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In quantum-electrodynamics scatterings the transfer of angular momentum between initial and final states
can be resolved using the vortex scattering theory, where involved particles are described by quantum vortex
states with featured orbital angular momentum (OAM). Here we employ the vortex scattering scenario in
bremsstrahlung of a plane-wave electron by describing the final electron and photon in vortex states. We find
that, while the total cross-section and angular distribution of the vortex scattering scenario are consistent with
those from the ordinary plane-wave scattering, the final states in the former can gain non-negligible OAM values
even though the incident electron does not contain any OAM. Moreover, introducing the OAM degree of freedom
conserves the total angular momentum in polarized scattering. The dependence of the OAM on the opening angle
of the vortex state and the energy ratio of photon to electron are obtained. It is shown that the emitted photon
gains higher OAM at larger angles and energy ratios.
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I. INTRODUCTION

In quantum field theory, particle scattering processes are
usually interpreted by use of plane wave (PW) states as the
complete basis for field quantization. This theoretical frame-
work is extremely successful when energy and momentum
of the involved particles are the main focus. It also allows
for analysis of the spin-polarization properties during the in-
teraction [1]. However, since the PW states do not contain
intrinsic orbital-angular-momentum (OAM) information, it is
in principle not capable of describing the angular-momentum
(AM) of particles. In fact, spin-orbital coupling or the transfer
of OAM often exists in a large group of scattering processes,
especially when the initial particles are spin polarized. Such
problems cannot be fully resolved in the PW scattering frame-
work. Instead, one may switch to the basis that carry definite
quantum numbers of AM to obtain the scattering probabilities
or cross sections.

In 1992, optical photons with distinctive OAM numbers
were proposed (referred as vortex or twisted photon) in theory
[2] and later experimentally confirmed [3,4]. Subsequently,
low-energy vortex or twisted electron states with OAM have
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also been experimentally generated and applied to transmis-
sion electron microscopy (TEMs) [5–7]. These vortex light
wave or particles provide the OAM degree of freedom in ma-
nipulating light-matter interaction [8,9] as well as increasing
the signal-background ratio in probing the material properties
[6].

In the high-energy regime, it is pointed out theoretically
that particles described in the quantum vortex states take
certain OAM [10–12]. The role of angular momentum in
high-energy inelastic scattering is studied in various processes
[13–28]. The new effects of vortex states are studied by
changing the description of one or several particles in the
scattering process from plane-wave states to vortex states,
such as the difference between paraxial and nonparaxial cases
[29,30], scattering described by wave packets [31], study
of coherence length effect in collision [32], nonlinear quan-
tum effect of vortex electrons electromagnetic radiation [33],
the Vavilov-Cherenkov radiation emitted by twisted electrons
[34], observation of Larmor and Gouy rotation by vortex
electrons beam [35], vortex electrons characteristics under
external magnetic field [36], and some other effects [37,38].

In this paper, to reveal the effect of angular momentum
existing in QED scattering, we calculate the differential cross
section of the bremsstrahlung for a PW electron colliding with
a lead nucleus. We describe the final electron and photon in
vortex states, i.e., PW+nucleus→V+V (P-V bremsstrahlung)
and compare the differential cross section to the one from
the normal treatment where all particles are described by PW
states PW+nucleus→PW+PW (PW bremsstrahlung). The
angular distribution of the outgoing electron and photon is
analyzed. By studying the OAM distribution of the scattered
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particles, we find that they gain non-negligible OAM values
even though the initial electron does not have any OAM. It
originates from the AM transferred from electron spin angular
momentum (SAM) to OAM such that the total AM is con-
served. The scalings as a function of different photon energy
ratios are further discussed.

II. THEORETICAL BACKGROUND
OF THE VORTEX STATE

The scalar electron wave function without spin satisfies
the Schrödinger equation. We discuss the scattering of high-
energy electrons and study the spin related properties, which
require that the electrons be treated in a fully relativistic man-
ner. Therefore, the electron state follows the solution of the
free Dirac equation (i/∂ − M )ψ = 0, expressed in spinors.

The plane-wave function then takes the form of Eq. (1),
where E is energy and M is the rest mass of electrons. σ

is the Pauli matrix. The unit momentum vector is defined as
κ = �p/| �p|. ξ s (s = ±1 is the spin projection on the momentum
direction z-axis, called helicity usually) represent the two-
component basis spinors, such as[

1
0

]
,

[
0
1

]
,

which are orthogonal. In this paper, the relativistic units
c = h̄ = 1 are used. When PW states are used to describe the
scattering processes, helicity is usually introduced to distin-
guish polarization scattering [1]. However, because the PW
states do not contain OAM information, the discussion of
angular-momentum transfer or conservation of polarization
scattering becomes difficult.

ψ s
p(x) = 1√

2(2π )3
e−ipx

(√
1 + M

E
ξ s,

√
1 − M

E
(σ · κ)ξ s

)
.

(1)

Vortex states were later introduced as another exact so-
lution of Dirac equation [25,39]. The vortex structure can
be formed by the superposition of plane-wave states in the
momentum direction perpendicular to the z axis of the prop-
agation direction: ψ s

m(x) = ∫
ψ̃m( �p′⊥)ψ (x)p′

⊥d p′
⊥dφ, where

ψ̃m(p′
⊥) = 1√

2π im p′
⊥
δ(p′

⊥ − p⊥)eimφp′ is the Fourier spectrum.

Due to the axisymmetric property of vortex states, it is usually
described in cylindrical coordinate system. The wave function
of electron vortex states can be expressed as follows [39]:

ψm,s
p⊥,pz

(x) = um,s
p⊥,pz

(r, θ )eipzz−iEt

= eipzz−iEt

√
2(2π )

1

| �p |

√
1 − M

E

[(
(E + M )ξ s

pzσzξ
s

)

m

p⊥ (r)

+ip⊥

(
0

σ⊥,m
p⊥ (r, θ )ξ s

)]
. (2)

Here pz and p⊥ = (E2 − M2 − p2
z )1/2 are the z compo-

nent and perpendicular one of the electron momentum. The
transversal matrix reads

σ⊥,m
p⊥ (r, θ ) =

[
0 −
m−1

p⊥ (r)

m+1

p⊥ (r) 0

]
.

Similarly, we construct the photon vortex states by employ-
ing the Bessel mode Aj,λ;μ

k⊥,kz
(x) = ∫

Ã j (k′
⊥)Aλ;μ

k′
⊥,kz

(x)k′
⊥dk′

⊥dφk′ .
Suppose that the vortex photon propagates along the z axis,
j and λ = ±1 are the projections of total angular momen-
tum (TAM) and spin on momentum direction z axis (we
call it TAM and helicity to simplify), respectively. kz and
k⊥ = (ω2 − k2

z )1/2 (ω is the photon energy) are the photon
momentum parallel and perpendicular the z axis, respectively.
Here

Aλ;μ
k (x) = ε

λ;μ
k

[(2π )3(2ω)]1/2
e−ikx

is the PW photon states, Ã j (k′
⊥) = 1√

2π i j k′
⊥
δ(k′

⊥ − k⊥)ei jφk′ is

the corresponding Fourier spectrum. So, the vortex photon
states can be expressed as [39]

Aj,λ;μ
k⊥,kz

(x)

= ε
j,λ;μ
k⊥,kz

(�r )eikzz−iωt

= eikzz−iωt

4π
√

ω

⎛
⎜⎜⎜⎜⎝

0(
i
2

)[(
1 − kz

ω

)



j+λ

k⊥ (�r ) + (
1 + kz

ω

)



j−λ

k⊥ (�r )
]

(
λ
2

)[(
1 − kz

ω

)



j+λ

k⊥ (�r ) − (
1 + kz

ω

)



j−λ

k⊥ (�r )
]

(
λk⊥
ω

)



j
k⊥ (�r )

⎞
⎟⎟⎟⎟⎠,

(3)

where ε
l,λ;μ
k⊥,kz

(�r ) represents the polarization vector and the
transverse function is defined by 
n

k⊥ (�r ) = Jn(k⊥r)einθ [Jn(r)
is the first kind of Bessel function]. Equations (2) and (3)
contain intrinsic OAM information and thus can be employed
in resolving the AM-related physics in various scattering pro-
cesses.

Here we define a quantity l = j − λ for the vortex photon.
It corresponds to the OAM projection number of photon on
z axis in a paraxial approximation, where j and λ represent
the TAM and spin projection of photon on the z axis. One
should notice that m and l are not the eigenvalues of the
OAM operator L̂, but usually referred as OAM projection of
electron and photon on the z axis [10,20,28–31,35,40–42]. It
is clear that only s/2 + m and λ + l are the eigenvalues of the
corresponding operators of vortex electron and photon states,
respectively.

III. THE DIFFERENTIAL CROSS SECTION
OF THE P-V BREMSSTRAHLUNG

We assume that a PW electron propagates along the z
axis. After colliding with a stationary bare lead nucleus, the
outgoing electron and emitted photon are scattered forward
defined by the vortex states along the z axis, as illustrated in
Fig. 1(a). For comparison, Fig. 1(b) shows the process of PW
bremsstrahlung.

The S-matrix element of P-V bremsstrahlung can be writ-
ten as in the QED framework:

S f i = S1 + S2

= −ie2
∫

d4xd4yψ f (x)[γ 0A0(x)SF (x − y)γ νA∗
ν (y)

+ γ μA∗
μ(x)SF (x − y)γ 0A0(y)]ψi(y), (4)
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FIG. 1. Kinematics of P-V and PW bremsstrahlung.

where ψi(y) represents the wave function of the incident
PW electron and ψ f (x) represents the wave function of the
outgoing vortex electron. The electron propagator is defined
as SF (x − y) = ∫ d4 p

(2π )4
γμ pμ+M
p2−M2 e−ip(x−y) and A0 = − Ze

4π |�x| is the
Coulomb field of the nucleus (for a lead nucleus, Z = 82).

Combining Eqs. (1)– (4), we obtain

SP-V = −ize3

(4π )2
√

2π
δ(E f + ω − Ei )

√
(E f − M )(Ei − M )√

ωE f Ei

×
∫

dq⊥
q⊥

(p2 − M2)| �p f || �pi|| �q |2
× ξ s f †(C1 + C2)ξ si . (5)

The derivations are carried out in cylindrical coordinate sys-
tem because of the axisymmetric nature of vortex states.
Matrices C1 and C2 have the following forms after calculation
(see Appendix A for details):.

C1 = (M1 + M2 + M3 + M4 + M5

+ M6)|pz=p f z+kz,qz=p f z+kz−piz,Ep=Ei,p⊥=q⊥ , (6)

C2 = (M ′
1 + M ′

2 + M ′
3 + M ′

4 + M ′
5

+ M ′
6)|pz=piz−kz,Ep=E f ,qz=p f z−piz+kz,p⊥=k⊥ . (7)

We define matrices �1 and �2:

�1 =
∫

dq⊥q⊥
1

(p2 − M2)| �q |2 C1, (8)

�2 =
∫

dq⊥q⊥
1

(p2 − M2)| �q |2 C2. (9)

Then,

SP-V = −iZe3

(4π )2
√

2π
δ(E f + ω − Ei )

√
(E f − M )(Ei − M )√

ωE f Ei| �p f || �pi|
× ξ s f †(�1 + �2)ξ si . (10)

Matrix �1 + �2 takes the following form:

�1 + �2 =
[

Aδm f ,− j Bδm f ,− j−1

Cδm f ,− j+1 Dδm f ,− j

]
, (11)

where A, B, C, and D are the coefficients of the four matrix
elements (see Appendix A). The four Kronecker symbols
represent the TAM conservation corresponding to four spin

cases. For example, consider that both the incident and the
outgoing electron spins are up:

ξ si =
[

1
0

]
, ξ s f =

[
1
0

]
,

the relationship given by the conservation law of TAM is
1
2 = (m f + 1

2 ) + j, and the corresponding term is Aδm f ,− j .
According to Fermi’s golden rule, the scattering cross sec-

tion of P-V bremsstrahlung is as follows:

dσ = |SP-V|2( (2π )3

V

)
p f ⊥k⊥d p f ⊥d p f zdk⊥dkz

T | �vi|
V

= Z2e6

(4π )5π
δ(ω + E f − Ei )

(E f − M )(Ei − M )

ωE f | �p f |2| �pi|3
× |ξ s f †(�1 + �2)ξ si |2 p f ⊥k⊥d p f ⊥d p f zdk⊥dkz. (12)

Comparing with PW states, vortex states not only carry
OAM information but also exhibit different momentum-space
structure. The angle of the PW particle is the emission angle,
while the one for vortex state corresponds to the opening angle
composed of z-axis momentum and vertical momentum, e.g.,
θ f , θk in Fig. 1. Transfer the rectangular coordinate system
composed of pz and p⊥ to the polar coordinate system com-
posed of θ and E via E2 = M2 + p2

⊥ + p2
z (ω2 = k2

⊥ + k2
z for

a photon), we have d p f ⊥d p f z = E f dE f dθ f and dk⊥dkz =
ωdωdθk , where θk and θ f are the opening angles of outgoing
photon and electron following k⊥ = ω sin θk, kz = ω cos θk ,
p f ⊥ = (E2

f − M2)1/2 sin θ f , p f z = (E2
f − M2)1/2 cos θ f . The

differential cross section can be expressed as

dσ = Z2α3

2
δ(ω + E f − Ei )(E f − M )(Ei − M )

× p f ⊥k⊥
| �p f |2| �pi|3 |ξ s f †(�1 + �2)ξ si |2dE f dθ f dωdθk, (13)

where α = e2

4π
is the fine-structure constant. Integrate E f with

the δ function δ(ω + E f − Ei ). The incident electron propa-
gates the z axis [ �pi = (0, 0, piz )], therefore

dσ = Z2α3

2
(E f − M )(Ei − M )

p f ⊥k⊥
| �p f |2|piz|3

× |ξ s f †(�1 + �2)ξ si |2dωdθkdθ f |E f =Ei−ω. (14)

The differential cross section of P-V bremsstrahlung is
obtained. Equation (15) shows the differential cross section of
PW bremsstrahlung (see Appendix B for the specific calcula-
tion):

dσ (PW ) = Z2α3

2π
(E f − M )(Ei − M )

p f ⊥k⊥
| �p f |2|piz|3

× |W |2dωdθkdφkdθ f |E f =Ei−ω. (15)

By comparing the forms of two differential cross sections,
we notice that there is an additional angular integration in the
PW case because there is an angle between the electron and
photon emitted in the vertical plane. While for the vortex, it is
symmetric about the z axis and this angle has been integrated
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FIG. 2. Opening angles vs cross-section distribution. The first
column is the P-V bremsstrahlung case while the second column is
the PW case. The incident electron energy is Ei = 5 MeV, different
rows represent different photon-energy values, l ranges from −20 to
+20. Red dashed arc curve in each figure is the kinematic transverse
momentum constraint curve (pf ⊥ = k⊥). The distribution of 0–π is
shown in the upper-right corner of each figure.

when defining the vortex states. Meanwhile, the P-V case
has one more Kronecker symbol, representing the additional
angular-momentum restriction.

IV. NUMERICAL RESULTS AND DISCUSSION

The differential cross-section of P-V bremsstrahlung ob-
tained above can be numerically analyzed. Here we focus on
the OAM information and the opening angles. In particular,
we are interested in how the spin-orbit angular momentum is
transferred and distributed.

Averaging over the initial-state spin orientations, summing
over the final-state spin orientations, the cross section as a
function of the opening angles or emitting angles for outgoing
particles is calculated according to Eqs. (14) and (15). The
numerical results are shown in Fig. 2, where the incident elec-
tron energy is Ei = 5 MeV and the outgoing photon energy
takes ω = 0.1 MeV, ω = 0.5 MeV and ω = 1 MeV, respec-
tively. Here the l of vortex photon ranges from −20 to +20.
Comparing between the two cases, we notice that both have
identical distributions under all three photon energies. This
indicates that the completeness of the P-V bremsstrahlung
theory is guaranteed after replacing the final PW states by
quantum vortex states.

To analyze the distribution structure under different pho-
ton energies, the relationship between electron and photon
angles from the perspective of classical kinematics is dis-
cussed. In our model, the nucleus is stationary on the z axis,

FIG. 3. Angle vs cross-section spectrum of P-V and PW
bremsstrahlung. Panel (a) is the photon opening angle spectrum
while panel (b) is the electron case. Ei = 5 MeV. The magenta and
blue lines represent the P-V cases with different l values. Black lines
represent the PW case.

the electron collides the nucleus along the z axis. When the
photon energy is relatively low, it is close to elastic scattering
where the transverse momentum is conserved (p f ⊥ = k⊥).
We obtain the constraint relationship between the electron
angle and the photon angle: p f sin θ f = k sin θk which can
be written as [(Ei − ω)2 − M2]1/2 sin θ f = ω sin θk . Through
this constraint relationship and the value of one angle, we can
calculate the value corresponding to the other angle, shown as
red dashed arc curves in Fig. 2. The distributions in Figs. 2(a)
and 2(b) for ω = 0.1 MeV show large cross-section values
around this curve. In addition, it seems that their exists a peak
where the divergence angles of electron and photon tend to
be equal. With the photon energy increasing from 0.1 to 1
MeV, the elastic-scattering condition is no longer well satis-
fied, the distribution gradually concentrates at smaller angles.
Both trends disappear at large photon energies, as seen in
Figs. 2(c)–2(f).

Figure 3 shows the more detailed opening angle distribu-
tion spectrum of final vortex particles vs photon opening-
angle distribution [Fig. 3(a)] and electron opening angle
distribution [Fig. 3(b)] (by integrating another angle) in the
PW and P-V cases with different l ranges. All six differential
cross-section lines reach maximum positions at small angles.
With the increase of angles, the differential cross sections de-
crease gradually. This distribution trend does not change with
PW or P-V and different l-ranges of the P-V.

The differential cross section in the P-V case with l = 0
is below the PW value. The gap is narrowed when adding
the cross sections of three values l = ±1, 0. This implies that
although the PW case does not contain OAM information,
it is not a special case of P-V bremsstrahlung with OAM
equal to zero. In terms of the cross sections, the result of
the P-V scattering tends to converge to the PW case when
including more OAM modes. The results numerically prove
the completeness of the P-V bremsstrahlung theory again.

In the following, we show how the OAM is allocated
among the final vortex particles, which is unknown in the nor-
mal PW scattering picture. We take Ei = 5 MeV, ω = 1 MeV
and sum the spins of outgoing particles but consider the
polarization of incident electrons separately. Figure 4 shows
the OAM distribution of outgoing vortex photon and electron
at different opening angles. When calculating one angle, the
other angle is integrated from 0 to π . In general, the cross
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FIG. 4. OAM distribution of P-V bremsstrahlung. Panels (a) and
(c) are the outgoing electron OAM mf and opening angle θ f vs cross-
section distribution, while panels (b) and (d) are the photon case l
and θk . The other angle is integrated from 0 to π . The polarization of
incident electrons is −1 in panels (a) and (b) while the one is +1 in
panels (c) and (d).

sections of both the vortex electron and photon decrease at
larger angles, which is consistent with the results in Fig. 3. The
OAM distribution patterns of the electron and photon are very
different by comparing Figs. 4(a) with 4(b) and 4(c) with 4(d).
The range of l carried by vortex photon is more widely dis-
tributed than that of the electron, especially for θ f (θk ) > 30◦.
At an angle slightly larger than the maximum, the electron
m f distribution presents a Gaussian-like distribution around
m f = 0, while the photon l distribution not only shows a
peak around l = 0, but also at l = ±2 on both sides. More
importantly, it can be found that the polarization of incident
electrons mainly offsets the m f and l distributions. When the
initial polarization is −1, m f and l concentrate at 0 and +1
in Figs. 4(a) and 4(b); when the polarization is +1, m f and
l concentrate at 0 and −1 in Figs. 4(c) and 4(d). This offset
could lead to nonvanishing average OAM values, i.e., the final
particles can carry net OAM.

Further relationship between OAM distribution and open-
ing angles is analyzed. We select three angle ranges of 0◦–30◦,
60◦–90◦, and 120◦–150◦ to calculate the OAM distribution of
photon, as shown in Fig. 5. First, we notice that, at smaller an-
gles 0◦–30◦, the peak value is located at l = 0. When going to
larger angles 60◦–90◦ and 120◦–150◦, secondary peaks appear
appear around l = ±3, which becomes higher upon increas-
ing the angle. Comparing columns (1) and (2) in Fig. 5, the
slight asymmetry of the distribution is reflected by the average
l value marked by red solid lines in each figure. These offsets
discussed in previous section are also represented by red solid
lines that deviate from the zero value in the figure, which
show a high correlation with the polarization of incident elec-
trons. Average l tends to offset in the opposite direction of
electron polarization. These reveal that the l distribution of
the differential cross section is highly related to the angle
and the incident electron polarization, which could be verified
experimentally by the detection of different azimuth angles
and the control of different polarization of incident electrons.

FIG. 5. l distribution over different opening angle ranges. Three
rows (a), (b), and (c) are 0◦–30◦, 60◦–90◦, and 120◦–150◦, respec-
tively. Both electron and photon angles are integrated follow the
specified range. Three columns (1), (2), and (3) represent incident
elections polarization of −1, +1, and 0, respectively. Red solid lines
mark the average l .

It is worth noting that, in combination with Figs. 4 and 5,
the OAM distributions under the incident electron polariza-
tion of −1 and +1 is symmetrical around l = 0. Therefore,
as shown red solid lines in the third column (3) of Fig. 5,
the l is exactly zero after averaging over the initial electron
polarization. While spin-to-orbital transfer exists in either
case, finite OAM value appears when there is nonzero initial
angular-momentum. In this case, the initial electron should be
spin polarized.

In normal PW bremsstrahlung, since only SAM is consid-
ered, the TAM before and after scattering only calculating the
leading order Feynman diagram cannot be well handled [1].
This problem is naturally resolved when the final particles are
described by the vortex states. In P-V scattering, the SAM
of the initial particles will not only transfer to the SAM of
the final particles, but also to the OAM of the final particles.
The final TAM consists of SAM and OAM together, and the
difference between the initial and final SAMs can be exactly
offset by OAM.

Figure 6 shows the numerical results of angular momen-
tum before and after bremsstrahlung at different electron and
photon energies at the leading order of the Feynman diagram.
All projection numbers of OAM, SAM, and TAM are average
values. It can be seen that TAM (only SAM is considered here)
of the final states and the initial states in PW bremsstrahlung
are not equal. When the photon-energy ratio is relatively low,
the TAM difference before and after scattering is close to zero,
but the gap increases with the photon energy ratio is larger,
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FIG. 6. Numerical results of angular momentum before and after
bremsstrahlung. Ei = 5 MeV, l ranges from −10 to +10. Different
color lines represent different angular-momentum quantities marked
in figure. The solid lines indicates that the electrons polarization
is +1, and dashed lines indicate that the polarization of incident
electrons is −1.

denoted by the two black lines in Fig. 6. When the vortex
states are used to describe the final particles, part of SAM is
transferred to OAM, and TAM before and after in each spin
condition and each photon-energy ratio equals each other in
extremely high precision, shown as two overlapping gray lines
on the central axis in Fig. 6.

Moreover, Fig. 6 indicates that the OAMs carried by pho-
ton and electron are positively correlated to the proportion of
photon energy (see two red and two blue lines). All these
values are reversed when switching the polarization of the
incident electron (solid lines vs dashed lines). When the po-
larization is averaged, these distributions are smoothed out to
zero. Therefore, both the final electron and photon carry zero
OAM values if the incident electrons are unpolarized, which
means that the OAMs of final particles originate from the po-
larization of the incident electron rather than the distribution
between the final two particles. It reveals the channel through
which SAM of the initial electron is transferred to OAMs of
the final electron and photon.

The OAM obtained by final photon and electron as a func-
tion of the incident electron energy is summarized in Fig. 7,
with photon-electron energy ratio fixed at ω = 0.40Ei. We
find that the absolute values of l and m f gradually converge
to 0.5 when Ei changes from 5 MeV to 1 GeV. These results
indicate that the OAMs transferred to outgoing electron and
photon are positively correlated to both the incident electron-
energy and photon-energy ratio. The revelation of the physical
picture in the highly relativistic regime has enlightenment for
the possible experiments in electron accelerator laboratories.

V. CONCLUSION

In this paper, we first used the constructed vortex states
wave functions to calculate the differential cross section of

FIG. 7. Numerical results of angular momentum with different
incident electron energies. ω/Ei = 40%, l ranges from −10 to +10.
Two color lines represent two angular-momentum quantities marked
in figure. The solid lines indicates that the electrons polarization
is +1, and dashed lines indicate that the polarization of incident
electrons is −1.

P-V bremsstrahlung which the initial electron is described
by plane-wave states and the final electron and photon are
vortex states in the QED framework. By analyzing the four
Kronecker symbols appearing in the cross section, we ob-
tained the relationship between SAM and OAM before and
after scattering, which is consistent with the conservation law
of total angular momentum. Furthermore, we analyzed the
angular distribution characteristics of the final particles by
numerically calculating the cross section and comparing it
with the classical PW bremsstrahlung. We found that, due to
the OAM information carried by the vortex wave functions,
it naturally shows the OAM distribution of the final particles,
which cannot be revealed by ordinary PW bremsstrahlung. In
theory, the final electron and photon can also carry OAM after
polarized PW electron scattering. Finally, it is shown that the
P-V bremsstrahlung naturally satisfies the conservation law of
total angular momentum, and the characteristics that SAM can
be transferred to OAM under different photon energy ratios
are obtained. These properties related to angular momentum
could bring new information for further exploration in various
scattering processes in the field of nuclear physics and particle
physics.
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APPENDIX A

Some mathematical formulas and specific expressions in the theoretical derivation are shown below.
In a cylindrical coordinate system, e−ipx can be expanded as follows:

e−ipx = eipzz−ip0t�
n

inJn(p⊥r)einθ−inφp, (A1)

cos φp = p1

p⊥
. (A2)

For integer order Bessel functions of the first kind:

J−n(x) = (−1)nJn(x). (A3)

Integration of the twofold Bessel functions:∫
drrJ0(p⊥r)J0(q⊥r) = 1

p⊥
δ(p⊥ − q⊥), (A4)

∫
dr′r′Jl (k⊥r′)J−l (p⊥r′) = (−1)l 1

p⊥
δ(p⊥ − k⊥), (A5)

∫
dr′r′Jl+1(k⊥r′)J−l−1(p⊥r′) = (−1)l+1 1

p⊥
δ(p⊥ − k⊥), (A6)

∫
dr′r′Jl−1(k⊥r′)J−l+1(p⊥r′) = (−1)l−1 1

p⊥
δ(p⊥ − k⊥). (A7)

Integration of the triple Bessel functions:

Sm
n (p, k, q) =

∫
drrJn(pr)Jm−n(qr)Jm(kr)

= 1

2πAerap,q,k
cos (n∠(p, k) − (m − n)∠(k, q)), (A8)

where ∠(a, b) represents angle between �a and �b and Aeraa,b,c represents the area of the triangle formed by a, b, c.
The matrices in Eq. (6) and Eq. (7) are as follows:

M1 = (E f + M )(Ei + M )

[(
pz

λk⊥
ω

S0
l (k⊥, p⊥, p f ⊥) + p⊥

(
1 − λkz

ω

)
S1

l+1

)
δm f ,− j

(−ip⊥ λk⊥
ω

S−1
l + ipz

(
1 − λkz

ω

)
S0

l+1

)
δm f ,− j−1(−ipz

(
1 + λkz

ω

)
S0

l−1 − ip⊥ λk⊥
ω

S1
l

)
δm f ,− j+1

(−p⊥
(
1 + λkz

ω

)
S−1

l−1 + pz
λk⊥
ω

S0
l

)
δm f ,− j

]
,

(A9)

M2 = piz(E f + M )(Ep − M )

[
λk⊥
ω

S0
l δm f ,− j i

(
1 − λkz

ω

)
S0

l+1δm f ,− j−1

−i
(
1 + λkz

ω

)
S0

l−1δm f ,− j+1
λk⊥
ω

S0
l δm f ,− j

]
, (A10)

M3 = p f z(Ep + M )(Ei + M )

[
λk⊥
ω

S0
l δm f ,− j −i

(
1 − λkz

ω

)
S0

l+1δm f ,− j−1

i
(
1 + λkz

ω

)
S0

l−1δm f ,− j+1
λk⊥
ω

S0
l δm f ,− j

]
, (A11)

M4 = piz p f z

[ (
pz

λk⊥
ω

S0
l + p⊥

(
1 − λkz

ω

)
S1

l+1

)
δm f ,− j

(
ip⊥ λk⊥

ω
S−1

l − ipz
(
1 − λkz

ω

)
S0

l+1

)
δm f ,− j−1(

ipz
(
1 + λkz

ω

)
S0

l−1 + ip⊥ λk⊥
ω

S1
l

)
δm f ,− j+1

(−p⊥
(
1 + λkz

ω

)
S−1

l−1 + pz
λk⊥
ω

S0
l

)
δm f ,− j

]
, (A12)

M5 = −ip f ⊥(Ep + M )(Ei + M )

[−i
(
1 + λkz

ω

)
S0

l−1δm f ,− j − λk⊥
ω

S0
l δm f ,− j−1

− λk⊥
ω

S0
l δm f ,− j+1 i

(
1 − λkz

ω

)
S0

l+1δm f ,− j

]
, (A13)

M6 = −ip f ⊥ piz

[ (−ipz
(
1 + λkz

ω

)
S0

l−1 − ip⊥ λk⊥
ω

S1
l

)
δm f ,− j

(
p⊥

(
1 + λkz

ω

)
S−1

l−1 − pz
λk⊥
ω

S0
l

)
δm f ,− j−1(−pz

λk⊥
ω

S0
l − p⊥

(
1 − λkz

ω

)
S1

l+1

)
δm f ,− j+1

(−ip⊥ λk⊥
ω

S−1
l + ipz

(
1 − λkz

ω

)
S0

l+1

)
δm f ,− j

]
, (A14)
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M ′
1 = (E f + M )(Ei + M )

[(
pz

λk⊥
ω

+ p⊥
(
1 + λkz

ω

))
S0

l (p⊥, q⊥, p f ⊥)δm f ,− j −(
ipz

(
1 − λkz

ω

) + ip⊥ λk⊥
ω

)
S0

l+1δm f ,− j−1

−(
ip⊥ λk⊥

ω
− ipz

(
1 + λkz

ω

))
S0

l−1δm f ,− j+1
(−p⊥

(
1 − λkz

ω

) + pz
λk⊥
ω

)
S0

l δm f ,− j

]
, (A15)

M ′
2 = piz(E f + M )(Ep + M )

[
λk⊥
ω

S0
l δm f ,− j i

(
1 − λkz

ω

)
S0

l+1δm f ,− j−1

−i
(
1 + λkz

ω

)
S0

l−1δm f ,− j+1
λk⊥
ω

S0
l δm f ,− j

]
, (A16)

M ′
3 = p f z(Ep − M )(Ei + M )

[
λk⊥
ω

S0
l δm f ,− j −i

(
1 − λkz

ω

)
S0

l+1δm f ,− j−1

i
(
1 + λkz

ω

)
S0

l−1δm f ,− j+1
λk⊥
ω

S0
l δm f ,− j

]
, (A17)

M ′
4 = p f z piz

[(
pz

λk⊥
ω

+ p⊥
(
1 + λkz

ω

))
S0

l (p⊥, q⊥, p f ⊥)δm f ,− j
(
ipz

(
1 − λkz

ω

) + ip⊥ λk⊥
ω

)
S0

l+1δm f ,− j−1(
ip⊥ λk⊥

ω
− ipz

(
1 + λkz

ω

))
S0

l−1δm f ,− j+1
(−p⊥

(
1 − λkz

ω

) + pz
λk⊥
ω

)
S0

l δm f ,− j

]
, (A18)

M ′
5 = −ip f ⊥(Ep − M )(Ei + M )

[−i
(
1 + λkz

ω

)
S0

l−1δm f ,− j − λk⊥
ω

S0
l δm f ,− j−1

− λk⊥
ω

S0
l δm f ,− j+1 i

(
1 − λkz

ω

)
S0

l+1δm f ,− j

]
, (A19)

M ′
6 = −ip f ⊥ piz

[−(
ip⊥ λk⊥

ω
− ipz

(
1 + λkz

ω

))
S0

l−1δm f ,− j −(−p⊥
(
1 − λkz

ω

) + pz
λk⊥
ω

)
S0

l δm f ,− j−1

−(
pz

λk⊥
ω

+ p⊥
(
1 + λkz

ω

))
S0

l δm f ,− j+1 −(
ipz

(
1 − λkz

ω

) + ip⊥ λk⊥
ω

)
S0

l+1δm f ,− j

]
. (A20)

All these matrices Eqs. (A9)–(A20) have the same Kronecker symbols at four locations, combining Eqs. (8) and (9), we have

�1 + �2 =
[

Aδm f ,− j Bδm f ,− j−1

Cδm f ,− j+1 Dδm f ,− j

]
(A21)

=
∫

dq⊥q⊥
1

(p2 − M2)| �q |2 (C1 + C2), (A22)

where A, B,C, and D can be obtained by numerical calculation.

APPENDIX B

The S-matrix element for PW bremsstrahlung is

SPW = −ie2
∫

d4xd4yψ̄ f (x)[/A∗(x)SF (x − y)γ 0A0(y) + γ 0A0(x)SF (x − y)/A∗(y)]ψi(y)

= iZα
3
2

4π2
√

ωE f Ei
δ(E f + ω − Ei )

1∣∣ �p f + �k − �pi

∣∣2

[√
E f + Mξ s†

f −√
E f − Mξ s†

f

(
�σ · �p f

| �p f |
)†]

×
[
/ε∗λ

�k
/pf + /k + M

2p f k
γ 0 + γ 0 /pi − /k + M

−2pik
/ε∗λ

�k

][ √
Ei + Mξ si√

Ei − M
(
�σ · �pi

| �pi|
)
ξ si

]
. (B1)

We define

W = 1∣∣ �p f + �k − �pi

∣∣2

[
(E f + M )ξ s†

f −ξ s†
f (�σ · �p f )†

][
/ελ∗

�k
/pf + /k + M

2p f k
γ 0 + γ 0 /pi − /k + M

−2pik
/ελ∗

�k

][
(Ei + M )ξ si

(�σ · �pi )ξ si

]
. (B2)

The S-matrix element can be written as follows:

SPW = iZα
3
2

4π2
√

ωE f Ei
δ(E f + ω − Ei )

√
E f − M

√
Ei − M

| �p f || �pi| W. (B3)

The differential cross section is

dσ (PW) = |SPW|2( (2π )3

V

)
d3kd3 p f

T |�vi|
V

= δ(E f + ω − Ei )
Z2α3(E f − M )(Ei − M )

4π2ωE f | �p f |2| �pi|3 |W |2d3kd3 p f , (B4)
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d3k = k⊥dk⊥dkzdθk = ω2dωd�k = sin θkω
2dωdθkdφk, (B5)

d3 p f = p f ⊥d p f ⊥d p f zdθ f =
√

E2
f − M2 sin θ f E f dE f dθ f dφ f . (B6)

Finally, we have

dσ (PW) = Z2α3

2π
(E f − M )(Ei − M )

p f ⊥k⊥
| �p f |2|piz|3 |W |2dωdθkdφkdθ f |E f =Ei−ω. (B7)

[1] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum
Electrodynamics (Pergamon Press, Oxford, 1982).

[2] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Orbital angular momentum of light and the trans-
formation of Laguerre-Gaussian laser modes, Phys. Rev. A 45,
8185 (1992).

[3] H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-
Dunlop, Direct Observation of Transfer of Angular Momentum
to Absorptive Particles from a Laser beam with a Phase Singu-
larity, Phys. Rev. Lett. 75, 826 (1995).

[4] A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, Intrinsic
and Extrinsic Nature of the Orbital Angular Momentum of a
Light beam, Phys. Rev. Lett. 88, 053601 (2002).

[5] M. De Graef, Introduction to Conventional Transmission Elec-
tron Microscopy (Cambridge University Press, Cambridge,
2003).

[6] W. D. B. C. C. Barry, Transmission Electron Microscopy
(Springer, New York, 1996).

[7] L. Reimer and H. Kohl, Transmission Electron Microscopy,
Optical Sciences (Springer Verlag, New York, 2008).

[8] J. Verbeeck, H. Tian, and P. Schattschneider, Production and
application of electron vortex beams, Nature (London) 467, 301
(2010).

[9] M. Uchida and A. Tonomura, Generation of electron beams
carrying orbital angular momentum, Nature (London) 464, 737
(2010).

[10] K. Y. Bliokh and F. Nori, Spatiotemporal vortex beams and
angular momentum, Phys. Rev. A 86, 033824 (2012).

[11] K. Y. Bliokh, M. R. Dennis, and F. Nori, Position, spin, and
orbital angular momentum of a relativistic electron, Phys. Rev.
A 96, 023622 (2017).

[12] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing,
H. J. Lezec, J. J. McClelland, and J. Unguris, Electron vortex
beams with high quanta of orbital angular momentum, Science
331, 192 (2011).

[13] I. P. Ivanov, Colliding particles carrying nonzero orbital angular
momentum, Phys. Rev. D 83, 093001 (2011).

[14] D. Seipt, A. Surzhykov, and S. Fritzsche, Structured x-ray
beams from twisted electrons by inverse Compton scattering of
laser light, Phys. Rev. A 90, 012118 (2014).

[15] V. Serbo, I. P. Ivanov, S. Fritzsche, D. Seipt, and A. Surzhykov,
Scattering of twisted relativistic electrons by atoms, Phys. Rev.
A 92, 012705 (2015).

[16] M. E. Groshev, V. A. Zaytsev, V. A. Yerokhin, and V. M.
Shabaev, Bremsstrahlung from twisted electrons in the field of
heavy nuclei, Phys. Rev. A 101, 012708 (2020).

[17] I. P. Ivanov, Measuring the phase of the scattering amplitude
with vortex beams, Phys. Rev. D 85, 076001 (2012).

[18] I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche, Double-
slit experiment in momentum space, Europhys. Lett. 115, 41001
(2016).

[19] I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche, Elas-
tic scattering of vortex electrons provides direct access to the
Coulomb phase, Phys. Rev. D 94, 076001 (2016).

[20] D. Karlovets, Probing phase of a scattering amplitude beyond
the plane-wave approximation, Europhys. Lett. 116, 31001
(2016).

[21] D. V. Karlovets, Scattering of wave packets with phases, J. High
Energy Phys. 03 (2017) 049.

[22] I. P. Ivanov, High-energy physics with particles carrying non-
zero orbital angular momentum, Few-Body Syst. 53, 167
(2012).

[23] I. P. Ivanov, Probing the phase of the elastic pp scattering
amplitude with vortex proton beams, AIP Conf. Proc. 1523, 128
(2013).

[24] U. D. Jentschura and V. G. Serbo, Generation of High-
energy Photons with Large Orbital Angular Momentum
by Compton Backscattering, Phys. Rev. Lett. 106, 013001
(2011).

[25] U. D. Jentschura and V. G. Serbo, Compton upconversion of
twisted photons: Backscattering of particles with non-planar
wave functions, Eur. Phys. J. C 71, 1571 (2011).

[26] I. P. Ivanov and V. G. Serbo, Scattering of twisted particles:
Extension to wave packets and orbital helicity, Phys. Rev. A 84,
033804 (2011).

[27] I. P. Ivanov, Creation of two vortex-entangled beams in a
vortex-beam collision with a plane wave, Phys. Rev. A 85,
033813 (2012).

[28] J. A. Sherwin, Two-photon annihilation of twisted positrons,
Phys. Rev. A 98, 042108 (2018).

[29] D. Karlovets, Relativistic vortex electrons: Paraxial versus non-
paraxial regimes, Phys. Rev. A 98, 012137 (2018).

[30] D. Karlovets, Dynamical enhancement of nonparaxial effects in
the electromagnetic field of a vortex electron, Phys. Rev. A 99,
043824 (2019).

[31] D. V. Karlovets, G. L. Kotkin, V. G. Serbo, and A.
Surzhykov, Scattering of twisted electron wave packets by
atoms in the Born approximation, Phys. Rev. A 95, 032703
(2017).

[32] D. V. Karlovets and V. G. Serbo, Effects of the transverse
coherence length in relativistic collisions, Phys. Rev. D 101,
076009 (2020).

023084-9

https://doi.org/10.1103/PhysRevA.45.8185
https://doi.org/10.1103/PhysRevLett.75.826
https://doi.org/10.1103/PhysRevLett.88.053601
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature08904
https://doi.org/10.1103/PhysRevA.86.033824
https://doi.org/10.1103/PhysRevA.96.023622
https://doi.org/10.1126/science.1198804
https://doi.org/10.1103/PhysRevD.83.093001
https://doi.org/10.1103/PhysRevA.90.012118
https://doi.org/10.1103/PhysRevA.92.012705
https://doi.org/10.1103/PhysRevA.101.012708
https://doi.org/10.1103/PhysRevD.85.076001
https://doi.org/10.1209/0295-5075/115/41001
https://doi.org/10.1103/PhysRevD.94.076001
https://doi.org/10.1209/0295-5075/116/31001
https://doi.org/10.1007/JHEP03(2017)049
https://doi.org/10.1007/s00601-011-0248-3
https://doi.org/10.1063/1.4802133
https://doi.org/10.1103/PhysRevLett.106.013001
https://doi.org/10.1140/epjc/s10052-011-1571-z
https://doi.org/10.1103/PhysRevA.84.033804
https://doi.org/10.1103/PhysRevA.85.033813
https://doi.org/10.1103/PhysRevA.98.042108
https://doi.org/10.1103/PhysRevA.98.012137
https://doi.org/10.1103/PhysRevA.99.043824
https://doi.org/10.1103/PhysRevA.95.032703
https://doi.org/10.1103/PhysRevD.101.076009


WANG, LIU, LEI, GENG, SHEN, BU, AND JI PHYSICAL REVIEW RESEARCH 4, 023084 (2022)

[33] D. V. Karlovets and A. M. Pupasov-Maksimov, Nonlinear quan-
tum effects in electromagnetic radiation of a vortex electron,
Phys. Rev. A 103, 012214 (2021).

[34] I. P. Ivanov, V. G. Serbo, and V. A. Zaytsev, Quantum calcu-
lation of the Vavilov-Cherenkov radiation by twisted electrons,
Phys. Rev. A 93, 053825 (2016).

[35] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, and J.
Verbeeck, Observation of the Larmor and Gouy Rotations with
Electron Vortex Beams, Phys. Rev. Lett. 110, 093601 (2013).

[36] K. Y. Bliokh, P. Schattschneider, J. Verbeeck, and F. Nori,
Electron Vortex Beams in a Magnetic Field: A New Twist on
Landau Levels and Aharonov-Bohm States, Phys. Rev. X 2,
041011 (2012).

[37] A. Pupasov-Maksimov and D. Karlovets, SmithPurcell ra-
diation of a vortex electron, New J. Phys. 23, 043011
(2021).

[38] P. Schattschneider, Th. Schachinger, M. Stöger-Pollach, S. Löf-
fler, A. Steiger-Thirsfeld, K. Y. Bliokh, and F. Nori, Imaging
the dynamics of free-electron Landau states, Nat. Commun. 5,
4586 (2014).

[39] Z. Bu, L. Ji, S. Lei, H. Hu, X. Zhang, and B. Shen, Twisted
Breit-Wheeler electron-positron pair creation via vortex gamma
photons, Phys. Rev. Research 3, 043159 (2021).

[40] P. O. Kazinski and V. A. Ryakin, Radiation of twisted photons
in elliptic undulators, Russ. Phys. J. 64, 717 (2021).

[41] O. V. Bogdanov, P. O. Kazinski, P. S. Korolev, and G. Y.
Lazarenko, Generation of hard twisted photons by charged par-
ticles in cholesteric liquid crystals, Phys. Rev. E 104, 024701
(2021).

[42] J. Harris, V. Grillo, E. Mafakheri, G. C. Gazzadi, S. Frabboni,
R. W. Boyd, and E. Karimi, Structured quantum waves,
Nat. Phys. 11, 629 (2015).

023084-10

https://doi.org/10.1103/PhysRevA.103.012214
https://doi.org/10.1103/PhysRevA.93.053825
https://doi.org/10.1103/PhysRevLett.110.093601
https://doi.org/10.1103/PhysRevX.2.041011
https://doi.org/10.1088/1367-2630/abef97
https://doi.org/10.1038/ncomms5586
https://doi.org/10.1103/PhysRevResearch.3.043159
https://doi.org/10.1007/s11182-021-02370-x
https://doi.org/10.1103/PhysRevE.104.024701
https://doi.org/10.1038/nphys3404

