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Nonlinear quantum gates for a Bose-Einstein condensate
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Quantum interferometry and quantum information processing have been proposed for Bose-Einstein con-
densates (BECs), but BECs are described in complicated ways such as using quantum field theory or using
a nonlinear differential equation. Nonlinear quantum mechanics does not mesh well with the superposition
principle at the heart of interferometry and quantum information processing but could be compatible. Thus,
we develop a rigorous foundation for quantum gates, obtained by solving the equation for evolution, and
then we employ this foundation, combined with quantum-control techniques and appropriate state-sampling
techniques, to devise feasible nonlinear Hadamard gates and thereby feasible, i.e., high-contrast, nonlinear
Ramsey interferometry. Our approach to BEC interferometry and quantum logic shifts the paradigm by enlarging
to the case of nonlinear quantum mechanics, which we apply to the cases of BEC interferometry and quantum

information processing.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) [1] have been proposed
as a platform for quantum sensing [2] and for quantum
computing [3], but BECs are rather complicated objects, de-
scribed properly in the context of quantum field theory or
effectively by the relatively simple but inherently nonlinear
Gross-Pitaevskii equation [4,5]. The notion of a quantum gate
and the concept of quantum information processing are chal-
lenging in the context of either the second-quantized or the
nonlinear quantum theories. Our aim is to formalize quan-
tum gates and quantum information processing in the context
of nonlinear quantum mechanics [6], apply this theory to
controlling and measuring a BEC qubit (effective two-level
system with other energy levels considered negligible), de-
scribe how to define, effect, and characterize performance
of nonlinear quantum gates, and to design and then simulate
deployment of a nonlinear Hadamard gate to our introduction
of a nonlinear type of a Ramsey interferometer [7].

Specifically, we have the following claims. First, we define
a nonlinear quantum gate as a nonlinear unitary operator that
preserves the inner product. Usually a nonlinear unitary oper-
ator preserves the norm but not necessarily the inner product.
Then we use quantum-control methods to determine a feasible
shaking trajectory [8,9] for a quartic potential confining the
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BEC, with the quantum-control target being an evolution that
effects a good approximation to a Hadamard gate, character-
ized by average gate fidelity over all possible input states.
After solving for feasible potential parameters and for the
shaking trajectory, we apply these methods to a simulation of
nonlinear Ramsey interferometry and calculate the resultant
contrast.

Our analysis builds on some pillars of knowledge. The first
pillar concerns nonlinear quantum mechanics, which neces-
sarily relaxes inner-product preservation to norm preservation
for unitary operators and of course sacrifices the superposition
principle [10]. The second pillar is the treatment of BEC
dynamics using the Gross-Pitaevskii equation (GPE), which
is a nonlinear equation of motion [4,5]. We also build on
an experiment that shakes the BEC, and realizes a nonlinear
Ramsey interferometer, but with the limitation that its pair of
nonlinear Hadamard gates, punctuated by intervening nonlin-
ear free evolution, are optimized only for a restricted set of
input states [11]. Furthermore, our work relies on quantum-
control techniques, whose basic principle is to add external
control to the system’s free, or “drift,” Hamiltonian, and can
be expressed as a feasibility problem [12].

The structure of our paper is as follows. We provide salient
background in Sec. II. Then we describe our approach in
Sec. III. We show our results in Sec. IV and discuss these re-
sults in Sec. V. Finally, we present our conclusions in Sec. VI.

II. BACKGROUND

In this section, we present salient background for our work
on nonlinear quantum gates for BECs. In Sec. Il A, we discuss
essentials of BEC dynamics. Then, in Sec. II B, we discuss the
essential properties of nonlinear quantum mechanics. Finally,
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in Sec. IIC we discuss the fidelity of quantum gates and the
relevance of fidelity to assessing gate performance.

A. BEC dynamics

Now we review experimental and theoretical studies about
BECs in a one-dimensional trap. We begin by discussing an
effective one-dimensional BEC. We follow this explanation
by presenting the mathematics that describes the evolution of
such a one-dimensional BEC. Finally, we discuss the potential
and how it is shaken for controlling the BEC.

We review experimental realizations of one-dimensional
BECs. Experimentally one-dimensional BECs are realized in
highly elongated traps, where the confinement in the trans-
verse direction is much tighter then in the longitudinal (axial)
direction. When both the temperature and the interaction are
smaller then the transverse confinement scale then motion
in the transverse direction freezes out and dynamics in the
longitudinal direction dominates. Nevertheless the effects of
the frozen-out dimensions remain [13,14]. One-dimensional
BECs have for example been realized in [15,16].

We now provide a mathematical description of the
one-dimensional BEC [11,17], which is expressed in the
mean-field approximation in terms of the GPE,

iRy (x;t) = H(Y, LDy (x;t), (1)

for 9, := d/0;. In standard quantum mechanics, the Hamil-
tonian is a linear operator on (infinite-dimensional) Hilbert
space 7, which means that it is a homomorphism on a
vector space. The particle wavefunction ¥ (x;z) relates to
the Hilbert-space vector |y (¢)) according to (x|y¥(¢)). For
quantum information processing, we typically restrict Hilbert
space to be of finite dimension d and denote Hilbert space
with restricted dimension by 7.

In the nonlinear case presented in Eq. (1), this Hamiltonian
is not a linear operator. For convenience, we simplify deriva-
tive operators as

Oy := Oy i= —. )

With this notation, we express the Hamiltonian (1) as
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the effective one-dimensional nonlinear coefficient N is the
number of atoms in the BEC, a4 characterizes the scattering
amplitude and a; the oscillator length in the radial direction
[13], and V (x) is the external time-dependent trapping poten-
tial. Here m is the atomic mass, and A(¢) is the time-dependent
control trajectory for translating the potential across space. In
practice, evolution is solved for an initial state v, := ¥ (x; 0)
numerically to obtain a final state

Wﬁn = 1;min(X;T) (5)

at final time 7'. We take the following wave function normal-
ization condition

/de(x;r)F ~ 1. ©)

The energy of the BEC is a functional [18],
n? )
EWI@) = [ dx| 0 @)l
m

FVI R+ %wmr‘] )

The energy of the BEC can be inferred from a series of time-
of-flight images [11,19].

We label the ith excited state of the BEC by ¢; with ¢q
representing the ground state. Please refer to Appendix A for
detailed definitions of the ground state and excited states of
the BEC. We label the ground state and the first excited state
of the BEC as |0) and |1), respectively. We use

pi = I{gily) II? ®)

to represent the probability for the atom to be found in the
ground state (i = 0), and for each ith excited state for i € [3]
where

M]:=(1,..., M) )

is a convenient set-theoretic notation.
According to |0) and |1), we can define the following
commonly used states

|£) :=0) £ 1), | &) :=[0) £il) (10)

with normalization coefficients suppressed.

BEC states are complex-valued vectors and can be treated
as vectors so a superposition of the ground and excited states
is meaningful. However, nonlinear evolution means that map-
ping the state forward in time fails to respect superpositions.
The fact that BEC evolution is not a linear operator means
that designing nonlinear quantum gates, e.g., for quantum
computing, is also complicated by the fact that these gates are
not linear maps.

Now we discuss the function that should be used to
describe the time-dependent potential V in Eq. (3). Prop-
erly controlling this time-dependent potential is vital for
transforming the state of the BEC in the desired way. Ex-
perimentally, the potential is used to tightly compress the
atoms during the cooling process and it is also used to hold
the BEC when the BEC is formed [20]. The potential used
to trap the BEC can be realized on the atom chip [21], and
the displacement of the potential can be obtained by modulat-
ing radio-frequency currents [22,23]. The potential along the
shaking direction can be expressed in parametric form by a
6th-order polynomial

V(e;x)/h = %()—6)2 + a4()—c)4 + aé()—c)6, acR3,

2 \1 l /
Y
with length
Vh
[ = w (12)
g
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corresponding to the characteristic length of the harmonic
part. The shaking trajectory A(z) as in (3) is used to control
the transfer of the BEC from the ground state to the first
vibrationally excited eigenstate [8] and thereby to achieve
Ramsey interferometer for motional states of the BEC [11].

B. Nonlinear quantum mechanics

We discuss the essential properties of nonlinear quantum
mechanics. We first review the presence of nonlinear quantum
mechanics in some physical phenomena. Then, we review the
similarities and differences between nonlinear quantum me-
chanics and linear quantum mechanics. Finally, we review the
concept of unitary operators in nonlinear quantum mechanics.

Nonlinear quantum mechanics appears in macroscopic
quantum systems, such as superconductivity [24], superflu-
idity [25], and BECs [4,5]. The macroscopic quantum effect
results from the collective motion and excitation of particles
under certain conditions, such as extremely low tempera-
ture, high pressure, or high density. Under such conditions,
a huge number of microscopic particles condense, resulting
in a highly ordered and long-range coherent low-energy state
[6]. The theories describing and explaining these physical
phenomena all involve nonlinear quantum mechanics, such as
Ginzburg-Landau theory [24], used to explain the properties
of superconductivity, and the GPE [4,5] describes the dynam-
ics of superflows and BECs at very low temperature.

We review the similarities and differences between nonlin-
ear and linear quantum mechanics. Their main similarities are
[6] (1) the system is described by a wave function; (2) both
have the concepts of operators and averages; (3) both have the
concepts of stationary state and eigenvalue; and their main dif-
ferences are [6] (1) the absolute square of the wave function is
no longer the probability for finding the microscopic particle
at a given point in the space-time, but gives the mass density
of the microscopic particles at that point; (2) operators are no
longer linear operators; (3) the principle of superposition of
states no longer holds.

We now review nonlinear unitary operators. For nonlin-
ear quantum mechanics, unitarity is no longer inner-product
preserving but rather just norm preserving [10]. Unitary, i.e.,
norm-preserving, evolution is generated by exponentiating
the Hamiltonian, but of course this unitary evolution is not
necessarily a linear map. Bringing nonlinearity into quantum
information raises startling, subtle issues such as being able
to distinguish between nonorthogonal states and to perform
unstructured search [26].

C. Gate fidelity

We discuss relevant aspects of quantum gates in standard
linear quantum mechanics. First, we explain quantum gates
and their matrix representations. Then, we discuss the fidelity
of quantum gates and the relevance of fidelity to assessing gate
performance.

Now we discuss quantum gates and their unitary matrix
representation for standard linear quantum mechanics. In the
computational basis, corresponding to logical zero |0) and
logical one |1), quantum gates can be expressed as unitary
matrices. Quantum gates acting on n qubits are represented

by 2" x 2" unitary matrices. A single-qubit unitary gate can
be expressed as a 2 x 2 complex matrix

U= (;‘; Z;), iy 2= (iU 1)). (13)
In standard quantum mechanics, a unitary operation is a linear
isometry (preserves inner product).

We now explain state fidelity, which quantifies how closely
the resultant final state (5) approximates the desired target
state |¥),,. The fidelity between the final and target state
(achieved by applying gate U and by integrating the nonlinear
evolution meant to approximate U, respectively) is expressed
as

Fo W) = lin (W) el (14)

If the target and final states have different Hilbert space di-
mension, such as the case arising for target state being a qubit
but final state having support beyond the qubit basis states, we
compute the fidelity (14) over whichever of the two pertinent
Hilbert spaces has the higher dimension.

Performance of a unitary gate is conveniently assessed by
its average gate fidelity, which averages state fidelity based
on a uniform distribution of input states for the gate [27].
A subtlety with nonlinear quantum-gate fidelity is that the
gate acting on a superposition of initial quantum states is
not necessarily the superposition of the gate acting on the
two initial quantum states. Nevertheless, we also assess the
performance of nonlinear quantum gates by average gate fi-
delity, whose definition survives the transition from linear to
nonlinear quantum mechanics. Specifically, even for nonlinear
quantum gates, the average gate fidelity for ideal gate U is
specified similarly as

Fy o= / A Fo () (15)

for du(yr) the uniform, or Haar, measure with ¢ labeling
states and the fidelity integrand defined in Eq. (14). For subse-
quent convenience, we employ the symbols Fi.x and Fin to
represent the maximum and minimum fidelity, respectively.

III. APPROACH

In this section, we discuss our approach to solving the
problem of nonlinear quantum gates. First we explain our
model and our mathematical approach, building on the prelim-
inaries explicated in Sec. II. We follow in the next subsection
by explaining the searching and feasibility. Finally, in the last
subsection we explain our technique to find feasible potentials
and shaking trajectories.

A. Model and mathematics

We describe the model used to implement nonlinear quan-
tum gates on the BEC system. We first explain the trapped
atoms system and then follow in the next subsubsection by
explaining the shaking method.

1. Trapped atoms

We follow the conventional scheme for trapped alkali
atoms. Here we explain our model for trapped rubidium. Then
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we explain our proposal for how the nonlinear gate could be
executed. Finally, we discuss how resultant qubit should be
measured.

The model we consider is the ’Rb BEC trapped in the
one-dimensional potential as reviewed in Sec. Il A. The one-
dimensional potential can be realized on an atom chip [28]
and the shaking of potential can be realized by modulating
radio-frequency currents [22,23]. We assume temperature and
interaction energy being smaller than the transverse trapping
frequency; i.e., neither temperature nor interaction energy
can excite the BEC. In our simulation, the potential is very
anisotropic, which is narrow in two dimensions and wide in
one dimension. The potential is in three dimensions and holds
atoms in three dimensions but under special circumstances the
dynamic of the BECs is one-dimensional; that is, the other
degrees of freedom are not excited [11]. The BEC will be
excited to motional states due to the potential shaking.

Our nonlinear single-qubit gate employs the ground state
and the first excited state of its motional degree of freedom of
the BEC as the computational basis. Nonlinear quantum gates
are realized by finding feasible shaking trajectories of the
potential, where feasibility is established by a threshold condi-
tion for average gate fidelity (15). We find feasible parameters
for nonlinear evolution to realize the nonlinear gate by using
optimization methods; typically, control theory is discussed
in the language of optimization, which aims to find the best
solution, but, in practice, feasibility problems are solved in-
stead, where feasibility is about the more modest problem of
just finding a “good enough” solution [12]. Due to nonlinear
evolution, system evolution is a function of initial state, so we
need to establish a single potential shaking trajectory that is
sufficiently good based on averaging over all initial states.

We now describe the measurement of the BEC. In our
simulation, we simulate the wave function of the BEC through
solving the GPE. In the experiment, populations of the ground
state and first excited state of the BEC are inferred from the
evolution of the momentum density, which is obtained by
time-of-flight images [11].

2. Shaking

We now explain the trapping potential employed in our
simulation. We first explain the form of the potential and then
we explain how the parameters of the potential relate to our
nonlinear gate problem. Finally, we explain how to evaluat-
ing candidates for potential parameters and candidates for a
feasible shaking trajectory by sampling initial states
uniformly on S2.

We translate the potential V (x) according to the control
trajectory A(z), without changing the shape of V, to realize
the nonlinear quantum gate 3. We employ an anharmonic
potential; this anharmonicity makes the energy level spacing
different, which can inhibit the transition of atoms to the
high levels. Making the potential strongly anharmonic implies
energy-level spacing is uneven, which suppresses leakage to
higher energy levels. In a harmonic potential, even at zero
nonlinearity, a classical (coherent) drive produces a coherent
state of excitation and not a number state (occupation of only
the first excited state). We truncate our even-order polyno-
mial from sixth to fourth degree. We neglect the sixth-order

term «g in Eq. (11) because we need to reduce the size of
the search space to achieve computational tractability and
the fourth-order suffices to ensure unequal spacing between
energy levels, which we need for effective control.

The potential parameters o, 4 (11) are expressed briefly
by & € R?. We restrict this domain to within an order of
magnitude for the experimental choices of a [11] and then
choose a random « from this domain. After choosing initial
o, we commence with an initial trajectory, trajectory A(z),
but our algorithm operates in the frequency domain, hence
with the Fourier transform A(f) with appropriate frequency
bandwidth and discretizing the frequencies. The search for a
feasible trajectory is then executed over the frequency domain.

Evaluating a given choice of a and A(f) requires evaluating
Fu (15) to assess gate fidelity for a given gate U. Thus, Fy
is an integral over initial single-qubit states (14). We convert
this integral to a sum by choosing an appropriate sampling
over initial states

{lvi);i € M1} (16)

with [M] defined in Eq. (9). For qubits, this sampling is
uniform from S2. From this sampling of initial states (16),
we obtain the sum

) -
Fu = A—lgfuwfi) (17)
with Fy () defined in Eq. (14).

B. Searching and feasibility

We now explain our searching strategy and pose the prob-
lem of finding appropriate potentials and shaking trajectories
as a feasibility problem. We begin by explaining our method
for searching potential parameters and shaking trajectories.
Then we explain the feasibility framework of our problem.
Finally, we explain how state sampling is performed and how
average gate fidelity is estimated.

1. Searching shaking functions

The average gate fidelity (17) depends not only on the
target U but also on the potential parameters o (11), after
having chosen a shape for the family of potential functions.
This fidelity also depends on the choice of trajectory A(¢) (3).
The trajectory function’s Fourier transform is more convenient
for the search. We explain these issues in this subsubsection.

To make this variation over potential parameters and shak-
ing trajectory clear and explicit, we write the fidelity threshold
condition as

fU((xv X) 2 ‘F.thl‘i (18)

which is the feasibility condition for our search over potential
parameters and shaking trajectories. For a set of parameters
(e, ), if Eq. (18) holds, it is said that this set of parameters
is feasible; otherwise it is not feasible. Here JFy, is a given
average gate fidelity threshold value, and

L=, Ai=Ai(f)eC, (19)

is the Fourier transform of the shaking trajectory over a finite,
discrete mesh {f;} of frequencies.
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We proceed in two stages: fix a and search for feasible
(complex) A and then change « if a feasible A is not found,
ie.,

search(a) < fix(er), search(X). (20)

If the feasibility condition is not met for any tested X, a new
X is found and tested by whether its resultant average gate
fidelity passes the threshold test (18). If feasibility is not met
for any A, then a search is conducted for a new set of poten-
tial parameters & and then, after selecting new «, we repeat
the search for a feasible trajectory A for this new potential
function.

After finding an feasible trajectory for the nonlinear
Hadamard gate (D1), we employ this nonlinear Hadamard
gate for the Ramsey interferometer, which involves a non-
linear Hadamard gate followed by free evolution and then a
second nonlinear Hadamard gate. Although this second non-
linear Hadamard gate can differ from the first, we employ the
same nonlinear Hadamard gate for both cases.

2. Feasibility

Now we explain how we find feasible values of a and X
for the fidelity threshold test (18). Searches for & and X are
conducted separately in an alternating fashion. For fixed a,
the search for X is performed by global optimization methods,
and the search for « is a brute-force search, as we now explain.

Greedy searches [29] are fast but only reliable for convex
optimization problems; the alternative is global optimization,
which seeks the best solution over the entire parameter do-
main. As our focus is on feasibility rather than the more
ambitious task of optimizing, we first seek a feasible solution
locally using greedy optimization methods. If greedy methods
fail, we turn to global optimization methods [30], which are
more computationally expensive but manage to find feasible
solutions that are not local. In our search for feasible &, we
find that greedy searches fail so we resort instead to a global
search algorithm.

If a feasible trajectory is found through searching X, the
search is finished and the feasible solution delivered. If, on
the other hand, the search fails to deliver feasible X, then the
potential is modified by searching for new potential parame-
ters a. In the search process, for each o, we solve the optimal
trajectories {ki; i € [M]}, with i denoting the ith element of the
size-M Fibonacci lattice using Hohenester’s quantum-control
method in OCTBEC, as discussed in Appendix B, For each
control trajectory A, we require it to control the corresponding
initial state [v;) (16) to evolve to the final state for a given
gate with gate fidelity greater than 99.99%. If this condition
is not met, we continue to search for the next a. For this
search, we employ a simple brute-force method for searching
a new «. Specifically, we make a regular lattice of dimension
equal to the dimension of the vector a and proceed to the
next neighbor. This simple search technique has proven to be
effective for this problem.

Assessing whether a given solution, namely (e, X), is feasi-
ble or not, we compute a cost function and determine whether
this cost surpasses a threshold condition or not. The cost
function we use is average gate fidelity with the threshold

condition given in Eq. (18). To estimate the cost function, we
sample uniformly over S as explained in Eq. (17).

3. Sampling and fidelity estimate

Sampling involves averaging over input states, which in-
volves a prior, i.e., an initial distribution of states, and we
assume a uniform prior, which in our simulation is achieved
by choosing points in the Fibonacci lattice, with this Fibonacci
lattice a convenient way to sample efficiently the sphere in
an unbiased way. We explain relevant concepts of, and the
mathematical expression for, the Fibonacci lattice. Finally,
we show the link between the Fibonacci lattice and the pure
quantum state.

For efficient sampling, we choose the set of points known
as the Fibonacci lattice as these points are uniformly dis-
tributed on S? and have approximately isotropic resolution
[31]. The number of points we use is effectively a hyper-
parameter that we obtain by preliminary numerical testing,
and this hyperparameter is also chosen as a multiple of the
number of core processors in the cluster, for convenience.
The Fibonacci lattice is a mathematical idealization of natural
patterns arising in repeated plant elements, such as the scales
of pineapples [32], and our Fibonacci lattice approach effec-
tively approximates the average fidelity integral (15) while
avoiding the inconvenience of random sampling techniques
for choosing points on the sphere.

In our simulation, the average fidelity of the gate (17) is
calculated by a sum of points on the Fibonacci lattice rather
than integrating over a continuum of states on S2, which is
computationally expensive. We sample points

{ri = (xi, yi, zi) € S* C R%;i € [M]). (1)

These points are coordinates
x; =/ 1 =z cos(2mic),

yi =1 — 27 sin(2wig),

2i—1 V5-1
P = — 1’ = N 22
z i ¢ 5 (22)
of the Fibonacci lattice on S? with ¢ the golden-ratio con-
jugate [31]. These points (22) are parametrized in polar and
azimuthal angles of S? by

0; := arccos z;, ; ;= arccos )ﬁ (23)
Xi

respectively, and the corresponding single-qubit states are
0 ‘ 0
|0, @) := cos §|O) + €' sin §|1) =R, ¢)|0) 24)

for R € SU(2)/U(1) the qubit rotation operator and 6 and ¢
the Fibonacci angles (24). These Fibonacci-lattice points [31]
are fairly evenly distributed on the Bloch sphere S2.

C. Methods

Now that we have explained our model and the pertinent
mathematics in our approach, here we elaborate on key meth-
ods that we employ. Specifically, we discuss our approach to
three methods. The first method concerns how we integrate the
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nonlinear differential equation. The second method is about
how we replace integration by sampling the Fibonacci lattice.
Finally, we discuss our methods for searching for a feasible
trajectory and parameters for the quartic potential.

Our approach to integrating the nonlinear differential equa-
tion for evolution (1) is solved using the OCTBEC toolbox
[33], which we describe in Appendix B. We first define a
position grid, potential parameters, a discrete time step Af :=
T /(n — 1) for n time steps, an initial two-level state supported
over the ground and first excited motional modes, and the
nonlinear Hamiltonian, and then we run the program for fixed
T. The output is the complex wave function of the BEC over
the discrete position grid at time 7.

We sample over initial states (24) corresponding to Fi-
bonacci points (22). As our cluster has 24 cores, we choose 24
Fibonacci states for efficiently sampling average gate fidelity.
Although the input is a single-qubit state, i.e., a pure state of a
two-level system, the output could be a multilevel state, which
we truncate successfully to four levels.

Each candidate shaking trajectory A has support over a
wide range of frequencies, which makes searching for optimal
trajectories computationally expensive. We devise a method
for restricting the frequency domain for the search as we now
explain. First we solve the optimal trajectories {A*; k € [M1},
with k denoting the kth of the size-M Fibonacci lattice using
Hohenester’s quantum-control method in OCTBEC, as dis-
cussed in Appendix B, plus the discrete Fourier transform.
First we define a spectral-averaging function

1 M
P ~k
A= § || (25)

k=1

for the ith frequency component f; (19). We then determine
a connected subdomain / of frequencies for which A; ex-
ceeds a cutoff condition. In other words we introduce lower-
and upper-frequency cutoffs by restricting i to / and thereby
reduce computational overhead in searching for feasible tra-
jectories for the general case.

Now that we have restricted the frequency domain to I,
searching for a feasible X, denoted Ay, based on average gate
fidelity (17), corresponds to searching for a feasible vector
over an |I|-dimensional vector space, for |I| the cardinality
of the restricted frequency mesh. We commence the search
with an initial trajectory candidate that has equal support over
all frequency components. Then we execute a search to find
superior frequency-domain trajectories restricted to /. This
procedure is terminated when the average gate fidelity exceeds
the threshold value (18), and this frequency-domain descrip-
tion of a feasible trajectory is returned as the algorithmic
output as well as the resultant fidelity. If, on the other hand,
a feasible trajectory is not found, the algorithm searches for
new parameters of the quartic potential and seeks a feasible
trajectory in that case. When we have obtained a feasible
frequency distribution, we use the inverse discrete Fourier
transform to obtain the control trajectory in the time domain.
We can choose a different number of time domain samples to
obtain a few control points but a steep control curve or more
control points but a continuous control curve. The sampling
theorem sets the minimum number of sampling points.

Shaking

............. >

UONINOAD 931,

Detection

oo €mmmmmmnmmies

FIG. 1. We show the six steps of Ramsey interferometry as
(a) trapped BEC, (b) laser-cooling the BEC to a ground state,
(c) shaking the BEC to effect the initial Hadamard gate, (d) letting
the BEC undergo free evolution, (e) shaking the BEC again, and (f)
finally imaging the BEC to ascertain the wave function distribution
in position.

The feasible trajectory Xfeas has been obtained over M
points of the Fibonacci lattice. Due to nonlinearity of the
evolution, we do not presuppose that this trajectory is feasible
over points outside this lattice. Thus, we next characterize
the fidelity for this candidate feasible trajectory over many
points on S2. Our characterization is a “heat map,” i.e., a
visualization of the data in two dimensions with color repre-
senting amplitude, obtained by the Eckert IV projection [34],
which involves partitioning S? into small pieces. The Eckert
IV projection method corresponds to an equal-area pseudo-
cylindrical projection. For this projection, we choose a fine
graining corresponding to a “square degree”:

64800 deg? = 360° x 180° (26)

elements corresponding to one degree steps both latitudinally
and longitudinally on S2.

Our search can be executed in a greedy way, which
searches locally only, or globally, which is typically much
more computationally expensive but circumvents local traps
that stymie greedy algorithms from finding global optima.
Greedy algorithms are excellent for convex optimization or for
feasibility problems with adequate local optima. We discover
from our simulations that greedy algorithms are ineffectual
for our nonlinear quantum gate problem, at least for searching
trajectories. In our simulation, when the potential parameters
are determined, we use MATLAB’s GlobalSearch solver [30]
to find feasible trajectories. Regarding the search for new
parameters of the quartic potential, we discover that a sys-
tematic mesh search is successful, with the mesh search being
deterministically stepping to nearest neighbours for & € R2.

We now show how to simulate Ramsey interferometry,
which uses the trajectory found by global search. The se-
quence of steps for Ramsey interferometry is depicted in
Fig. 1. First, the BEC is prepared in the ground state, and
then the BEC is shaken according to the feasible trajectory
that we found; this shaking transforms the BEC by a nonlin-
ear Hadamard gate. The time-dependent BEC wave function
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during this shaking can be obtained by the Crank-Nicolson
method, which is incorporated into OCTBEC, a MATLAB
toolbox. Subsequent to the cessation of this shaking, the BEC
undergoes free evolution with the fixed potential being fixed
(not shaking), and the wave function after free evolution can
be obtained by OCTBEC. This free-evolution step is followed
by another Hadamard gate, which we impose by employing
the same feasible trajectory as for the first Hadamard gate.
Finally, the resultant wave function can be obtained, as an
output of OCTBEC, and plotting the resultant wave function
is valuable as a check on our calculation.

IV. RESULTS

We now present our results in this section. According to our
alternating two-stage process (20), first we search potential
parameters being employed to realize the Hadamard gate via
shaking. Then we present the results obtained by using the
global search algorithm to find feasible control trajectories in
the frequency domain. Finally, we present our results from us-
ing the nonlinear Hadamard gate plus nonlinear free evolution
to simulate Ramsey interferometry.

A. Potential parameters

In this subsection, we present our results for feasible po-
tential parameters. First we describe our numerical search for
feasible potential parameters, according to Eq. (20), and then
we present the potential parameters obtained from effecting
this search. Finally, we show, for this resultant potential, the
ground and first excited state energies of the BEC for the cases
that the nonlinear coefficient is zero and non-zero.

The goal is that in the case of a single state, we can use the
optimal control trajectory obtained by the OCTBEC toolbox
to control the BEC to reach the target state in the potential
under this set of parameters. If under this set of potential
parameters, for the control of a single state, the state fidelity
cannot reach a certain threshold, for example, 99.99%, then it
is impossible to further control all states to achieve quantum
gates; therefore, this set of parameters is not feasible. On the
other hand, if for M different states, we use the OCTBEC
toolbox to obtain M optimal shaking trajectories for control-
ling the BEC from initial state to target state. After obtaining
M optimal shaking trajectories, we can get M final states by
solving the differential equation (1), and then use Eq. (14) to
evaluate the feasibility of this guessing potential field. If F
is greater than 99.99%, we say this set of potential parameters
is feasible.

It should be noted that feasible here means that for this
set of potential parameters, for different initial states, we can
use OCTBEC to obtain different optimal control trajectories,
so that BEC reaches the corresponding final state. The non-
linear quantum gate requires that a unique control trajectory
be found for different initial states which is a more difficult
feasibility problem.

We now describe our search for quartic-potential fea-
sible parameters (11). Our mesh search for feasible po-
tential parameters o € R? is restricted to the domain a, €
[500, 3000] Hz and o4 € [50, 8000] Hz with mesh step size
1 Hz. The effective one-dimensional nonlinear coefficient (3)

10

V/h (kHz)

0.5 0 0.5
2 (pm)

FIG. 2. Black line represents the shape of the potential for
o, = 533 Hz and oy = 7648 Hz. The three horizontal dashed lines
show the energy of the ground state and the first and second ex-
cited states of the BEC in this potential with nonlinear coefficient
g = h x 223 Hz pm, respectively. The wave functions corresponding
to these energy levels are also plotted on the graph.

in our simulation is
g=h x 223 Hz um. 227)

Here we simulate the Hadamard gate (D1) with integration
time set to 1 ms. The control trajectory A(¢) is discretized into
100 parts with time step At = 0.01 ms and the total number of
samples n = 101. The spatial range of the potential is limited
to

x €[~1.5,1.5] um (28)

with space-step size set to 0.03 pm.

Our initial candidate for potential parameters is o =
(500, 50) Hz, i.e., ap =500 Hz and o4 = 50 Hz. Then we
execute a global search in the frequency domain with fidelity
threshold (18) equal to 99% to find a feasible control trajec-
tory to yield a Hadamard gate (D1). We obtain finally feasible
trap parameters

ar =533 Hz, o4 = 7648 Hz, 29)
which means that the algorithm selects a very anharmonious
potential with the smaller o, and the larger «4. This set of
parameters makes the potential very flat in the middle and
steep on both sides. It should be pointed out that the optimal
parameters oy and a4 obtained by the global search are close
to the boundary, but we have obtained a feasible solution.
Figure 2 shows the shape of the potential under this set of
parameters.

We calculate the ground and first excited states of the BEC
using a function provided by OCTBEC, which is based on an
optimal damping algorithm [18]. For nonlinear coefficient g =
0, and for the applicable parameters, the initial degeneracy of
the level spacings is lifted with resultant energies

[vo, vi, v2] =[0.90,3.18, 6.19] kHz, v;:=E;/h, (30)
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FIG. 3. Spectral-averaging function {A;} vs frequency for
{l";k € [24]} with [24] defined in Eq. (9). Here T = 1 ms, At =
0.01 ms, and g = h x 223 Hz pum.

using the notation of Egs. (A5) and (A6). Relevant level spac-
ings are given by

vy — vy = 2.28 kHz, v, —v; =3.01 kHz. (31

For nonlinear coefficient (27), the energies are
[vo, v1, v2] = [1.09, 3.35, 6.34] kHz, (32)
and relevant level spacings are given by

vy — vy =2.26 kHz, v, —v; =2.99 kHz. (33)

The energy of the ground state and the first and second excited
state are depicted in Fig. 2 for nonlinear coefficient (27).

B. Discrete Fourier transforms of trajectories

We now show our results for frequency truncation. We
first show the frequency distribution that plays a role in the
control process. Then we present a feasible control trajectory
obtained by a standard global search algorithm performed
after truncating the frequency, i.e., restricting the bandwidth.
Finally, we show the effect of our feasible trajectory from the
perspective of the BEC density distribution and the proportion
of BEC population at different energy levels.

In Fig. 3, we depict the resultant spectral averaging func-
tion (25). From this figure, we observe that few low-frequency
components play a significant role in (i.e., support) BEC con-
trol. We neglect the zero-frequency, or DC case, as it only
translates the BEC in space, which is not important here.
The dominant nonzero frequency is v = 2 kHz, which can be
explained by this v being closest to the frequency difference
between ground and first excited states, i.e., an energy differ-
ence of v — vy = 2.26 kHz.

Although one frequency, namely, 2 kHz, dominates the
spectral averaging function, a single frequency is insufficient
to control the system well. Fortunately, we can choose a fre-
quency range according to our requirements. After selecting
an appropriate frequency range, global search is executed to
obtain candidate control trajectories systematically.

0.15

|5\feas |
o
[

0.05

AI‘g ( 5\fcas )
()

2 4 6 8
f (kHz)

FIG. 4. The modulus length (top) and phases (bottom) of Keas
with only nine frequency components being considered.

Figure 4 shows, via plotting |Afeas| and Arg():feas) vs fre-
quency, the nine frequency values needed to obtain a feasible
trajectory Agas. We see two dominant nonzero frequencies
{1,2} kHz. A plot of the corresponding time domain is
shown in Fig. 5. This trajectory has been obtained, similarly
to our three-frequency case explained above, by employing
MATLAB’s GlobalSearch solver acting on the same M = 24
Fibonacci points. We plot the gate fidelity for 64 800 different
initial states on S? as shown in Fig. 6 to show how good our
gate is for any initial state. These results show that

Fuax = 99.93%,  Fuin = 98.53%, F =99.21%. (34)

High fidelity might be achieved by using more frequencies.
We expect that incorporating more frequencies will yield a
marginal gain of high fidelity as high frequency will cause
BEC to be excited to a higher energy level.

We also explored the best average fidelity that the global
search algorithm can obtain under different nonlinear coeffi-
cients g with respect to potential parameters (29). As shown
in Fig. 7, we simulated the situation from g=0to g =h x
477 Hz pum. We can estimate roughly the number of atoms
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FIG. 5. A time-dependent trajectory A, which effects a nonlin-
ear Hadamard gate, for the restricted case that only nine frequency
components are considered.

in a BEC corresponding to the assigned nonlinear coefficient.
For a; = 900 a.u., g = h x 477 Hz um corresponds to about
980 atoms in the BEC.

As the nonlinear coefficient increases, the average fidelity
of the quantum gate decreases. The average fidelity in this
figure corresponds to the average of 64800 corresponding
states (26) of S2. To explore why the average fidelity decays
with increasing nonlinear coefficients, we apply those optimal
control trajectories to the quantum states corresponding to
1200 Fibonacci points; Fig. 8 plots the probability of the
BEC leaking to the second and higher excited states (average
leakage over 1200 states). Comparing Figs. 7 and 8, we can
see that the average fidelity degradation is due to the leakage
of the BEC to higher energy levels.

In Figure 9, we plot the nonlinear coefficients g vs modulus
length of frequency components |Afeas| contained in the opti-
mal control trajectory with respect to the potential parameters
(29). We can see that the proportion of frequency 1 kHz
remains basically unchanged, the proportion of frequency
{2, 7} kHz increases slowly with the increase of the nonlinear
coefficient, while the changes of other frequency components
{3,4,5,6, 8,9} kHz do not show obvious characteristics.

In order to show the effect of the Hadamard-gate control
trajectory obtained this way, we plot the position distribution

3r/2 0 /2

0986 0.99 0.994 0.998

FIG. 6. Gate fidelity for 64 800 initial states subject to evolution
given by the Hadamard gate translational trajectory in Fig. 5 red line.
The 24 points (red) used to obtain an optimal control trajectory by
OCTBEC. The graphics are drawn using the Eckert IV projection.

0.995
0.9
F0.985
0.98

0.975

0.97

0 80 159 239 318 398 477
g/h (Hz pim)

FIG. 7. Average gate fidelity for different nonlinear coefficients
g. The average fidelity corresponds to the average of 64 800 corre-
sponding states of S2.

probability for the BEC, i.e., the BEC density, during pro-
cessing by shaking. Figure 10(a) depicts the feasible control
trajectory we obtain through global search. As Fig. 10(a) is
the inverse Fourier transform of Fig. 4, we see in Fig. 10(a) a
trajectory dominated by a quasisinusoidal curve with period
1 ms, which is commensurate with the frequency 1 kHz.
The first-order correction to this sinusoidal modulation is the
second frequency 2 kHz. In Fig. 10, panels (b), (c), and (d),
we show || (x;¢)||> during shaking for initial states |0), [+),
and [i), respectively. We see that the BEC oscillates back and
forth closely linked to the control trajectory in (a). In (b),
corresponding to initial state |0), the density distribution of
the BEC is almost unchanged for the first 0.2 ms. Then the
BEC begins to change its density distribution due to shaking
of the potential. Finally, the BEC approximately reaches the
target |+) state. For case (c), corresponding to initial state
|[4+), the density distribution of the BEC basically returns to
the distribution at the initial time after 0.5 ms of evolution
and in the next 0.5 ms it evolved to the |0) state. For case

%107

18
16 |
14+

1—po—m

[\ I«

100 200 300 400
g/h (Hz pm)

FIG. 8. BEC leaking to the second and higher excited states for
different nonlinear coefficients g. The leaking corresponds to the
average of 1200 corresponding states of Fibonacci points.
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—— f =2 kHz
——f=T7kHz

100 200 300 400
g/h (Hz i)

FIG. 9. Modulus length of frequency components of the opti-
mal control trajectory for different nonlinear coefficients g. Only
{1, 2, 7} kHz with obvious regularity are marked, and the rest of the
frequencies {3, 4, 5, 6, 8, 9} kHz are not marked.

(d), corresponding to initial state |i), we observe the same
correspondence between shaking trajectory and BEC position,
but an interesting blue band, corresponding to a narrow low-
density valley, appears in the middle of the BEC.

Avoiding the transition of atoms to higher energy levels is
important for a feasible physical realization because transi-
tioning via higher levels is too difficult to control in practice.
In Fig. 11 we plot probabilities of the first four energy levels
and the sum for initial state |0). We can see that the sum is
almost 1 and the simulation results tell us that the minimum
sum is 0.985, which occurs at ¢t = 0.66 ms. Here pq starts

0 0.5 1
t (ms)

FIG. 10. (a) Optimal control trajectory A(¢), over a 24-point
Fibonacci lattice on &2, for translating the potential (in m)
from —0.1910 um to 0.1608 um for a Hadamard gate executed
over 1 ms with time steps of 0.01 ms, and nonlinear coefficient
g = h x 223 Hz pm. The frequency range is in [1, 9] kHz. Popu-
lation distribution || (x;¢)||?> vs time ¢ and position x for different
initial states, (b) |0), (c) |+), (d) |i), with gate fidelity 99.49%,
99.40%, 98.28%, respectively. Different colors represent the density
as given in the legend in the right of the BEC at different x.

1
0.8
=3
+Zi:0 Di
0.6 r +p0
g ~P1
04 P2
~P3
0.2
0 4 L <o i ?*K”/ Xﬁ«wéw—q«
0 0.2 0.4 0.6 0.8 1

t (ms)

FIG. 11. Probabilities {p;} vs time ¢ and their time-dependent
sum as described in the legend.

at 1 as the initial state is |0) and remains unchanged until
time ¢ ~ 0.2 ms; then this probability exhibits two regions
of declining. Between these two regions a short weak rise
happens. Finally, the probability climbs over a small hill to
reach final result of py = 0.56.

The behavior of p; is just the opposite of py, which is easy
to understand because their sum needs to be close to 1. The
plot for p, shows us that the third level plays an important role
in this control, and the plot for p; shows us that the forth level
is just a perturbative. The crossing point of pg and p; occurs at
t ~ 0.58 ms; after that time levels three and four play impor-
tant role. To figure out which frequency component causes the
BEC to transition to the second excited state, we remove the
2 kHz frequency component contained in the optimal control
trajectory; we find that the probability of the BEC transition to
the second excited state is greatly suppressed, but at the same
time, the gate fidelity is also greatly reduced.

Although the pg of the |+) state is 0.5, and the py of the
final state here is 0.56, the fidelity of the final state and the |+)
state here reaches 99.45%. In Fig. 12, we plot the fidelity as a
function of control time. In Table I we also show the complex
components of the final wave function of the BEC on the first
four bases after applying the optimal control trajectory.

C. Ramsey interferometry

We now show results of the Ramsey interferometer sim-
ulated for the case that the Hadamard gate in Sec. IVB is
used. The Ramsey interferometer we simulate here consists
of two Hadamard gate with free evolution in between (for de-
tailed information about Ramsey interferometry, please refer
to Appendix D). We show the trajectory of the state on the
Bloch sphere, first with |0) and then after the first nonlinear
Hadamard gate, and then we show how the state evolves
during free nonlinear evolution, and, finally, after the last non-
linear Hadamard gate. Finally, we show the resultant contrast
of this nonlinear Ramsey interferometer.
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FIG. 12. Fidelity as a function of control time. The BEC is
initially in the |0) state; the optimal control trajectory realizes the
Hadamard gate. At the end of the control, the state fidelity reaches
99.45%.

In Fig. 13, we plot evolution of the BEC as a trajectory on
a projection of the Bloch sphere. Initially, the BEC is in the
ground state |0), and the nonlinear Hadamard gate transfers
the BEC from |0) to an approximation of the superposition
|+), as shown in red. During the control process, the initial
state |0) leaves the north pole, which represents this initial
state, and moves “south” where we see that the trajectory
remains in the far “north” and wraps around S2. After hov-
ering near the north pole, the trajectory first moves south and
then moves left (“west”) until it reaches the left side of our
projection and reappears on the right side of the projected S2.
Finally, the trajectory shows that the state arrives quite near to
the target: |+) state.

After the BEC reaches a state that is close to |+), free
evolution takes place until the second nonlinear Hadamard
gate is applied. Free evolution for the BEC system over a
fixed time is shown by the green line in Fig. 13. Intuitively,
for linear quantum mechanics, the BEC-state trajectory would
follow the “equator,” but Fig. 13 shows otherwise. Similarly,
if the nonlinear coefficient is 0, the state would evolve strictly
along the equator (not shown). Here, we fix the free-evolution
time so that the BEC state representation on S> moves from
the left boundary (“far west”) to the sufficiently near the right
boundary (“far east”), which, due to the nature of the projec-
tion, are the same line (of “longitude”). That is, free evolution
leads to the initial state accumulating only (approximately) a
relative phase between |0) and |1) in the superposition.

TABLE I. Complex coefficients of the first four energy levels of
the final wave function when the BEC is initially in the |0) state and
controlled by Hadamard gate trajectory.

i Re((ily)) Im((i|v))
0 0.7274 0.1809
1 0.6498 0.1231
2 —0.0223 0.0022
3 —0.0090 0.0018

FIG. 13. Visualization of BEC evolution on S when the free-
evolution time is half a cycle of the interferometer for the nonlinear
coefficient g = h x 223 Hz um. The red downward, green rightward,
and blue upward triangles represent the evolution process for the
cases (i) [0) — |)+, (ii) |)+ — |—), and (iii) |—) — |1}, respec-
tively. During evolution, transitions to higher energy levels, as shown
in Fig. 11, quantum states, are not always restricted to S.

Next, after free evolution, the second, and last, nonlinear
Hadamard gate is applied followed by state readout. This final
evolution due to the nonlinear Hadamard gate is shown as the
blue line in Fig. 13. We see that the trajectory representing the
state first evolves from right to left (to the west) in the northern
hemisphere and, ultimately, arrives near |1) in the southern
hemisphere as desired for this choice of free-evolution time.
The readout is simply a projection of the resultant state onto
the sub-basis {|0), |1)}.

We consider different free-evolution times and show the
resultant contrast for the continuum of these evolution times.
Figure 14 is a plot of ith-level atomic-state probability vs
time ¢ and shows different fixed time and the corresponding
population distribution of atoms in the final readout stage. The
contrast is

max(p;) — min(p;)

C i) = " N 35
i) max(p;) + min(p;) 52
TR VA
—~-po + P1
0.8 o -
0.6 - .
P
0.4- .
0.2 ¢
O L !
0 0.5 1 1.5 2

t (ms)

FIG. 14. Probabilities {py 1} vs time ¢ and their time-dependent
sum as described in the legend.
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for p, the probability for being measured in |i) (8). We observe
in Fig. 14 that the maximum achievable contrast is

C(po) ~ 99.63%, C(p1)~99.96%. (36)

This contrast far exceeds the earlier maximum of 97% con-
trast for a nonlinear Ramsey interferometer [11]. We see
from Fig. 14 that the frequency gap between |0) and [1) is
about 2.27 kHz, which is quite close to the frequency gap
obtained by solving the GPE, which yields a frequency gap of
2.26 kHz. These frequency gaps are slightly smaller than the
single-particle frequency splitting 2.28 kHz for the nonlinear
coefficient being zero, i.e., the linear quantum mechanical
case. Our control trajectory shows excellent results as the BEC
has only a 0.97% probability of evolve beyond |1) during the
control process.

V. DISCUSSION

In this section, we present an overview of our results and
interpretation. We first discuss the importance of choosing a
feasible potential, which we treat as quartic and then search
for appropriate parameters, for realizing nonlinear quantum
gates. As this technique involves searching the frequency
domain, we discuss how we restrict frequency bandwidth by
truncation techniques. Finally, we discuss how to use our gate
design to realize a nonlinear version of a Ramsey interferome-
ter, which is implemented using our nonlinear Hadamard gate
twice with nonlinear free evolution in between.

We have seen that computing feasible nonlinear quantum
gates is difficult, not just due to high computational demands,
but also because even the notion of a quantum gate must be
generalized to accommodate nonlinearity for which the su-
perposition principle fails. We have addressed this conceptual
challenge and then developed mathematical, and concomitant
numerical, methods to obtain satisfactory parameters for a
quartic potential. We then assess each candidate potential by
evaluating its average gate fidelity, appropriately defined for
nonlinear quantum gates; this average gate fidelity informs
us as to the feasibility of the candidate potential as well as
enabling comparison of relative efficacy for the candidate
potential. If a candidate shaking trajectory is infeasible, we
continue our mesh search for feasible potential parameters.
After determining appropriate potential parameters, we then
use a standard global search algorithm to find a feasible con-
trol trajectory to implement the target nonlinear quantum gate.

In order to perform an efficient and effective search, we
implement a standard global search algorithm in the frequency
domain subject to a carefully determined bandwidth cutoff,
based on computing the spectral averaging function. Plot-
ting this function then shows us approximately how much
bandwidth restriction is acceptable insofar as not eliminating
important features of this function by an overzealous trunca-
tion. Optimizing this bandwidth cutoff is somewhat subjective
but is tested by trying different cutoffs to assess convergence
for larger bandwidth choices. Here we tested two cases: the
three-frequency cutoff and the nine-frequency cutoff. For our
purposes we observe that average gate fidelity for the nine-
frequency case is better than the three-frequency case so
truncating for three frequencies would be ill advised in this
case.

We have used global search to compute a feasible shak-
ing trajectory for implementing a nonlinear Hadamard gate,
and then we use this resultant nonlinear gate as part of our
simulation of nonlinear Ramsey interferometer. Our nonlinear
Ramsey interferometer comprises two nonlinear Hadamard
gates with free evolution occurring in between. To analyze
nonlinear Ramsey interferometry, we represent the evolving
BEC state on the Bloch sphere, restricted to the ground and
first excited state levels, over the whole process from when
the BEC starts in the ground state until the end. In addition, we
have calculated contrast of the interferometer, and our results
show high contrast, which further confirms that our nonlinear
Hadamard gate is quite effective.

Here we have considered radial degrees of freedom in
the splitting direction. We did not consider the longitudi-
nal degrees of freedom, nor the other transverse direction,
which have significantly different energy levels and thus
will not contribute. These aspects have been extensively dis-
cussed in the original experiments studying similar excitations
[8,11,19,35].

VI. CONCLUSIONS

In conclusion, we have introduced a rigorous foundation
for treating nonlinear quantum gates, for both interferom-
etry and quantum information processing, and applied our
framework to the case of Bose-Einstein condensates, whose
dynamics is governed by a nonlinear Schrédinger equation.
We apply this framework to determining feasible parameters
of both the quartic potential that confines the Bose-Einstein
condensate and how this potential is shaken. Using global
optimization methods, we are able to determine a shaking
trajectory such that an average gate fidelity of 99.21% can be
achieved for a nonlinear Hadamard gate, and using this shak-
ing trajectory twice, with nonlinear free evolution between
the two gates, the effective contrast for a nonlinear version of
Ramsey interferometry reaches 0.99. We have thus established
a method for devising, assessing, and applying nonlinear gates
to a trapped Bose-Einstein condensate, which could be tested
experimentally.

Our work includes a definition of nonlinear quantum gates,
which combines the salient features of linear quantum gates
but connects with nonlinear quantum mechanics, for which
nonlinear unitary evolution only preserves the norm but not
the inner product. Our control method requires sampling
over a wide range of initial states; this added complexity is
due to the nonlinearity, which violates superposition rules
of linear quantum mechanics. Our approach to optimizing
trapping-potential parameters and computing a feasible shak-
ing trajectory is achieved by searching for time-dependent
trajectories but restricted by a bandwidth cutoff based on first
analyzing frequency-domain support for the spectral averag-
ing function. Then, subject to this restriction, global search
methods are employed to devise feasible nonlinear quantum
gates. In particular we devise a fast high-fidelity nonlinear
Hadamard gate, and use this gate to demonstrate high-contrast
nonlinear Ramsey interferometer. multibody quantum sys-
tems. Other types of quantum gates can also be implemented
by our strategy.
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Our work sets the stage for some interesting future investi-
gation. Given our definition of a nonlinear quantum gate, we
could ask about nonlinear quantum computing and how, in
particular, a computer founded on interacting trapped Bose-
Einstein condensates could operate and whether nonlinearity
would be advantageous, disadvantageous, or neither. Here
we have studied a single-qubit gate, but quantum control
for a two-qubit gate is important for quantum information
processing; we expect similar quantum-control techniques as
developed here would be applied in that more complicated
case, but tractability of the computational control problem
is currently an open question. Another direction is to im-
plement this scheme in the laboratory, which would likely
require further tuning of our model to accommodate nonideal
features such as nonquartic features of the potential and ramp-
ing and latency issues in the time-dependent shaking control
operation.
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APPENDIX A: BEC STATIONARY STATES
BY MINIMIZATION

We explain stationary states of the BEC by casting this as
a minimization problem. First, we discuss the equation that
the BEC stationary states need to satisfy. The solution of the
BEC stationary states involves nonlinear eigenvalue problems.
Finally, we define ground and excited BEC states.

We discuss stationary states of the BEC. In order to find
the stationary state (1), we write [36]

Yx;t) = e M p(x),

where p[¢] is the chemical potential functional of the BEC
wave function and ¢(x) a normalized Lipschitz-continuous
function. We denote the set of all such ¢ (x) by ®. By inserting
Eq. (Al) into Eq. (1), we obtain

h2
ol = = —0ud + V()¢ + AR
m

(AD)

(A2)

which BEC stationary states must satisfy. From Eqgs. (7) and
(A1), we see that the energy of the BEC for the stationary state
¢ simplifies to

2

El¢] = / dx[h—af¢ + V(P + §¢4}, (A3)
R 2m 2

which is time-independent as we are focused here on station-

ary states. We now have explained the standard approach to

stationary states and energies, but superpositions and unitary

operators are problematic due to nonlinear evolution, so we

now elaborate on the mathematical context for nonlinear evo-
lution with such states and energies.

We discuss essential properties regarding the nonlinear
eigenproblem. Stationary states of the BEC pertain to a
nonlinear equation as standard linear-operator methods are in-
applicable [37,38]. The stationary state of the BEC is actually
a nonlinear eigenstate (A2), and the corresponding eigenvalue
is

h2
ulo] = / dx[2—|ax¢|2 VI +g|¢|4}
R m

—£@)+ [ axdior, (Ad)
R 2
which is the chemical potential of the BEC in the state ¢.

We discuss the definition of the ground state and the first
excited state of the BEC. The ground state ¢y of the BEC
satisfies the minimization condition [36]

Ey := E[¢o] = min E[¢], (A5)
pecd

and the first excited state ¢; of the BEC satisfies the minimiza-

tion condition

E\:=E[¢]= min E[¢].

(A6)
<\ (g}

Other states satisfying Eq. (A2), but whose energies (A3)
exceed Ey, are called excited states.

APPENDIX B: OPTIMAL CONTROL OF BEC SHAKING

We review relevant work on optimal control of a BEC, and,
in this Appendix, our main reference is Hohenester’s 2014
study [33]. We discuss the shaking model for an effective one-
dimensional BEC. Optimal control theory based on functional
and Lagrangian function as the main method is also discussed.
Finally, we discuss pertinent tools in the MATLAB toolbox
for optimally controlling a BEC.

We review the shaking model for an effective one-
dimensional BEC. The system under consideration is a BEC
in a trap, where the dynamics takes place in one dimension.
The control part is achieved by shaking the trap. The physical
realization of this model can be implemented on an atomic
chip [21]; shaking can be achieved by changing the electrical
current in the wires.

We now describe Hohenester’s optimal control method,
which is based on treating the Lagrangian function and em-
ploying variational calculus. Given the initial state and the
target state of the BEC as well as the shape of the potential
and the control time 7', the task is to design a time-dependent
shaking trajectory that transforms the initial state to the target
state. Due to the constraints, a optimal control sequence is not
guaranteed to exist, but Hohenester’s optimal control method
attempts to determine the best sequence for shaking the BEC.
Hohenester’s method proceeds according to the following
steps. First, a guessed shaking trajectory is applied, then, the
cost function related to the shaking trajectory is constructed,
finally, the Lagrange function and functional derivatives are
used to determine the optimal way to change the guessed
shaking trajectory. Details of the Lagrangian functional based
methods are well studied [33,39].
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We now describe Hohenester’s toolbox used to design
control sequences, OCTBEC [33]. OCTBEC is a MATLAB
toolbox that provides a MATLAB class known as OPTIMIZE,
where we use CAMELCASE to denote computer functions, in
order to perform calculation of optimal control sequences.
For a single input state and target state, the toolbox yields an
optimal shaking trajectory, which is treated as the best as the
optimum. This toolbox employs a gradient-type algorithm to
determine the search direction of the control sequences. Two
gradient-type algorithms are implemented in this toolbox,
which are the nonlinear conjugate gradient and quasi-Newton
optimization [33]. The Crank-Nicolson method [40], used for
numerical simulation of BEC evolution, is incorporated into
this toolbox through a MATLAB function, known as SOLVE.

APPENDIX C: QUANTUM INFORMATION
PROCESSING WITH BECs

We review different schemes in quantum computing with
BECs. The main difference between these schemes lies in the
encoding method of the qubit and the realization of the nonlin-
ear quantum gate. In this Appendix, our main references are
Shi’s 2001 study [41], Hecht’s 2004 study [42], and Byrnes
et al.’s 2012 study [3].

We now describe Shi’s 2001 study [41]. The BEC localized
in the symmetric double-well potential is used as a qubit.
The pure states |0) and |1) correspond to condensate wave
functions that are highly localized in the left and right well,
respectively. The condensate wave function is described by a
superposition of these two states. Single-qubit nonlinear quan-
tum gates could be realized through Josephson-like tunneling,
and two-qubit nonlinear quantum gates could be constructed
by putting together two double wells [41]. Shi’s study ignores
self-trapping, which was understood later by Oberthaler et al.
[43]. Self-trapping mitigates against this kind of single-qubit
gate.

In Hecht’s thesis [42], the BEC bound in a quasiharmonic
potential with atoms with two internal levels considered. The
pure states |0) and |1) correspond to two degenerate ground
states and under certain conditions those ground states are
separated from the excited levels by an energy gap. Single-
qubit gates can be performed by exploiting the Zeeman effect,
and two-qubit quantum gates can be performed by enabling
tunneling between two neighboring qubit systems.

Byrnes et al.’s 2012 study [3] considers a two-level BEC
system, “such as two hyperfine levels in an atomic BEC or
spin polarization states of exciton polaritons.” The pure states
|0) and |1) are represented as those two levels. Single-qubit
gates can be performed by a Hamiltonian with the form of
Schwinger boson operators, and two-qubit quantum gates can
be performed by a Hamiltonian which has the form of the
product of the Schwinger boson operators.

APPENDIX D: NONLINEAR RAMSEY
INTERFEROMETRY WITH BECs

Ramsey interferometry is also known as the separated os-
cillating fields method and is used to measure the transition
frequency of a two-level atom [44]. We first review the con-
cept of Ramsey interferometry on both linear and nonlinear

systems. Then we review the theory of interferometers on lin-
ear systems. Finally, we review the implementation of Ramsey
interferometry on linear and nonlinear systems.

1. Concept

A Ramsey interferometer is an apparatus that employs two
laser pulses, separated in time by a fixed duration, to an
atomic gas with the goal of measuring the energy difference
between the two levels. A Ramsey interferometer has many
applications, such as for atomic clocks [45] and for quantum
simulation [46]. Here we discuss both the case of an atomic
gas and the case of a BEC. In its simplest form, a Ramsey
interferometer comprises four stages [47]: a 7 pulse, followed
by free evolution that results in precession leading to phase
accumulation, and then another 7 pulse followed finally by
measurement. Here we review these four parts in detail.

We now explain the first 5 pulse for both the linear case
corresponding to an atomic gas and the nonlinear case corre-
sponding to a BEC. In the linear case, consider a two-level
atomic system, whose two energy levels correspond to the
ground state |0) and to the first excited state |1) of an atom.
A 7 pulse transfers population from the ground state to an
equally weighted superposition state [48]; for linear quantum
mechanics, two concatenated, i.e., sequential, % pulses yields
a 7w pulse, which would map |0) — |1).

In the nonlinear case, the 7 pulse excites the BEC from the
ground state to an equally weighted superposition state where
the ground state is the lowest energy state of the nonlinear
Hamiltonian and the first transverse-motional excited state is
the discrete excitation of that energy [11]. Graphically we can
visualize the evolution of the state by picturing the ground
states as the south pole of S2, the excited state as the north
pole of S?, and the 7 pulse as being a rotation that rotates
the state at the south pole to the equator. In the nonlinear case,
concatenating two 5 pulses does not generally yield a 7 pulse,
with deleterious implications for nonlinear interferometry.

Subsequent to the 7 pulse, the system then evolves freely
for a fixed time. Due to the energy difference between the
ground state and the excited state, two different atomic en-
ergy levels accumulate different phases; the relative phase
of the superposition state changes. In the linear case, pre-
cession corresponds to a rotation about the polar axis of S?
with a constant precession rate. In the nonlinear case the
precession rate will be state-dependent and will not be
constant [11].

In the linear case, the second % pulse can be the same as the
first one with the concatenation of these two pulses yielding a
7 pulse, but not so for the nonlinear case; therefore, the second
7 pulse needs to be considered carefully. For constructing the
second 7 pulse, we are motivated by interferometric consid-
erations to regard as paramount that, for free-evolution time
being zero, concatenating two 7 pulses must excite [0) +— |1).

T

Whereas concatenating two 5 pulses yields a 7 pulse,

concatenating the nonlinear Hadamard gate

H:0)~|+), H:[1)—|-) D1)

twice yields an identity operation: H? = 1. This subtlety is
not important in linear quantum mechanics as long as the
nonlinear Hadamard gates arise in pairs so usually 7 and H
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gates are treated as equivalent, but the inverse property H =
H~! is important for our approach. Thus, for the nonlinear
case, a Hadamard pulse is used rather than a % pulse [11].
Consequently, instead of |0) +— |1), our concatenating two
sequential nonlinear versions of H maps |0) > |0). If the two
sequential nonlinear H gates are punctuated by intervening
free evolution, the dynamics becomes complicated because
the resultant qubit map is state-dependent due to nonlinearity;
experimentally, this complication is circumvented by restrict-
ing states to polar states |0) and |1) or to the equator states
|0) 4 €/#]1) using the S? representation [11].

The last step of the Ramsey interferometer is measurement.
In the two-level atomic system, one method of measurement
is when the atomic beam completes the interference process
and enters the measurement cavity; the number of atoms in
the ground state and excited state can be counted by counting
ions which are generated by the ionization of atoms on the hot
tungsten wire [49]. In the BEC case, populations of the ground
state and first excited state of the BEC are inferred from the
evolution of the momentum density, which is obtained by
time-of-flight images [11].

2. Theory

As background to our analysis of nonlinear Ramsey inter-
ferometry, we first elaborate here how this system works in
the case of linear quantum mechanics. We explain based on a
model for a single atom interacting twice with a single-mode
pulse [50]. We first discuss the 5 pulses, then the dynamics,
and, finally, probabilities for measuring the atom at the two
distinct energy levels defining the qubit.

Now we explain how to implement a 7 pulse in the ac-
tual physical system for linear quantum mechanics. When the
single-mode pulse is at resonance with the atom, the resultant

unitary evolution is

cos (%)oo — isin (%t)ax, o; € My(C), (D2)
with M, (C) shorthand for 2 x 2 complex matrices. Here, o,
is the Pauli X matrix and Q(¢) is the time-dependent Rabi
frequency [48] with time dependence suppressed for conve-
nience. If the atom is initially in the ground state |0), when the
interaction time of the single-mode field and the atom satisfies
[ dt2(t) = 7 /2, the atom evolves to a superposition state and
this pulse is called a 7 pulse.

The 7 pulse is the key experimental challenge for Ramsey
interferometry, and now we discuss free evolution between
these two pulses. Initially, the atom is prepared in the ground
state |0). The first 7 pulse is applied to map [0) — [0) — i[1),
and then free evolution occurs for time 7 as a precession
phenomenon; ¢+ might or might not be controllable depending

on context. For frequency difference w between the atomic
ground and excited states, the electron state after time ¢ is
[0) — ie™""|1).

The final 7 pulse ends the quantum process prior to the ul-
timate measurement. After removing an unobservable global
phase, the final electronic state is sin(%)|0) — cos(%§)[1). As
a special case, a trivial free-evolution time of ¢ = 0, the atom
evolves according to |0) — |1). By changing the precession
time, different final states can be obtained, with the precession
time leaving its signature on the final state.

The final step of Ramsey interferometry is to measure
whether the atom is excited or not. In practice, by repeating
over many atoms, we obtain the population difference be-
tween ground and excited states. Thus, mathematically, we
measure in the {|0), | 1)} basis with the result that the probabil-
ity for the atom being in |0) is sin*(%) and in [1) is cos*(%).

3. Experiments

We now summarize experiments concerning the imple-
mentation of Ramsey interferometry for both linear and BEC
systems. We discuss the realization of 7 pulses. Then we dis-
cuss free evolution and finally how measurement is performed
in different experiments.

We review the standard experimental realization of Ram-
sey interferometry [51]. In Ramsey interferometry using 8’Rb
atoms, the measurement yields information about the fre-
quency difference between the F = 1 and F = 2 hyperfine
levels. The 7 pulse is achieved either by a direct microwave
transition between the two levels or indirectly by a Raman
transition between the two levels. During the free evolution,
the field is turned off. The resultant energy level is measured
by absorption imaging.

We review the experimental realization of Ramsey interfer-
ometer on BEC system [11]. Instead of two hyperfine levels,
the two-level system is achieved by accessing only the two
lowest motional states in the potential that confines the BEC.
The 7 pulse is achieved by shaking the potential, which in turn
is achieved by varying the magnetic field. For the nonlinear
Ramsey interferometer, we use an alkali atom, for example
rubidium, and an alkali atom has a magnetic moment due to
the spin and orbital motion of of electrons outside the nucleus;
therefore, the atoms can be controlled by varying the magnetic
field [28].

Free evolution is achieved by ceasing the shaking for a
fixed duration. After free evolution, the potential is shaken
again to achieve another 7 pulse; due to nonlinearity, the
shaking trajectory can differ for the second 7 pulse compared
to the first. At the measurement stage, populations of the
ground state and first excited state of the BEC are inferred
from evolution of the momentum density, which is obtained
by time-of-flight images.
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