

j G jk�̂
†
j , G ∈ U(M − 2). If

we further consider the collection of all loops γ in GM,K , the
set Hol(A) = {Uγ }γ forms the holonomy group of the (prin-
cipal fibre) bundle VM,K → GM,K , where the Stiefel manifold
VM,K is made up of K-dimensional orthonormal frames {�̂†

j } j .
As illustrated in Fig. 1, at every point γ (t ) there is a fiber
on which the Lie group U(M − 2) acts. Further properties of
Hol(A) follow from standard results on differential geometry
[28].

B. Adiabatic evolution of the star graph

Consider M bosonic modes being arranged as a star graph
(Fig. 2), i.e., its Hamiltonian reads

Ĥ (t ) =
M−1∑
k=1

κk (t )âk â†
M + κ∗

k (t )â†
k âM,

where the couplings {κk}k act as local coordinates for a
2(M − 1)-dimensional control manifold M which is embed-
ded into GM,M−2 [29] (Fig. 1). The system has M − 2 dark
modes D̂†

j (t ) = κ j+1(t )â†
1 − κ1(t )â†

j+1. These operators not

only constitute a symmetry, that is, [Ĥ (t ), D̂†
j (t )] = 0, but

FIG. 1. The horizontal lift {η̂†
k (t )}k moves along the fibers over

the loop γ (dark blue spikes). The difference between η̂†
k (0) and

η̂†
k (T ) is the holonomy Uγ . The loop can be expressed via a (closed)

curve (γa) γna in M yielding the (adiabatic) nonadiabatic holonomy.
The embedding M into GM,K (blue shaded area) does not need to be
the same for adiabatic and nonadiabatic holonomies.

obey bosonic commutation relations [D̂ j, D̂k] = [D̂†
j , D̂†

k] = 0

and [D̂ j, D̂†
k] = δ jk after being orthogonalized. Note that the

demand for dark modes is no limitation at all, if we have
eigenmodes with nonzero energy, the dynamical phase can
be removed by rescaling the Hamiltonian, so that the condi-
tion for a purely geometric evolution is again satisfied. Note
that, an onsite energy σ â†

MâM of the central mode leaves the

FIG. 2. Schematic representation of the star graph corresponding
to the M-mode system.
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degeneracy structure and dark modes unchanged but only
modifies the energy gap �ε between dark modes and the two
remaining eigenmodes, viz. �ε �→ σ/2 ±

√
�ε2 + σ 2/4.

Hence, it does not pose a problem to the implementation
of the system. However, a distortion of this type occurring
in one of the outer modes of the star graph, i.e., σ â†

k âk for
k = 1, . . . , M − 1, would indeed break the desired degener-
acy and would have to be avoided. The above considerations
make it natural to impose a second-quantization version of
the adiabatic theorem [30] to which the proof can be found in
Appendix B, viz.

Theorem. In the adiabatic limit, any initial operator in
a subalgebra A0 generated from a (non)degenerate set of
eigenmodes will evolve into a final operator lying also in A0

at every instance in time.
Any initial preparation D̂†

j (0) has to reside in the lin-

ear span of the modes {D̂†
j (t )} j throughout the evolution.

The dark modes evolve according to the holonomy Uγ gov-
erned by the adiabatic connection (Aμ) jk = [D̂k, ∂μD̂†

j ], μ ∈
{|κk|, arg(κk )}k that constitutes the operator-valued counter-
part of the Wilzeck-Zee connection [10].

Similar arguments to those made in Ref. [12] now re-
veal that the connection A is irreducible for the given
system, and hence Hol(A) coincides with the entire uni-
tary group U(M − 2) (a detailed proof can be found in
Appendix C). More specifically, starting the holonomy at
an initial point κ0 = (0, . . . , 0, |κ|) shows that any transfor-
mation

∑
j (Uγ ) jkD̂†

j (κ0) = ∑
j (Uγ ) jk â†

j can be implemented
holonomically by designing a suitable loop in M . This means
that, due to the composition of loops U∏

j γ j
= ∏

j Uγ j , any
linear optical network can be made geometrically robust by
supporting it with two auxiliary modes âM−1 and âM , while
adiabatically traversing an approximately closed path γ in M .

Of course, this formulation can be related to the stan-
dard formalism on adiabatic holonomies [21]. Excitations of
the dark modes produce zero-eigenvalue eigenstates (dark
states) |ψn〉 = ∏

j
1√
n j !

(D̂†
j )

n j |0〉, n ∈ NM−2
0 , sharing an adi-

abatic subspace H0. However, these dark modes are not
the only ones inducing new dark states. The Hamiltonian
gives rise in addition to two nondegenerate bright modes
B̂†

±(t ) = (
√

2ε)−1(
∑

j κ
∗
j (t )â†

j ± εâ†
M ), that is, [Ĥ, B̂†

±] =
±εB̂†

±, where ε = (
∑

j |κ j |2)1/2. The total holonomy of the
entire system reads

U0,γ ⊕ ei
∫ T

0 ε(t )dtU+,γ ⊕ e−i
∫ T

0 ε(t )dtU−,γ .

For photon numbers N � 2, there exist combinations of
B̂†

+ and B̂†
− producing additional dark states. The en-

tire eigenspace H0 = Span{|ψn〉}n∈NM−1
0

can be generated
from the subalgebra A0 ⊗ AB ⊂ A containing sequences of
eigenmodes, i.e., H0

∼= A0 ⊗ AB |0〉, with AB containing ex-
citations of the form B̂†

+B̂†
−. More explicitly, any element F̂ in

A0 ⊗ AB can be expanded as

F̂ =
∑

n∈NM−1
0

cn1...nM−1

(D̂†
1)n1

√
n1!

(D̂†
2)n2

√
n2!

. . .
(B̂†

+B̂†
−)nM−1

√
nM−1!

,

which, by construction, produces an eigenstate with eigen-
value zero, via F̂ |0〉 ∈ H0.

For illustration, consider a tripod structure (M = 4)
into which two photons are injected (N = 2), then there
are clearly the three dark states |ψ20〉 = 1√

2
(D̂†

1)2 |0〉,
|ψ11〉 = D̂†

1D̂†
2 |0〉, |ψ02〉 = 1√

2
(D̂†

2)2 |0〉. Moreover, because

of [Ĥ , B̂†
±] = ±εB̂†

±, the positive and negative eigenenergies
cancel one another out in the case of simultaneous excitation
of B̂+ and B̂−. Therefore, |ψ+−〉 = B̂†

+B̂†
− |0〉 is another dark

state which, however, only attains a (scalar) Berry phase while
evolving adiabatically. Thus, despite the fact that {|ψ j〉} j

span a common eigenspace, |ψ+−〉 evolves independently.
In particular, the corresponding adiabatic evolution in that
eigenspace has a block structure in which |ψ+−〉 does not
couple to the other eigenstates [21,32]. It can be concluded
that demanding the eigenmodes (rather than the eigenstates)
to evolve adiabatically explains (in contrast to the original
formulation [30]) why there are eigenstates in H0 that do
not couple to the other eigenstates in H0. This phenomenon
was observed in Refs. [31,32] but remained, to the best of our
knowledge, unexplained until now.

In order to clarify this point further, consider another
benchmark Hamiltonian Ĥ (t ). For simplicity, we assume the
corresponding eigenmodes to be nondegenerate, that is, the
modes �̂k belong to mutually different energies εk . We then
have the spectral decomposition Ĥ = ∑

k εk�̂
†
k �̂k , where

�̂
†
k �̂k acts as a number operator for the kth eigenmode.

It can be readily checked that
∏

k
1√
nk !

(�̂†
k )nk |0〉 is an N-

photon eigenstate with energy
∑

k εknk such that
∑

k nk =
N . Interestingly, if the eigenvalues are in such a structure
that Nε1 = ∑

k 
=1 εknk , then the eigenstates 1√
N!

(�̂†
1 )N |0〉 and∏

k 
=1
1√
nk !

(�̂†
k )nk |0〉 both have the same eigenvalue, even

though the eigenmodes of the system were nondegenerate.
The original formulation of the adiabatic theorem [30] tells us
only that (under a slow change of physical parameters) these
eigenstates will not couple to states with different eigenvalue.
However, the second-quantization formulation additionally
predicts that the states 1√

N!
(�̂†

1 )N |0〉 and
∏

k 
=1
1√
nk !

(�̂†
k )nk |0〉

evolve separately from one another as well, because they
originate from different eigenmodes. This highlights why the
second-quantization formulation is a stronger version of the
adiabatic theorem. In fact, one can use the above argument
to construct linear optical networks that give rise to highly
degenerate subspaces [21] via a spectral decomposition with
suitable eigenvalue structure. Finally, note that if only a single
photon or a coherent state is injected both versions of the
adiabatic theorem coincide.

C. Nonadiabatic evolution of the star graph

The construction of adiabatic holonomies can be formu-
lated analogously for the case where the cyclic evolution is
not restricted to just the eigenmodes but to a more general
collection of modes for which dynamical contributions from
the Hamiltonian completely disappear. We return to the linear
optical setting shown in Fig. 2, where M bosonic modes are
arranged as a star graph. If we assume that all couplings
evolve with the same envelope, i.e., κk (t ) ∝ �(t ), the evolu-
tion of dark modes is trivially �̂ j (t ) = D̂ j (t ) = D̂ j (0) for j =
1, . . . , M − 2. Moreover, under these assumptions it is always
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possible to find another operator B̂† = �−1 ∑
j κ

∗
j â†

j ∈ A

(that is, not an eigenmode) such that [D̂ j, B̂†] = [âM, B̂†] = 0.
The time evolution of this operator reads

�̂
†
M−1(t ) = eiδ(t )(cos δ(t )B̂†(t ) − i sin δ(t )â†

M (t )), (3)

where δ(t ) = ∫ t
0 �(τ )dτ . One can check that [�̂ j, �̂k] =

[�̂†
j , �̂

†
k ] = 0 and [�̂ j, �̂

†
k ] = δ jk , hence the orthonormal

modes {�̂†
j (t )} j create excitations in a subspace Hψ . Next,

we demand δ(T ) = π to ensure cyclicity, i.e., �̂ j (T ) = �̂ j (0)
for j = 1, . . . , M − 1. After verifying that [�̂ j, [Ĥ , �̂

†
k ]] = 0,

one can check that all conditions for a purely geometric evo-
lution are satisfied. The only nonvanishing component of the
connection is (At )M−1,M−1 = i�(t ), which corresponds to a
pure gauge. Hence, the nonadiabatic quantum holonomy reads
Uγ = diag(1, . . . ,−1) ∈ U(M − 1). When replacing the gen-
erating operators by the original bosonic modes via a change
of gauge �̂

†
k (T ) = ∑

j G jkâ†
j , the holonomy transforms ac-

cording to UG
γ (γ ) = G−1Uγ G. The unitary UG

γ ∈ U(M − 1)
gives rise to noncommutative quantum holonomies. In Ap-
pendix C it is shown explicitly that suitable manipulation of
the couplings {κk}k allows one to design a set of quantum
holonomies that generate the entire unitary group U(M −
1). Similar to the adiabatic scenario, the holonomy UG

γ

can be viewed as a scattering matrix describing the unitary
mixing of bosonic modes â†

k or, equivalently, the superoper-
ator UG

γ (â†
k ) = Û †(γ )â†

kÛ (γ ). It thus follows that any linear
optical network can be implemented by means of nonadia-
batic geometric phases assuming a sufficiently large coupling
space, e.g., M ∼= GM,M−1.

As an example we return to the tripod structure (M =
4). While the two dark modes evolve trivially in time
�̂

†
1 (t ) = D̂†

1 and �̂
†
2 (t ) = D̂†

2 due to [Ĥ, D̂†
j ] = 0, the mode

B̂† = �−1(κ∗
1 â†

1 + κ∗
2 â†

2 + κ∗
3 â†

3) evolves into �̂
†
3 (t ) given by

Eq. (3). These modes satisfy the condition for an all-out ge-
ometric evolution, i.e., the mixing of modes â†

1, â†
2, and â†

3 is
given by a quantum holonomy. When two photons (N = 2)
are injected into the optical setup, there are six different
states �̂

†
j �̂

†
k |0〉 with j, k = 1, 2, 3, spanning a subspace Hψ

on which a U(6) holonomy can be implemented. Interest-
ingly, the central mode â†

4 of the star graph itself satisfies
[â4, [Ĥ , â†

4]] = 0 and evolves according to an Abelian holon-
omy â†

4(γ ) = eiπ â†
4(0). Hence, the states â†

4�̂
†
1 |0〉, â†

4�̂
†
2 |0〉,

and â†
4�̂

†
3 |0〉 span another subspace Hψ ′ on which holonomic

U(3) transformations can be performed. This is a general
feature of this operator formulation. If there are several subal-
gebras {A�,n}n, products of modes from different subalgebras
will generate a combined subspace on which cyclic evolution
leads to a holonomy.

Using standard results [33] we conclude that, when the
photonic star graph Hamiltonian is provided with a highly
entangled resource state (e.g., a cluster state [34]), universal
photonic quantum computation is possible using holonomic
quantum gates only. This can be done, both for adiabatic and
nonadiabatic holonomies, by employing a dual-rail encoding
for pairs of modes into which a single photon is injected. In
addition, if a linear optical network admits additional sym-
metries, the geometric phase

∮
C A might turn into a quantized

phase factor, in which case the quantum computation can even
be made fully topological [35,36].

IV. EXTENSION TO A MORE GENERAL FRAMEWORK

Formally, one can construct an even larger framework. Let
H be the generator of dynamics belonging to a representation
of some dynamical Lie algebra (A , � ·, · �). The evolution
is determined by the Lie bracket via the action � ·, H�. De-
manding that the bracket vanishes on a well-defined set of
solutions K yields a condition for parallel transport in A .
For example, let � ·, H�P be the flow in the phase space �

generated from a classical Hamiltonian H (q, p) with Darboux
coordinates (q, p). The relevant Lie algebra is the space of all
smooth functions C∞(�) equipped with the Poisson bracket
� f , g�P = ∑

j (
∂ f
∂q j

∂g
∂ pj − ∂g

∂q j
∂ f
∂ pj ). The time evolution is then

defined by the action � f , H�P for all f ∈ C∞(�). If the sys-
tem varies periodically with T , then under a slow (adiabatic)
change of external parameters, the explicit time dependence of
H can be neglected. Hence, the equations of motion become
integrable. For a system with K degrees of freedom, it follows
that there exists a set of action-angle variables {θk, Jk}k such
that �Jk, H�P = 0 for k = 1, . . . , K , i.e., they are constants
of motion [37]. Then it follows that 〈J̇k〉 = T −1

∫ T
0 Jkdt ≈ 0

to satisfactory precision. By construction, 〈 d
dt 〉K = 0 for K

containing the symmetries {Jk}k (they form a subalgebra).
One can find simple mechanical examples. For example, in
a one-dimensional system with a bounded time-dependent
potential V (q, κμ(t )), the relevant subspace contains only a
single adiabatic invariant J . However, adiabatically traversing
a closed path γ : [0, T ] → M leads to a change in the gener-
alized coordinate θ known as Hannay’s angle [38], �θ (γ ) =∑

μ

∮
γ

〈∂μθ〉 dκμ, which depends only on the area enclosed
by γ , thus showing a signature of an Abelian holonomy with
noncompact symmetry group GL(1,R).

V. CONCLUSIONS

In this article, we provided a unified framework for quan-
tum holonomies based on a holonomic Heisenberg picture.
We have shown that it provides a remarkable computa-
tional advantage for bilinear bosonic Hamiltonians where the
relevant geometric evolution becomes independent of any
subspace projection, and thus enables a description of the
holonomy independent of the overall photon number. In par-
ticular, this means that any linear optical network can be
constructed using holonomies only. We have shown this ex-
plicitly for the example of a bosonic star graph Hamiltonian
allowing for the generation of adiabatic and nonadiabatic
quantum holonomies. Moreover, we found that a stronger
version of the adiabatic theorem can be formulated, a phe-
nomenon that occurs only in a quantum optical setting. The
parallel transport condition from which these results were
derived hints at a more general theory that is valid for any dy-
namical Lie algebra, from which the emergence of Hannay’s
angle follows immediately. Our article paves the way to the
study of gauge symmetry by quantum optical analogies and
the realization of holonomic quantum algorithms using only
linear optics.
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APPENDIX A: MODE QUANTIZATION UNDER
GEOMETRIC CONSTRAINTS

Consider a collection of M classical modes that interact
according to a linear optical network. When neglecting any
coupling to continuum modes (such as dissipative losses or
scattering into the environment), the vector of amplitudes α

transforms according to α(T ) = Uα(0), where T is the time
it takes to propagate through the optical setup. As such a
transformation of modes must be unitary, the scattering matrix
can be written as

U (T ) = T ei
∫ T

0 �(t )dt ,

with � being a Hermitian M × M matrix. The most gen-
eral Hermitian matrix must have components (�) jk = κ jk +
σkδ jk , where κ jk = κ∗

k j (κ j j = 0 in this definition) and σk

being a real number. As α(t ) solves the first-order differen-
tial equation ∂tα = i�α, the κ jk can be viewed as coupling
strengths between the modes j and k, while σk might be
viewed as a self-coupling or a propagation constant. Let us
assume that the parameter configuration is such that there

exist K < M orthonormal modes � j (t ) = (c jk (t ))k satisfying
the condition for a purely geometric evolution, that is, for all
j, k = 1, . . . , K the relation [11]

(�∗
j )

T��k =
M∑

l,m=1

c∗
jl ckm(�)lm = 0 (A1)

holds. Such configurations clearly exist, as the structure of a
photonic star graph Hamiltonian is obtained for κ jk = κ jδ jM

and σk = 0 as used in the main article.
Quantization of this discrete system is carried out by

promoting the basis vectors to Hilbert space operators â†
k .

Then we have �k �→ �̂
†
k = ∑

j c jk â†
k ∈ A . Analogously, the

Hamiltonian Ĥ is obtained by comparing the Heisenberg
equation ∂t â

†
k = i[Ĥ, â†

k] to ∂t â† = i�â† leading to

Ĥ (t ) =
M∑

j<k

κ jk (t )â j â
†
k + κ∗

jk (t )â†
j âk +

M∑
j=1

σ j (t )â†
j â j .

We now show that, on the level of Hilbert space opera-
tors, Eq. (A1) is equivalently represented by the relation
[�̂ j, [Ĥ , �̂

†
k ]] = 0, thus incorporating the condition for par-

allel transport. Using the properties of the commutator as well
as the bosonic commutation relations, we arrive at

[�̂ j, [Ĥ , �̂
†
k ]] =

∑
l,m

c∗
jl ckm

( ∑
n<p

(κnp[âl , [ânâ†
p, â†

m]] + κ∗
np[âl , [â†

nâp, â†
m]]) +

∑
n

σn[âl [â
†
nân, â†

m]]
)
,

=
∑
l,m

c∗
jl ckm

( ∑
n<p

(κnpδl pδnm + κ∗
npδlnδpm) + σlδlm

)
,=

∑
l,m

c∗
jl ckm(κlm + σlδlm),

(A2)

proving the assertion.
In order to verify that the quantization procedure indeed

leaves Fock states with an evolution that is without dy-
namical contributions, one expects that any state |ψn〉 lying
in Hψ = Span{∏K

j=1(�̂†
j )n j /

√
n j! |0〉 | n ∈ NK

0 } satisfies the

parallel transport condition 〈 d
dt 〉K = 0 ⇔ 〈ψn|Ĥ |ψm〉 = 0

for all sequences n, m ∈ NK
0 . To convince oneself that this

is indeed the case, we first notice that, if both sequences
differ in their total photon number,

∑
j (n) j 
= ∑

j (m) j , then
〈ψn|Ĥ |ψm〉 = 0 follows immediately, because Ĥ does not al-
ter the total number of photons. Second, the claim is obviously
true for a single photon, as 〈ψn|Ĥ |ψm〉 = 〈0| �̂kĤ�̂

†
j |0〉 =

〈0| [�̂k, [Ĥ , �̂
†
j ] |0〉 = 0 (we made use of Ĥ |0〉 = 0) corre-

sponds to the initially assumed parallel transport condition.
For two photons, note that

〈0| �̂ j�̂kĤ�̂
†
l �̂†

m |0〉 = 〈0| [�̂ j�̂k, [Ĥ , �̂
†
l �̂†

m]] |0〉 .

A direct calculation reveals that

〈0| [�̂ j�̂k, [Ĥ , �̂
†
l �̂†

m]] |0〉
= 〈0| �̂ j[�̂k, [Ĥ , �̂

†
l ]�̂†

m + �̂
†
l [Ĥ , �̂†

m]] |0〉 ,

= δkm 〈0| �̂ j Ĥ�̂
†
l |0〉 + δkl 〈0| �̂ j Ĥ�̂†

m |0〉 = 0,

where we made use of orthogonality relation [�̂ j, �̂
†
k ] = δ jk

as well as 〈0| �̂kĤ�̂
†
j |0〉 = 0 for all j, k = 1, . . . , K . One can

continue the argument for higher photon numbers, so that the
remainder of the proof follows by induction [39].

APPENDIX B: PROOF OF THE STRONG ADIABATIC
THEOREM

Even though the adiabatic propagation of photon-number
states, subject to a bilinear Hamiltonian Ĥ (t ), does not violate
the original formulation of the adiabatic theorem [30], it has
become clear that a stronger version can be formulated.

Theorem. In the adiabatic limit, any initial operator in a
subalgebra A0(0) generated from a (non)degenerate set of
eigenmodes will evolve into a final operator lying also in A0(t )
at every instance in time t .

Proof. Consider Ĥ (t ) to be the quantum system of interest,
giving rise to (possibly) degenerate eigenmodes �̂n j (t ) with
eigenvalue εn(t ), i.e., [Ĥ , �̂

†
n j] = εn�̂

†
n j at every instance t .

We make the ansatz,

η̂†(t ) =
∑
n, j

cn j (t )�̂†
n j (t ), (B1)

for the most general bosonic mode of the time-dependent sys-
tem. When comparing the explicit time derivative of Eq. (B1)
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with the Heisenberg equation of motion ˙̂η† = i[Ĥ, η̂†] =
i
∑

n, j εn�̂
†
n j , one arrives at∑
n, j

(ċn j (t )�̂†
n j (t ) + cn j (t )∂t �̂

†
n j (t )) = 0, (B2)

where we made use of the Heisenberg equation for the eigen-
modes ˙̂�†

n j = iεn�̂
†
n j + ∂t �̂

†
n j . Select the mth energy level

with K-fold degenerate eigenmodes {�̂mk (t )}K
k=1, and contract

Eq. (B2) with [�̂mk, · ]. Further, using bosonic commutation
relations [�̂mk, �̂

†
n j] = δmnδk j leads to

ċmk = −
∑
n, j

cn j[�̂mk, ∂t �̂
†
n j]. (B3)

Next, we apply ∂t to the generalized eigenvalue problem
which yields

[ ˙̂H, �̂
†
n j] + [Ĥ , ∂t �̂

†
n j] = ε̇n�̂

†
n j + εn∂t �̂

†
n j,

where we noticed that ∂t Ĥ = ˙̂H . Contracting this result with
�̂mk for m 
= n leaves one with

εn[�̂mk, ∂t �̂
†
n j] = [�̂mk, [ ˙̂H, �̂

†
n j]] + [�̂mk, [Ĥ , ∂t �̂

†
n j]].

(B4)
Using the Jacobi identity it is easy to show that
[�̂mk, [Ĥ , ∂t �̂

†
n j]] = εm[�̂mk, ∂t �̂

†
n j]. With this result,

Eq. (B4) can be rewritten in the compact form,

[�̂mk, ∂t �̂
†
n j] = [�̂mk, [ ˙̂H, �̂

†
n j]]

εn − εm
.

Inserting the above result into Eq. (B3) one obtains

ċmk = −
∑

j

cm j (A(m)
t ) jk −

∑
n 
=m

∑
j

cn j

[�̂mk, [ ˙̂H, �̂
†
n j]]

εn − εm
,

(B5)
with the K × K matrix A(m) being the local connection one-
form for adiabatic parallel transport in the mth energy level.
Its components were defined as (A(m)

t ) jk = [�̂mk, ∂t �̂
†
m j].

An evolution is said to be adiabatic if the Hamiltonian
Ĥ changes slowly enough over time t ∈ [0, T ], such that its
explicit time dependence can be neglected in the evolution
governed by Eq. (B5). This is clearly the case when

max
0�t�T

‖[�̂mk, [ ˙̂H, �̂
†
n j]]‖ � min

0�t�T
|εn − εm|, (B6)

giving a validity condition for the adiabatic propagation. On
the left-hand side of Eq. (B6), we maximize with respect to the
induced operator norm on A . We further observe that in this
adiabatic limit the evolution of the components cmk (t ) is gov-
erned by the system of first-order differential equations ċ =
At c, with c = (cmk )K

k=1. In this limit, it becomes evident that
the dynamical equations for cmk and cnk decouple for m 
= n.
This means that any initial mode η̂†(0) ∈ A0(0) will evolve
according to η̂†(T ) = T e

∫ T
0 At dt η̂†(0) (T being time ordering)

lying in A0(T ). Here, A0(t ) denotes the subalgebra of A
containing analytic functions of eigenmodes {�̂†

mk (t )}K
k=1 at

time t . The decoupling of equations for cmk (t ) implies further
that any operator function F̂ (�̂mk, �̂

†
mk ), depending solely on

the eigenmodes of the mth level, will reside inside A0(t ) for
all t ∈ [0, T ]. �

APPENDIX C: IRREDUCIBILITY OF THE CONNECTION

Here we show that, for a photonic star graph structure with
the Hamiltonian,

Ĥ (t ) =
M−1∑
k=1

κk (t )âk â†
M + κ∗

k (t )â†
k âM, (C1)

the associated connection A, mediating the parallel transport
of a bosonic mode, is irreducible. A practical consequence of
this statement is that it is possible to create any linear opti-
cal network by means of holonomies only. We give separate
proofs for adiabatic and nonadiabatic connections, respec-
tively.

1. Adiabatic case

The Hamiltonian in Eq. (C1) possesses M − 2 (not yet
orthogonal) dark modes D̂†

j (t ) = κ j+1(t )â†
1 − κ1(t )â†

j+1, i.e.,

[Ĥ , D̂†
j ] = 0 for j = 1, . . . , M − 2 generating a subalgebra

A0. After orthogonalization, these modes satisfy canon-
ical commutation relations [D̂ j, D̂k] = [D̂†

j , D̂†
k] = 0, and

[D̂ j, D̂†
k] = δ jk . Under the (strong) adiabatic assumption, any

mode from A0(0) has to be mapped onto an operator in the
linear span of {D̂†

j (T )} j under time evolution according to the

holonomy Uγ = T exp
∫ T

0 At dt . Here, T is the time-ordering
symbol and (At )k j = [D̂ j, ∂t D̂

†
k] is the local connection one-

form. Next, let us concentrate on loops of the form,

κ1 = κ cos θ sin ϑeiϕ,

κ2 = κ sin θ sin ϑeiϕ,

κ3 = κ cos ϑ,

κ4 = · · · = κM−1 = 0,

where θ ∈ [0, π ] and ϑ, ϕ ∈ [0, 2π ).
Due to normalization, the degree of freedom in κ >

0 can be omitted and the remaining coordinates {θ, ϑ, ϕ}
parametrize a three-dimensional submanifold of M . A simple
calculation reveals that the fibers over this submanifold are
spanned by the dark modes:

D̂†
1 = sin θ â†

1 − cos θ â†
2,

D̂†
2 = cos ϑ cos θ â†

1 + cos ϑ sin θ â†
2 − sin ϑeiϕ â†

3,

D̂†
3 = â†

4,

...

D̂†
M−2 = â†

M−1.

The components of the local connection one-form are then
computed as

Aθ =
[

0 cos ϑ

− cos ϑ 0

]
, Aϑ = 0, Aϕ=

[
0 0
0 i sin2 ϑ

]
.

Note that we have indeed a non-Abelian gauge potential
at our disposal, i.e., [Aθ ,Aϕ] 
= 0. Now, path ordering in
the relevant submanifold can be satisfied by traversing a
plaquette � along the coordinate lines. To be specific, let
us choose the loop γ (�) as depicted in Fig. 3. A direct
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FIG. 3. Sequence of six steps forming the loop γ (�) in the
parameter space M . The hollow dot denotes the starting point
(θ0, ϑ0, ϕ0).

integration along the Wilson lines yields the holonomy as a
path-ordered product of matrix exponentials,

Uγ (�) = exp

(∫ ϕ0

ϕ1

Aϕ

∣∣
ϑ=ϑ1

dϕ

)
exp

(∫ θ0

θ1

Aθ

∣∣
ϑ=ϑ1

dθ

)

× exp

(∫ ϕ1

ϕ0

Aϕ

∣∣
ϑ=ϑ0

dϕ

)
exp

(∫ θ1

θ0

Aθ

∣∣
ϑ=ϑ0

dθ

)
,

=
[

1 0
0 e−i sin2 ϑ1�ϕ

][
cos φ1 − sin φ1

sin φ1 cos φ1

]

×
[

1 0
0 ei sin2 ϑ0�ϕ

][
cos φ0 sin φ0

− sin φ0 cos φ0

]
, (C2)

where the second equality can be verified by inserting the def-
initions �ϕ = ϕ1 − ϕ0 and φi = cos ϑi(θ1 − θ0) for i = 0, 1.
The transformation (C2) is nothing other than the decom-
position of a general 2 × 2 unitary matrix, and any element
of U(2) can be implemented by traversing a corresponding
plaquette. Physically, this means that any optical two-mode
transformation between â†

1 and â†
2 [starting at (θ0, ϑ0, ϕ0) =

(π, π, 0)] can be performed by traversing a closed loop in
the submanifold (θ, ϑ, ϕ). Due to the symmetry of the star
graph structure, there is no preferred pair of outer waveguides
(â†

j , â†
k ) j 
=k for j, k = 1, . . . , M − 2. Hence, traversing closed

loops in the corresponding submanifolds of M generates any
U(2) transformation between two arbitrary modes. From the
point of view of differential geometry, this just corresponds to
the statement that the holonomy group is independent of the
chosen starting point [28]. It is well known that any U(M − 2)
mixing of bosonic modes D̂†

j (0) = â†
j ( j = 1, . . . , M − 2) can

be obtained from a sequence of U(2) transformations acting
on a pair of modes [26]. This shows that the connection
A is irreducible and any Reck-Zeilinger-like scheme can be
implemented by adiabatic quantum holonomies utilizing the
star graph structure. A particular resource-efficient way to im-
plement such U(M − 2) transformations utilizes real-valued
couplings κ j for j = 1, . . . , M − 2 which are comparatively
easier to design than complex parameters. It is only neces-
sary to have one complex coupling κM−1 in order to have an
irreducible connection. This is due to the reason that in the
star graph, ideally, all outer modes are interchangable. This
means that a single ancilla mode can be used to mediate a
unitary mixing of any pair of modes (â†

j , â†
k ) j 
=k for j, k =

1, . . . , M − 2.

2. Nonadiabatic case

The proof in the previous section is readily extended to
apply to the nonadiabatic connection one-form associated
with a subspace of the star graph structure. This subspace is
derived from the subalgebra A� generated by a set of M − 1
orthonormal modes {�̂ j (t )} j satisfying the parallel transport
condition,

[�̂ j (t ), [Ĥ (t ), �̂†
k (t )]] = 0, (C3)

for all j, k = 1, . . . , M − 1 and at every instance t in an
interval [0, T ]. Certainly all dark modes satisfy the condi-
tion (C3), because [Ĥ (t ), D̂†

j (t )] = 0 and we choose �̂ j (t ) =
D̂ j (t ) for j = 1, . . . , M − 2. By the argument of basis com-
pletion, it is always possible to find another operator B̂ such
that [D̂ j (t ), B̂†(t )] = [âM (t ), B̂†(t )] = 0. In order to further
simplify the search for the remaining mode �̂M−1(t ) (this will
not be an eigenoperator), we consider that all couplings evolve
with the same envelope, i.e., κ j (t ) = �(t )g j , with �(t ) being
a real-valued, piecewise continuously differentiable function
of time and {gj} j being constant weights such that

∑
j |g j |2 =

1. First, this implies �̂ j (t ) = D̂ j (0) for j = 1, . . . , M − 2.
Second, the time evolution of the operator B̂† = ∑M−1

j=1 g∗
j â

†
j ,

when subjected to the Hamiltonian Ĥ (t ) = �(t )ĥ, can be
obtained from the series expansion,

Û †(t )B̂†Û (t ) = B̂† +
∞∑

n=1

(−iδ)n

n!
[ĥ, [ĥ, . . . [ĥ, B̂†]]]︸ ︷︷ ︸

n−times

,

= B̂† − iδ[ĥ, B̂†] + (−iδ)2

2
[ĥ, [ĥ, B̂†]] ∓ · · · ,

where we defined the shorthand δ(t ) = ∫ t
0 �(τ )dτ . Making

use of [ĥ, B̂†] = â†
M and [ĥ, â†

M ] = B̂†, we then get

�̂
†
M−1(t ) = eiδ(t )Û †(t )B̂†(t )Û (t ),

= eiδ(t )(cos δ(t )B̂†(t ) − i sin δ(t )â†
M (t )),

where the global phase factor eiδ(t ) has been inserted. We
see that in the nonadiabatic scenario it is also possible that
the central mode âM can participate throughout the evo-
lution. Finally, one can check that the entire set {�̂ j (t )} j

satisfies Eq. (C3), thus ensuring a purely geometric evolution
of bosonic modes. Note that, under the condition δ(T ) = π ,
the generating modes return to their initial form after period
T , viz. �̂ j (0) = �̂ j (T ) for all j. The connection (A)k j =
[�̂ j, d�̂

†
k ], responsible for describing nonadiabatic parallel

transport, has only a single nonvanishing component, that is,
(At )M−1,M−1 = i�(t ), which corresponds to a pure gauge.
This has a geometric interpretation. If the connection corre-
sponds to a pure gauge, we have a vanishing curvature [28].
Nonetheless, one can still find nontrivial holonomies, as the
vanishing curvature is attributed to the fact that we chose
a single curve κ j (t ) ∝ �(t ) to generate the holonomy. The
one-dimensional space represented by the curve always looks
locally like a straight line having no curvature [one can attach
an (M − 1)-dimensional Cartesian vielbein along the path].

From the explicit form of A we obtain the nonadia-
batic holonomy Uγ = diag(1, . . . ,−1) ∈ U(M − 1). Looking
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at the diagonal form of Uγ , one might ask if any useful trans-
formations can be obtained at all. This is indeed the case, and
it becomes evident when transforming back to the original
bosonic modes âi (i = 1, . . . , M − 1) via a change of gauge
G(g j ) ∈ U(M − 1), i.e., UG

γ = G†Uγ G. In order to prove that
any element in U(M − 1) can be obtained from a suitable
sequence of loops

∏
j γ j in GM,M−1, we first set

κ1(t ) = �(t ) sin (θ/2)eiϕ,

κ2(t ) = �(t ) cos (θ/2),

κ3(t ) = · · · = κM−1(t ) = 0,

where (θ, ϕ) are constant parameter angles determining the
unitary of choice. In this case, the relevant operators are

�̂
†
1 (t ) = sin(θ/2)eiϕ â†

2 − cos(θ/2)â†
1,

�̂
†
2 (t ) = â†

3,

...

�̂
†
M−2(t ) = â†

M−2,

�̂
†
M−1(t ) = eiδ(t )(cos δ(t )B̂† − i sin δ(t )â†

M ),

where

B̂† = sin(θ/2)e−iϕ â†
1 + cos(θ/2)â†

2,

for the given configuration. The general case can be con-
structed along similar lines but is not necessary because of
the following argument. Under cyclic evolution δ(T ) = π the
(operator-valued) holonomy becomes

(
â†

1(T )
â†

2(T )

)
=

(
cos θ −e−iϕ sin θ

−eiϕ sin θ − cos θ

)(
â†

1(0)
â†

2(0)

)
. (C4)

As was noted in Ref. [7] for a fermionic system, any matrix
Uγ ∈ U(2) can be realized via a composition of two suitable
loops γ1 and γ2 in the Grassmann manifold GM,2. Note that,
in contrast to an adiabatic evolution, here the loops γ1 and
γ2 might correspond to open (or even trivial) paths in M .
Finally, following the same argument as for the adiabatic case,
the holonomy group Hol(A) is independent of the chosen
submanifold in the coupling space M . Hence, the U(2) trans-
formations can be applied to any pair of modes (âi, â j ) j 
=k

for all j, k = 1, . . . M − 1. The fact that we can construct any
element of U(M − 1) in a fully holonomic fashion is now a
direct consequence of the argument by Reck et al. [26].
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