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Chiral quantum optics in broken-symmetry and topological photonic crystal waveguides
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On-chip chiral quantum light-matter interfaces, which support directional interactions, provide a promising
platform for efficient spin-photon coupling, nonreciprocal photonic elements, and quantum logic architectures.
We present full-wave three-dimensional calculations to quantify the performance of conventional and topological
photonic crystal waveguides as chiral emitter-photon interfaces. Specifically, the ability of these structures to
support and enhance directional interactions while suppressing subsequent backscattering losses is quantified.
Broken symmetry waveguides, such as the nontopological glide-plane waveguide and topological bearded
interface waveguide are found to act as efficient chiral interfaces, with the topological waveguide modes allowing
for operation at significantly higher Purcell enhancement factors. Finally, although all structures suffer from
backscattering losses due to fabrication imperfections, these are found to be smaller at high enhancement factors
for the topological waveguide. These reduced losses occur because the optical mode is pushed away from the
air-dielectric interfaces where scattering occurs, and not because of any topological protection. These results are
important to the understanding of light-matter interactions in topological photonic crystal and design of efficient,
on-chip chiral quantum devices.
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I. INTRODUCTION

Chiral light-matter interactions are directional, enabling
nonreciprocal devices and circuits, including unidirectional
single-photon emission. This directionality arises from the in-
teraction of elliptical dipoles with finely structured light fields
of nanophotonic systems, such as plasmonic surfaces [1,2],
nanowaveguides [3,4], resonators [5,6], and photonic-crystal
waveguides (PhCWs) [7–9], using either classical or quan-
tum light sources [10]. Chiral light-matter interactions enable
nonreciprocal devices, such as optical isolators [8], circula-
tors [11–13], and quantum gates [14,15], and, in waveguides,
are the basis for several protocols for quantum networks [16].
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Recently, a new class of topologically engineered PhCWs
have been proposed and demonstrated [17–23], generating
considerable excitement within the quantum optics com-
munity [24–28]. In analogy to edge modes of electronic
topological insulators [29,30], the guided modes of topolog-
ical PhCWs have been identified as both chiral [20,28,31]
and resistant to backscattering in 60 degree bends [24,25,32–
34]. Light propagation in all-dielectric media is described by
Maxwell’s equations obeying time-reversal symmetry (TRS)
demanding that the complex electric field in the forward di-
rection is the complex conjugate of the electric field in the
backward direction. Light scattering from inhomogeneities
(classical or quantum) alters the flow of light. In a one-
dimensional waveguide, the condition referred to as chiral
interaction corresponds to forward and backward propagat-
ing modes scattering with different strengths from the same
(elliptically polarized) dipole. In this situation, a radiating
dipole will be directional, which is referred to as chiral emis-
sion. Chiral single-photon emission has been demonstrated
in topological PhCWs [24–26]. However, only few works
have considered scattering losses beyond 60 degree bends
that constitute inherent symmetry directions of the struc-
ture [32,35–37]. Potentially topological waveguides could
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have increased robustness toward backscattering loss from
inherent fabrication imperfections in real devices. This could
be of technological importance in quantum photonic devices
where inherent backscattering leads to Anderson localization
of light [38–40] thus limiting the operation length of the
devices. Disorder-induced scattering also places a limit on
device length for exploiting nonlinear effects in slow light
PhCWs [41,42].

In this work, we use full vectorial three-dimensional finite-
element simulations and rigorous scattering theory to explore
how well different photonic crystal waveguides (Sec. II), and
more specifically their guided modes (Sec. III), can act as
quantum chiral-light matter interfaces (Sec. IV). We find that
topological waveguides can be favorable compared to stan-
dard line-defect (W1) and even glide-plane waveguides [43]
(GPWs) as they enable near-unity directionality at higher Pur-
cell factors and lower propagation losses (Sec. V). We stress
that the differences in loss performance arise from variations
of the electric field distribution rather than the topological
nature of the edge state modes, here based on the quantum
valley-Hall effect [18]. This is because valley-Hall topological
photonic waveguides do not break TRS, and hence the back-
propagating mode is always available, in contrast with edge
modes of topological electronic insulators. Finally, we show
that topological waveguides, despite this lack of topological
protection [44], can outperform conventional photonic crys-
tal waveguides for the realization of integrated nonreciprocal
single-photon devices for constructing of scalable complex
quantum circuits and networks [45] (Sec. VI).

II. PHOTONIC CRYSTAL WAVEGUIDES AS QUANTUM
CHIRAL INTERFACES

An ideal chiral interface for quantum light-matter interac-
tions, such as the one shown in Fig. 1, is characterized by
several properties. First and foremost, emission or scattering
of photons by a quantum emitter (QE) into the counter-
propagating modes left (L) or right (R) should be highly
asymmetric with decay rates γL � γR, or vice versa. This di-
rectionality occurs when the overlap of circular (or elliptical)
transition dipoles with the two counter-propagating modes
differs, and is quantified by

D = γL − γR

γL + γR
. (1)

Below, we show how this directionality factor can be calcu-
lated for any electric field profile.

Second, an efficient quantum light-matter interface typi-
cally enhances photonic interactions and minimizes subse-
quent losses as photons solely propagate to and from the
emitter. Emission enhancement into a selected, guided mode
is quantified by the Purcell Factor F [46], which for PhCWs
scales linearly with the group index ng [47]. Consequently,
PhCWs are often used in the slow-light regime [48], where
ng ≈ 58 has been measured [49]. Unfortunately, in-plane
backscattering between the counter-propagating modes scales
as n2

g [50], resulting in prohibitively large losses at high ng’s.
As we discuss below, the backscattering loss also depends on
how the electric field is distributed within the PhCW unit cell,
opening up a route toward realistic slow-light interfaces.

FIG. 1. (a) Schematic of a chiral light-matter interface utilizing
an edge mode between two topological photonic insulators (dark and
bright green). The field norm for the guided edge-mode is shown
(yellow to red) and an embedded quantum emitter indicated. The
quantum emitter’s transition dipoles are left- or right-handed circular
(σ±), resulting in directional emission (left and right as shown in
the inset) when it is placed at a position where the polarization
of the guided mode is circular. The white-dashed line highlights a
single supercell of the waveguide. (b) Schematics of the supercells
of the BIW, ZIW, GPW, and W1 with the interface or center of each
waveguide highlighted with a dashed line.

In this work, we study how well four different PhCWs
perform in each of the three areas identified above: D, F , and
the minimization of backscattering losses. The correspond-
ing unit cell of each structure is shown in Fig. 1(b), with
the interface (center) of each waveguide marked. These have
been designed and experimentally implemented [24] to guide
light near λ = 930 nm (see Appendix A for further design
parameters) for use with high-quality self-assembled Indium
Arsenide quantum dots in a Gallium Arsenide membrane [10]
with a fixed lattice constant a = 266 nm, but their design can
readily be scaled [51] for use with any other quantum photonic
platform. Similarly, we limit our designs to circular holes
but note that in practice more complex and fabricationally
challenging shapes such as triangles [52] or shamrocks [8] are
possible.

We consider two topological and two conventional PhCW
designs. The conventional waveguides are standard photonic
crystal line-defect waveguide (W1) [49], and a broken-
symmetry GPW that has been optimized to work as a chiral
interface [43]. We compare these to topological PhCWs based
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on a photonic analog of the quantum valley-Hall effect (QVH)
of two photonic topological insulators [24], each character-
ized by a topological invariant, the valley-Chern number, of
opposite sign Cν = ±1/2 [44]. In analogy with the electronic
QVH insulators [53], we expect that the difference between
these invariants (here 1) denotes the number of topological
interface modes that span the bandgap, although recent ex-
periments suggest the existence of spectral regions where
the mode does not afford protection to sharp bends [24].
Regardless, we use QVH insulators as their guided modes
are known to lie below the light lines and hence do not
couple to the free-space continuum, in contrast to topolog-
ical PhCWs based on the photonic analog of the quantum
spin-Hall effect, whose modes lie above the light line and are
therefore leaky [52,54]. Here, we consider QVH waveguide
designs formed by bearded-type interface (BIW) and zigzag-
type (ZIW) interfaces [55] as shown in Fig. 1(b).

III. PHOTONIC BAND DIAGRAMS AND DISPERSION

We begin by calculating the (photonic) band diagrams and
corresponding electromagnetic field distributions for all four
PhCWs, using commercially available finite element software
(COMSOL Multiphysics; details of the numerical simulations
can be found in Appendix B).

We show the guided TE-like bands for the topological
and conventional PhCWs in Figs. 2(a) and 2(b), respectively.
In each case, the bulk continuum modes are given by the
solid regions, while the guided modes are given by solid
curves. Additional modes that are close to the continuum and
would therefore be leaky, or the higher-order mode of the W1
and GPW are shown by the dashed curves. We also show
an exemplary Bloch normalized mode-profile of the electric
field ‖en,k‖ for each well-coupled mode of index n, taken for
a group index ng(ωn,k ) = c/(dωn,k/dk) ≈ 15 [cf. circles in
Fig. 2(c)], where c is the speed of light, ωn,k = 2πνn,k is the
eigenfrequency, and k is the wave number.

Several interesting similarities emerge between the dis-
persion relations of the topologically conventional and
topological waveguide. First, both the W1 and ZIW waveg-
uides support one well-coupled mode and others that are poor
choices for a quantum interface. The W1 dispersion contains
an odd mode [dashed yellow curve in Fig. 2(a)] and the ZIW
dispersion contains two modes in close proximity to the bulk
modes [dashed blue curves in Fig. 2(b)] that in practice are
expected to leak into the continuum. Furthermore, these two
modes have a very large mode volume as discussed in the Ap-
pendix B, rendering them unsuitable for efficient light-matter
coupling. The W1’s fundamental mode is highly confined
throughout the entire k-space, while the mode-volume of the
ZIW mode has a more complex frequency dependence. As
discussed in Appendix B, the ZIW mode-width can be either
large or small in regions of high ng.

Likewise, there exist several similarities between the
guided modes of the GPW and those of the BIW, as expected
since both share the same broken transverse symmetry. The
BIW topological edge-mode is comprised of two separate
bands, each of which covers a large frequency interval, in
much the same way as the guided modes of the GPW [43].
However, the two bands differ in their backscattering losses

FIG. 2. (a) Photonic band diagram of the GPW (orange) and W1
(yellow) waveguides. Shaded regions correspond to the bulk modes
of the GPW (brown) and W1 (yellow), while the gray region repre-
sents the light cone. The solid and dashed curves represent guided
modes that are considered or excluded in this work, as discussed
in the main text. Insets show exemplary mode profiles at ng ≈ 15.
(b) Same as panel (a) but for topological BIW (green) and ZIW (blue)
waveguides, noting that both topological waveguides share the same
bulk modes. (c) Group index of the guided modes denoted by solid
curves in panels (a) and (b) as a function of frequency for all four
structures, with circles representing the modes whose profiles are
shown above. The band-edges are indicated by a dotted line.
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FIG. 3. (a) Mode maps of the directional Purcell factor Fσ±,k (r) and directionality Dk (r) for a unit cell of each PhCW, taken at ng ≈ 15 as
shown in Fig. 2(c). (b) Maximal F max

σ±,k for each mode as a function of frequency, with dashed curves representing the divergence predicted in
the slow-light regions. (c) Corresponding backscattering length Lback,n,k in units of the lattice constant a as a function of frequency. Note that
both the backscattering losses and interaction enhancement diverge as the group index diverges. The band-edges are indicated by dotted lines,
where the group index of all PhCWs except for the GPW diverge. Dashed lines indicate group-index divergences of the band-edge. Circles in
panels (b) and (c) represent the modes whose profiles are shown in panel (a).

around bends as demonstrated in measurements and supported
by finite-difference time-domain calculations [24]. For 60 de-
gree bends, the upper mode shows little transmission, while
near-unity transmission was observed over a large bandwidth
of the lower band, making it suitable for the creation of trian-
gular resonators. The two BIW bands cross at ka/2π ≈ 0.42
and are degenerate at the band edge. Both GPW and BIW
modes are tightly confined across the entire k-space, with
the mode-width of the BIW being significantly larger than
that of the GPW and smaller than that of the ZIW, cf. Ap-
pendix B. Nevertheless, we find highly confined, slow-light
at the band edge of the lower branch of the BIW, indi-
cating that large Purcell enhancement is possible with this
structure.

IV. DIRECTIONALITY, PURCELL ENHANCEMENT,
AND DISORDER-INDUCED SCATTERING

Having determined the guided modes of each structure,
we are now ready to quantify how well each functions as
a bright, highly directional and low-loss interface. We begin

by calculating the directional Purcell enhancement Fσ±,n,k for
a left- (subscript −) or right-handed (subscript +) circular
pointlike dipole σ± = 1/

√
2(x̂ ± iŷ) for each PChW accord-

ing to Ref. [7]:

Fσ±,n,k (r) = 3πc2ang(ωn,k )

2ω2
n,k

√
ε(r)

|σ∗
± · en,k (r)|2. (2)

Although this quantity and others are mode dependent, since
in what follows we only consider single-mode operation, the
subscript n is omitted for clarity. Exemplary maps of a unit cell
of each structure are shown in Fig. 3(a), taken again for modes
with ng,n ≈ 15. From these, we observe that for both the GPW
and BIW there is little overlap between Fσ+,k and Fσ−,k . In
contrast, these maps differ only near the holes for the W1
structure, and are nearly identical for the ZIW, foreshadowing
that these two structures fare poorly as chiral interfaces.

As noted above, the chirality of the interaction is quantified
by the directionality,

Dk (r) = Fσ−,k (r) − Fσ+,k (r)

Fσ+,k (r) + Fσ−,k (r)
, (3)
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examples of which we also present in Fig. 3(a). Here, we
observe that while highly directional interactions are possible
with all four structures, there is only a high degree of overlap
between regions of high Purcell enhancement and directional
interactions for the GPW and BIW. For the W1 and ZIW, in
contrast, relatively high Purcell factors are found in regions of
linear electric field polarization, largely precluding efficient
chiral light-matter interactions and showing the importance of
breaking inversion symmetry in the waveguides.

We find the maximal Purcell enhancement factor
F max

σ±,k = maxr∈Sc{Fσ±,k (r)} within each map (where Sc denotes
the area corresponding to the regions of high-index material),
and plot these values as a function of frequency in Fig. 3(b)
for all structures. We observe that all structures predict Purcell
factors of upwards of 15 away from the band-edge, where both
ng and Fσ±,k may diverge. In practice, the range of accessible
factors is limited by several effects, among them scattering
due to structural imperfections [56] and disordered-induced
mode broadening [57]). Experimentally, a Purcell enhance-
ment factor of F ≈ 6.9 has been observed [49], and PhCW
systems with significantly higher enhancements have been
proposed [58]. From this perspective, all four structures can
theoretically enhance a chiral light-matter interaction suffi-
ciently to form the basis of an efficient interface.

A good chiral interface must not only enhance interac-
tions, but must also allow for subsequent low-loss transport.
We therefore calculate the ensemble averaged mean-free path
(or backscatter loss length) Lback,k = 〈αback,k〉−1, limiting our-
selves to the single-mode and single-event backscattering
regime as is typical for relatively short waveguides [59]. Here,
〈αback,k〉 is the power-loss factor per unit cell which is the
ensemble average over disorder-induced imperfections (see
Appendix C for details and discussion of the scattering mech-
anisms) for nonuniform air-hole size Rα , where α is the index
of the individual holes [60].

We neglect multimode scattering from degenerate modes
of the BIW, since their degeneracy can be lifted without sig-
nificantly altering their mode profile, as was done with the
GPW [43], resulting in

〈αback,k〉 =
∑

α

a2ω2
k n2

gσ
2

4
(ε2 − ε1)2

×
∫∫

drdr′

(

h

2
− |z|

)



(
h

2
− |z′|

)

× δ(Rα − |ρ − ρα|)[e∗
k (r) · p∗

k (r)][ek (r′) · pk (r′)]

× exp

(−Rα|φ̃ − φ̃′|
lp

+ i2k(x − x′)
)

, (4)

where σ is the statistical surface roughness factor, 
 denotes
the Heaviside function, h is the membrane height, z is the
vertical Cartesian coordinate, δ is the Kronecker δ function,
ρ (ρα) denotes the in-plane projection of the position vector
(the individual hole center axis); also, pk is the polarizability,
lp is the surface roughness correlation length, and φ̃ is the
azimuth angle of the position vector in the cylindrical coor-
dinate system which is centered in the hole α. In principle,
multimode back-scattering can be explicitly included [56]. Yet

TABLE I. Purcell factors F max
σ± and mean-free paths Lback for the

highlighted modes with a group index of ng = 15.

PhCW F max
σ± Lback

W1 2.4 9.4 × 103 a
GPW 3.5 3.6 × 103 a
ZIW 3.2 7.0 × 103 a
BIW 3.0 9.6 × 103 a

is not expected to significantly contribute to losses other then
for slow, small k (leaky) modes [56,61].

Considering state-of-the-art soft mask nanofabrication
methods [59,62] we assume a surface roughness for each
hole of σ = 3 nm and a correlation length for this disorder
within each hole of lp = 40 nm [cf. Fig. 8(b)] and present the
resulting mean-free path Lback,k = 〈αback,k

−1〉 for all structures
in Fig. 3(c). Interestingly, and as we show in Appendix C,
the relative performance of the different structures, with re-
spect to backscattering losses is relatively insensitive to the
absolute value of lp. As expected, scattering losses increase
with the group index, yet the absolute scattering length can
significantly differ for the different structures (and in general
does not scale quadratically with ng [59], as we also show in
Appendix D). As an example, for ng = 15, we find the Purcell
factors and mean-free paths as listed in Table I.

That is, for this moderate group index all PhCWs show
Purcell factors and mean-free paths varying by more than a
factor of 2. The W1 and BIW PhCWs show the least losses,
while the GPW provides the strongest enhancement factor. As
can be seen in the mode distributions [cf. Fig. 2(a)], the field of
the W1 PhCW is mainly located in the line defect center, away
from the holes (see Appendix D), yet is only weakly circularly
polarized [Fig. 3(a)]. The GPW mode is more strongly local-
ized near the hole edges, leading to higher scattering losses,
yet it is also circularly polarized at these areas of high field
intensity. In contrast, while the field distribution of the BIW is
also highest at points of circular polarization, these are located
more separated from the holes, reducing backscattering due
to imperfections. While the BIW’s performance according
to Table I may seem similar to the W1, the mode profile
shown in Fig. 3 is very alike the GPW’s. The relatively lower
Purcell factors and the lower losses stem from a wider Bloch
mode with relatively lower field strength at the hole interfaces
(See Appendix B). Analogously, the ZIW’s mode profile is
similar to the W1’s, but the wider Bloch mode with significant
field strength at the hole interface results in a performance
reduction.

V. OVERALL PERFORMANCE OF THE CHIRAL
INTERFACES

A real quantum chiral light-matter interface must not only
simultaneously enhance the interactions with circular transi-
tion dipoles and limit subsequent transport losses, but also
be designed such that high-quality quantum emitters can be
readily embedded in regions where coupling is effective. This
places two constraints: (i) the emitters cannot be located too
close to the air-dielectric interfaces of the holes so as to avoid
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FIG. 4. A summary of PhCW paramaters for use as practical quantum chiral-light matter interfaces. Maps of the maximal achievable
propagation length (in units of the lattice constant a) as a function of the minimum desired directionality or Purcell Enhancement factor
(structure marked in each panel). This combination of D and F must be found in an area A � Amin, which is sufficiently distant δmin from a
hole, as sketched in the inset of the first panel and explained in the main text. The bright gray area indicates the area A as an example for the
W1, while the dark and black areas indicate the excluded regions given by δmin. Insets in the W1 and ZIW panels show line cuts showing the
propagation length as a function of F for |D| = 0.5 and |D| = 0.99, respectively (cuts taken along the white dashed lines).

interactions with surface states, and (ii) the area of the region
where the emitters can be located should be large enough
to ensure a high yield of successful couplings (for details
on the spatial constraints see Appendix E). Condition (i) can
typically be met with a distance δmin = 40 nm [63–65], while
state-of-the-art nanofabrication protocols allow for the deter-
ministic solid-state emitter-photonic structure integration with
an accuracy of around δacc ≈ 40 nm [66–68].

In Fig. 4 we therefore show the maximal propagation
length Lmax

back(Fσ± , |D|) that is possible, for a minimum desired
directionality amplitude |D| [69] and Purcell enhancement
Fσ± for each structure with free choice of the mode and
wave number k [70], but with the condition that a quantum
emitter fits within an area Ak (Fσ± , |D|, δmin) of minimum size
Amin = πδ2

acc while all points within this area are at least δmin

away from the edge of an air hole (for details on the numerical
implementation see Appendix E). From this figure it is evident

that only the GPW and BIW will realistically make good chi-
ral light-matter interfaces, as there essentially does not exist
a sufficiently large enough area to couple an emitter to either
a W1 or ZIW structure with high directionality and even a
moderate Fσ± = 5 (Fσ± = 3) for the ZIW (W1) (although, for
a ZIW, these points do exist within δmin of the air holes). In
contrast, sufficiently large areas can be found within unit cells
of the GPW and BIW where both near-perfect directionality
(|D| � 0.99) and enhancements up to F = 14 and beyond are
possible.

Where the topological BIW distinguishes itself from the
GPW is both in the size of the area that can be used to
efficiently and chirally interface to emitters, and in its per-
formance at enhancement factors exceeding 14. For fixed
|D| = 0.99 and Fσ± � 10 areas of at least 7.6 × 105 nm2

(corresponding to a circle of radius R|D|=0.99 ≈ 491 nm) can
be found within a GPW unit cell, while for this area a BIW is
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limited to 4.4 × 104 nm2 (corresponding to a circle of radius
R|D|=0.99 ≈ 118 nm). This can be seen in Appendix E, where
we also discuss how this area is determined.

Figure 4 shows that for high directionality |D| = 0.99 the
GPW outperforms the BIW as a chiral interface by about 30 %
higher propagation lengths, if low interaction enhancements
Fσ± � 4 are desired. For intermediate Purcell enhancements
(4 � Fσ± � 12) the GPW and the BIW show similar losses,
while for higher interaction enhancements (Fσ± > 12) the
propagation length of the BIW is longer than that of the
GPW. The highest achievable Purcell enhancement for the
GPW is Fσ± = 17.5 (14) for a minimal directionality am-
plitude |D| = 0.5 (|D| = 0.99). It is important to recognize
that this limit arises due to the dispersion engineering of
the GPW, which causes its group index to remain finite in
the entire reciprocal space, in contrast to an unoptimized
GPW whose dispersion relation diverges at the lower band
edge [43].

The difference between the losses of the GPW and BIW
can be understood by considering their respective mode pro-
files (cf. Appendix B), and realizing that in general the light
is better confined in the GPW compared to the BIW. Par-
ticularly for low to intermediate group indices we find that
the mode width of the GPW is half, or less, than that of
the BIW (cf. Appendix B). In the GPW, we can thus find
the same enhancement as in the BIW for lower ng’s, and
hence less scattering losses. However, for large group indices
the Bloch mode profile of the GPW’s shows high intensity
near the first air-hole row leading to a strong relative in-
crease of the backscattering losses (cf. Appendix D). In other
words, for low Purcell enhancements the GPW’s disadvan-
tage of high backscattering losses are compensated by tighter
mode confinement. For example, for |D| = 0.99 we find a
propagation length of 20880a (51330a) for a Purcell enhance-
ment of F = 1, and 318a (240a) for a Purcell enhancement
of F = 10 for the BIW (GPW). This means less than 4 %
(5 %) backscattering losses for a 10-unit cell long waveg-
uide and out-of-plane scattering dominating for low Purcell
enhancements [71].

VI. CONCLUSIONS

From the selected photonic crystal waveguides studied,
only the GPW and the topological BIW are suitable plat-
forms for chiral quantum optics. Both of these designs can
enhance highly directional interactions for emitters located in
relatively large regions. Both designs suffer from backscat-
tering due to fabrication impurities, although the topological
waveguide offers protection to 60-degree bends [25,32–34],
enabling sharp-edge microresonators that do not suffer from
bending losses [19,24,72–74].

The ability of these structures to act as elements in viable
quantum chiral light-matter interfaces is perhaps easier to
visualize using a concrete example. Here, we consider the per-
formance of a single quantum emitter chirally interfaced with
a PhCW. This fundamental element enables realization of in-
tegrated nonreciprocal single-photon devices for constructing
of scalable complex quantum circuits and networks [10]. Ex-
amples are loss-tolerant two-qubit measurements [16], optical

isolators and circulators [8,11], photon number dependent
routing [75–77],

√
SWAP [9] and CNOT gates [78].

Specifically, we assess the setting where single photons
are injected into the PhCW in which the chirally coupled
quantum emitter coherently (and asymmetrically) scatters the
injected photon forward or backward [45]. The forward propa-
gating photons are single-sidedly collected after transmission
through the PhCW of Nα unit cells.

The speed with which such a element ideally operates is set
by the characteristic rate of the emitters, namely, their decay
rates: γR/L = γ 0

R/LFσ,±, where γ 0
R/L is the quantum emitter’s

directional emission rate in a homogeneous medium. In re-
ality, the circuit operation rate (and fidelity) will be further
decreased as photons are lost to scattering due to imper-
fections or imperfect directionality. Assuming backscattering
only, the intensity, or accessible photon flux �R/L, is thus
given by

�R/L = γ 0
R/LFσ±exp

[
− Na

Lmax
back(Fσ± , |D|)

]
, (5)

where we explicitly note that the maximum propagation
length (in units of a) is a function of the desired enhancement
and directionality.

We set |D| = 0.99 as for near ideal chiral coupling. We
consider two limiting cases, a 10-unit cell PhCW (≈2.7 μm
for our structures) which is the shortest length to act as a
proper interface [58] and a 100 unit cell waveguide (≈27 μm)
which is a more typical length in current circuits [8], and
plot �R/L/γ 0

R/L as a function of Fσ± in Figs. 5(a) and 5(b),
respectively. The performance of the shorter structures is lim-
ited by the maximum achievable Purcell Factor (cf. Fig. 4),
and we observe losses of less than 1% for both GPW and
BIW for F � 2 which increase to 10% at around F = 13. For
higher values of F operation is only possible with the BIW,
and we expect 15% losses at F = 20. That is, for the shorter
interfaces, low loss operation is compatible with moderate
interaction enhancement. Here, we note that �R/L can directly
quantify device performance, with the exact dependence de-
termined by how many chiral elements are needed and the
specific protocol (e.g., whether it depends on emission or
transmission). For example, the operation speeds of quantum
networks for all optical routing of single photons [14] and
loss-tolerant two-qubit measurements capable of universal
quantum computation [16] is determined by the accessible
photon flux directly, �R/L, showing that GHz rate operation
is possible.

For the longer devices we calculate about 1% losses for
the BIW and GPW, respectively, at F = 2, which increase to
27% and 34% at F = 10. At F = 20, where only the BIW
can be used, we expect upwards of 79% losses, resulting in
characteristic photon rates of �R/L/γ 0

R/L ≈ 4. Thus while even
the longer waveguides can serve as chiral elements in quantum
photonic circuits, for most efficient operation one should opt
for a short, topologically protected waveguide.

Finally, we note that the topological waveguides consid-
ered here have not been optimized, in contrast with the
GPW [43]. Several methods can be used to optimize their
directionality and losses [59,79–82]. All rely on dispersion
engineering, where changing the size, shape, or position of

023082-7



NILS VALENTIN HAUFF et al. PHYSICAL REVIEW RESEARCH 4, 023082 (2022)

FIG. 5. Calculated delectable photon flux, in units of the homo-
geneous decay rate, as a function of the Purcell enhancement for a
quantum emitter χ chirally coupled to a PhCW as shown in the inset
to panel (a) [16]. The photon rate is shown for (a) short, 10-unit cell
structures and (b) the more typical 100-unit cell waveguides in solid
circles resolution limited by the k-space sampling, which are labeled
as an example for the BIW for the data points of highest Purcell
enhancements, cf. Appendix F). The dashed lines represent a guide to
the eye, while the solid curves represent a sub-optimal positioning of
the QE. In both panels (a) and (b), the performance of all 4 structures
is shown, with the topological BIW supporting highest-rate opera-
tion. This is true both for the shorter systems, where losses are low
in all cases, as well as for the longer structures, where the high ng

(enhancement) operation is limited by the scattering.

the holes modifies both the band-structure and field distribu-
tions, enabling slow light single-mode operation away from
the bulk modes or pushing the electric field distribution away
from the holes [25,28,52,79,83,84]. Doing so will reduce both
backscattering and out-of-plane scattering while allowing for
efficient and directional interactions.
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APPENDIX A: PHOTONIC CRYSTAL PARAMETERS

All PhCWs’s parameters can be rescaled with the crystal
lattice constant a. For numerical implementation we have set
a = 266 nm and a membrane thickness of h = 170 nm. We
have set the refractive index of the high-index membrane
to n1 = 3.4638 and in the surrounded by vacuum n2 = 1,
representing a GaAs-based platform in cryogenic conditions
(T = 4 K) [85].

A schematic of all PhCWs’s parameters shown in Fig.
6. For the W1 have set a hole radius of r/a = 0.3. For the
GPW, we follow the proposed design parameters [43]. The
center hole-to-hole distance is d = 0.75

√
3 a. The radii ri and

outwards position shifts li of the first four rows of index i
of air holes are r1/a = r2/a = 0.35, r3/a = 0.24, r4/a = 0.3,
and l1/a = 0, l2/a = √

3/8, l3/a = √
3/10, l4/a = √

3/20.
The other rows are not shifted in position and have a hole
radius identical to the fourth hole row radius r4. The latter is
identical to a W1’s hole radii of r/a = 0.3. The topological
photonic insulator’s unit cell (BIW and ZIW) consists of two
holes of radius of r1/a = 0.105 and r2/a = 0.235, resembling
an experimental implementation of a chiral light-matter inter-
face [24].

FIG. 6. Schematic of the waveguide center region of the
PhCWs’s supercells and their parameters for the simulations, as dis-
cussed in the text. Each photonic crystal border lines are highlighted
in color. Hole radii are indicate in gray. The GPW’s photonic crystal
is deformed from the W1 in the PhCW’s center region as discussed
in the text. The deformation parameters are indicated and labeled in
gray. The deformation parameters r4 and l4 of the GPW is outside
the shown region. The lattice vectors (photonic crystal’s unit cells)
are indicated for the W1 and the topological waveguides in a solid
black (white dashed) line. The ZIW’s and BIW’s photonic crystals
have the same unit cell and lattice vectors but their interface follows
along different directions.
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APPENDIX B: FEM CALCULATIONS SETTINGS, BLOCH
MODE NORMALIZATION, GROUP INDEX, AND MODE

WIDTH CALCULATIONS

We performed numerical finite element calculations
(FEMs) to determine the PhCW’s Bloch modes and eigen-
values. The PhCWs are systems of mixed dielectric media
for which we can compute the steady state solutions of the
Maxwell equations resembling linear Hermitian eigenvalue
problems [51] by using the commercial software COMSOL
Multiphysics.

For each type of PhCW, a supercell of the one-dimensional
periodic structure was studied using periodic boundary condi-
tions (PBC). With a perfect magnetic conductor (PMC) plane,
aligned with the reflection symmetry plane of the waveguides
the numerical complexity is simplified limiting the study to
transverse electric (TE) modes only. This takes the in-plane
electric dipole moments of QEs suitable for chiral light-matter
interaction [10] and TE-like mode profiles of the discussed
PhCWs into account [28,43,51]. The simulated volume was
restrained by perfectly matched layers (PML) below the mem-
brane and each side of the PhCWs. The distance between the
waveguide center and the PML below the membrane and on
the sides of the PhCWs was chosen to achieve negligible mode
leakage into the PML with a width of 12

√
3a on each side.

Numerical convergence was tested sweeping the maximal el-
ement size of the mesh grid the Master’s equation was solved
for. This resulted in a tetrahedral mesh with a locally maximal
element edge length of 1/10 of the minimal distance between
any local interface of differing dielectric constants.

We defined a right-handed Cartesian coordinate system
with x̂ being aligned with direction of propagation in the
waveguide, ŷ pointing into the plane of the 2D photonic crystal
and ẑ pointing out of plane, i.e., normal to the membrane.

We sampled the k-space of the PhCW in increments of
�k = 0.003 · 2π/a and computed the electric en,k (r) Bloch
modes [with magnetic field hn,k (r)] and eigenfrequencies
νn,k = ωn,k (k)/2π of each Bloch mode n of wave number k.
For clarity we omit the mode index in the following. We also
omit solutions in the light cone. We satisfy the Bloch mode
normalization: ∫

Vs

dr ‖ek (r)‖2ε(r) = 1, (B1)

where ‖ek (r)‖ is the norm of the electric field of the Bloch
mode and ε = n2 is the dielectric constant. We determine
the group index for each mode ng(ωk ) = c d

dk ωk using the
Hellmann-Feynmann theorem [86]:

ng(ωk ) = 2c(Ue,k + Uh,k )

|∫Vs
dr Re[e∗

k (r) × hk (r)]| , (B2)

where c is the speed of light, Vs is the total super-cell volume,
and Ue,k (Uh,k) is the time averaged electric (magnetic) field
energy.

We define and evaluate a characteristic mode width mea-
sure wk (shown in Fig. 7) as the volume integral of the
electric energy density ue,k (r) [magnetic uh,n,k (r) density].
We assigned the mode width measure wk implicit by the
volume Vw = {r ∈ Vs : −wk < r × ŷ < wk} such that the
time-averaged field energy inside the integration volume Vw

is 1/e of the time-averaged field in the entire supercell

FIG. 7. Characteristic mode width wn as a function of the group
index ng(ωn,k ) of all band-gap modes of the BIW, ZIW and the
selected modes of the GPW and W1 for comparison. The data points
are connected along their individual wave number k. The dashed
lines correspond to the modes of the ZIW which are not considered
for a chiral-light interface due to their extreme mode widths.

volume Vs: ∫
Vw

dr
ue,k (r) + uh,k (r)

Ue,k + Uh,k
= 1

e
, (B3)

where ue,k (r), uh,k (r) are the electric and magnetic field en-
ergy density and Vw = {r ∈ Vs : −wk < r × ŷ < wk} is the
effective mode volume.

The tight confinement of the GPW stems from the modified
hole radii and position, and the modification of the space
between the photonic crystals. The BIW’s and ZIW’s modes
vary drastically in their characteristic mode width compared
to topological trivial PhCWs and deviate clearly from the
trend of increasing mode volume with increasing group index
as observed for the W1. The GPW’s lower frequency modes
deviates from this trend only slightly.

APPENDIX C: INCOHERENT BACKSCATTERING
POWER-LOSS FACTOR CAUSED BY STRUCTURAL

DISORDER

Beyond intrinsic losses of the dielectric medium, guided
modes of PhCW experience further losses, which arise from
photon-scattering. In the most general case, a guided mode
of a PhCW experiences out-of-plane losses (scaling approxi-
mately with ng) and in-plane scattering losses into bulk modes
and reverse propagation modes (scaling approximately with
n2

g) [50,59]. For sufficiently large group indices, the out-of-
plane can be neglected [61]. Scattering into bulk modes can
be suppressed by lifting the frequency region of interest away
from the bulk by choice of the lattice parameters and by
photonic band engineering [79,84]. Furthermore, the single-
mode operation of a PhCW can also be achieved by photonic
band engineering [25,28,52]. Yet, in contrast to systems with
broken TRS, backscattering losses in systems obeying TRS
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cannot be eliminated due to the guaranteed double degener-
acy of the modes in forward (k) and backwards propagation
(−k) [69]. Consequently, backscattering between these two
modes is allowed. While there are indications of a potentially
exploitable advantage of topological waveguides to be less
sensitive to defects of the same symmetry group as the cor-
responding Hamiltonian [28,44], we assume backscattering to
be caused by isotropic fabrication induced disorder in good
agreement with theory and experiment [50]. As discussed in
Sec. IV, we assume the single-event backscattering regime as
is typical for relatively short waveguides [59].

The ensemble average 〈αback〉 of the fabrication disorder-
induced single-event incoherent backscattering power loss per
unit cell αback can be calculated semi-analytically using the
slowly varying surface approximation [50,87]. For a short
W1 (<100 µm) and group index of about ng < 22, αback is
the backwards reflections loss described by the Beer-Lambert
relation [56]. For higher group indices or longer waveg-
uides, the Beer-Lambert relation overestimates the backwards
reflections for long waveguides due to multiple-scattering.
In the multiple-scattering regime the effective losses per
unit cell decreases to αeff

back = αrad
√

1 + 2αback/αrad where
αrad is radiative loss [56]. For our discussion, we assume
PhCWs of minimal length to form a chiral light-matter
interface to achieve minimal losses. Therefore, we omit
multiple-scattering events. PhCWs as short as 10-unit cells
are sufficient for high quality light-matter interfaces [58]. We
neglect the out-of-plane scattering losses, taking the scaling
only linear in ng into account [56].

We also neglect multimode scattering as discussed in the
main text and therefore find the backscattering power loss fac-
tor per unit cell by adaption from Patterson and Hughes [88]
to be

αback,k = a2ω2
k n2

g(ωk )

4

∫∫
drdr′�ε(r)�ε(r′)

× [e∗
k (r) · p∗

k (r)][ek (r′) · pk (r′)]exp[i2k(x − x′)],
(C1)

where �ε(r) describes the difference of the dielectric function
between the ideal and disordered structure and pn,k is the
polarization density:

pk (r) =
[

ek,‖(r) + ε(r)
dk,⊥(r)

ε1ε2

]
δ(r − r′), (C2)

where ek,‖ is the electric field components of the Bloch mode
parallel to interfaces of changing dielectric constants ε1 = n2

1
and ε2 = n2

2 and dk,⊥ is perpendicular electric displacement
fields. This disorder form satisfies the correct boundary con-
ditions at the hole interface.

We assume in-plane hole deformation of �R of the holes to
be the dominant source of scattering in good agreement with
theory and experiment [56,71]. Thus �ε(r) is only nonzero at
the hole walls. With air hole indices α and the corresponding
hole’s Radius Rα , we can write the change of the dielectric
function as

�ε(r) = (ε2 − ε1)


(
h

2
− |z|

)∑
α

�R[φ̃(ρ, ρα )]

× δ(Rα − |ρ − ρα|), (C3)

FIG. 8. Inelastic mean-free path Lback,k = 〈αback,k〉−1 sweeping
the correlation constant lp and keeping the deformation param-
eter σ = 3 nm constant for chosen modes representing minimal
backscattering fullfilling the requirements of: (a) providing Purcell
enhancement F = 1 and a directionality |D| = 0.99 in locations be-
ing separated from hole by δ within the high-index regions of the
vertical symmetry plane Sc (see Appendix E) and (b) providing a
Purcell enhancement F = 10 and providing the highest direcionality
Dmax accessible for each PhCW within the same position restrictions
as in panel (a). The inlet shows a schematic of the stastical hole
deformation parameters. A hole is deformed by a dent of amplitude
σ over a correlation length lp.

where ρ, ρα are the in-plane vectors to r and the hole center
position of hole α, and where φ̃ is the angular coordinate of
the position r in the cylindrical coordinate system centered in
the hole α, so that

φ̃(ρ, ρα ) = arctan

[
ρsin(φ) − ραsin(φα )

ρcos(φ) − ραcos(φα )

]
. (C4)

We assume disorder between different air holes αi and α j to
be uncorrelated for i �= j but to be perfectly correlated within
each air hole in the cylindrical axis direction. This assumption
takes the statistical functions determined by imaging of pho-
tonic crystal slabs into account [62]. We can write the disorder
correlation between two points of the sidewall as

〈�R(φ̃)�R(φ̃′)〉 = σ 2exp

(−Rα|φ̃ − φ̃′|
lp

)
δ(α, α′). (C5)
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Thus, the ensemble averaged incoherent disorder-induced
backward scattering power loss per unit cell in the single-
scattering event approximation omitting multimode scattering
is then

〈αback,k〉 =
∑

α

a2ω2
k n2

g(ωk )σ 2

4
(ε2 − ε1)2

×
∫∫

drdr′

(

h

2
− |z|

)



(
h

2
− |z′|

)

× δ(Rα − |ρ − ρα|)[e∗
k (r) · p∗

k (r)][ek (r′) · pk (r′)]

× exp

(−Rα|φ̃ − φ̃′|
lp

+ i2k(x − x′)
)

. (C6)

This formalism recovers the approximate backscattering
scaling quadratic in the group index. However, the backscat-
tering is highly dependent on the PhCW’s morphology by
means of the intensity profile at the air-hole walls, and the
Bloch modes change as a function of frequency and k [59].
Mode profiles with high field strengths at a large number of
holes show high backscattering losses. Similarly, small holes
are associated with larger backscattering losses due to the
Rα/lp term, as they occur in the third row of holes in the
GPW and the throughout the BIW’s and the ZIW’s photonic
crystals.

While all WG scale quadratically in σ the effect of lp is
non trivial, depending on the hole sizes and the field am-
plitude at the air-hole interfaces. However, the influence of
the backscattering parameters seems to be low and affects all
PhCWs similarly as shown in Fig. 8 where we show the in-
elastic mean-free path Lback,k = 〈αback,k〉−1. Thus, the choice
of the correlation length and the deformation strength do not
influence the choice of the waveguide topology significantly.

APPENDIX D: BACKSCATTERING AND PURCELL
ENHANCEMENT SCALING IN THE GROUP INDEX

Upon renormalization of the Purcell enhancement and
of the mean free path by their inverse explicit group in-
dex dependence, the significance of the dispersion of the
mode profiles and their polarization is revealed as shown
in Fig. 9. We observe variations in the mode dependence
of the renormalized enhancement (mean-free path) vary up
to a factor 4 (20) throughout the full k-space outside the
light cone. For identical group index the implicit group index
dependence is taken into account. Still, we find variations
in the mode profile dependence of the renormalized en-
hancement (mean-free path) vary up to a factor 4 (9). The
mode profile dependence of both properties does not correlate
among different PhCW and their relative dependence is highly
dispersive.

APPENDIX E: AREAS OF PURCELL ENHANCEMENT
AND DIRECTIONALITY

To compare the PhCWs’ performances as quantum emit-
ter based chiral light-matter interfaces, we can compare the
maximal propagation length Lback,n,k under free choice of the
mode and free choice of wave number k for which we find
a nonzero area in which we find a minimal directionality D

FIG. 9. (a) Renormalized maximal Purcell enhancement F max
σ±,k/ng

within the high-index regions of the vertical symmetry plane Sc (see
Appendix E) and (b) renormalized mean-free path Lback,kn2

g. The
solid lines connect modes along the wave number k while the dashed
lines indicate regions of divergence. The nontrivial dispersion of the
renormalized Purcell enhancement and the renormalized mean-free
path indicate the significance of the dispersion of the mode profiles
and their polarization.

and Purcell enhancement F . The free choice of wave vector k
and mode n means to tune the PhCW optimally to resonance
with the QE by tuning the lattice parameters [70]. However,
for a realistic platform, we have to take two more restrictions
of QE positioning into account. State-of-the art fabrication
techniques only allow for placing QE only at certain minimal
distance δmin from any air-hole wall interface and only with a
certain positioning accuracy δacc.

Experimentally, the minimum air hole distance has been
estimated for near-infrared InGaAs QDs to be about δmin =
30 nm [68]. We take this restriction of positioning QDs math-
ematically into account by only considering points in the
manifold Smin, defined as all points of the symmetry plane of
the high index material Sc that have a minimal distance δmin

to any air hole:

Smin(δmin) = {r ∈ Sc : ‖ρ − ρα‖ � Rα + δmin}, (E1)

where Sc is the high index material region of the PhCWs
vertical symmetry plane of the super-cell, and ρ (ρα) is the
in-plane vector to r (the center of hole with index α).
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FIG. 10. Maximal area F of all modes for minimal directionality amplitude |D| and minimal Purcell enhancements P in the high index
material area given by Smin, not limiting the associated group index or backscattering losses.

The area Ak (|D|, F, δmin) of a minimal directionality
Dk (r) > |D| and Purcell enhancement Fσ±,k (r) > F per
super-cell considering the QD positioning restriction given by
δmin is

Ak (|D|, F, δmin) =
∫
S(δmin )

dr
[Fσ+,k (r)− F ]
[Dk (r)− |D|],
(E2)

where 
 is the Heaviside step function.
In Fig. 10 we show the maximal areas Ak (|D|, F, δmin) for a

Purcell enhancement F and Directionality D under free choice
of the mode and the wave number k:

F = maxk{Ak (|D|, F, δmin)}. (E3)

We find the W1 to show large areas for high Purcell en-
hancements but due to its predominately linear polarization
throughout the k-space, it does not allow for Purcell enhance-
ments and high directionality for F > 3. The ZIW is very
similar to the W1 in this regard, although the areas A are
for all pairs D, F at least an order of magnitude smaller. The
GPW and BIW seem to be similar. However, for areas as of
|D| > 0.9 (|D| < 0.9) the GPW (BIW) offers more area for
most pairs D, F . The BIW is the only PhCW allowing for
QE interfaces with significant directionality and the highest
Purcell enhancement of F > 20.

We take the QE positioning accuracy δacc into account
by only considering areas Ak (|D|, F, δmin) large enough to
place a QD within the minimum area Amin(δacc) = πδ2

acc. The
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precision of placing a InGaAs QD in a photonic structure is
estimated to be about δacc = 40 nm [68].

Taking both fabrication limitations into account, we as-
sess the maximal propagation length Lmax

back(F, |D|) under free
choice of the wave number k and free choice of the mode
for which we find an area Ak (|D|, F, δmin) > Amin(δacc) of a
minimal directionality amplitude Dk (r) > |D| and minimal
Purcell enhancement Fσ±,k (r) > F and take the QE position-
ing limitations into account as

Lmax
back(|D|, F, δmin, δacc)

= maxk{Lback,k : Ak (|D|, F, δmin) > Amin(δacc)}. (E4)

We show the conditional maximal propagation length
Lmax

back(|D|, F, δmin, δacc) in Fig. 4.

APPENDIX F: MODES FOR HIGHEST PHOTON
NUMBER RATES

The modes for maximal photon number rate �L/R/γ 0
L/R are

for a directionality |D| = 0.99 and minimal losses as a func-
tion of the Purcell enhancement F are highlighted in Fig. 11.
The discreet sampling of the k-space allows only for discreet
evaluation of the optimal mode with optical enhancement to
loss-ratio. Particularly, for high enhancements involving high
group indices, the finite sampling of the k-space limits the
resolution of the optimal enhancement to loss ratio.

For increasing enhancement desired, the group index in-
creases monotonously. When increasing the enhancements for
the BIW the wave number k monotonously increases as well.
For the BIW only modes of the upper band are optimal. In
the case of the GPW the upper band shows less losses for the
same group index compared to the lower band. However, the
lower bands exceeds the upper bands maximal group index
and thus its maximal accessible enhancement. Consequently,
modes of the lower band with high losses are to be utilized
above a certain desired Purcell enhancement.

FIG. 11. Band diagram of the (a) GPW and (b) BIW showing
only the light cone, the bulk bands, and the relevant modes for which
the photon number rate �L/R/γ 0

L/R is maximal, desiring a directional-
ity of |D| = 0.99 and minimal losses. Each point shown corresponds
to a different optimal Purcell enhancement.
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