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Quantifying the presence of a neutron in the paths of an interferometer
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It is commonly assumed that no accurate experimental information can be obtained on the path taken by a
particle when quantum interference between the paths is observed. However, recent progress in the measurement
and control of quantum systems may provide the missing information by circumventing the conventional
uncertainty limits. Here, we experimentally investigate the possibility that an individual neutron moving through
a two-path interferometer may actually be physically distributed between the two paths. For this purpose, it
is important to distinguish between the probability of finding the complete particle in one of the paths and the
distribution of an individual particle over both paths. We accomplish this distinction by applying a magnetic field
in only one of the paths and observing the exact value of its effect on the neutron spin in the two output ports of
the interferometer. The results show that individual particles experience a specific fraction of the magnetic field
applied in one of the paths, indicating that a fraction or even a multiple of the particle was present in the path
before the interference of the two paths was registered. The obtained path presence equals the weak value of
the path projector and is not a statistical average but applies to every individual neutron, verified by the recently
introduced method of feedback compensation.
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I. INTRODUCTION

Young’s single-particle double-slit experiment is at the
heart of wave-particle duality [1,2], a particular form of
complementarity [3], and one of the most fundamental con-
cepts of quantum mechanics. The incompatibility between
the wavelike behavior of quantum objects and the classical
concept of a particle manifests in the observed aspect (wave
or particle) and depends on the experimental context. When a
position measurement to determine which slit a quantum par-
ticle traverses (particlelike property) is performed, in turn the
interference pattern (wavelike property) vanishes; the more
which-way information is extracted, the lower the visibility
of the interference fringes and vice versa. This particular
behavior is quantified in the Englert-Greenberger relation [4].

Einstein questioned this impossibility of determining the
path taken by an individual particle in a double-slit inter-
ference experiment [5]. In his proposed scheme, which-way
information is gained by measuring the recoil, seemingly
without destroying the interference pattern. However, as
pointed out by Bohr, Einstein’s proposal was in conflict
with the principles of quantum mechanics. Nevertheless,
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this was an early version of a welcher-weg or which-way
thought experiment. In the following years, different variants
of such a which-way experiment were considered, demon-
strating the mutual exclusivity of which-way information and
interference.

A version of Einstein’s which-way thought experiment that
is compatible with the laws of quantum mechanics was devel-
oped by Wootters and Zurek in 1979 [6]. This work paved the
way for so-called delayed-choice experiments, introduced by
Wheeler [7,8], where both scenarios (which-way information
or interference) are still possible after a photon has passed the
first plate of a Mach-Zehnder interferometer by removing or
inserting the last interferometer plate.

A recently widely discussed which-way experiment was
proposed by Vaidman in Ref. [9], where which-path informa-
tion is extracted from faint traces (with minimal perturbations)
left along the beam path taken by the particle. Vaidman’s
so-called past of a quantum particle experiment was realized
using photons [9] and later neutrons [10]. A recent which-
way experiment, applying a slightly different approach to the
which-way problem, is reported in Ref. [11].

Except for Vaidman’s experiment, all these approaches
evaluate the which-path information without any refer-
ence to the initial quantum state, neglecting any possible
correlations between the which-way information and the in-
terference effects that might be described by the initial state.
This assumption is intuitively justified by the symmetry
of conventional interference experiments, where both paths
contribute equally to the interferences observed. However,
this is not always the case. If there is an imbalance be-
tween the paths in the initial state, this imbalance includes
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correlations between which-way information and the outcome
of an interference experiment, so the individual outcomes
of the interference measurements provide some nontrivial
which-way information in addition to the observation of
interference. This possibility of using correlations of the in-
put state to evaluate physical properties based on arbitrary
measurement outcomes is expressed by the state-dependent
uncertainties introduced by Ozawa in 2003 [12]. As explained
by Hall, Ozawa’s definition of measurement errors indicates
that the best estimate of a physical property for any mea-
surement is given by the real part of the weak value defined
by the initial state and the measurement outcome [13]. When
this theory is applied to the which-way problem, it is possible
to evaluate the presence of a particle in the two paths based
on the outcome of an interference measurement. Somewhat
surprisingly, the theory attributes an uncertainty of zero to
optimal estimates of the path presence which can be a fraction
of one or even larger than one when the initial state is biased
in favor of the path in which the presence is evaluated.

Originally it was thought that the Ozawa-Hall uncertain-
ties have no experimentally observable consequences [14].
Previous experiments reconstructed the uncertainties based
on statistical assumptions that were motivated by a theoret-
ical analysis of the formalism, either using a tomographic
reconstruction, i.e., three-state-method [15–20], or weak mea-
surements [21,22]. However, it has recently been shown in
Ref. [23] that Ozawa-Hall uncertainties can be directly ob-
served as the uncertainty in the rotation of a probe qubit when
the method of feedback compensation is used, cf. next section.
We present an implementation of this method to the which-
way problem of a neutron interferometer. The weak values
of the path projection operator represent the measurement
outcomes associated with the detection of the particles in one
or the other output port of the interferometer. The results show
that these weak values are quantitative estimates of the path
presence with extremely low errors and therefore apply with
precision to every particle that exits the interferometer through
the respective output port. The error evaluation strongly in-
dicates that a single particle can be physically distributed
between the paths in the context of an interference mea-
surement, demonstrating that the path of a particle strongly
depends on the measurement context established in the final
measurement performed in the output ports.

The remaining paper is organized as follows: In Sec. II,
we introduce the theory of feedback compensation applied to
a which-way measurement of a Mach-Zehnder interferome-
ter. In Sec. III, we compare the path presences obtained in
the interference experiment with the ones of a conventional
which-way measurement. In Sec. IV, we present the results
of our neutron interferometric experiment in the two different
experimental contexts. In Sec. V, we discuss the obtained
results and their connection to the theoretical framework of
quantum errors introduced by Ozawa.

II. THEORY AND SETUP

The feedback compensation scheme [23], illustrated in
Fig. 1(a), proposes to weakly couple a probe qubit to the
observable of interest. Then the probe qubit carries informa-
tion about the observable, and particularly precise information

(a)

(b)

FIG. 1. (a) Scheme of feedback compensation from Ref. [23]
as applied to a Mach-Zehnder interferometer (b). After a coupling
Û α

z1 between object (interferometer paths) and probe system (spin),
a compensation Û β±

z dependent on the output channel is applied,
maintaining the original state 〈σ̂x〉 = 1 of the probe qubit.

can be gained if the probe qubit is finally changed back to
its original state by applying a compensation operation. The
compensation depends on the measurement outcome of the
observable and is therefore called feedback compensation. We
explain the scheme in detail on the basis of our particular
setup. The setup is schematically shown in Fig. 1(b) and the
indicated quantum states are described in the following.

We send neutrons into the interferometer where we assume
for universality and for illustrative reasons an asymmetric
beam splitter. The neutron in the interferometer is then de-
scribed by the state

|ψ〉 = a1|1〉 + a2|2〉, (1)

where |1〉 and |2〉 denote the eigenstates of path 1 and 2,
respectively. a1 and a2 are normalized real amplitudes, a2

1 +
a2

2 = 1. The two exit ports of the interferometer are described
by the states |+〉 and |−〉, respectively, which also take the
phase χ between the two paths into account:

|±〉 = 1√
2

( |1〉 ± exp(iχ ) |2〉). (2)

We want to gain information about which path the neutron
takes and use the neutron spin as the probe qubit. We prepare
it initially in the |↑x〉 state and the total initial state reads

|Ψin〉 = |ψ〉|↑x〉, (3a)

|↑x〉 = 1√
2

(|↑z〉 + |↓z〉), (3b)

where |↑z〉 and |↓z〉 denote the spin eigenstates in z direction.
The z basis is the natural choice of spin representation since
we use an external guide field in z direction.

We couple spin and path degree of freedom by weakly
rotating the spin in path 1. We rotate it by a small angle α
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about the z axis. The rotation is expressed by the operator Û α
z

applied only in path 1 or, equivalently, by the operator Û α
z1

applied to the total state of both paths,

Û α
z1 = exp

(
− i

2
α σ̂z �̂1

)
= �̂1Û

α
z + �̂2, (4a)

Û α
z = exp

(
− i

2
α σ̂z

)
= 1̂ cos

α

2
− iσ̂z sin

α

2
, (4b)

where �̂1 and �̂2 denote the path projection operators of paths
1 and 2, respectively. The identities between the exponentials
and the right hand terms can be proven by series expansion of
the exponential and the fact that σ̂ 2

z = 1̂ and �̂2
1,2 = �̂1,2. The

state after the spin rotation reads

|Ψ α〉 = Û α
z1|Ψin〉 = Û α

z1|ψ〉|↑x〉. (5)

The states of the two exit beams of the interferometer are
given by the projection onto the exit states |±〉, respectively,

|Ψ±〉 = |±〉〈±|Ψ α〉 = 〈±|Û α
z1|ψ〉|±〉|↑x〉. (6)

In the exit beams, we compensate the rotation of the spin
by rotating it back by an angle β+ in the |+〉 port and β− in the
|−〉 port. In general, different compensation angles in the two
ports will be necessary for optimal compensation, indicating
that the neutrons in the two exit ports have experienced differ-
ent spin rotations in the interferometer. The compensated state
reads

|Ψ β
±〉 = Û −β±

z |Ψ±〉 = 〈±|Û −β±
z Û α

z1|ψ〉|±〉|↑x〉. (7)

By writing the operators as

Û −β±
z Û α

z1 = �̂1Û
α−β±
z + �̂2Û

−β±
z , (8)

we clearly see that the spin of the path-1 component is rotated
by α − β± while the spin of the path-2 component is rotated
by −β±. The final components observed in the exit beams |+〉
and |−〉 can be written as

|Ψ β
±〉 = 〈±|ψ〉(ω1±Û α−β±

z + ω2±Û −β±
z

)|±〉|↑x〉, (9)

where ω1± and ω2± denote the weak values [24,25] of the path
projection operators, respectively,

ω1± = 〈±|�̂1|ψ〉
〈±|ψ〉 = 1

1 ± a2
a1

exp(−iχ ),

ω2± = 〈±|�̂2|ψ〉
〈±|ψ〉 = 1

1 ± a1
a2

exp(iχ )
= 1 − ω1±. (10)

Note that in case of a symmetric beam splitter (a1 = a2) and
χ = 0, all neutrons reach the |+〉 state. The amplitude 〈−|ψ〉
of the |−〉 state vanishes and the weak values ω1,2− diverge.
The imbalance between a1 and a2 is therefore necessary to
obtain clear results.

To read out the probe qubit, we analyze the spin in the two
output ports. We factorize the state in each port into the path-
dependent part 〈±|ψ〉|±〉 and the spin-dependent part |S±〉:

|Ψ β
±〉 = 〈±|ψ〉 |±〉|S±〉, (11a)

|S±〉 = (
ω1±Û α−β±

z + ω2±Û −β±
z

)|↑x〉. (11b)

We calculate the amplitudes of the σ̂x eigenstates of the
spin qubit:

s↑x = 〈↑x |S±〉 = ω1± cos
α − β±

2
+ ω2± cos

β±
2

,

s↓x = 〈↓x |S±〉 = i

(
−ω1± sin

α − β±
2

+ ω2± sin
β±
2

)
. (12)

With the substitutions

A± sin
β0±

2
:= ω1± sin

α

2
,

A± cos
β0±

2
:= ω1± cos

α

2
+ ω2±, (13)

we see that the spin amplitudes s↑x and sx↓ oscillate as function
of the compensation angle β± with a certain phase β0± and
with an oscillation amplitude A±.

s↑x = A± cos
β± − β0±

2
, s↓x = iA± sin

β± − β0±
2

, (14)

β0± = 2 arctan
sin α

2
ω2±
ω1±

+ cos α
2

, (15)

A2
± = 1 − 4ω1±ω2± sin2 α

4
. (16)

Equations (14) show that perfect compensation is obtained if
β± = β0±. Then s↓x vanishes and the final spin state equals
the initial state |↑x〉. The consequences are discussed further
below.

With the above formulas, we can evaluate feedback com-
pensation effects for any interaction strength α. However,
larger values of α would reduce the visibility of interference
fringes and make it more difficult to identify the universal
features that characterize weak interactions [26]. Here, we
focus on the limit of a small interaction strength α. Series
expansions by α show that the optimal compensations β0± are
to first order determined by the weak values ω1± and that the
output probabilities A± are to first order unchanged.

β0± = ω1±α + 1

24
ω1±ω2±(ω1± − ω2±)α3 + O(α5), (17)

A± = 1 − 1

8
ω1±ω2±α2 + O(α4). (18)

In other words, in the limit of weak coupling (small α) the
weak value of the path projection operator is given by the ratio
of the spin rotation angle α and the optimal compensation β0±:

ω1± = β0±/α. (19)

This can also be concluded from a first order series expansion
of the operators:

Û −β±
z Û α

z1 = exp

(
− iα

2

(
�̂1 − β±

α

)
σ̂z

)

≈ 1̂ − iα

2
σ̂z

(
�̂1 − β±

α

)
. (20)

Optimal compensation requires a vanishing total rotation an-
gle, so the value of β±/α must match the value associated
with the operator �̂1. Application of the path state input and
the state representing the output beam shows that this is again
the weak value of the operator �̂1.
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The weak values ω1± can be determined experimentally by
analyzing the spin expectation values 〈σ̂x〉, 〈σ̂y〉, and 〈σ̂z〉 (see
Appendix 1 for a detailed derivation):

〈σ̂x〉 = cos(Reβ0± − β±)

cosh Imβ0±
, (21a)

〈σ̂y〉 = sin(Reβ0± − β±)

cosh Imβ0±
, (21b)

〈σ̂z〉 = tanh Imβ0±. (21c)

A second-order series expansion by α gives

〈σ̂x〉 = cos(β± − αReω1±)

(
1 − 1

2
(αImω1±)2

)
, (22a)

〈σ̂y〉 = sin(β± − αReω1±)

(
1 − 1

2
(αImω1±)2

)
, (22b)

〈σ̂z〉 = α Imω1±. (22c)

In a conventional experiment, no compensation is applied
(β± = 0) and the weak value is determined for example as
ω1 ≈ (−〈σy〉 + i〈σz〉)/α [25,27,28]. In order not to disturb the
interference, the angle α is kept small, and the measurement
is called a weak measurement. Due to the complementarity of
which-way information and visibility of interference [4], only
little information can be gained per event and many events
have to be measured. Since the spin state is close to |↑x〉,
the variances of 〈σy〉 and 〈σz〉 are close to their maximum
(cf. Appendix 2), and the obtained weak values are clearly a
statistical average over the whole ensemble. They don’t reveal
anything about an individual neutron.

In the feedback compensation scheme, we don’t measure
individual spin components but determine the spin rotation
relative to its initial state. This is done by applying the
compensation, i.e., an estimated back rotation by β±, and
measuring the spin in the original direction x. The estimate
is varied until 〈σx〉 reaches a maximum. In an ideal case
max(〈σx〉) = 1 and the variance of 〈σx〉 between events van-
ishes completely. Complementarity is still valid in the sense
that many events are needed to determine the optimal compen-
sation. But once the compensation is adjusted, every neutron
verifies its correctness and the determined weak value can be
attributed to every individual neutron.

The same conclusion can be drawn using the Ozawa-Hall
theory. Ozawa [12] introduced a general concept of mea-
surement errors and it was shown by Hall that these errors
correspond to the uncertainty of an estimate of a physical
property based on the outcome of an arbitrary measure-
ment [13]. This uncertainty is given by the statistical deviation
between the operator of interest and the estimated value of that
operator. In our case, it reads

ε2(�̂1) = 〈ψ |
[
�̂1 −

∑
±

β±
α

|±〉〈±|
]2

|ψ〉, (23)

where the estimated value is given by β±/α. As shown in
Ref. [23], this estimate corresponds to a feedback of β±
that can compensate a weak interaction of α. The Ozawa-
Hall error given by Eq. (23) then describes the error of the
feedback compensation and can be observed experimentally
in the reduction of the spin component 〈σx〉 from its original

value of 1 to

〈σx〉 = 1 − 1
2α2ε2(�̂1). (24)

In our experiment, the measurement basis {|+〉, |−〉} is com-
plete and orthogonal and the operator �̂1 is self-adjoint. Then
the uncertainty Eq. (23) is determined only by the differences
between the estimates and the weak values,

ε2(�̂1) =
∑
±

〈ψ |
(

�̂
†
1 − β±

α

)
|±〉〈±|

(
�̂1 − β±

α

)
|ψ〉

=
∑
±

p±

∣∣∣∣w1± − β±
α

∣∣∣∣
2

, (25)

where p± denotes the statistical probability in the undisturbed
system of finding the neutron in the final state |±〉:

p± = |〈±|ψ〉|2 = 1
2 ± a1a2 cos χ. (26)

This means the uncertainty vanishes completely if the com-
pensations β±/α applied in the output ports |+〉 and |−〉,
respectively, equal the corresponding weak values ω1±. Then
the compensations are no longer just estimates of the probe
qubit rotations but precisely determine the effects of the weak
interactions on each individual qubit. A successful feedback
compensation thus realizes a precise evaluation of the weak
values.

Since the compensation angles can only be real numbers,
perfect compensation is only possible if the imaginary parts
of the weak values vanish. This can be achieved by adjusting
the phase χ between the two paths to zero, cf. Eq. (10). In the
following considerations and in the experiment, we will focus
on this case only.

III. PATH PRESENCE

Let us assume that the real part of the weak values ω1 and
ω2 of the path projectors describe physical reality, namely, the
presence of a neutron in the respective path. The effective
spin rotation is then given by the angle α times the path
presence in path 1, and it is no surprise that this rotation can
be compensated by β0± = α ω1±.

As shown before, the path presence it not a statistical aver-
age but can be attributed to every single detected neutron. We
can exclude the possibility that some neutrons have taken only
one path and other neutrons have taken only the other path and
that they are distributed over the paths only in a statistical way.
The probe qubit would carry on the noise of the path presence,
which is not the case. The path presence is precisely measured
and it quantifies how each individual neutron was distributed
between the paths.

The path presence should not be confused with the am-
plitudes a1 and a2 of the initial state. The latter determine the
detection probabilities p1,2 = |a1,2|2 in case a neutron detector
is placed directly in one or the other path. This would be
a naive which-way measurement which destroys the inter-
ference. In contrast, the path presence proposed here can be
precisely measured while full interference is maintained. Be-
ing a weak value, the path presence always links an initial state
to a final state. This means one still cannot predict the path a
neutron will take, but once the neutron has been detected in

023075-4



QUANTIFYING THE PRESENCE OF A NEUTRON IN THE … PHYSICAL REVIEW RESEARCH 4, 023075 (2022)

one or the other exit beams, one can in retrospect infer its
presence in paths 1 and 2, respectively.

While we cannot predict the path, we can calculate the
statistical probability of detecting the neutron in path 1, which
is given by the expectation value of the path projector �̂1. In
the context of the which-way measurement, we measure in the
eigenbasis of the operator and obtain the expectation value by
summing over the eigenvalues:

〈ψ |�̂1|ψ〉 = |〈ψ |1〉|2 × 1 + |〈ψ |2〉|2 × 0 = p1. (27)

Since an expectation value can be calculated by any complete
basis, we chose the |±〉 basis for the interference context.
Now the weak values play the role of the eigenvalues, and the
expectation value is given by the averaged weak value [29,30]:

p1 = 〈ψ |�̂1|ψ〉 = |〈ψ |+〉|2 × ω1+ + |〈ψ |−〉|2 × ω1−
= p+ω1+ + p−ω1− = ω̄1. (28)

We see that the detection probability p1 can also be interpreted
as an averaged weak value ω̄1.

Also, the variance can be calculated in either way. In the
which-way context, we get

Δ2(p1) = p1 (1 − p1)2 + p2 (0 − p1)2 = p1 p2 (29)

and in the interference context

Δ2(ω̄1) = p+(ω1+ − ω̄1)2 + p−(ω1− − ω̄1)2 = p1 p2. (30)

In short, the statistics of the input state is described equally by
eigenvalues in the which-way context and by weak values in
the interference context [31]. We can also define weak values
in the which-way context ωp f = 〈 f |�̂p|ψ〉/〈 f |ψ〉, where p
denotes the path (1 or 2) of the weak value and f the path
(1 or 2) where the neutron has been detected. However, these
weak values coincide with the eigenvalues ωp f = δp f . Weak
values are the more general concept, respecting the actual
outcomes of a measurement even if they are not represented
by eigenstates. Since they reproduce the correct statistics of
the particle presence �̂p in the initial state, it seems reasonable
to interpret them as a valid quantitative measure of the neutron
presence in the respective path.

Table I shows a comparison of (a) the initial state, (b)
the description in the interference context, and (c) in the
which-way context. As an example, we have calculated the
numbers for a 4 : 1 beam splitter. In the interference context,
the neutrons reach the |+〉 and |−〉 ports with the probabilities
p+ = 0.9 and p− = 0.1 respectively. A neutron ending in the
|+〉 port has been to two-thirds in path 1 and to one-third
in path 2. However, a neutron ending in the |−〉 port had a
path-1 presence of 2 and a path-2 presence of −1. These are
so-called anomalous weak values which lie outside the eigen-
value spectrum of the path projection operator. The present
experiment confirms that such anomalous weak values are
necessary [29,32] to describe the path presence created by
the input state Eq. (28) and its fluctuations Eq. (30) by the
outcome probabilities of the interference experiment.

The path presences can be used to correctly calculate, e.g.,
the average spin rotation angle in either context:

ᾱ = p+ω1+α + p−ω1−α

= p1ω11α + p2ω12α = ω̄1α. (31)

TABLE I. Path presences calculated for a 4 : 1 beam splitter. (a)
Initial preparation, (b) path presences in the interference context, (c)
path presences in a which-way measurement.

(a) Path 1 Path 2

Initial amplitudes a1 = 2√
5

a2 = 1√
5

Initial probabilities p1 = 4
5 p2 = 1

5

Presence Presence
(b) Probability in path 1 in path 2

Final |+〉 p+ = 9
10 ω1+ = 2

3 ω2+ = 1
3

Final |−〉 p− = 1
10 ω1− = 2 ω2− = −1

Average ω̄1 = 4
5 ω̄2 = 1

5
Variance Δ(ω̄1) = 2

5 Δ(ω̄2) = 2
5

Presence Presence
(c) Probability in path 1 in path 2

Final |1〉 p1 = 4
5 ω11 = 1 ω21 = 0

Final |2〉 p2 = 1
5 ω12 = 0 ω22 = 1

Average ω̄1 = 4
5 ω̄2 = 1

5
Variance Δ(ω̄1) = 2

5 Δ(ω̄2) = 2
5

Also, the expectation value 〈σ̂x〉 measured in our ex-
periment depends on the final state. In case we could not
distinguish between the two exit beams, we could apply only
a common compensation angle β and measure only the aver-
aged expectation value, denoted by 〈σ̂x〉± in the interference
context and 〈σ̂x〉12 in the which-way context:

〈σ̂x〉± = p+〈σ̂x〉+ + p−〈σ̂x〉−, (32a)

〈σ̂x〉12 = p1〈σ̂x〉1 + p2〈σ̂x〉2. (32b)

The detailed expressions are given in Appendix 3. In the
limit of small α both expectation values converge to

〈σ̂x〉± = 〈σ̂x〉12 =
(

1 − 1

2
p1 p2α

2

)
cos(β − ᾱ) (33)

and have exactly the form predicted by Eq. (24). Comparing
both equations, we identify a measurement error of ε2(�̂1) =
p1 p2 = Δ2(p1). This means, by not distinguishing between
the measurement outcomes, we end up with a measurement
error equal to the original path uncertainty Eq. (29).

IV. EXPERIMENT

In the experiment, we verified the path-1 presences listed in
Table I and the reduction of max(〈σx〉) expressed in Eq. (33)
in case the exit beams are not distinguished.

The experimental realization of the operations described
in the theory (Sec. II) are mostly straightforward and are
depicted in Fig. 2. The neutrons are polarized by a magnetic
prism which deflects the spin-down neutrons out of the Bragg
acceptance angle of the interferometer crystal. The spin rota-
tor DC1 rotates the remaining spin-up neutrons by π/2 into
the initial |↑x〉 state. The spin rotator consists of a DC coil
which creates a magnetic field pointing in the −y direction. In
this region, the spin precesses about the y axis due to Larmor
precession within the DC coil. The asymmetry of the beam
splitter is realized by a partial absorber in path 2. The spin
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FIG. 2. Polarized monochromatic neutrons enter the interferometer and are split into paths |1〉 and |2〉 at the first interferometer plate
at a ratio of 1 : 4. Before the interferometer, the probe qubit is prepared in the initial spin state |Sin〉 = |s↑x〉 by a π/2 direct-current spin
rotator (DC 1). In path 1, the spin is rotated by an angle α. Beam stop and phase shifter are required for which-path or interference
measurements, respectively. Behind the interferometer, the compensation is applied, that is, a spin rotation by angle β±, dependent of the
respective measurement context. The spin is analyzed in ±x direction by the combination of a π/2 direct-current spin rotator (DC 2) and the
magnetic supermirror. The neutrons are counted in a 3He detector.

rotations α and β are realized by small Helmholz coils which
modify the external overall Bz guide field (not depicted in
Fig. 2) such that the spin precession in the x-y-plane changes.
The precession angle is given by −2μB j

zτ/h̄, where τ is
the neutron’s transit time in the magnetic field region, with
j = α, β. The β compensation and the spin analysis is real-
ized only in the forward exit beam, normally corresponding to
the |+〉χ=0 state. By changing the phase χ between the beam
paths from 0 to π we can however flip the meaning of the
exit beams and thereby analyze also the |−〉χ=0 state. The
spin analysis is realized by a spin-dependent reflection from
a Co-Ti supermirror array. The magnetic supermirror array
consists of a stack of slightly bent glass plates coated with
alternating layers of (magnetic) Cobalt and (non-magnetic)
Titanium embedded in the vertical field of permanent mag-
nets. The combination of materials is chosen such that the sum
of the nuclear scattering length and the magnetic scattering
length of Cobalt for one spin component equals the scattering
length of Titanium. Then the layer structure is invisible for
this spin component and it will not be reflected. Consequently,
the supermirror only reflects the |↑z〉 state and the |↓z〉 state
is absorbed. In combination with a π/2 spin rotator (DC2) it
analyzes the |↑x〉 state required here. The position of the DC2
coil is adjusted in beam direction to catch the precessing spin
at the correct angle required for the π/2 rotation.

The experiment was carried out at the neutron interferom-
eter instrument S18 at the high-flux reactor of the Institute
Laue-Langevin (ILL) in Grenoble, France. A monochromatic
beam with mean wavelength λ = 1.91 Å(δλ/λ ∼ 0.02) and
5 × 7 mm2 beam cross section was used. The experimental
data can be found on the ILL data server in Ref. [33].

A. Which-way context

Formally, the which-way measurement is described by the
observable �̂1, i.e., the projector onto path 1. Experimentally
the projector �̂1,2 is realized by blocking path 2, 1, which

is schematically illustrated in Fig. 2. Depending on which
projection is measured the respective compensation operation
Û β1,2

z = exp(−i(β0 1,2)/2 σ̂z ) is applied, with β0 1 = −α for
path 1 and β0 2 = 0 for path 2.

The obtained results of which-way measurements are plot-
ted in Fig. 3(a) for α = π/4 (strong interaction) and Fig. 3(b)
for α = π/16 (weak interaction). The experimentally ob-
served phase shifts βmeas

0 1,2 (see caption of Fig. 3) reproduce the
theoretically predicted values from Eq. (22a), given by

〈σ̂x〉1 = cos(β1 − ω11 α), 〈σ̂x〉2 = cos(β2 − ω12 α) (34)

(within the error-bars), accurately yielding ω11 = 1 and ω12 =
0. The experimentally obtained values of the path presence
ω1 are summarized in Fig. 5 for the interaction strengths α =
π/4, π/8, and α = π/16.

If the same compensation is applied in both paths, we
observe fringes, shown in green in the figure, which have a
reduced visibility as predicted by Eq. (33). The visibility reads

ν = 1 − 1
2α2Δ2(p1) (35)

and is determined by the initial path uncertainty Δ2(p1) =
p1 p2 = 0.16. For the two interaction strengths α = π/4 and
α = π/8, respectively, the theoretical values are να/4 = 0.951
and να/16 = 0.997, indicated by the red lines in the figure.
The experimentally determined values are νmeas

α/4 = 0.964(7)
and νmeas

α/16 = 0.993(10). The fringes have been calculated by
averaging the data points of both paths according to Eq. (32b)
using p1 = 0.8 and p2 = 0.2. To obtain data points at equal
β values, we calculated for each data point of one curve a
corresponding value and error from the fit of the other curve.

B. Interference context

In the interference context, the optimal correction is given
by β0± = −ω1±α as explained in the previous sections. Path
presences of w1+ = 2/3 and w1− = 2, with probabilities
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FIG. 3. Experimental results of feedback compensation in
which-way context. The expectation values 〈σx〉1,2 are measured in
paths 1 and 2 respectively, and the average is calculated according to
Eq. (32b). Solid curves indicate theoretical predictions. The optimal
compensation angles are given by the positions of the maxima, ob-
tained by fitting the data points and indicated by vertical lines. The
obtained values are βmeas

0 2 = −0.0012(38) π and (a) for α = π/4:
βmeas

0 1 = 0.2533(61) π and (b) for α = π/16: βmeas
0 1 = 0.0646(66) π .

The error bars represent ±1 standard deviation.

p+ = 0.9 and p− = 0.1, respectively, are obtained in the limit
of weak coupling (small α).

Applying the respective setup from Fig. 2, the total com-
bined state, consisting of object system (path) and probe
system (spin), behind the phase shifter flag reads

|�(χ )〉tot = 2√
5
|1〉 exp

(
−i

α

2
σ̂z

)
|s↑x〉 + eiχ 1√

5
|2〉|s↑x〉,

(36)
where χ is the relative phase between the (path) eigenstates,
adjusted by a phase shifter. The phases χ = 0 and χ = π

account for the postselection of states |+〉χ=0 and |−〉χ=0,
respectively. Depending on the selected state, the respective
compensation operation Û β±

z = exp(−i(β0±)/2 σ̂z ) is applied
behind the interferometer.

The experimentally observed phase shifts βmeas
0± (see cap-

tion of Fig. 4) correctly reproduce the feedback fringes

〈σ̂x〉+ = cos(β+ − ω1+ α), 〈σ̂x〉− = cos(β− − ω1− α), (37)

predicted by Eq. (22a). The obtained measurement results
for measurement strength α = π/4 are plotted in Fig. 4 (a).
The corresponding output port probabilities are p+ = 0.8696

FIG. 4. Experimental results of feedback compensation in inter-
ference context. The expectation values 〈σx〉± are measured and the
average is calculated according to Eq. (32a). Solid curves indicate
theoretical predictions. The optimal compensation angles are given
by the positions of the maxima, obtained by fitting the data points and
indicated by vertical lines. The obtained values are (a) for α = π/4:
βmeas

0+ = 0.1671(61) π , βmeas
0− = 0.4727(35) π , and (b) for α = π/16:

βmeas
0+ = 0.0449(54) π , βmeas

0− = 0.1229(54) π . The error bars repre-
sent ±1 standard deviation.

and p− = 0.1304. The fringe shifts are given by ω1± α. For
α = π/4, the predicted values of the path presence are ω1+ =
0.6686 at p+ = 0.8696 and ω1− = 1.8701 at p− = 0.1304
and are evidently reproduced in the experiment, which can be
seen from the values in the figure captions.

The green fringes in the figure show the statistical av-
erage over both output ports according to Eq. (32a) using
p+ = 0.9 and p− = 0.1. As predicted by Eq. (33), the fringe
visibility then shrinks to the same value as in the which-
way context indicated by the red lines in the figure. The
experimentally determined values are νmeas

α/4 = 0.943(11) and
νmeas

α/16 = 0.984(10).
A plot of the optimal compensation β0/α versus interaction

strength α is given in Fig. 5. The measured path presences
converge for small α toward the weak values. For large α,
the optimal compensation angle is no longer given by the
first order term of Eq. (17) but by the complete expression
Eq. (15), shown by the dotted line in Fig. 5. As mentioned in
Sec. II, this change is, in principle, accompanied by a change
in the probabilities of finding the particles in the exits beams,
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FIG. 5. Optimal compensation β0/α versus interaction strength
α for α = π/4, π/8 and π/16. Solid lines represent the predicted
weak values ω12 = 0, ω11 = 1, ω1+ = 2/3, ω1− = 2. Dotted lines
represent theoretical predictions Eq. (15) of the optimal compensa-
tion for larger values of α.

indicating that the probe qubit perturbs the measurement and
modifies the output beams in a non-trivial manner. However,
the results shown in Fig. 5 indicate that this perturbation of
the interference effect is sufficiently small in the full range of
interaction strengths covered in the present experiment.

V. DISCUSSION

Our experimental results show that spin rotations applied
in one of the paths in a two-path neutron interferometer result
in proportional rotations of the spin in the output ports of
the interferometer. Each of the two different rotation angles
observed in the output ports are precisely defined and show
no fluctuations. We therefore conclude that the spin rotations
define a precise value of the presence of a particle in the path
in which the rotation was applied. This result indicates that
the particles have a precisely defined fractional presence in
the path when interference effects are observed in the output
ports.

We would like to point out that this result is consistent
with Ozawa’s theory of measurement errors, which predicts
an error of zero when the measurement results are given by
the weak values defined by a pure input state and a pre-
cise projective measurement. The experiment confirms that
the error measure introduced by Ozawa corresponds to ex-
perimentally observable fluctuations in the effects of weak
interactions, strongly suggesting that the weak values are an
accurate description of the dependence of physical properties
on the measurement context [34]. It seems to be highly sig-
nificant that the feedback compensation approach establishes
the consistency of Ozawa uncertainties, weak values and the
quantum mechanics of weak unitary interactions. The experi-
mental results show that weak values and Ozawa uncertainties
provide an accurate description of the experimentally observ-
able statistics of weak interactions.

In neutron interferometry, we always have clear ex-
perimental evidence that the interference is based on
self-interference of individual particles. First, neutrons are
fermions and would never occupy the same state, and second

the beam intensity is so low that there are virtually never
two particles simultaneously in the setup. Still, the visibility
of interference itself requires a whole ensemble of neutrons,
allowing alternative interpretations of quantum mechanics
which assume locality of single particles. The present ex-
periment rules out such statistical interpretations due to the
vanishing error of the path presence determined by the weak
values.

VI. CONCLUSION

The precise analysis of the effects of sufficiently small spin
rotations applied in only one path of a two-path neutron inter-
ferometer shows that the presence of the neutrons in the paths
during an interference experiment is accurately described by
fractional values corresponding to the weak values associated
with the output ports of the interferometer, where the precision
of the results is given by the Ozawa uncertainties. We have ex-
perimentally verified that these fluctuations are close to zero in
the present case, providing the first experimental evidence that
the partial path presences described by weak values apply to
each individual neutron detected in the corresponding output
beam of the interferometer. Since partial path presences are
not observed when a which-path measurement is performed,
our results also demonstrate that the way in which particles
propagate through an interferometer depends on the measure-
ments performed in the output. The same initial uncertainty of
the particle presence that appears as a statistical distribution of
detection events in a which-path measurement will appear as
the fluctuation of the individual partial path presences when
interference effects are detected instead.

It should be emphasized that all results are completely
consistent with standard quantum theory. The conclusion that
particles can be physically delocalized between paths in which
no strong interactions occur and that the localization or delo-
calization is decided by a measurement that takes place after
the particles have propagated along the paths is a possibility
inherent in the paradoxical aspects of quantum superpositions.
In the present paper, we demonstrated that standard quantum
theory predicts precise and specific effects of the presence of
a particle in a path, even when the particle only undergoes a
very weak interaction on its way though the interferometer.
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APPENDIX

1. Spin expectation values

The spin expectation values in the directions d ∈ {x, y, z}
are given by

〈σ̂d〉 = (+1) × |s↑d |2 + (−1) × |s↓d |2
|s↑d |2 + |s↓d |2 , (A1a)

s↑d = 〈↑d|
(
ω1Û

α−β±
z + ω2Û

−β±
z

)|↑x〉, (A1b)

s↓d = 〈↓d|
(
ω1Û

α−β±
z + ω2Û

−β±
z

)|↑x〉, (A1c)
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and with β0± and A± defined in Eqs. (15) and (16), respec-
tively, and

|s↑x|2 = |A±|2
2

[cos(β± − Reβ0±) + cosh Imβ0±], (A2a)

|s↓x|2 = |A±|2
2

[− cos(β± − Reβ0±) + cosh Imβ0±], (A2b)

|s↑y|2 = |A±|2
2

[− sin(β± − Reβ0±) + cosh Imβ0±], (A2c)

|s↓y|2 = |A±|2
2

[sin(β± − Reβ0±) + cosh Imβ0±], (A2d)

|s↑z|2 = |A±|2
2

exp(Imβ0±), (A2e)

|s↓z|2 = |A±|2
2

exp(−Imβ0±), (A2f)

we obtain the results

〈σ̂x〉 = cos(Reβ0± − β±)

cosh Imβ0±
, (A3a)

〈σ̂y〉 = sin(Reβ0± − β±)

cosh Imβ0±
, (A3b)

〈σ̂z〉 = tanh Imβ0±. (A3c)

2. Variances of spin expectation values

The variances Δ(〈σ̂d〉) of the expectation values are given
by

Δ(〈σ̂d〉) = p↑d (+1 − 〈σ̂d〉)2 + p↓d (−1 − 〈σ̂d〉)2, (A4a)

p↑d = |s↑d |2
|s↑d |2 + |s↓d |2 , (A4b)

p↓d = |s↓d |2
|s↑d |2 + |s↓d |2 , (A4c)

and we obtain

Δ2(〈σ̂x〉) = 1 − cos2(Reβ0± − β±)

cosh2 Imβ0±
, (A5a)

Δ2(〈σ̂y〉) = 1 − sin2(Reβ0± − β±)

cosh2 Imβ0±
, (A5b)

Δ2(〈σ̂z〉) = 1

cosh2 Imβ0±
. (A5c)

For optimal compensation (χ = 0 and β± = Reβ0±), we find
that Δ(〈σ̂x〉) vanishes completely while Δ(〈σ̂y〉) and Δ(〈σ̂z〉)
are maximal and equal unity. For small α and β± = 0 this
turns into

Δ(〈σ̂x〉) = α|ω1±|, (A6a)

Δ(〈σ̂y〉) = 1 − α2Reω2
1±/2, (A6b)

Δ(〈σ̂z〉) = 1 − α2Imω2
1±/2. (A6c)

3. Expectation values averaged over exit beams

In the interference context, the expectation values 〈σx〉 in
the two exit beams |+〉 and |−〉 are given by Eq. (21a). Using
a common compensation angle β for both exit beams, the
average can be written as

〈σ̂x〉± = p+〈σ̂x〉+ + p−〈σ̂x〉− = ν± cos(β − β̄±), (A7a)

β̄± = arctan
p+ sin β0+ + p− sin β0−
p+ cos β0+ + p− cos β0−

, (A7b)

ν2
± = 1 − (p1 − p2)2

2
[1 − cos(β0+ − β0−)], (A7c)

calculated for real weak values and χ = 0. A series expansion
by α gives

β̄± = p1α + O(α3), (A8a)

ν± = 1 − 1

2
p1 p2α

2 + O(α4). (A8b)

In the which-way context, the expectation values in paths
1 and 2 read 〈σx〉1 = cos(α − β ) and 〈σx〉2 = cos(β ), respec-
tively, and the average is given by

〈σ̂x〉12 = p1〈σ̂x〉1 + p2〈σ̂x〉2 = ν12 cos(β − β̄12), (A9a)

β̄12 = arctan
p1 sin α

p2 + p1 cos α
, (A9b)

ν2
12 = 1 − 2p1 p2(1 − cos α). (A9c)

A series expansion by α gives

β̄12 = p1α + O(α3) (A10a)

ν12 = 1 − 1

2
p1 p2α

2 + O(α4). (A10b)
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