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Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized
vielbein formalism
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The formalism for non-Hermitian quantum systems sometimes blurs the underlying physics. We present a
systematic study of the vielbeinlike formalism which transforms the Hilbert space bundles of non-Hermitian
systems into the conventional ones, rendering the induced Hamiltonian to be Hermitian. In other words, any
non-Hermitian Hamiltonian can be “transformed” into a Hermitian one without altering the physics. Thus we
show how to find a reference frame (corresponding to Einstein’s quantum elevator) in which a non-Hermitian
system, equipped with a nontrivial Hilbert space metric, reduces to a Hermitian system within the standard
formalism of quantum mechanics.
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I. INTRODUCTION

Since the discovery of PT -symmetric quantum mechan-
ics [1–4], non-Hermitian quantum mechanics has become a
very popular research field in quantum physics [5–10]. Even
though the underlying mechanism of PT -symmetric quantum
mechanics was originally constructed from symmetry, many
studies [11–15] have pointed out that the Hilbert spaces of
the quantum states require nontrivial metric operators in order
to obtain self-consistent theories for non-Hermitian quantum
systems. To be more precise, the quantum states live in fiber
bundles, which hereinafter will be called Hilbert space bun-
dles, where the fibers are Hilbert spaces and the base space
is the time dimension in which the Hilbert spaces and states
evolve.

This dynamics can be better understood with the help
of Einstein’s elevator gedanken experiment. This gedanken
experiment of a free-falling elevator laid the theoretical foun-
dations for general relativity by showing the equivalence
between inertial reference frames in a uniform gravita-
tional field (curved spacetime) and accelerating reference
frames, in which physical phenomena can be described within
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the gravitation-free (locally flat spacetime) special relativity
[16,17].

We therefore ask an analogous question but concerning the
“equivalence relation” between Hermitian and non-Hermitian
formalisms of quantum mechanics: Does there exist a refer-
ence frame (a quantum version of Einstein’s elevator) in which
a non-Hermitian system, equipped with a nontrivial metric,
reduces to a Hermitian system, within the standard formalism
of quantum mechanics with a trivial metric operator (i.e., a
metric that is an identity operator)? So the question is how
to trivialize the metric of the Hilbert space bundle (i.e., to
transform the metric into an identity operator) of a given non-
Hermitian system. We constructively answer the question by
applying a vielbeinlike formalism [18] (see Appendix A for a
brief review of the standard vielbein formalism in Riemannian
geometry). This could be explained intuitively as breaking the
metric into two pieces and spreading those into the vector
space and its dual space so that the system seems trivial ev-
erywhere (see Fig. 1). Namely, the essence of the generalized
vielbein formalism is simply linearly rearranging the vector
and dual spaces so that the metric operator in the resulting
space is an identity operator.

We can choose some bases [18], by generalizing the
vielbein technique, to simplify the calculations and obtain new
insights into the systems under study. Indeed, the vielbein for-
malism is useful in many fields of physics, including general
relativity [19,20], supergravity [21–23], superstring theories
[24–27], etc. The main reason for applying the vielbein for-
malism is that it maps nontrivial space phenomena into a
simpler space (and back).

2643-1564/2022/4(2)/023070(9) 023070-1 Published by the American Physical Society

https://orcid.org/0000-0001-7038-3375
https://orcid.org/0000-0002-8222-9268
https://orcid.org/0000-0003-4850-1130
https://orcid.org/0000-0003-4543-3232
https://orcid.org/0000-0002-0075-6428
https://orcid.org/0000-0003-3682-7432
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.023070&domain=pdf&date_stamp=2022-04-25
https://doi.org/10.1103/PhysRevResearch.4.023070
https://creativecommons.org/licenses/by/4.0/


CHIA-YI JU et al. PHYSICAL REVIEW RESEARCH 4, 023070 (2022)

Original Basis New Basis

Vielbein
map

FIG. 1. An illustration of “flattening” the coordinates via the
vielbein formalism. This procedure flattens the space (or curve in
one dimension). (Note that Regge calculus also flattens the curved
manifold into flat space with deficit angles, which measure the local
curvature [19].)

Since the metrics of the Hilbert space bundles of non-
Hermitian quantum systems are not trivial, it is useful to study
the vielbeins in these systems. Although some rudimentary
ideas regarding the generalized vielbein formalism have been
studied [28–31], we here provide a clearer geometric under-
standing of this formalism. With the vielbein formalism, the
time evolution of the transformed states is always governed by
an induced Hermitian Hamiltonian.

The formalism of non-Hermitian quantum mechanics,
compared with that of standard quantum mechanics, is quite
complicated, as it requires one to calculate a nontrivial
metric and its evolution for a given system. Otherwise, the
omission of the metric can lead to apparent violations of
fundamental principles in physics, including various no-go
theorems in quantum information as explicitly explained
in Refs. [5,14,15]; indeed, the apparent violation of the
nonsignaling theorem [32], the discrimination of nonorthog-
onal states [33], and the increase in quantum entanglement by
local operations [34] were reported.

The actual usefulness of applying the proposed technique
is to simplify calculations by reducing the formalism of non-
Hermitian quantum mechanics, based on a nontrivial system-
dependent metric, to the standard one of quantum mechanics
with a trivial system-independent metric.

In addition to how the formalism works, we also study the
relations between different choices of vielbeins. This leads
to a gauge transformation [35–38] which does not affect the
physics. With different choices of gauges, the states evolve
with different induced Hermitian Hamiltonians, which sim-
plify calculations but do not alter the final physical results.

A classical mechanics analogy of the gauge choice is a
rotating or accelerating frame, which causes a fictitious force.
The induced Hamiltonian plays a similar role to that of those
fictitious forces in the time-dependent frame (see Fig. 2).

In fact, the widely used Heisenberg and interaction pic-
tures in Hermitian quantum mechanics are merely different
choices of generalized vielbeins. After the construction of the
generalized vielbein formalism in the Hilbert space bundles
of quantum states and its gauge symmetry, we show some
examples of the generalized vielbein formalism including how
the Heisenberg and interaction pictures are related to the
vielbeins.

v
Stationary Coordinate

Ff

v′ω
Rotating Coordinate

Coordinate Change

FIG. 2. Fictitious force induced from the coordinate change. This
is a classical analog of different gauge choices inducing different
Hamiltonians. As usual, there is no best gauge choice for all physical
systems.

II. FROM A METRIC TO A VIELBEIN

Unlike Hermitian quantum systems, where the inner prod-
uct between two states in Hilbert space is the familiar 〈φ|ψ〉,
the Hilbert spaces of non-Hermitian quantum systems can
have additional geometric structures so that the inner prod-
ucts in Hilbert space become 〈〈φψ〉〉 = 〈φ|G|ψ〉, where 〈〈φ| =
〈φ|G is the corresponding dual state of |φ〉 in the metricized
Hilbert space with a metric G (see Table I for an explicit
example). G has to be Hermitian and positive definite for a
proper Hilbert space.

In addition to the Hilbert space constraints mentioned
above, this metric should also be constrained by the
physics. The Hilbert space metric can be found by treating
Schrödinger’s equation as a parallel transport [15]. It has been
shown that if the Schrödinger equation of a system is

∂t |ψ〉 = −iH |ψ〉, (1)

where H is its Hamiltonian, the compatibility of the metric G
with the Schrödinger equation leads to

∂t G + iH†G − iGH = 0. (2)

Although the solution for G is not unique, they all differ by
a gauge transformation, G → G′ = T †GT , where T satisfies
∂t T + iHT − iT H = 0.

Even though the metric carries the information of the
Hilbert space bundle geometry, like the cases mentioned pre-
viously, it is not always desirable to keep the metric explicitly.
A systematic way of “removing” the metric is to adopt the
vielbein formalism, so that vectors are “trivial” everywhere.

Since G is Hermitian and positive definite, it can be decom-
posed into

G = E†E, (3)

TABLE I. Comparing the two inner products of two-dimensional
Hilbert spaces. In the conventional inner product, the dual state
is just the Hermitian conjugate of the state; the dual state in the
metricized space carries an additional metric operator G. Note that
in the Hermitian case, the G can always be chosen to be the identity
which reduces back to the conventional space [15].

Conventional Metricized

〈φ|ψ〉 = (
φ∗

1 φ∗
2

)(ψ1

ψ2

) 〈〈φ|ψ〉〉 = 〈φ|G|ψ〉
= (

φ∗
1 φ∗

2

)(g11 g12

g21 g22

)(
ψ1

ψ2

)
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TABLE II. Relations between the original Hilbert space bundle and the Hermitized Hilbert space bundle. Since the metric G is Hermitian
and positive definite, it can always be decomposed into G = E†E .

Original Hermitized

State and dual state |ψ〉〉 = |ψ〉 and 〈〈ψ | = 〈ψ |G |ψ]] = E |ψ〉 and [[ψ | = 〈ψ |E†

Inner product 〈〈φ|ψ〉〉 = 〈φ|G|ψ〉 [[φ|ψ]] = 〈φ|E†E |ψ〉
Expectation values 〈O〉 = 〈〈ψ |O|ψ〉〉 〈O〉 = [[ψ |O�|ψ]] = [[ψ |EOE−1|ψ]]

∂t |ψ〉〉 = −iH |ψ〉〉, ∂t 〈〈ψ | = i〈〈ψ |H, ∂t |ψ]] = −iH�|ψ]], ∂t [[ψ | = i[[ψ | H�,Governing equations
∂t G = i(GH − H†G) H� = EHE−1 + i(∂tE )E−1

where the operator E is the generalized vielbein (which will
be shortened to “vielbein” without risk of confusion).

We can therefore use Eq. (3) to redefine the states in a
locally Hermitian frame (in analogy to a locally flat frame). To
be more specific, we define the state in the locally Hermitian
frame to be

|ψ]] = E |ψ〉. (4)

It is obvious that the state evolution is no longer the same
as Eq. (1). A simple calculation shows that the time evolution
of the new state is

∂t |ψ]] = −iH� |ψ]], (5)

where

H� = EHE−1 + i(∂tE )E−1 (6)

is the induced Hamiltonian. A quick calculation shows that
Eq. (6) guarantees that H� = H†

� (see Appendix B for a de-
tailed derivation). This means that the induced Hamiltonian
through the vielbein formalism, H�, is always Hermitian.

The induced Hamiltonian being Hermitian implies that the
dual state of |ψ]] is the direct Hermitian conjugate of the state,
i.e., [[ψ | = (|ψ]])† = 〈ψ |E†. Hence the inner product of
the states in the locally Hermitian frame is reduced back to the
usual inner product in the Hermitian system, while implicitly
preserving the geometry of the Hilbert space bundle, i.e.,

[[ψ1|ψ2]] = 〈ψ1|G|ψ2〉 = 〈〈ψ1|ψ2〉〉. (7)

Therefore the vielbein E transforms any non-Hermitian
Hamiltonians to Hermitian ones. This is true even at excep-
tional points (EPs) [39–41].

III. OBSERVABLES

The expectation value of an operator O is

〈O〉 =〈〈ψ |O|ψ〉〉 = 〈ψ |GO|ψ〉
=〈ψ |E†EO|ψ〉 = [[ψ |EOE−1 |ψ]].

(8)

This means that the operator O in the locally Hermitian frame
becomes O� = EOE−1.

Using the fact that a self-adjoint operator O in the original
space satisfies O†G = GO, together with Eq. (3) we find that

O†
� =(

E−1
)†O†E† = EOE−1 = O�, (9)

i.e., the corresponding observable is also Hermitian in the
locally Hermitian frame. Moreover, since O� is merely a simi-

larity transformation of O, the eigenvalues of O� are identical
to those of O.

Some comparisons between the original Hilbert space
bundle and the Hermitized one are listed in Table II.

IV. A HIDDEN SYMMETRY

The vielbein E is obtained from Eq. (3); hence, by con-
struction, there are some inherited gauge symmetries from
the metric G. Nevertheless, in parallel to the case in differ-
ential geometry, the vielbein introduced here also has more
gauge freedoms than the metric. The “gauge transformation,”
a local transformation in t , for the vielbein is a unitary
transformation, i.e., E → E ′ = UE , where U is any unitary
operator (including time-dependent ones). This additional
gauge choice comes from the invariance of G; to be more
specific, G′ = E ′†E ′ = E†E = G.

Since U can be any unitary operator, it can be generated
by ∂tU = −iHLU + iUHR, where HL and HR are Hermitian
operators with U (t = 0) being unitary. Then Eq. (6) for E ′
becomes

H ′
� = E ′HE ′−1 + i(∂tE ′)E ′−1

= HL + U (H� − HR)U −1.
(10)

The detailed derivation can be found in Appendix C.
Not only does this result show that the induced

Hamiltonian depends on the gauge choice, but also it shows
that H� can be chosen freely. To be more specific, given an
E1 which induces a Hamiltonian H1�, we can make a gauge
transformation, U21, such that the states evolution is governed
by H2� for U21 satisfying ∂tU21 = −iH2�U21 + iU21H1�.

This means that even though H� governs the dynamics of
the corresponding |ψ]], it is, in fact, telling us how the gauge
choice evolves with time without altering the physics.

This gauge transformation might seem redundant at
first; nevertheless, this has been often used in Hermitian
quantum mechanics already. For example, the Heisenberg
picture and interaction picture are special cases of the viel-
bein formalism with special choices of gauges [H� = 0 and
H� = HI(t ), respectively]. With this tool, we can “remove” the
non-Hermiticity of the Hamiltonians.

V. EXAMPLES

To show how the vielbein formalism works, some
examples, both in Hermitian and in non-Hermitian systems,
are provided in the following.
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A. Example 1: The Heisenberg picture and interaction pictures
as gauge choices

The Heisenberg picture is historically the first picture of
quantum mechanics extensively applied in many Hermitian
studies. The main idea of the technique is to move all the time
dependence to the operator but leave the states time indepen-
dent. For the sake of clarity, we keep the time dependence of
the states and operators explicit here.

To achieve this, one first finds a unitary operator
UH(t ), satisfying ∂tUH(t ) = −iH (t )UH(t ), and UH(0) = 1.
It is well known that the states and the operators in the
Heisenberg picture are defined to be |ψ〉H = |ψ (0)〉 and
OH(t ) = U†

H(t )O(t )UH(t ), so that the operators carry all the
time dependence while states have none, while leaving the
physics unaltered, namely,

〈O〉(t ) = 〈ψ (t )|O(t )|ψ (t )〉 =H〈ψ |OH(t )|ψ〉H. (11)

To show that this is, in fact, a special case of the vielbein
formalism, we let the vielbein be E (t ) = U−1

H (t ) = U†
H(t ).

Therefore the states are

|ψ (t )]] = E (t )|ψ (t )〉 = U−1
H (t )|ψ (t )〉 = |ψ〉H, (12)

and the observables are

O�(t ) = E (t )O(t )E−1(t ) = U−1
H (t )O(t )UH(t )

=U†
H(t )O(t )UH(t ) = OH.

(13)

The induced Hamiltonian is

H�(t ) = E (t )H (t )E−1(t ) + i(∂tE (t ))E−1(t ) = 0. (14)

Hence the Heisenberg picture is the same as choosing the
vielbein satisfying E (0) = 1, with the induced Hamiltonian
H� = 0.

The interaction picture, on the other hand, is a different
gauge choice, where H� = HI(t ). The detailed derivation can
be found in Appendix D.

B. Example 2: A non-Hermitian case

Here, we demonstrate how the vielbein formalism works
using the following Hamiltonian [42]:

H = ω

2
σx − i

γ

2
σ+σ−, (15)

where ω �= 0 and γ̃ = γ /ω. The Hilbert space in this example
is finite dimensional, but it can still be used in infinite-
dimensional Hilbert space cases as well (see Appendix E for
an infinite-dimensional example).

We split the discussion of this Hamiltonian into three
cases (for |γ | < 2|ω|, |γ | > 2|ω|, and γ = ±2ω), because
the Hamiltonian is nondiagonalizable at γ = ±2ω. In addi-
tion, we use three different starting points (the metric G, the
vielbein E for H� = 0, and the vielbein E for H� �= 0) in these
three cases to show that they are mathematically equivalent.

1. Case |γ| < 2|ω|
We start with the metric method in this case. Solving

Eq. (B1) together with G being Hermitian and positive defi-

nite, we find the metric

G = eγ t/2

(
f ∗ f(−i γ

2ω
+ λ<

)
f ∗ (−i γ

2ω
− λ<

)
f

)

×
(

g11 g12

g21 g22

)(
f

(
i γ

2ω
+ λ<

)
f

f ∗ (
i γ

2ω
− λ<

)
f ∗

)
,

(16)

where f = exp(iλ<ωt/2), λ< = [1 − γ 2/(2ω)2]1/2, and the
gi j’s are constants, such that g11 > 0, g22 > 0, g∗

12 = g21, and
|g12|2 < g11g22.

Using Eq. (3), we find the corresponding E being

E = eγ t/4

(
h11 h12

h21 h22

)(
f

(
i γ

2ω
+ λ<

)
f

f ∗ (
i γ

2ω
− λ<

)
f ∗

)
, (17)

where gi j = ∑
k hikh∗

k j . Note that the hi j’s can be time-
dependent functions despite the gi j’s being constants.

Nevertheless, we first treat the hi j’s as constants, using
Eq. (6), and find the induced Hamiltonian H� = 0, since
∂tE = iEH .

We next make a gauge transformation to E ′ = UE , where

U = exp
(
−i

ωt

2
σx

)
=

⎛
⎝ cos

ωt

2
−i sin

ωt

2
−i sin

ωt

2
cos

ωt

2

⎞
⎠. (18)

A direct calculation shows that the induced Hamiltonian of E ′
is then H ′

� = ωσx/2. So that if E ′ is chosen to be the vielbein,
the state evolution is governed by ∂t |ψ]] = H ′

�|ψ]].

2. Case |γ| > 2|ω|
To find the corresponding metric G, we could calculate

the metric using Eq. (B1) as we did in the previous case.
Nevertheless, this time we start with Eq. (6), while letting
H� = 0 so the general solution of the vielbein becomes

E = eγ t/4

(
h11 h12

h21 h22

)(
f + i

(
γ

2ω
− λ>

)
f +

f − i
(

γ

2ω
+ λ>

)
f −

)
, (19)

where f ± = exp(±λ>ωt/2), λ> = [γ 2/(4ω2) − 1]1/2, and
the matrix of hi j’s is constant with a nonvanishing determi-
nant.

We can then use Eq. (3) to find that

G = eγ t/2

(
f + f −

−i
(

γ

2ω
− λ>

)
f + −i

(
γ

2ω
+ λ>

)
f −

)

×
(

g11 g12

g21 g22

)(
f + i

(
γ

2ω
− λ>

)
f +

f − i
(

γ

2ω
+ λ>

)
f −

)
, (20)

where gi j = ∑
k hikh∗

k j . Now the gi j’s are constants, such that
g11 > 0, g22 > 0, g∗

12 = g21, and |g12|2 < g11g22, which in-
deed make the metric Hermitian and positive definite.

We can, again, apply a gauge transformation from E
to E ′ = UE , with U = exp[(−i/2)ωtσx]. Direct calcula-
tion shows that the induced Hamiltonian also becomes
H ′

� = ωσx/2.

3. Exceptional point at γ = ±2ω

In this case, the Hamiltonian can be written as

HEP = ω

2

(∓2i 1
1 0

)
, (21)
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which is nondiagonalizable and corresponds to an EP [41].
Although we can still find its corresponding metric by solving
Eq. (B1) directly, we start with Eq. (6) while setting H� =
ωσx/2. Thus, using Eq. (6), we find

E = e
(±1−iσx )ωt

2

(
h11 h12

h21 h22

)(
1 ±i

2ωt i(±2ωt − 4)

)
, (22)

where the constant matrix made of hi j’s has a nonvanishing
determinant.

Using Eq. (3), we, again, find the corresponding metric

G = e±ωt

(
1 2ωt
∓i −i(±2ωt − 4)

)(
g11 g12

g21 g22

)

×
(

1 ±i
2ωt i(±2ωt − 4)

)
, (23)

where gi j = ∑
k hikh∗

k j . Clearly, we can always use
U = exp(iωtσx/2) to transform the induced Hamiltonian
into H ′

� = 0.

VI. CONCLUSION

We refer to the analogy between non-Hermitian quantum
mechanics and general relativity having in mind both (i) the
physical analogy between Hermitization of non-Hermitian
Hamiltonians and Einstein’s quantum elevator and (ii) the
mathematical analogy concerning the usage of the vielbein
formalism. Indeed, this formalism is a powerful approach to
general relativity. However, of course, its usefulness is not
limited to this theory. It can be directly applied, e.g., to su-
pergravity and superstring theories. Moreover, as shown here,
it can also be useful to study the dynamics of non-Hermitian
quantum mechanics.

Compared with the standard coordinate-based approach
to general relativity, the vielbein formalism enables find-
ing an optimal vielbein basis to simplify the description of
the spacetime and to reveal its specific physical aspects.
Analogously, the vielbeinlike formalism applied here simpli-
fies the analysis of non-Hermitian quantum systems (with
highly nontrivial metric operators in their Hilbert spaces)
by mapping the problem to locally Hermitian ones with a
standard (i.e., trivial) metric. After such a simplification, im-
portant aspects of the dynamics of non-Hermitian systems can
be clearly and intuitively revealed.

To be more specific, the nontrivial Hilbert space bundle
metrics in non-Hermitian quantum systems sometimes com-
plicate the physical description of these systems. Following
the geometrical meaning of Schrödinger’s equation, we find
that non-Hermitian Hamiltonians can be transformed into
Hermitian ones via the vielbein formalism, shedding light
on the physics of non-Hermitian systems. We also present
a systematic study on an additional gauge symmetry which
originates from the freedom of choosing vielbein frames,
where the quantum states’ evolution is described by differ-
ent Hamiltonians. Furthermore, the vielbein formalism is not
restricted to non-Hermitian quantum systems. The gauge free-
doms in the vielbein formalism in Hermitian systems also
grants us the freedom to choose frames, the Heisenberg and
interaction pictures, for example, that are easier to work with.
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APPENDIX A: A BRIEF REVIEW OF THE STANDARD
VIELBEIN FORMALISM

It is well known that in a Riemannian geometry, the inner
product between two vectors A and B is defined as

〈A, B〉 = AμgμνBν, (A1)

where gμν = gνμ is the metric tensor (component). Note
that the Einstein summation rule is applied here. In general,
the metric tensor can be very complicated and becomes an
obstacle to the understanding of the geometry or physics.
Nevertheless, we can always make a local coordinate trans-
formation that renders the inner product formally simpler.

The standard vielbein formalism in differential geometry
[18] is a technique of finding such a transformation by break-
ing the metric tensor into the product of two vielbeins, namely,

gμν = e a
μδabe b

ν , (A2)

where δab is the Kronecker delta and ea
μ and eb

ν are the
vielbeins. Then we define the new vector components as

Ãa = e a
μAμ and B̃b = e b

ν Bν, (A3)

so that

〈A, B〉 = ÃaδabB̃b, (A4)

which formally looks like the inner product in a flat space.
For standard Riemannian geometry, applying the vielbein
formalism does not alter the outcome of the geometric or
physics theory, but makes the theory conceptually clearer.
Nevertheless, there are some cases where the physics can only
be described using the vielbein formalism but not the metric
one, for example, when fermions are present in a gravitational
theory.

To show that the vielbein formalism implies a gauge sym-
metry (redundant degrees of freedom), we rewrite the metric
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and the vielbeins in terms of matrices

g =
⎛
⎝g11 g12 · · ·

g21 g22 · · ·
...

...
. . .

⎞
⎠ and e =

⎛
⎝e 1

1 e 2
1 · · ·

e 1
2 e 2

2 · · ·
...

...
. . .

⎞
⎠,

(A5)

which implies

g = e	e. (A6)

Since g = g	 is a symmetric real matrix, the degrees of free-
dom of g is n(n + 1)/2, where n is the dimension of the
manifold. Nevertheless, the vielbein e does not have such a
restriction and therefore is an element of GL(n) which has n2

degrees of freedom.
It might seem that the degrees of freedom in the vielbein

formalism are n(n − 1)/2 degrees too many, yet the e in
Eq. (A6) is not uniquely defined. That is, if there is a �

such that

�	� = 1, (A7)

i.e., � ∈ SO(n), then e′ = �e can also be a vielbein, namely,

e′	e = e	�	�e = e	e = g. (A8)

Therefore there are some redundant SO(n) degrees of freedom
[exactly n(n − 1)/2 degrees of freedom] in the vielbein for-
malism. Therefore the vielbein formalism has an SO(n) gauge
symmetry.

To make contact with the vielbein formalism provided in
the main text, we further rewrite A = (A1 A2 · · · )	 and B =
(B1 B2 · · · )	, and the inner product in Eq. (A1) becomes

〈A, B〉 = A	gB, (A9)

which is generalized to 〈〈A|B〉〉 = 〈A|G|B〉 by replacing 	 with
† in the quantum mechanics case. Since G† = G, the analog
of Eq. (A6) becomes Eq. (3), and the transformations in
Eq. (A3), i.e.,

Ã = eA and B̃ = eB, (A10)

become Eq. (4).

APPENDIX B: THE HERMITICITY OF THE INDUCED
HAMILTONIAN

The goal of this Appendix is to show that the induced
Hamiltonian in the vielbein formalism is always Hermitian.

To show this, we use the fact that the time evolution
equation of the metric G is

∂t G = i(GH − H†G) (B1)

⇒∂t (E†E ) = i(E†EH − H†E†E ). (B2)

A direct calculation shows that

H†
� = (E†)−1H†E† − i(E†)−1(∂tE†)

= (E†)−1H†E†(EE−1) − i(E†)−1(∂tE†)(EE−1)

= (E†)−1H†GE−1 − i(E†)−1(∂tE†E )E−1

+i(E†)−1E†(∂tE )E−1

= (E†)−1H†GE−1 − i(E†)−1(∂t G)E−1 + i(∂tE )E−1

= (E†)−1GHE−1 + i(∂tE )E−1

= EHE−1 + i(∂tE )E−1 = H�, (B3)

where Eqs. (3) and (B1) are applied in the derivation.
Note that the gauge choice of vielbein E has not been

specified. That is to say, any vielbein gauge choice renders
H� = H†

� . Hence the induced Hamiltonian via the vielbein
formalism is always Hermitian.

APPENDIX C: THE “GAUGE TRANSFORMATION” ON H�

This Appendix focuses on the detailed proof of Eq. (10) in
the main text and its implication.

It is known that the decomposition of Eq. (3) is far from
unique. If E satisfies Eq. (3), we can always find another
vielbein E ′ = UE that also satisfies G = E ′†E ′. By construc-
tion, we find

E†E = G = E ′†E ′ = EU †UE (C1)

⇒ U †U = 1, (C2)

which shows that U can be any unitary operator.
To show that the unitary group is the gauge group or the

redundant freedom for the system, we count the degrees of
freedom in the metric G, the vielbein E , and the gauge trans-
formation U for a Hilbert space with dimension n. The metric
G is a complex matrix satisfying G = G†, which gives n +
2n(n − 1)/2 = n2 degrees of freedom, where the first n comes
from the diagonal elements being real and the 2n(n − 1)/2
comes from the upper off-diagonal elements because there are
n(n − 1)/2 complex elements. For the vielbein E , it is an ele-
ment of GL(n,C), which has 2n2 degrees of freedom, which
is n2 too many compared with the metric G. Nevertheless,
the unitary group U(n) has n2 degrees of freedom, which is
exactly the redundant degrees of freedom in the vielbein E .
Together with Eq. (C2), the redundant freedom in the vielbein
is solely described by a unitary group.

Using the fact that U is unitary, the time derivative of U
can always be written as

∂tU = −iHLU + iUHR, (C3)

where HL and HR are Hermitian operators with U (t = 0)
being unitary. Using Eq. (6) for E ′, we find

H ′
� = E ′HE ′−1 + i(∂t E

′)E ′−1

=UEHE−1U −1 + i(∂tUE )E−1U −1

=UEHE−1U −1 + HLUEE−1U −1

− UHREE−1U −1 + iU (∂tE )E−1U −1

= HL + U (H� − HR)U −1, (C4)

which proves Eq. (10) in the main text.
This result shows that when we have a vielbein, say, E1, that

induces the Hamiltonian H1�, we can apply a gauge transform
on E1 to E2 = U21E1, such that the new induced Hamiltonian
H2� can be any given Hermitian operator. To achieve this, U21

needs to be unitary at some time t and its time derivative must
satisfy

∂tU21 = −iH2�U21 + iU21H1�. (C5)
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Hence we can always choose a frame that is convenient to
work with.

APPENDIX D: THE INTERACTION PICTURE AS A
GAUGE CHOICE

Besides the Heisenberg picture shown in the main text,
another standard picture in Hermitian quantum mechanics is
the interaction picture, which is particularly useful in pertur-
bation methods. We keep the time dependence explicit in this
Appendix to avoid possible confusion.

The main idea of the interaction picture is to split the
Hamiltonian into a “system” part and an “interaction” part,
namely,

H (t ) = Hs(t ) + Hint(t ), (D1)

where Hs(t ) and Hint(t ) are Hermitian.
One then finds a UI(t ) such that

∂tUI(t ) = −iHs(t )UI(t ) (D2)

with UI(0) = 1. It is obvious that the UI(t ) satisfying these
two conditions is a unitary operator. The states and the opera-
tors in the interaction picture are defined to be

|ψ (t )〉I = U−1
I (t )|ψ (t )〉, (D3)

OI(t ) = U†
I (t )O(t )UI(t ). (D4)

It can be shown that the time evolution of the states in the
interaction picture is

i∂t |ψ (t )〉I = HI(t )|ψ (t )〉I, (D5)

where

HI(t ) = U−1
I (t )Hint(t )UI(t ). (D6)

Back to the vielbein formalism, we can choose the vielbein
to be

E (t ) = U−1
I (t ) = U†

I (t ), (D7)

so that the states and the operators become

|ψ (t )]] = E (t )|ψ (t )〉 = U−1
I (t )|ψ (t )〉 = |ψ〉I, (D8)

O�(t ) = E (t )O(t )E−1(t ) = U−1
I (t )O(t )UI(t )

=U†
I (t )O(t )UI(t ) = OI.

(D9)

The induced Hamiltonian in this case is

H�(t ) = E (t )H (t )E−1(t ) + i(∂tE (t ))E−1(t )

= U−1
I (t )H (t )UI(t ) − iU−1

I (t )∂tUI(t )

= U−1
I (t )H (t )UI(t ) − U−1

I (t )Hs(t )UI(t )

= U−1
I (t )Hint(t )UI(t )

= HI(t ).

(D10)

Therefore the interaction picture in Hermitian quantum
mechanics is also a special choice of the vielbein.

APPENDIX E: AN INFINITE-DIMENSION
NON-HERMITIAN SYSTEM EXAMPLE

In this Appendix, we demonstrate that this vielbein for-
malism also works for an infinite-dimensional Hilbert space
bundle with the Hamiltonian

H = − i
γa

2
a†a − i

γb

2
b†b + g

(
a†b + b†a

)

=(a† b†)

⎛
⎝−i

γa

2
g

g −i
γa

2

⎞
⎠(

a
b

)
,

(E1)

where a and b (a† and b†) are the bosonic annihilation (cre-
ation) operators. For later convenience, we define the vacuum
state |0〉 such that

a|0〉 = |0〉 · 0 = 0, (E2)

b|0〉 = |0〉 · 0 = 0. (E3)

1. Case without an exceptional point

When |γa − γb| �= 4|g|, the Hamiltonian can be
rewritten as

H = h+cc
+ca

+ + h−cc
−ca

−

=(cc
+ cc

−)

(
h+ 0
0 h−

)(
ca
+

ca
−

)
,

(E4)

where

h± = − i
γa + γb

4
± ζ

4
,

cc
± =

[
a† ∓ ζ ∓ i(γa − γb)

4g
b†

]
,

ca
± = 1

ζ

[
ζ ± i(γa − γb)

2
a ∓ 2gb

]
,

ζ 2 = 16g2 − (γa − γb)2.

(E5)

The commutation relations between H , cc, and ca are

[ca
±, cc

±] = 1,

[ca
±, cc

∓] = 0,

[H, cc
±] = h±cc

±,

[H, ca
±] = −h±ca

±.

(E6)

Then by solving Eq. (B1), together with G = G† and posi-
tive definiteness, we find

G =
∞∑

n+=0
n−=0

gn+n−

(n+!)2(n−!)2 exp [−2t (n+Imh+ + n−Imh−)]

× ·(ca†
− )n− (ca†

+ )n+|0〉〈0|(ca
+)n+ (ca

−)n− ,

(E7)

where gi j > 0 are constants.
To find the corresponding vielbeins, we only need to find

one E that satisfies Eq. (3); then, the general solution can
be found by a simple gauge transformation. A vielbein that
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satisfies Eq. (3) is

E =
∞∑

n+=0
n−=0

hn+n−

(n+!)3/2(n−!)3/2 exp [it (n+h+ + n−h−)]

× ·(a†)n− (b†)n+|0〉〈0|(ca
+)n+ (ca

−)n− ,

(E8)

where hn+n−’s are nonzero constants and
gn+n− = |hn+n−|2 > 0. A direct calculation shows that the
induced Hamiltonian is H� = 0.

We can make a gauge transformation on E to E ′ by

E ′ = UE, (E9)

where

U =
∞∑

m=0
n=0

exp [itg(m − n)]√
2

m+n
(m!)(n!)

× ·(a† + b†
)m(

a† − b†
)n|0〉〈0|ambn.

(E10)

Then the induced Hermitian Hamiltonian becomes

H ′
� = g(a†b + ab†), (E11)

if the vielbein is chosen to be E ′ in Eq. (E9), namely,

E ′ =
∞∑

n+=0
n−=0

hn+n− exp {it[n+(h+ + g) + n−(h− − g)]}√
2

n++n− (n+!)3/2(n−!)3/2

× ·(a† + b†)n+ (a† − b†)n−|0〉〈0|(ca
+)n+ (ca

−)n− .

(E12)

2. Exceptional point at |γa − γb| = 4|g|
When γa − γb = 4χg, where χ = ±1, the Hamiltonian is

at an exceptional point (EP), and the Hamiltonian becomes

H = g[−i(χ + δ)a†a + i(χ − δ)b†b + a†b + b†a] (E13)

= g(a† b†)

(−i(χ + δ) 1
1 i(χ − δ)

)(
a
b

)
, (E14)

where δ = �γ/g, γa = 2χg + 2�γ , and γb = −2χg +
2�γ . With a simple recombination of the operators, the
Hamiltonian becomes

H = g(dc
+ dc

−)

(
i�γ 2i

0 i�γ

)(
da

+
da

−

)
(E15)

= − i�γ (dc
+da

+ + dc
−da

−) + 2igdc
+da

−, (E16)

where

dc
± = 1√

2
(a† ∓ iχb†), da

± = 1√
2

(a ± iχb). (E17)

The commutation relations in this case become

[da
±, dc

±] = 1,

[da
±, dc

∓] = 0,

[H, dc
+] = −i�γ dc

+,

[H, dc
−] = −i�γ dc

− + 2igdc
+,

[H, da
+] = i�γ da

+ − 2igda
−,

[H, da
−] = i�γ da

−. (E18)

We can, again, use Eq. (6) with H� = 0 to find the corre-
sponding vielbein,

E =
∞∑

n+=0
n−=0

hn+n−

(n+!)3/2(n−!)3/2 exp [�γ t (n+ + n−)]

× ·(a†)n− (b†)n+|0〉〈0|(da
+ − 2gtda

−)n+ (da
−)n− , (E19)

where the hn+n− ’s are nonzero constants. Therefore the metric
becomes

G =
∞∑

n+=0
n−=0

gn+n−

(n+!)2(n−!)2 exp [2�γ t (n+ + n−)]

× ·(da†
− )n−

(
da†

+ − 2gtda†
−

)n+|0〉
× ·〈0|(da

+ − 2gtda
−)n+ (da

−)n− ,

(E20)

where gn+n− = |hn+n−|2. Once again, we can apply a transfor-
mation E → E ′ = UE , where

U =
∞∑

m=0
n=0

exp [itg(m − n)]√
2

m+n
(m!)(n!)

× ·(a† + b†)m(a† − b†)n|0〉〈0|ambn,

(E21)

so the induced Hamiltonian becomes

H ′
� = g(a†b + ab†). (E22)

Note that this induced Hamiltonian is indeed Hermitian. This
shows that, in addition to the finite-dimensional cases, the
Hamiltonian of infinite dimension can also be Hermitized via
the vielbein formalism.
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